JP2008128130A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2008128130A
JP2008128130A JP2006315357A JP2006315357A JP2008128130A JP 2008128130 A JP2008128130 A JP 2008128130A JP 2006315357 A JP2006315357 A JP 2006315357A JP 2006315357 A JP2006315357 A JP 2006315357A JP 2008128130 A JP2008128130 A JP 2008128130A
Authority
JP
Japan
Prior art keywords
valve
seat
valve seat
line
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006315357A
Other languages
Japanese (ja)
Other versions
JP4146483B2 (en
Inventor
Takeshi Munezane
毅 宗実
Masayuki Aota
雅之 青田
Fumiya Chazono
史也 茶園
Minoru Igura
穣 井倉
Akio Shingu
章男 新宮
Manabu Hirai
学 平井
Koichi Oshima
宏一 尾島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006315357A priority Critical patent/JP4146483B2/en
Publication of JP2008128130A publication Critical patent/JP2008128130A/en
Application granted granted Critical
Publication of JP4146483B2 publication Critical patent/JP4146483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve seat of the fuel injection valve injecting fuel into a cylinder of an internal combustion engine that spray distribution from an injection hole of the valve seat is made uniform in the circumferential direction. <P>SOLUTION: The injecting hole of the valve seat includes a sheet surface, a center of which corresponds to a center line of a valve body and which has a predetermined opening angle θ<SB>1</SB>, and a jet hole connecting with the seat surface downstream of the seat surface with a predetermined tile angle θ<SB>2</SB>with respect to the center line and penetrating to a lower side of the valve seat. On a line that perpendicular to the center line directed to the same direction of the jet hole, a line, an origin of which is a point away by predetermined eccentricity amount and which connects a line of radius R<SB>0</SB>with the seat surface, forms a taper surface with a predetermined angle θ<SB>3</SB>with respect to an upper surface of the valve seat, and the length of the taper surface has a maximum value on an eccentric line and decreases continuously from the maximum value on a circumference of radius R<SB>0</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、内燃機関のシリンダ内に燃料を直接噴射する筒内噴射式のガソリンエンジン用の燃料噴射弁に関するもので、特に燃料噴射口が設けられたバルブシートの改良に係るものである。   The present invention relates to a fuel injection valve for an in-cylinder injection gasoline engine that directly injects fuel into a cylinder of an internal combustion engine, and more particularly to an improvement of a valve seat provided with a fuel injection port.

従来の燃料噴射ノズルの一つの構造例として、燃料を規定の噴霧形状に噴射するために、バルブシートの燃料噴射室の球状凹面の壁部を傾斜状に貫通する噴口の入口側縁部に、球状凹面となだらかに連続する面取り面を形成し、この面取り面の内角側の面取り量を外角側の面取り量よりも大きい構造とし、この形状によって噴口の入口側端縁部の内角側では面取り面の面取り量が大きいため、燃料の流れに縮流が発生しにくく、流速の低下が少なくなり、内角側/外角側を流れる燃料との流速の差を減少させることが示されている(例えば、特許文献1)。   As one structural example of a conventional fuel injection nozzle, in order to inject fuel into a prescribed spray shape, on the inlet side edge of the injection hole that penetrates the wall of the spherical concave surface of the fuel injection chamber of the valve seat in an inclined manner, A chamfered surface that forms a spherical continuous concave surface is formed, and the chamfered amount on the inner corner side of this chamfered surface is larger than the chamfered amount on the outer corner side. It is shown that the amount of chamfering is large, so that the contraction of the flow of the fuel is less likely to occur, the decrease in the flow velocity is reduced, and the difference in the flow velocity from the fuel flowing on the inner angle side / outer angle side is reduced (for example, Patent Document 1).

特開2000−303934号公報JP 2000-303934 A

しかしながら、前記特許文献1に開示されたバルブシートは、噴口の入口側縁部の球状凹面に連続する面取り面の内角側面取り量が外角側面取り量より大きく設定され、その半径rが徐々に変化するよう切削加工やレーザ加工で形成していることが示されているが、この特許文献1に示された加工方法では、面取り半径r寸法の正確性を確保することが容易でない。また複数の噴射弁のバルブシートにおいてr寸法のバラツキも発生しやすい。とりわけ半径rが徐々に変化するよう加工することは、前記r寸法の正確な加工が特別困難であり、そのためバラツキ発生の要因となる。
このように寸法の正確性や精度の確保に難点を有するバルブシートでは、規定の噴霧形状に噴射することは容易でないという問題点を有している。
However, in the valve seat disclosed in Patent Document 1, the chamfered inner chamfering amount continuous with the spherical concave surface at the inlet side edge of the nozzle hole is set larger than the outer chamfered chamfering amount, and the radius r gradually changes. However, it is not easy to ensure the accuracy of the chamfer radius r by the processing method disclosed in Patent Document 1. In addition, r dimension variations are likely to occur in the valve seats of a plurality of injection valves. In particular, when machining is performed so that the radius r gradually changes, it is particularly difficult to accurately process the r dimension, which causes variation.
Thus, in the valve seat which has a difficulty in ensuring dimensional accuracy and precision, there is a problem that it is not easy to inject into a prescribed spray shape.

この発明は、前記のような課題を解決するものであって、バルブシートの噴射口を加工の容易な形状とすることで所望の噴霧形状を得ることを目的としている。   The present invention solves the above-described problems, and an object of the present invention is to obtain a desired spray shape by making the injection port of the valve seat an easily processable shape.

この発明に係る燃料噴射弁は、一端に噴射口が設けられたバルブシートを配置した燃料噴射弁であって、
バルブシートの噴射口が、燃料噴射弁の弁本体中心線に対して同心で所定の開き角度θを有するとともに、バルブシート上面から所定の深さにあるシート面底部を有して開口され弁本体が接離するシート面と、このシート面の下流側にあって弁本体中心線に対して所定の傾斜角θを有するとともに、シート面底部につながりバルブシート下面まで貫通して開口された噴口と、
バルブシート上面において、噴口の傾斜する方向と同じ方向の弁本体中心線と直交する線上であって、弁本体中心点から所定の偏心量eだけ離れた点を基点とする所定の半径Rで形成する円周上の線とシート面とをつなぐ線がバルブシート上面に対し所定の角度θでもってなすテーパ面とで形成されており、かつこのテーパ面が弁本体中心線に直交する線上の偏心量eを設定した側で最大のテーパ面長さ値を有するとともに、円周に沿って連続して減少していくよう形成されているものである。
The fuel injection valve according to the present invention is a fuel injection valve in which a valve seat provided with an injection port at one end is disposed,
Injection port of the valve seat, and having a predetermined opening angle theta 1 concentrically with respect to the valve body centerline of the fuel injection valve is opened with a seat surface bottom from the valve seat the upper surface to a predetermined depth valve A seat surface that contacts and separates from the main body, and has a predetermined inclination angle θ 2 on the downstream side of the seat surface with respect to the center line of the valve main body, and is connected to the bottom of the seat surface and penetrates to the lower surface of the valve seat. The nozzle,
On the upper surface of the valve seat, on a line orthogonal to the valve body center line in the same direction as the direction in which the nozzle hole is inclined, with a predetermined radius R 0 based on a point separated from the valve body center point by a predetermined eccentricity e. lines connecting the lines and the seat surface on the circumference of forming is formed in a tapered surface forming with respect to the valve seat upper surface at a predetermined angle theta 3, and a line the tapered surface is perpendicular to the valve body centerline In addition to having a maximum taper surface length value on the side where the amount of eccentricity e is set, it is formed so as to continuously decrease along the circumference.

この発明に係る燃料噴射弁は、一端に噴射口が設けられたバルブシートを配置した燃料噴射弁であって、
バルブシートの噴射口が、燃料噴射弁の弁本体中心線に対して同心で所定の開き角度θを有するとともに、バルブシート上面から所定の深さにあるシート面底部を有して開口され弁本体が接離するシート面と、このシート面の下流側にあって弁本体中心線に対して所定の傾斜角θを有するとともに、シート面底部につながりバルブシート下面まで貫通して開口された噴口と、
バルブシート上面において、噴口の傾斜する方向と同じ方向の弁本体中心線と直交する線上であって、弁本体中心点から所定の偏心量eだけ離れた点を基点とする所定の半径Rで形成する円周上の線とシート面とをつなぐ線がバルブシート上面に対し所定の角度θでもってなすテーパ面とで形成されており、かつこのテーパ面が弁本体中心線に直交する線上の偏心量eを設定した側で最大のテーパ面長さ値を有するとともに、円周に沿って連続して減少していくよう形成されているので、テーパ面からシート面に流入時に発生する燃料噴霧の円周方向の不均一と、シート面から噴口に流入時に発生する噴霧の不均一とが打ち消し合い、噴口から噴射される燃料の円周方向の不均一が解消されて、円周方向に均一な所望の円錐状の噴霧分布を得ることができるという効果がある。
The fuel injection valve according to the present invention is a fuel injection valve in which a valve seat provided with an injection port at one end is disposed,
Injection port of the valve seat, and having a predetermined opening angle theta 1 concentrically with respect to the valve body centerline of the fuel injection valve is opened with a seat surface bottom from the valve seat the upper surface to a predetermined depth valve A seat surface that contacts and separates from the main body, and has a predetermined inclination angle θ 2 on the downstream side of the seat surface with respect to the center line of the valve main body, and is connected to the bottom of the seat surface and penetrates to the lower surface of the valve seat. The nozzle,
On the upper surface of the valve seat, on a line orthogonal to the valve body center line in the same direction as the direction in which the nozzle hole is inclined, with a predetermined radius R 0 based on a point separated from the valve body center point by a predetermined eccentricity e. lines connecting the lines and the seat surface on the circumference of forming is formed in a tapered surface forming with respect to the valve seat upper surface at a predetermined angle theta 3, and a line the tapered surface is perpendicular to the valve body centerline The maximum taper surface length value is set on the side where the amount of eccentricity e is set, and is formed so as to continuously decrease along the circumference, so that the fuel generated when flowing from the taper surface into the seat surface The non-uniformity in the circumferential direction of the spray and the non-uniformity of the spray that occurs when flowing from the seat surface into the nozzle are canceled out, and the non-uniformity in the circumferential direction of the fuel injected from the nozzle is eliminated. Uniform desired conical spray distribution There is an effect that can be obtained.

実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1は燃料噴射弁1の全体断面を示し、図1の下部には図示省略のシリンダがある。電磁力を発生させるソレノイド部2は、固定鉄心であるコア4、非磁性部材で構成されるリング5、ホルダ6およびハウジング7でもって磁気回路を構成し、ターミナル8に収納されたコイル9の各要素によって構成されている。
弁本体3は燃料に旋回流を発生させるスワラ10とバルブシート11が固定されたボディ14と、アマチュア16を有する弁体であるニードル15で構成されており、前記ニードル15がボディ14とスワラ10に摺動可能に挿入されバルブシート11に接離するよう動作する。ニードル15のバルブシート11に対するシール力は、コア4内部に設置されているスプリング17がロッド18により設定される所定のスプリング力とバルブシート径によるバルブシート面積に燃圧が印加されることによって生じる流体力によって決定される。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 shows an overall cross section of the fuel injection valve 1, and a cylinder (not shown) is provided at the bottom of FIG. The solenoid unit 2 that generates electromagnetic force comprises a core 4 that is a fixed iron core, a ring 5 that is made of a non-magnetic member, a holder 6 and a housing 7, which forms a magnetic circuit, and each coil 9 housed in a terminal 8. It consists of elements.
The valve body 3 includes a swirler 10 that generates a swirl flow in the fuel, a body 14 to which a valve seat 11 is fixed, and a needle 15 that is a valve body having an armature 16. The needle 15 includes the body 14 and the swirler 10. It is slidably inserted into the valve seat 11 and operates so as to come in contact with and separate from the valve seat 11. The sealing force of the needle 15 with respect to the valve seat 11 is generated when a spring 17 installed in the core 4 is applied with fuel pressure to a valve seat area by a predetermined spring force set by the rod 18 and a valve seat diameter. Determined by physical strength.

次に図示しない制御コントローラからの開弁信号によりコイル9が励磁される事で、ニードル15がつながるアマチュア16と固定鉄心であるコア4間とに吸引力が発生し、スプリング17によるスプリング力と燃圧により発生した流体力の和より吸引力が上回った時点でニードル15の先端がバルブシート11より離れ、つまり開弁する。その際、シート部の開口面積はニードル15がストッパ19に当接する事で規制されるリフト量により決定される。ニードル15の先端がバルブシート11に接するつまり、閉弁時は制御コントローラからの閉弁信号によりコイル9の励磁が無くなりスプリング力によって閉弁される事になる。
ここで燃料の流れについては、図示しない燃料ポンプより高圧に印加された燃料が、図示しないデリバリーパイプを経由して燃料噴射弁1まで高圧燃料(例えば燃圧は10MPa)が供給される。閉弁時は燃料噴射弁1内部のニードル15とバルブシート11のシート部まで高圧燃料で満たされる事になる。図示しない制御コントローラからの開弁信号によりニードル15が開弁し、スワラー13により旋回力を付与された燃料が、バルブシート11に設けられた噴口11cより所定の方向に向かって噴射される。
Next, when the coil 9 is excited by a valve opening signal from a controller (not shown), a suction force is generated between the armature 16 to which the needle 15 is connected and the core 4 which is a fixed iron core, and the spring force and fuel pressure by the spring 17 are generated. When the suction force exceeds the sum of the fluid forces generated by the above, the tip of the needle 15 separates from the valve seat 11, that is, opens. At that time, the opening area of the seat portion is determined by the lift amount regulated by the needle 15 coming into contact with the stopper 19. The tip of the needle 15 is in contact with the valve seat 11, that is, when the valve is closed, the coil 9 is not excited by the valve closing signal from the controller, and is closed by the spring force.
Here, with respect to the flow of fuel, high-pressure fuel (for example, fuel pressure is 10 MPa) is supplied to the fuel injection valve 1 through a delivery pipe (not shown) from a fuel applied at a high pressure from a fuel pump (not shown). When the valve is closed, the needle 15 in the fuel injection valve 1 and the seat portion of the valve seat 11 are filled with high-pressure fuel. The needle 15 is opened by a valve opening signal from a control controller (not shown), and fuel to which a turning force is applied by the swirler 13 is injected from a nozzle 11c provided in the valve seat 11 in a predetermined direction.

この発明の実施の形態1の主要部であるバルブシート11を図2によって詳説する。
図2(a)はバルブシート11のみを示す断面図であり、図2(b)はその平面図を示す。図において、バルブシート11に設けられた燃料の噴射口50は、この図2では図示省略したニードル15が接離するシート面11a部と、テーパ面11b部と、噴口11c部とより形成されている。
The valve seat 11, which is the main part of Embodiment 1 of the present invention, will be described in detail with reference to FIG.
FIG. 2A is a sectional view showing only the valve seat 11, and FIG. 2B is a plan view thereof. In the figure, the fuel injection port 50 provided in the valve seat 11 is formed by a seat surface 11a portion, a tapered surface 11b portion, and an injection port 11c portion to which the needle 15 not shown in FIG. Yes.

シート面11aは、図1に示す燃料噴射弁1を構成する弁本体3の中心線Y−Yに対して同心で、所定の開き角度θでバルブシート上面11Uから所定の深さHをシート面底部11dとして開口されることにより、シート面11aが形成されている。前記シート面11aの下流側で弁本体3の中心線Y−Yに対して、所定の噴口傾斜角度θでバルブシート下面11Lに達するよう貫通された直径dを有する噴口11cが形成されるとともに、前記シート面11aの上流側で、前記噴口11cが傾斜する方向(図2bにおていは中心線Y−Yの左側)の中心線Y−Yと直交するX−X線上であって、弁本体3の中心点Cから、所定の偏心量eだけ離れた点を基点として所定の半径Rで形成するバルブシート上面11Uの円周上の線と、前記シート面11aとをつなぐ線が、バルブシート上面11Uに対して所定のテーパ角度θを有してなすテーパ面11bが形成されている。このテーパ面11bは、図2(b)の例では中心線Y−Yと直交するX−X線上の左側、つまり偏心量eを設定した側で最大のテーパ面長さ値を有するとともに、円周に沿って連続して減少していくように設けられている。すなわち図2(b)のX−X軸上の最左側のテーパ面11bは最大のテーパ面長さlmを有し、X−X軸上最右側のテーパ面11bは最も短いテーパ面長さlsを有している。 Seat surface 11a, the sheet concentric relative to the center line Y-Y of the valve body 3 of the fuel injection valve 1, a predetermined from the valve seat top 11U at a predetermined opening angle theta 1 the depth H of FIG. 1 The sheet surface 11a is formed by opening as the surface bottom portion 11d. With respect to the center line Y-Y at the downstream side of the valve body 3 of the sheet surface 11a, together with the injection port 11c having penetrated diameter d to reach the valve seat the lower surface 11L at a predetermined nozzle hole inclination angle theta 2 is formed On the XX line orthogonal to the center line YY in the direction in which the nozzle hole 11c is inclined (left side of the center line YY in FIG. 2B) on the upstream side of the seat surface 11a, A line connecting the circumference of the valve seat upper surface 11U formed at a predetermined radius R0 with a point separated from the center point C of the main body 3 by a predetermined eccentricity e as a base point, and the seat surface 11a, tapered surface 11b which forms a predetermined taper angle theta 3 is formed against the valve seat top surface 11U. In the example of FIG. 2B, the taper surface 11b has a maximum taper surface length value on the left side on the line XX orthogonal to the center line YY, that is, the side where the eccentric amount e is set. It is provided so as to decrease continuously along the circumference. That is, the leftmost taper surface 11b on the XX axis in FIG. 2B has the maximum taper surface length lm, and the rightmost taper surface 11b on the XX axis has the shortest taper surface length ls. have.

このような図2に示す実施の形態1によるバルブシート11を備えた燃料噴射弁1では、弁本体3の中心線上に設けたシート面11aに対して、テーパ面11bを偏心してシート面11aの上流側に設けているため、燃料がテーパ面11bからシート面11aに流入する際、円周方向に燃料分布の不均一が生じる。またシート面11aから噴口11cへの燃料の流れにも偏りが発生する。   In the fuel injection valve 1 including the valve seat 11 according to the first embodiment shown in FIG. 2, the taper surface 11b is eccentric with respect to the seat surface 11a provided on the center line of the valve body 3, and the seat surface 11a Since it is provided on the upstream side, when the fuel flows from the tapered surface 11b into the seat surface 11a, the fuel distribution is uneven in the circumferential direction. In addition, the fuel flow from the seat surface 11a to the nozzle hole 11c is also biased.

その理由を、この実施の形態1によるバルブシート11の構造特性に基づいて説明する。テーパ面11bとシート面11aとの交点の代表的位置を図2(a)および図3のA、B部位に示す。部位Aは、最大テーパ面長さlmを有する個所、部位Bは最小テーパ面長さlsを有する個所である。部位Aを経る流路には燃料流路抵抗rが、部位Bを経る流路には燃料流路抵抗rが存在する。図3に示すように、ニードル15がバルブシート11から離れた開弁状態においてニードル15とバルブシート11との隙間に存在する流路長は部位A側が部位B側に比べ短い。従って部位A側を経由して流れる燃料流路抵抗は部位B側のそれと比べて小さい。つまりr<rである。この抵抗r,rはテーパ面11bの円周上にわたって連続的に変化する。テーパ面11bからシート11aに流入する燃料はこの抵抗r,rによって影響され、流れの分布が円周上において連続的に差を有する。すなわちバルブシート上面11Uに注入された燃料流は、部位A、部位Bでそれぞれ縮流が発生する。部位B側は部位A側に比較して流路抵抗が大きいため、部位A側より流速が低下する。このように燃料流速に差が生じ、シート面11aの全体では円周上において流速差が発生する。
一方、シート面底部11dと噴口11cの交点である部位C、Dにはそれぞれ燃料流路抵抗r,rが存在する。部位Cの形状変化>部位Dの形状変化のため、r>rとなり、その為燃料流速の分布が円周上において連続的に差を有する。
The reason will be described based on the structural characteristics of the valve seat 11 according to the first embodiment. Representative positions of intersections between the taper surface 11b and the sheet surface 11a are shown in FIGS. 2A and 3A and 3B. Part A is a part having the maximum taper surface length lm, and part B is a part having the minimum taper surface length ls. The fuel flow path resistance r 1 is present in the flow path passing through the part A, and the fuel flow path resistance r 2 is present in the flow path passing through the part B. As shown in FIG. 3, the length of the flow path existing in the gap between the needle 15 and the valve seat 11 when the needle 15 is away from the valve seat 11 is shorter on the part A side than on the part B side. Therefore, the resistance of the fuel flow path flowing via the part A side is smaller than that on the part B side. That is, r 1 <r 2 . The resistances r 1 and r 2 continuously change over the circumference of the tapered surface 11b. The fuel flowing into the seat 11a from the tapered surface 11b is affected by the resistances r 1 and r 2 , and the flow distribution has a difference continuously on the circumference. That is, the fuel flow injected into the valve seat upper surface 11U is contracted at the part A and the part B, respectively. Since the flow path resistance is larger on the part B side than on the part A side, the flow velocity is lower than that on the part A side. In this way, a difference occurs in the fuel flow velocity, and a flow velocity difference occurs on the circumference of the entire seat surface 11a.
On the other hand, fuel flow path resistances r 3 and r 4 exist at the portions C and D, which are the intersections of the seat surface bottom portion 11d and the nozzle hole 11c. Since the shape change of the part C> the shape change of the part D, r 3 > r 4 is satisfied, and therefore the fuel flow velocity distribution has a continuous difference on the circumference.

この実施の形態1によるバルブシート11において、バルブシート11に流入する燃料がバルブシート11の上流のテーパ面11bからシート面11a、噴口11cを経由して流れるとき、例えば図2(a)に示すバルブシート断面を流れる場合を想定すると、上記したような流路抵抗r+rを経る流路とr+rを経る流路がある。 In the valve seat 11 according to the first embodiment, when the fuel flowing into the valve seat 11 flows from the taper surface 11b upstream of the valve seat 11 via the seat surface 11a and the injection hole 11c, for example, as shown in FIG. Assuming the case of flowing through the valve seat cross section, there are a flow path passing through the flow path resistance r 1 + r 3 and a flow path passing through r 2 + r 4 as described above.

噴口11cから噴射される燃料の円周方向の均一性を向上した所望の円錐状の噴霧分布とするには、前記流路抵抗r+r=r+rとすることで、噴口11cに燃料が流入する際の円周上の流速の不均一性が互いに打ち消し合う作用を得ることができる。
前記それぞれの流路抵抗r〜rは、シート面開き角度θ、噴口傾斜角度θ、テーパ角度θをそれぞれ適切に設定することによって定めることができる。
In order to obtain a desired conical spray distribution with improved uniformity in the circumferential direction of the fuel injected from the nozzle hole 11c, the flow path resistance r 1 + r 3 = r 2 + r 4 is set to the nozzle hole 11c. It is possible to obtain the effect that the non-uniformity of the flow velocity on the circumference when the fuel flows in cancels each other.
The respective channel resistances r 1 to r 4 can be determined by appropriately setting the sheet surface opening angle θ 1 , the nozzle opening inclination angle θ 2 , and the taper angle θ 3 .

なお、図2における噴射口50を構成する各部の寸法は、シリンダの種類、大きさ、シリンダに対する燃料噴射弁1のレイアウト等によって様々な数値をとるが、例えばシート面開き角度θは45°〜80°、噴口傾斜角度θは10°、テーパの片側開きをなすテーパ角度θはシート面開き角度θより大きい値、すなわちθ>1/2(θ)で、例えばθ=90°のとき、50°〜60°する。また、偏心量e=0.1〜0.3mm、R=2〜2.2mm程度とし、噴口径d=0.3〜1.3mmφである。 2 take various values depending on the type and size of the cylinder, the layout of the fuel injection valve 1 relative to the cylinder, and the like. For example, the seat opening angle θ 1 is 45 °. ˜80 °, the nozzle inclination angle θ 2 is 10 °, and the taper angle θ 3 that opens the taper on one side is larger than the seat surface opening angle θ 1 , that is, θ 3 > 1/2 (θ 1 ), for example, θ 1 When the angle is 90 °, the angle is 50 ° to 60 °. Further, the eccentricity e = 0.1 to 0.3 mm , R 0 = 2 to 2.2 mm, and the nozzle diameter d = 0.3 to 1.3 mmφ.

以上の説明によるバルブシート11内の燃料流を図3にて模式的に示す。図から判るようにA部位側の流路抵抗r<B部位側の流路抵抗rであるのでA部位側の燃料流速>B部位側の燃料流速となるが、C部位側の流量抵抗r>D部位側の流量抵抗rであるので、C部位側の燃料流速<D部位側の燃料流速となり、結局燃料の流れが噴口11c入口で均一化され、噴口11cからの噴射は所望の円錐状の噴霧分布が得られる。
当然のことながら、所望の噴霧分布は、シリンダ容量、燃料噴射弁サイズ等から設定される前記θ〜θを最適化することによって得られる。
The fuel flow in the valve seat 11 according to the above description is schematically shown in FIG. As can be seen from the figure, the flow resistance r 1 on the A part side <the flow resistance r 2 on the B part side, so the fuel flow rate on the A part side> the fuel flow rate on the B part side, but the flow resistance on the C part side Since r 3 > flow rate resistance r 4 on the D part side, the fuel flow rate on the C part side <the fuel flow rate on the D part side, and eventually the fuel flow is made uniform at the inlet 11c inlet, and injection from the outlet 11c is desired. A conical spray distribution is obtained.
As a matter of course, a desired spray distribution can be obtained by optimizing the aforementioned θ 1 to θ 3 set based on the cylinder capacity, the fuel injection valve size, and the like.

なお、本実施の形態1のテーパ面11bを設けたことによる噴口11cからの噴射される噴霧分布をより理解し易くするために、テーパ面の無いバルブシートの場合の噴霧分布を図4に示す。
図3と図4との比較から、中心軸に対して偏心してテーパ面を設けた本実施の形態1による噴霧分布状態の改善は明らかである。
In addition, in order to make it easy to understand the spray distribution injected from the nozzle 11c by providing the tapered surface 11b of the first embodiment, the spray distribution in the case of a valve seat without a tapered surface is shown in FIG. .
From the comparison between FIG. 3 and FIG. 4, the improvement of the spray distribution state according to the first embodiment in which the tapered surface is provided eccentric to the central axis is clear.

実施の形態2.
実施の形態2は、バルブシート11をメタルインジェクション(MIM)法にて製作したものである。
メタルインジェクション法とは、周知のように金属性の微粉末と樹脂製のバインダとを混練し、この混練した材料をインジェクタから射出成形した後、バインダを溶剤で除去し、成形体を焼結する製造法である。
前記実施の形態1に示したバルブシート11をメタルインジェクションで製作すると、偏心したテーパ面の製作が容易に、かつ安価になるという効果がある。
Embodiment 2. FIG.
In the second embodiment, the valve seat 11 is manufactured by a metal injection (MIM) method.
The metal injection method, as is well known, kneads metallic fine powder and a resin binder, injection-molds the kneaded material from the injector, removes the binder with a solvent, and sinters the compact. It is a manufacturing method.
When the valve seat 11 shown in the first embodiment is manufactured by metal injection, there is an effect that an eccentric taper surface can be manufactured easily and inexpensively.

この発明の実施の形態1、2は、内燃機関のシリンダ内に燃料を噴射する燃料噴射弁に利用可能である。   Embodiments 1 and 2 of the present invention can be used for a fuel injection valve that injects fuel into a cylinder of an internal combustion engine.

この発明の実施の形態1の燃料噴射弁の全体断面を示す図である。It is a figure which shows the whole cross section of the fuel injection valve of Embodiment 1 of this invention. この発明の実施の形態1のバルブシートを示す図である。It is a figure which shows the valve seat of Embodiment 1 of this invention. この発明の実施の形態1のバルブシート内の燃料流を模式的に示す図である。It is a figure which shows typically the fuel flow in the valve seat of Embodiment 1 of this invention. 偏心したテーパ面の無いバルブシート内の燃料流を模式的に示す図である。It is a figure which shows typically the fuel flow in the valve seat without an eccentric taper surface.

符号の説明Explanation of symbols

1 燃料噴射弁、3 弁本体、11 バルブシート、11a シート面、
11b テーパ面、11c 噴口、11d シート面底部、11L バルブシート下面、
11U バルブシート上面、50 噴射口、e 偏心量、R 半径、
θ シート面開き角度、θ 噴口傾斜角度、θ テーパ角度、
Y−Y 弁本体中心線。
1 fuel injection valve, 3 valve body, 11 valve seat, 11a seat surface,
11b taper surface, 11c nozzle, 11d seat surface bottom, 11L valve seat bottom surface,
11U upper surface of valve seat, 50 injection port, e eccentricity, R 0 radius,
θ 1 sheet surface opening angle, θ 2 nozzle tilt angle, θ 3 taper angle,
Y-Y Valve body center line.

Claims (2)

一端に噴射口が設けられたバルブシートを配置した燃料噴射弁であって、
前記バルブシートの噴射口が、前記燃料噴射弁の弁本体中心線に対して同心で所定の開き角度θを有するとともに、前記バルブシート上面から所定の深さにあるシート面底部を有して開口され前記弁本体が接離するシート面と、このシート面の下流側にあって前記弁本体中心線に対して所定の傾斜角θを有するとともに、前記シート面底部につながり前記バルブシート下面まで貫通して開口された噴口と、
前記バルブシート上面において、前記噴口の傾斜する方向と同じ方向の前記弁本体中心線と直交する線上であって、弁本体中心点から所定の偏心量eだけ離れた点を基点とする所定の半径Rで形成する円周上の線と前記シート面とをつなぐ線がバルブシート上面に対し所定の角度θでもってなすテーパ面とで形成されており、かつこのテーパ面が前記弁本体中心線に直交する線上の前記偏心量eを設定した側で最大のテーパ面長さ値を有するとともに、円周に沿って連続して減少していくよう形成されていることを特徴とする燃料噴射弁。
A fuel injection valve having a valve seat provided with an injection port at one end,
The injection port of the valve seat has a predetermined opening angle θ 1 concentric with the center line of the valve body of the fuel injection valve, and has a seat surface bottom portion at a predetermined depth from the upper surface of the valve seat. A seat surface that is opened and contacts and separates from the valve body, and has a predetermined inclination angle θ 2 on the downstream side of the seat surface with respect to the center line of the valve body, and is connected to the bottom of the seat surface and is connected to the bottom of the seat surface A nozzle hole penetrating to
On the valve seat upper surface, on a line orthogonal to the valve body center line in the same direction as the direction in which the nozzle hole is inclined, a predetermined radius with a point away from the valve body center point by a predetermined eccentricity e A line connecting the line on the circumference formed by R 0 and the seat surface is formed by a tapered surface formed at a predetermined angle θ 3 with respect to the upper surface of the valve seat, and this tapered surface is the center of the valve body. A fuel injection having a maximum taper surface length value on a side where the eccentricity e on a line orthogonal to the line is set and continuously decreasing along the circumference valve.
前記バルブシートが、メタルインジェクション法で製作されていることを特徴とする請求項1に記載の燃料噴射弁。 The fuel injection valve according to claim 1, wherein the valve seat is manufactured by a metal injection method.
JP2006315357A 2006-11-22 2006-11-22 Fuel injection valve Expired - Fee Related JP4146483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315357A JP4146483B2 (en) 2006-11-22 2006-11-22 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315357A JP4146483B2 (en) 2006-11-22 2006-11-22 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2008128130A true JP2008128130A (en) 2008-06-05
JP4146483B2 JP4146483B2 (en) 2008-09-10

Family

ID=39554228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315357A Expired - Fee Related JP4146483B2 (en) 2006-11-22 2006-11-22 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP4146483B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053796A (en) * 2008-08-29 2010-03-11 Hitachi Ltd Fuel injection valve
JP2016008550A (en) * 2014-06-24 2016-01-18 トヨタ自動車株式会社 Fuel injection valve working method
JP2019525054A (en) * 2016-06-29 2019-09-05 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh A valve for metering fluid with an inflow region tapering to the through-hole

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010044119A1 (en) * 2010-11-18 2012-05-24 Robert Bosch Gmbh Quantity control valve of a fuel system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053796A (en) * 2008-08-29 2010-03-11 Hitachi Ltd Fuel injection valve
JP2016008550A (en) * 2014-06-24 2016-01-18 トヨタ自動車株式会社 Fuel injection valve working method
JP2019525054A (en) * 2016-06-29 2019-09-05 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh A valve for metering fluid with an inflow region tapering to the through-hole
US11560868B2 (en) 2016-06-29 2023-01-24 Robert Bosch Gmbh Injector for injecting a fluid, having a tapering inflow area of a through-opening

Also Published As

Publication number Publication date
JP4146483B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
EP1236888B1 (en) Fluid injection nozzle
EP1811168B1 (en) Fuel injection valve
EP1042604B1 (en) Flat needle for pressurized swirl fuel injector
EP1867869A1 (en) Fuel injection valve
JP2009270448A (en) Fuel injection valve
US9103309B2 (en) Fuel injection valve
US8261446B2 (en) Injector seat that includes a coined seal band with radius
JP4146483B2 (en) Fuel injection valve
CN103282644A (en) Injection valve
JP2010151053A (en) Fuel injection nozzle
JP2016217245A (en) Injector
JPH07259698A (en) Fuel injection pump
JPH08232812A (en) Fluid injection nozzle
KR20170002437A (en) Fuel injector
JPH11200998A (en) Fluid injection nozzle
JP2009250122A (en) Fuel injection valve
JP2008014216A (en) Fuel injection valve
JP6824300B2 (en) A valve that regulates fluid with a tapered inflow area at the through port
JP3517927B2 (en) Fluid injection nozzle
JP2008274792A (en) Fluid injection nozzle
KR100419183B1 (en) Fluid injection nozzle
JP2004513295A (en) Fuel injection valve
JP2008038716A (en) Fuel injection valve
JPH08232811A (en) Fluid injection nozzle
JPH08200188A (en) Fluid injection nozzle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4146483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees