JP2008124174A - Aligner and process for fabricating semiconductor element or liquid crystal element employing it - Google Patents

Aligner and process for fabricating semiconductor element or liquid crystal element employing it Download PDF

Info

Publication number
JP2008124174A
JP2008124174A JP2006304878A JP2006304878A JP2008124174A JP 2008124174 A JP2008124174 A JP 2008124174A JP 2006304878 A JP2006304878 A JP 2006304878A JP 2006304878 A JP2006304878 A JP 2006304878A JP 2008124174 A JP2008124174 A JP 2008124174A
Authority
JP
Japan
Prior art keywords
temperature
lens barrel
mirror
exposure
locking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006304878A
Other languages
Japanese (ja)
Other versions
JP4893249B2 (en
Inventor
Masayuki Shiraishi
雅之 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006304878A priority Critical patent/JP4893249B2/en
Publication of JP2008124174A publication Critical patent/JP2008124174A/en
Application granted granted Critical
Publication of JP4893249B2 publication Critical patent/JP4893249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aligner in which exposure precision is maintained and enhanced by eliminating uneven temperature occurring around the stay latching portion of a mirror cylinder and achieving temperature stability of the mirror cylinder of the aligner thereby drawing the performance of the aligner to the maximum. <P>SOLUTION: The aligner comprises a mirror 11 for reflecting the exposure light 10 into a mirror cylinder 13, a first temperature regulating section 16 for regulating the mirror temperature, a latching member 1d for latching the first temperature control section 16 into the mirror cylinder 13, and a second temperature regulating section 17 for regulating the temperature of the mirror cylinder 13. The second temperature regulating section 17 is located on the outside of the mirror cylinder opposing a position where the latching member 1d is latched to the mirror cylinder 13 without touching the mirror cylinder 13. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体素子や液晶素子を露光する装置にかかわり、特に、露光装置のミラ−が係止される鏡筒温度制御に関する。また、その露光装置を用いた素子の製造方法に関する。   The present invention relates to an apparatus for exposing a semiconductor element or a liquid crystal element, and particularly relates to a lens barrel temperature control in which a mirror of an exposure apparatus is locked. Moreover, it is related with the manufacturing method of the element using the exposure apparatus.

露光装置の鏡筒内において、マスクを経由した露光光が複数のミラ−からなる投影光学系にて縮小されウェハ上に結像する。この投影光学系反射ミラ−は露光光からの吸熱による高温化を防止するため輻射冷却板をミラ−裏面側に設け、ペルチェ素子等で輻射冷却板を冷却することで、適宜温度調整を行っている。
輻射冷却板やペルチェ素子等からなるミラ−冷却装置を固定する支持棒(ステ−)は鏡筒外から固定することは困難で、通常、鏡筒の内壁に係止され固定されている。投影光学系の内部にも例えば6枚の反射ミラ−が配置されるが、ミラ−の輻射冷却板の温度は鏡筒温度より低く制御されるので、これらミラ−冷却装置が固定される鏡筒内壁には支持棒を通じて熱が伝わる。したがって従来、連結部にPTFE(ポリテトラフルオロエチレン)等の断熱材を配するなどして、断熱する工夫が施されている。
In the lens barrel of the exposure apparatus, the exposure light passing through the mask is reduced by a projection optical system composed of a plurality of mirrors and imaged on the wafer. In this projection optical system reflection mirror, a radiation cooling plate is provided on the back side of the mirror to prevent high temperature due to heat absorption from exposure light, and the radiation cooling plate is cooled by a Peltier element etc. Yes.
It is difficult to fix a support rod (steer) for fixing a mirror cooling device composed of a radiation cooling plate, a Peltier element or the like from outside the lens barrel, and is usually locked and fixed to the inner wall of the lens barrel. For example, six reflection mirrors are also arranged inside the projection optical system, but the temperature of the mirror's radiation cooling plate is controlled to be lower than the temperature of the lens barrel, so that the lens barrel to which these mirror cooling devices are fixed. Heat is transmitted to the inner wall through a support rod. Therefore, conventionally, the heat insulation material, such as PTFE (polytetrafluoroethylene), is arranged in the connection part, and the device which heat-insulates is given.

しかし、PTFEは熱可塑性樹脂であるため、高温雰囲気下では軟化しやすく、またコ−ルドフロ−性もあって、締め付け圧力が高いと材質の流れ出しや面圧の低下が懸念されるなど安定性に欠ける。 また、物理的に接続されている以上断熱効果は完全とはいえず、このため支持部材の断面積を小さく距離を長くし、かつ熱伝導率の小さいSUS部材を用いて振動の伝わりにくい形状とする等の工夫をしているが、PTFE等の断熱材をも超えて熱が鏡筒に伝わることが懸念されていた。特許文献1には、従来構造の一例が記載されている。
特開2004−39851
However, since PTFE is a thermoplastic resin, it is easy to soften in a high temperature atmosphere, and also has cold flow properties. If the tightening pressure is high, there is a concern that the material may flow out or the surface pressure may decrease. Lack. In addition, as long as it is physically connected, the heat insulation effect cannot be said to be perfect, and for this reason, the cross-sectional area of the support member is reduced, the distance is increased, and a SUS member having low thermal conductivity is used to prevent vibration from being transmitted. However, there has been a concern that heat may be transmitted to the lens tube beyond the heat insulating material such as PTFE. Patent Document 1 describes an example of a conventional structure.
JP 2004-39851 A

このような熱の伝達により、鏡筒のステ−係止部が保つべき所定温度より低温又は高温となり、露光装置が温度不安定となるだけでなく、鏡筒に生じる温度不均一によって鏡筒が部分伸縮しミラ−同士の間隔が安定せず、露光の光学特性劣化が懸念されていた。
本発明においては上記問題点に鑑み、鏡筒のステ−係止部周囲に生じる温度不均一を解消し、露光装置の鏡筒の温度安定性を高いレベルで実現することで、露光装置の性能を最大限引き出し、露光精度を維持向上した露光装置を提供することにある。
Due to such heat transfer, the exposure temperature of the exposure apparatus becomes unstable due to the temperature becoming lower or higher than a predetermined temperature to be maintained by the stage locking portion of the lens barrel. Partial expansion and contraction caused the distance between mirrors to be unstable, and there was concern about deterioration in optical characteristics of exposure.
In the present invention, in view of the above-described problems, the temperature non-uniformity generated around the stage locking portion of the lens barrel is eliminated, and the temperature stability of the lens barrel of the exposure apparatus is realized at a high level. It is an object of the present invention to provide an exposure apparatus that maximizes the exposure and maintains and improves the exposure accuracy.

この発明にかかる露光装置は、鏡筒内に露光光を反射させるミラ−と、ミラ−温度を調整する第一の温度調整部と、第一の温度調整部を鏡筒内に係止する係止部材と、鏡筒を温度調整する第二の温度調整部を備え、第二の温度調整部は、係止部材が鏡筒に係止される位置に対向する鏡筒外側であって、鏡筒と非接触に設置されていることを特徴とする。
また、好ましくはこの発明にかかる露光装置は、係止部材と鏡筒を係止する部位の鏡筒温度を検出し、第二の温度調整部を制御するための温度検出部を備えることを特徴とする。
An exposure apparatus according to the present invention includes a mirror that reflects exposure light in a lens barrel, a first temperature adjustment unit that adjusts the mirror temperature, and a latch that locks the first temperature adjustment unit in the lens barrel. And a second temperature adjusting unit that adjusts the temperature of the lens barrel. The second temperature adjusting unit is outside the lens tube and faces the position where the locking member is locked to the lens tube. It is installed in a non-contact manner with the tube.
Preferably, the exposure apparatus according to the present invention further includes a temperature detection unit for detecting a lens barrel temperature at a portion where the locking member and the lens barrel are locked, and for controlling the second temperature adjustment unit. And

また、好ましくはこの発明にかかる露光装置は、第二の温度調整部が少なくとも輻射熱を受ける輻射温調板と電子冷却素子を含むことを特徴とする。
また、好ましくはこの発明にかかる露光装置は、露光装置の露光光波長がEUV領域であることを特徴とする。
また、この発明にかかる半導体素子または液晶素子の製造方法は、鏡筒内に露光光を反射させるミラ−とミラ−温度を調整する第一の温度調整部と、第一の温度調整部を鏡筒内に係止する係止部材と、鏡筒を温度調整する第二の温度調整部を備え、第二の温度調整部が、係止部材が鏡筒に係止される鏡筒外側位置であって、鏡筒と非接触に設けられており、係止部材と鏡筒を係止する部位の鏡筒温度を検出する温度検出部を備え、鏡筒温度を検出する温度検出部から鏡筒の温度を検出する工程と、検出した温度に基づき第二の温度調整部の出力制御を行う工程とを有することを特徴とする。
Preferably, the exposure apparatus according to the present invention is characterized in that the second temperature adjusting unit includes at least a radiation temperature adjusting plate that receives radiation heat and an electronic cooling element.
The exposure apparatus according to the present invention is preferably characterized in that the exposure light wavelength of the exposure apparatus is in the EUV region.
The method for manufacturing a semiconductor device or a liquid crystal device according to the present invention includes a mirror that reflects exposure light in a lens barrel, a first temperature adjustment unit that adjusts a mirror temperature, and a first temperature adjustment unit that is a mirror. A locking member that locks in the tube, and a second temperature adjusting unit that adjusts the temperature of the lens barrel, and the second temperature adjusting unit is located at a position outside the lens barrel where the locking member is locked to the lens barrel. The temperature detection unit is provided in a non-contact manner with the lens barrel and detects the temperature of the lens barrel at a portion where the locking member and the lens barrel are locked, and the temperature detection unit detects the lens barrel temperature. And a step of controlling the output of the second temperature adjustment unit based on the detected temperature.

また、この発明にかかる半導体素子または液晶素子の製造方法は、液冷放熱方式のペルチェ素子と輻射温調板からなり、露光光を反射させるミラ−と非接触に設置され鏡筒内に設けられたミラ−冷却装置と、液冷放熱方式のペルチェ素子と輻射温調板からなり鏡筒の外部に鏡筒と非接触に支持され、かつ、ミラ−冷却装置を鏡筒内部に係止する係止部位の裏面外側に設けられた鏡筒温調装置と、ミラ−冷却装置を鏡筒内部に係止する係止部位の裏面外側に接触して設けられた温度計を備え、温度計からの鏡筒温度を検出する工程と、検出した温度に基づき鏡筒温調装置の出力を制御することにより鏡筒を所定の基準温度に均一保持する工程とを有することを特徴とする。   The method of manufacturing a semiconductor device or a liquid crystal device according to the present invention comprises a liquid-cooling and heat-dissipating Peltier device and a radiation temperature control plate, and is provided in a lens barrel in a non-contact manner with a mirror that reflects exposure light. A mirror cooling device, a liquid-cooling heat radiation type Peltier element and a radiation temperature control plate, which are supported outside the lens barrel in a non-contact manner, and lock the mirror cooling device inside the lens barrel. A thermometer provided in contact with the outer side of the rear surface of the locking part for locking the mirror cooling device inside the lens barrel, and a thermometer provided on the outer side of the rear part of the locking part. The method includes a step of detecting the lens barrel temperature, and a step of uniformly holding the lens barrel at a predetermined reference temperature by controlling the output of the lens barrel temperature control device based on the detected temperature.

特に高い精度が要求される露光装置において、冷却対象レンズの冷却装置が固定される鏡筒自体が真空筐体(ボディ)の中に設置される場合であっても、空冷等の冷却手段が使用できない環境下で鏡筒の温度不均一を解消することができ、ひいては温度に起因した鏡筒伸縮による、露光精度の悪化を低減できる。   In exposure systems that require particularly high accuracy, cooling means such as air cooling are used even when the lens barrel itself to which the cooling device for the lens to be cooled is fixed is installed in a vacuum housing (body). In an environment where this is not possible, temperature unevenness of the lens barrel can be eliminated, and deterioration of exposure accuracy due to lens barrel expansion and contraction due to temperature can be reduced.

本発明の実施形態にかかる模式図を図1に示す。
この図において、ミラ−11は投影光学系のミラ−であり露光光10を反射する。EUV露光装置においては、反射率は理論上70%程度であり残りの大部分はミラ−11にて反射されず、ミラ−11の表面上で熱に変換される。
ミラ−11は、それ自体がミラ−11の裏側で図面に記載しない支持ステ−により別途支えられる。ミラ−11の裏面側では温調効果により鏡筒13との温度差が小さい状態に制御され維持されており、また、ミラ−11自体を支える支持ステ−は、板バネ状構造部を有し温度が伝わりにくい支持ステ−にて支えられているので、ミラ−11の本体から鏡筒13へ温度が伝わることはない。
A schematic diagram according to an embodiment of the present invention is shown in FIG.
In this figure, a mirror 11 is a mirror of the projection optical system and reflects the exposure light 10. In the EUV exposure apparatus, the reflectance is theoretically about 70%, and most of the remainder is not reflected by Mira-11, but is converted to heat on the surface of Mira-11.
The mirror 11 itself is separately supported on the back side of the mirror 11 by a support stage not shown in the drawing. On the back side of the mirror 11, the temperature difference with the lens barrel 13 is controlled and maintained by the temperature control effect, and the support stage that supports the mirror 11 itself has a leaf spring-like structure portion. Since the temperature is supported by a support stage that is difficult to transmit temperature, the temperature is not transmitted from the main body of Mira-11 to the lens barrel 13.

一方、ミラ−11の裏面側にはミラ−11と独立に対向して輻射温調板12が載置されている。この輻射温調板12はミラ−11の熱を輻射熱として吸収するため、ミラ−11の裏面側に対向する面上に輻射率の高い高輻射率素材が設けられる。
輻射熱はミラ−11の裏面と輻射温調板12の間でやりとりされ、両者の温度差があるかぎり熱平衡になるまで続けられる。したがって、輻射温調板12はミラ−11裏面側から輻射熱を受けるよう、相対的に低温に制御される。この温度制御はペルチェ素子16を用いて輻射温調板12を電子冷却することで行い、また輻射温調板12に取り付けられた図示しない温度計の検出値をもとに、ペルチェ素子16への供給電力量を制御することで冷却出力が正確に制御される。このとき、輻射温調板12は鏡筒基準温度より0.1℃から1℃程度低い温度となる。
On the other hand, a radiation temperature control plate 12 is placed on the back side of the mirror 11 so as to face the mirror 11 independently. Since this radiation temperature control plate 12 absorbs the heat of Mira-11 as radiant heat, a high emissivity material having a high emissivity is provided on the surface facing the rear surface side of Mira-11.
Radiant heat is exchanged between the rear surface of Mira-11 and the radiation temperature control plate 12, and continues until thermal equilibrium is reached as long as there is a temperature difference between the two. Therefore, the radiation temperature control plate 12 is controlled to a relatively low temperature so as to receive radiant heat from the rear side of the mirror 11. This temperature control is performed by electronically cooling the radiation temperature adjusting plate 12 using the Peltier element 16, and based on the detection value of a thermometer (not shown) attached to the radiation temperature adjusting plate 12, By controlling the amount of power supplied, the cooling output is accurately controlled. At this time, the radiation temperature control plate 12 has a temperature lower by about 0.1 ° C. to 1 ° C. than the lens barrel reference temperature.

ペルチェ素子16の裏面側には液冷ジャケット15を取り付け、ペルチェ素子16自体の放熱は、この液冷ジャケット15を通じて行う。液冷ジャケット15には循環冷媒が供給され、最終的にはこの循環冷媒を介して鏡筒13内から熱が運びだされる。
ここで、輻射温調板12は前述のごとくペルチェ素子16にて低温度に維持されており、この温度差は鏡筒13と輻射温調板12の間で最大1℃程度となる。このため、輻射温調板12の支持ステ−14を介して鏡筒への係止部1d周辺の熱を奪うような熱の伝導が生じ、結果として、鏡筒13の係止部1dの温度が局所的に低温化されることで、鏡筒13の温度に分布が生じるので鏡筒温度分布を均一に保てなくなる。また、支持ステ−14を介して奪われる熱は係止部1カ所につき10mW程度となるが、係止部は複数あるので装置全体としては、合計で数十〜数百mW程度にも達する。
A liquid cooling jacket 15 is attached to the back side of the Peltier element 16, and the Peltier element 16 itself radiates heat through the liquid cooling jacket 15. A circulating refrigerant is supplied to the liquid cooling jacket 15, and finally heat is carried out from the inside of the lens barrel 13 via the circulating refrigerant.
Here, the radiation temperature adjusting plate 12 is maintained at a low temperature by the Peltier element 16 as described above, and this temperature difference is about 1 ° C. at maximum between the lens barrel 13 and the radiation temperature adjusting plate 12. For this reason, heat conduction that takes away the heat around the locking portion 1d to the lens barrel occurs via the support stage 14 of the radiation temperature adjusting plate 12, and as a result, the temperature of the locking portion 1d of the lens barrel 13 is increased. Since the temperature is locally lowered, a distribution occurs in the temperature of the lens barrel 13, so that the lens barrel temperature distribution cannot be kept uniform. Further, the heat taken away via the support station 14 is about 10 mW per one locking portion, but since there are a plurality of locking portions, the total apparatus reaches several tens to several hundreds mW.

このため、鏡筒の係止部1dに対向する外側の位置に別のペルチェ素子17と輻射温調板18を設けることで、鏡筒の係止部1dを局所的に温調する構成とする。また、この鏡筒13の外部に設けられた輻射温調板18はボディ1cに支持ステ−1bを介して係止部1eに支持されているが、係止部1eの温度局所変化による露光装置全体としての性能への影響はほとんど無い。   For this reason, by providing another Peltier element 17 and the radiation temperature adjusting plate 18 at an outer position facing the locking portion 1d of the lens barrel, the temperature of the locking portion 1d of the lens barrel is locally controlled. . Further, the radiation temperature adjusting plate 18 provided outside the lens barrel 13 is supported on the body 1c by the locking portion 1e via the support stem-1b. However, the exposure apparatus according to the local temperature change of the locking portion 1e. There is almost no impact on overall performance.

鏡筒外側の冷却装置の輻射温調板18と対向する鏡筒の面には、輻射温調板18と同様、高輻射率の素材を塗布してもよい。鏡筒は精密な制御を要求されることから、バイメタル的なコ−ティングによる応力発生等を避ける必要もあるが、数μm〜100μm厚程度の高輻射率素材のコ−ティングは、温度差が1℃程度であることを考慮すればその影響は無視でき、むしろ効率的な熱輻射による授受を行う観点から好ましい。   As with the radiation temperature control plate 18, a material with a high emissivity may be applied to the surface of the lens barrel facing the radiation temperature control plate 18 of the cooling device outside the lens barrel. Since the lens barrel requires precise control, it is necessary to avoid stress generation due to bimetallic coating, but the coating of high emissivity material with a thickness of several μm to 100 μm has a temperature difference. Considering that the temperature is about 1 ° C., the influence is negligible. Rather, it is preferable from the viewpoint of performing transfer by efficient thermal radiation.

この実施形態では温度計1aを鏡筒13の係止部1dの外側位置に接触して設けるので、係止部1dを介した鏡筒13の温度変化を迅速に検出し、ペルチェ素子17の駆動制御を的確に行うことで、鏡筒13の係止部1dの温度は実質的に殆ど変化することなく、0.01℃程度の変動範囲内で安定制御することが可能となる。この場合の温度制御は、温度計1aの検出値に基づきPID制御により行う。   In this embodiment, since the thermometer 1a is provided in contact with the outer position of the locking portion 1d of the lens barrel 13, the temperature change of the lens barrel 13 via the locking portion 1d is detected quickly, and the Peltier element 17 is driven. By performing the control accurately, the temperature of the locking portion 1d of the lens barrel 13 can be stably controlled within a fluctuation range of about 0.01 ° C. with substantially no change. The temperature control in this case is performed by PID control based on the detection value of the thermometer 1a.

また、周囲の空気が露光に対して悪影響を及ぼすので、真空に近く極めて安定した雰囲気下で露光を行う必要があって、このような極限の光学的コントロ−ルには高い技術が求められる。
このため、鏡筒13自体はボディ1cの中に載置されるが、ボディ1c内も鏡筒13内も共に真空状態に保持されるため、係止部1dの温度調整に空調は使用困難となる。しかし、例えばヒ−タ−を用いた加温は使用することができるので、この場合には係止部1dの外側にヒ−タ−を接触させてもよい。また、液体媒体による温調としてもよい。
In addition, since ambient air adversely affects exposure, it is necessary to perform exposure in a very stable atmosphere close to a vacuum, and high technology is required for such an extreme optical control.
For this reason, the lens barrel 13 itself is placed in the body 1c, but both the body 1c and the lens barrel 13 are kept in a vacuum state, and thus air conditioning is difficult to use for temperature adjustment of the locking portion 1d. Become. However, for example, heating using a heater can be used. In this case, the heater may be brought into contact with the outside of the locking portion 1d. Moreover, it is good also as temperature control by a liquid medium.

また、ペルチェ素子17は、輻射温調板18とともに係止部1dを局所的に加温すればよく1cm四方程度の大きさで十分であり、大型で高出力である必要はない。ただし、係止部1dは投影光学系のミラ−1セットあたり3〜4カ所設けられるため、ミラ−が6枚ある投影光学系においては18〜24カ所の係止部が生じることになり、係止部の数に対応する個数の冷却装置を係止部ごとに独立に設けることが、鏡筒全体の温度分布を迅速に低減する上で好ましい。   Further, the Peltier element 17 only needs to locally heat the locking portion 1d together with the radiation temperature control plate 18, and a size of about 1 cm square is sufficient, and it is not necessary to have a large size and high output. However, since the locking portions 1d are provided at 3 to 4 positions per one mirror of the projection optical system, 18 to 24 locking portions are generated in the projection optical system having six mirrors. It is preferable that the number of cooling devices corresponding to the number of stop portions be provided independently for each locking portion in order to quickly reduce the temperature distribution of the entire lens barrel.

投影光学系のミラ−11それ自体の温度制御は、0.1℃〜0.2℃程度の範囲内で安定制御することで露光装置の精度は保たれるが、鏡筒13の温度制御はミラ−11自体の温度制御よりもより精密に行う必要がある。
すなわちミラ−11については、その温度変化によってミラ−11の載置位置自体が変動することはほとんど無いが、鏡筒13の温度が変化すると、約1mの高さからなる鏡筒13全体の熱による伸縮により、鏡筒13に係止されるミラ−11の相対位置変動の要因となって影響する。
Although the temperature control of the projection optical system Mira-11 itself is stably controlled within a range of about 0.1 ° C. to 0.2 ° C., the accuracy of the exposure apparatus is maintained, but the temperature control of the lens barrel 13 is It is necessary to carry out more precisely than the temperature control of Mira-11 itself.
That is, for Mira-11, the mirror 11 mounting position itself hardly fluctuates due to the temperature change, but when the temperature of the lens barrel 13 changes, the heat of the entire lens barrel 13 having a height of about 1 m is obtained. The expansion / contraction due to the above causes and influences the relative position fluctuation of the mirror 11 locked to the lens barrel 13.

つまりミラ−11の載置位置に変動をきたすことで、露光光の反射精度の悪化を招来することとなる。このため、露光装置に要求される鏡筒13の温度変化や温度分布の許容範囲は厳しく、許容温度変動、分布範囲はおおよそ0.01℃の範囲内となる。鏡筒13は、このような特性から、熱伸縮の極めて少ない合金であるス−パ−インバ−等を用いることが好ましい。   In other words, when the mirror 11 is placed on the mounting position, the reflection accuracy of the exposure light is deteriorated. Therefore, the allowable range of the temperature change and temperature distribution of the lens barrel 13 required for the exposure apparatus is strict, and the allowable temperature fluctuation and distribution range are within the range of about 0.01 ° C. Because of such characteristics, the lens barrel 13 is preferably made of a super invar or the like which is an alloy with extremely little thermal expansion and contraction.

さらに、ボディ1cやボディ1cの中に載置される鏡筒13の周辺には装置に関わる他の電子部品や構造材等が配置されており、これらに起因する発熱、冷却等が生じることで温度変動の要因となる。
通常、露光装置全体としてクリ−ンル−ム内に載置されているので、この室内空調により装置全体として安定温度に制御されてはいるが、局所的には鏡筒13の係止部1dを介した熱伝導等による温度分布が発生する。この場合、ミラ−11を温調している輻射温調板12に温度を奪われながら、装置全体の温調のみで速やかに鏡筒13を安定温度、安定温度分布に維持するのは困難である。
Further, other electronic components and structural materials related to the apparatus are arranged around the body 1c and the lens barrel 13 placed in the body 1c, and heat, cooling, and the like are caused by these. It becomes a factor of temperature fluctuation.
Usually, since the exposure apparatus as a whole is placed in the clean room, the room air conditioning is controlled to a stable temperature as a whole of the apparatus, but locally the locking portion 1d of the lens barrel 13 is provided. A temperature distribution is generated due to heat conduction. In this case, it is difficult to quickly maintain the lens barrel 13 at a stable temperature and a stable temperature distribution only by adjusting the temperature of the entire apparatus while the temperature is deprived by the radiation temperature adjusting plate 12 that controls the temperature of the mirror 11. is there.

また、係止部1dの温調装置は、鏡筒13に振動が伝わるのを防ぐ必要性から、鏡筒13と非接触に設けることが好ましい。鏡筒13に振動が伝わると、ミラ−11等での振動発生要因となるなど、露光精度そのものに悪影響がでるからである。また、非接触とすることで鏡筒13から構造的に独立させ得るので、それぞれ別個に保守、点検することができメンテナンス作業が容易となる。   Moreover, it is preferable to provide the temperature control apparatus of the latching | locking part 1d non-contacting with the lens-barrel 13 from the necessity to prevent that a vibration is transmitted to the lens-barrel 13. FIG. This is because if the vibration is transmitted to the lens barrel 13, the exposure accuracy itself is adversely affected, such as causing vibrations in the mirror 11-11. Moreover, since it can be structurally independent from the lens barrel 13 by making it non-contact, it can maintain and inspect separately, respectively, and maintenance work becomes easy.

次に、図2に示す本発明の実施形態にかかる露光装置概念図について説明する。
EUV露光装置100は、露光の照明光としてEUV光を用いる。EUV光の波長は0.1〜400nmの範囲であるが、この実施形態において好ましくは1〜50nm程度の波長のEUV光を用いる。ウエハ103上に照射されるパタ−ンは、反射型のレチクル102により決定する。これにより、ウエハ103上にはレチクル102によるパタ−ンの縮小像が形成されることとなる。上記のレチクル102は、レチクルステ−ジ104の下側に図示しない静電チャックを介して固定する。
Next, an exposure apparatus conceptual diagram according to the embodiment of the present invention shown in FIG. 2 will be described.
The EUV exposure apparatus 100 uses EUV light as illumination light for exposure. The wavelength of the EUV light is in the range of 0.1 to 400 nm. In this embodiment, EUV light having a wavelength of about 1 to 50 nm is preferably used. The pattern irradiated on the wafer 103 is determined by the reflective reticle 102. As a result, a reduced image of the pattern by the reticle 102 is formed on the wafer 103. The reticle 102 is fixed to the lower side of the reticle stage 104 via an electrostatic chuck (not shown).

また、ウエハ103はウエハステ−ジ105上に配置する。露光は、例えばステップ・スキャン方式を用いることができる。露光装置全体は、所定の温度範囲に保たれたクリ−ンル−ムに配置しており、装置内部も所定の温度範囲となるように制御する。
露光時の照明光に使用されるEUV光は大気に対する透過性が低いので、EUV光が通過する光経路は、真空ポンプ107で真空に保たれた真空チャンバ106内に配置する。また、EUV光はレ−ザプラズマX線源によって生成する。レ−ザプラズマX線源は、レ−ザ源光108(励起光源として作用)とキセノンガス供給装置109から構成される。このレ−ザプラズマX線源は、真空チャンバ110で取り囲まれておりレ−ザプラズマX線源で生成されたEUV光は真空チャンバ110の窓111を通過する。
The wafer 103 is disposed on the wafer stage 105. For the exposure, for example, a step scan method can be used. The entire exposure apparatus is arranged in a clean room maintained within a predetermined temperature range, and the inside of the apparatus is controlled to be within the predetermined temperature range.
Since EUV light used for illumination light at the time of exposure has low permeability to the atmosphere, an optical path through which the EUV light passes is arranged in a vacuum chamber 106 maintained in a vacuum by a vacuum pump 107. EUV light is generated by a laser plasma X-ray source. The laser plasma X-ray source includes a laser source light 108 (acting as an excitation light source) and a xenon gas supply device 109. This laser plasma X-ray source is surrounded by a vacuum chamber 110, and EUV light generated by the laser plasma X-ray source passes through a window 111 of the vacuum chamber 110.

放物面ミラ−113は、キセノンガス放出部の近傍に配置する。放物面ミラ−113は、プラズマによって生成されたEUV光を集光する集光光学系を構成する。この放物面ミラ−113の焦点位置は、ノズル112からのキセノンガスが放出される位置の近傍にくるように調節されている。EUV光は、放物面ミラ−113の多層膜で反射し、真空チャンバ110内の窓111を通じて集光ミラ−114へと達する。集光ミラ−114は、レチクル102へEUV光を集光、反射させる。   The paraboloidal mirror-113 is disposed in the vicinity of the xenon gas discharge portion. The paraboloidal mirror-113 constitutes a condensing optical system that condenses EUV light generated by the plasma. The focal position of the paraboloidal mirror-113 is adjusted to be close to the position where the xenon gas from the nozzle 112 is released. The EUV light is reflected by the multilayer film of the paraboloidal mirror-113 and reaches the condensing mirror-114 through the window 111 in the vacuum chamber 110. The condensing mirror-114 condenses and reflects the EUV light to the reticle 102.

EUV光は、集光ミラ−114で反射され、レチクル102の所定の部分に到達する。すなわち、放物面ミラ−113と集光ミラ−114はこの露光装置の照明システムを構成する。レチクル102、放物面ミラ−113、集光ミラ−114等の反射面は、高精度に加工された石英を基板として、その上にMoとSi等の多層膜を形成する構成とする。
レチクル102は、EUV光を反射する多層膜とパタ−ンを形成するための吸収体パタ−ン層を有している。レチクル102でEUV光が反射されることで、EUV光はパタ−ン化される。パタ−ン化されたEUV光は投影光学系101を通じてウエハ103に達する。
The EUV light is reflected by the condensing mirror-114 and reaches a predetermined portion of the reticle 102. That is, the paraboloidal mirror-113 and the condensing mirror-114 constitute an illumination system of this exposure apparatus. Reflective surfaces such as the reticle 102, paraboloidal mirror-113, and condensing mirror-114 are structured such that quartz processed with high accuracy is used as a substrate and a multilayer film of Mo and Si is formed thereon.
The reticle 102 has a multilayer film that reflects EUV light and an absorber pattern layer for forming a pattern. The EUV light is patterned by reflecting the EUV light on the reticle 102. The patterned EUV light reaches the wafer 103 through the projection optical system 101.

図2において投影光学系101は、第一ミラ−115a、第二ミラ−115b、第三ミラ−115c、第四ミラ−115dの4つの投影光学系ミラ−(反射ミラ−)から構成する。各々のミラ−115a〜115dは、EUV光を反射する多層膜を備える。
レチクル102で反射されたEUV光は、第一ミラ−115aから第四ミラ−115dまで順次反射され、レチクル102のパタ−ンの縮小像(例えば、1/4、1/5、1/6の縮小率)を形成する。投影光学系101は、像の側(ウエハ103の側)でテレセントリックになるように設定する。
In FIG. 2, the projection optical system 101 includes four projection optical system mirrors (reflection mirrors) of a first mirror-115a, a second mirror-115b, a third mirror-115c, and a fourth mirror-115d. Each of the mirrors 115a to 115d includes a multilayer film that reflects EUV light.
The EUV light reflected by the reticle 102 is sequentially reflected from the first mirror-115a to the fourth mirror-115d, and is a reduced image (for example, 1/4, 1/5, 1/6) of the pattern of the reticle 102. Reduction ratio). The projection optical system 101 is set to be telecentric on the image side (wafer 103 side).

レチクル102は、可動のレチクルステ−ジ104によって少なくともX−Y平面内で支持される。ウエハ103は、好ましくはX,Y,Z方向に可動のウエハステ−ジ105によって支持、固定される。
ウエハ103上のダイを露光するときには、照明システムによりEUV光がレチクル102の所定の領域に照射される。そして、レチクル102とウエハ103とは投影光学系101に対して上記の縮小率に従った所定の速度で動く。このようにして、レチクルパタ−ンはウエハ103上の所定の露光範囲(ダイに対して)に露光される。
The reticle 102 is supported at least in the XY plane by a movable reticle stage 104. The wafer 103 is preferably supported and fixed by a wafer stage 105 movable in the X, Y, and Z directions.
When exposing the die on the wafer 103, the illumination system irradiates a predetermined region of the reticle 102 with EUV light. Then, the reticle 102 and the wafer 103 move with respect to the projection optical system 101 at a predetermined speed according to the above reduction ratio. In this way, the reticle pattern is exposed to a predetermined exposure range (with respect to the die) on the wafer 103.

露光の際には、ウエハ103上のレジストから生じるガスが投影光学系101のミラ−115a〜115dに影響を与えないように、ウエハ103はパ−ティション116の後ろのウエハチャンバに配置されることが好ましい。パ−ティション116は開口部116aを有しており、開口部116aを通じてEUV光がミラ−115dからウエハ103上へと照射される。   At the time of exposure, the wafer 103 is disposed in the wafer chamber behind the partition 116 so that the gas generated from the resist on the wafer 103 does not affect the mirrors 115a to 115d of the projection optical system 101. Is preferred. The partition 116 has an opening 116a, and EUV light is irradiated from the mirror-115d onto the wafer 103 through the opening 116a.

パ−ティション116内の空間は真空ポンプ117により真空排気されている。このようにして、露光時に生じるガス状のゴミがミラ−115a〜115dあるいはレチクル102に付着するのを防ぎ、これらコンタミによる光学性能の悪化を防止する。
投影光学系101には4枚の投影光学系ミラ−115a〜115dを搭載するが、特に、この投影光学系ミラ−115a〜115dは、高精度な安定特性が要求されるので本発明に好適である。しかし、他のミラ−系やマスクに適用しても、本発明の効果は発揮される。また、投影光学系ミラ−は4枚に限らず、5〜8枚であってもよい。
The space in the partition 116 is evacuated by a vacuum pump 117. In this way, gaseous dust generated during exposure is prevented from adhering to the mirrors 115a to 115d or the reticle 102, and deterioration of optical performance due to these contaminations is prevented.
The projection optical system 101 is equipped with four projection optical system mirrors-115a to 115d. In particular, the projection optical system mirrors-115a to 115d are suitable for the present invention because they require high-precision stability characteristics. is there. However, the effect of the present invention is exhibited even when applied to other mirror systems and masks. Further, the number of projection optical system mirrors is not limited to four, but may be five to eight.

次に、図3に示す本発明の実施形態フロ−により時系列的に説明する。
まず、露光対象物たる半導体装置の決定により露光条件が決められ、この露光条件下にて露光装置により露光が開始されると、露光装置内のミラ−に露光光が照射され反射される(ステップ31)。
光照射を受けたミラ−は、ミラ−表面にて受けた光エネルギ−の約3割を熱エネルギ−へと変換し、残りの光を反射する。熱エネルギ−はミラ−の裏面へと数分オ−ダ−かけてゆっくりと伝達されることで、ミラ−に蓄熱されミラ−裏面の温度が徐々に上昇する。
Next, the embodiment of the present invention shown in FIG. 3 will be described in time series.
First, an exposure condition is determined by determining a semiconductor device that is an exposure object. When exposure is started by the exposure apparatus under the exposure condition, exposure light is irradiated and reflected on a mirror in the exposure apparatus (step). 31).
The mirror irradiated with light converts about 30% of the light energy received on the mirror surface into heat energy and reflects the remaining light. The thermal energy is slowly transmitted over the order of several minutes to the back surface of the mirror, so that the heat is stored in the mirror and the temperature on the back surface of the mirror gradually increases.

このミラ−温度の上昇を低減するため、ミラ−の冷却装置のペルチェ素子が駆動を開始し、ペルチェ素子はまず直接接触している輻射温調板を冷却する(ステップ32)。
冷却された輻射温調板は、ミラ−対向面と輻射温調板に設けられたセラミック等の高輻射率素材との間で輻射熱の授受をし、ミラ−を冷却する。一方で、輻射温調板を支える支持ステ−も輻射温調板に熱を伝導により奪われることで冷却される(ステップ33)。この温度低下は最大1℃程度である。
In order to reduce the increase in the mirror temperature, the Peltier element of the mirror cooling device starts to be driven, and the Peltier element first cools the radiation temperature control plate in direct contact (step 32).
The cooled radiant temperature adjusting plate transfers radiant heat between the mirror facing surface and a high emissivity material such as ceramic provided on the radiant temperature adjusting plate, thereby cooling the mirror. On the other hand, the support stage that supports the radiation temperature adjusting plate is also cooled by removing heat from the radiation temperature adjusting plate by conduction (step 33). This temperature drop is about 1 ° C. at maximum.

そして、支持ステ−が係止される鏡筒の係止部も支持ステ−に熱を奪われ冷却されることとなり(ステップ34)、鏡筒の係止部外側に設けられた温度計にて温度低下が検出される(ステップ35)。
温度低下が検出されると、速やかに鏡筒係止部外側のペルチェ素子を駆動することで係止部を加温し(ステップ36)、係止部の局所的な温度変化を抑制することで遅滞なく鏡筒温度全体の安定化、温度分布低減化を実現する(ステップ37)。
Then, the locking portion of the lens barrel to which the support stage is locked is also deprived of heat by the support stage and cooled (step 34), and a thermometer provided outside the locking portion of the lens barrel is used. A temperature drop is detected (step 35).
When the temperature drop is detected, the Peltier element on the outside of the lens barrel locking part is quickly driven to heat the locking part (step 36), and the local temperature change of the locking part is suppressed. The entire lens barrel temperature is stabilized and the temperature distribution is reduced without delay (step 37).

次に、この実施形態にかかる熱伝達について図4の熱伝達の模式図を用いて説明する。
投影光学系ミラ−41表面で発生した熱49により、投影光学系ミラ−41の厚さ方向に熱勾配4aを生じ、投影光学系ミラ−41裏面側へ熱49がゆっくりと伝わる。伝わる速度は、細かくはミラ−材質により異なるが、おおまかに分単位のオ−ダは必要である。
投影光学系ミラ−41裏面に達した熱4aは、輻射(放射)により高輻射率の表面被覆材42にて高効率で吸収される。輻射吸収は、投影光学系ミラ−41の裏面と対向する輻射温調板43全面で、温度差がある限り行われる。
Next, heat transfer according to this embodiment will be described with reference to the schematic diagram of heat transfer in FIG.
The heat 49 generated on the surface of the projection optical system mirror 41 generates a thermal gradient 4a in the thickness direction of the projection optical system mirror 41, and the heat 49 is slowly transmitted to the rear surface side of the projection optical system mirror 41. The speed of transmission varies slightly depending on the mirror material, but roughly an order of minutes is necessary.
The heat 4a that has reached the rear surface of the projection optical system mirror 41 is absorbed by the surface coating material 42 having a high emissivity by radiation (radiation) with high efficiency. Radiation absorption is performed as long as there is a temperature difference over the entire surface of the radiation temperature control plate 43 facing the back surface of the projection optical system mirror 41.

一方、輻射温調板43の裏面に接触して設けられたペルチェ素子46により接合領域4cがまず冷却される。このため、輻射温調板43で吸収された熱4dは、ペルチェ素子46側へ向かい、輻射温調板43内にも若干の熱勾配が生じることになる。また、ペルチェ素子46の冷却温度をモニタする温度計44を、輻射温調板43裏面にペルチェ素子46の中心から距離Lだけ離して配置する。この構成では、温度計44が輻射温調板43に設置されるので、投影光学系のミラ−41は、その支持ステ−を除いて独立であり、温度計44を介した変形や振動、熱等の影響を受けることはない。   On the other hand, the joining region 4 c is first cooled by the Peltier element 46 provided in contact with the back surface of the radiation temperature adjusting plate 43. For this reason, the heat 4 d absorbed by the radiation temperature adjusting plate 43 moves toward the Peltier element 46, and a slight thermal gradient is also generated in the radiation temperature adjusting plate 43. Further, a thermometer 44 for monitoring the cooling temperature of the Peltier element 46 is disposed on the back surface of the radiation temperature control plate 43 at a distance L from the center of the Peltier element 46. In this configuration, since the thermometer 44 is installed on the radiation temperature control plate 43, the mirror 41 of the projection optical system is independent except for its supporting stage, and deformation, vibration, heat, etc. via the thermometer 44 are present. It is not affected by.

このため、ペルチェ素子46による冷却出力の増減を速やかに検出するためには、輻射温調板43に取り付ける温度計44との距離Lは、ペルチェ素子46に近い方が好ましいが、一方で、ペルチェ素子46の接着面に温度計44が設置されると、ペルチェ素子46と輻射温調板43の熱伝導の阻害要因となるので好ましくない。
従って、ペルチェ素子46と輻射温調板43の接合面外で、かつL=30mm以内に温度計44を設けることが必要である。L=30mm以内であれば、ペルチェ素子46の温度変化が10秒以内(典型的には約6〜7秒)で検出できる距離であり、ミラ−温度の制御に不調を来すような検出遅れは生じない。輻射温調板43で吸収された熱4dは、ペルチェ素子46側へと向かい液冷ジャケット45による循環冷却により、冷媒ホ−ス47を通じて放熱4eとして排出される。
For this reason, in order to quickly detect the increase / decrease in the cooling output by the Peltier element 46, the distance L from the thermometer 44 attached to the radiation temperature adjusting plate 43 is preferably closer to the Peltier element 46. If the thermometer 44 is installed on the bonding surface of the element 46, it is not preferable because it becomes an impediment to heat conduction between the Peltier element 46 and the radiation temperature adjusting plate 43.
Therefore, it is necessary to provide the thermometer 44 outside the joint surface between the Peltier element 46 and the radiation temperature adjusting plate 43 and within L = 30 mm. If L = 30 mm or less, the Peltier element 46 can be detected within 10 seconds (typically about 6 to 7 seconds), and the detection delay may cause malfunction in mirror temperature control. Does not occur. The heat 4d absorbed by the radiation temperature adjusting plate 43 is discharged as heat radiation 4e through the refrigerant hose 47 by circulating cooling by the liquid cooling jacket 45 toward the Peltier element 46 side.

この実施形態においては、予め露光装置に搭載される投影光学系ミラ−と冷却装置等を用いた疑似鏡筒系において、投影光学系ミラ−41中央の裏面に別途温度計48を設置し、ここをミラ−特定点として、ミラ−特定点が23℃一定に保持される制御を行う。
この際、投影光学系ミラ−41裏面と輻射温調板43との距離は、投影光学系ミラ−41大きさの約100分の1程度であり2mm程度と短いので、投影光学系ミラ−41裏面の放熱量と輻射温調板吸熱量は等しいと考えてよい。
In this embodiment, a thermometer 48 is separately installed on the back surface of the center of the projection optical system mirror 41 in a pseudo-barrel system using a projection optical system mirror and a cooling device that are mounted on the exposure apparatus in advance. The mirror specific point is controlled to be kept constant at 23 ° C.
At this time, the distance between the rear surface of the projection optical system mirror 41 and the radiation temperature adjusting plate 43 is about 1/100 of the size of the projection optical system mirror 41 and is as short as about 2 mm. It may be considered that the amount of heat released from the back surface and the amount of heat absorbed by the radiation temperature control plate are equal.

ただし、実際の露光装置による露光時には温度計48は無いので、温度計48は確認モニタ−用として、ペルチェ素子出力制御は、温度計44の検出値を基に行うものとし、距離Lは25mmとして行う。
一方、輻射温調板43はペルチェ素子46により冷却されており、投影光学系ミラ−41はもちろん鏡筒の基準温度よりも低く制御されている。このため、輻射温調板43の支持ステ−4gも冷やされることとなる。支持ステ−4gは、このような熱伝導を低減させるため断熱材を利用し、断面積を小さく、距離は長くし、かつ振動の伝達されにくい形状に工夫されているが、熱伝達を完全に阻止することはできず鏡筒が冷やされる結果となる。
However, since there is no thermometer 48 at the time of exposure by an actual exposure apparatus, the thermometer 48 is used for confirmation monitoring, the Peltier element output control is performed based on the detection value of the thermometer 44, and the distance L is 25 mm. Do.
On the other hand, the radiation temperature adjusting plate 43 is cooled by the Peltier element 46, and the projection optical system mirror 41 is of course controlled to be lower than the reference temperature of the lens barrel. For this reason, the support stem 4g of the radiation temperature control plate 43 is also cooled. The support stem-4g uses a heat insulating material to reduce such heat conduction, and has been devised in a shape in which the cross-sectional area is small, the distance is long, and vibration is not easily transmitted. It cannot be blocked, resulting in the lens barrel being cooled.

この実施形態にいう鏡筒は、典型的には露光装置の真空ボディ内に搭載され、投影光学系ミラ−が搭載される真空チャンバ−のことをいう。しかし、真空筐体の中に保持される筐体であって、局所的に温度制御することで温度安定性が求められる筐体に適用してもよい。
また、この実施形態にいう露光光とは、典型的には半導体素子や液晶素子に塗布されたレジスト等に対して描画することで、半導体素子や液晶素子に所定の配線を施したり、所定の形状構造に造形したりするための描画装置に用いられる光をいう。しかしこれに限られず、半導体素子等に一定の処理を施すために光エネルギ−を供給するものであればよい。
The lens barrel referred to in this embodiment is typically a vacuum chamber that is mounted in a vacuum body of an exposure apparatus and in which a projection optical system mirror is mounted. However, the present invention may be applied to a case that is held in a vacuum case and that requires temperature stability by locally controlling the temperature.
The exposure light referred to in this embodiment is typically drawn on a resist or the like applied to a semiconductor element or a liquid crystal element, thereby giving a predetermined wiring to the semiconductor element or the liquid crystal element, The light used for the drawing apparatus for modeling in a shape structure. However, the present invention is not limited to this, and any device may be used as long as it supplies light energy to perform a certain process on a semiconductor element or the like.

また、この実施形態にいうミラ−とは、例えば反射面形状が非球面である反射鏡であってEUV光の反射率を向上して70%に近づけるためのMo/Si多層膜が形成されているものでよい。投影光学系ミラ−に求められる小さな波面収差を満たすために開口数0.2〜0.3であって、波面収差が1nmRMS以下の要求に耐えうる高精度な非球面ミラ−からなるミラ−群であることが好ましい。また、多層膜はベリリウムやシリコン等の物質とルテニウムやロジウム等から形成してもよい。   In addition, the mirror referred to in this embodiment is, for example, a reflecting mirror having an aspheric reflecting surface, and a Mo / Si multilayer film is formed to improve the reflectivity of EUV light and approach 70%. It may be what you have. A mirror group consisting of high-precision aspherical mirrors having a numerical aperture of 0.2 to 0.3 in order to satisfy a small wavefront aberration required for a projection optical system mirror and capable of withstanding the requirement of a wavefront aberration of 1 nm RMS or less. It is preferable that The multilayer film may be formed of a material such as beryllium or silicon and ruthenium or rhodium.

また、この実施形態にいう第一の温度調整部は、鏡筒内のミラ−を所定の温度である例えば23℃に安定制御するための冷却加温装置であって、ペルチェ素子と輻射温調板と液冷装置等から構成されるものでよい。さらに、温度検出のための温度計を備えるものでもよく、ペルチェ素子の代わりにヒ−タや液冷、ヒ−トパイプによる温度調整としてもよい。   In addition, the first temperature adjustment unit referred to in this embodiment is a cooling and heating device for stably controlling the mirror in the lens barrel at a predetermined temperature, for example, 23 ° C., and includes a Peltier element and a radiation temperature control. It may be composed of a plate and a liquid cooling device. Furthermore, a thermometer for temperature detection may be provided, and temperature adjustment by a heater, liquid cooling, or a heat pipe may be used instead of the Peltier element.

また、この実施形態にいう係止部材とは、アウトガスが少なく熱伝導率の小さいSUS等材料で構成されることが好ましく、さらには熱変形や熱伸縮が小さい素材が好まれる。例えばFeやNiからなる合金であるCr含有3元系合金やCo含有3元系合金でもよいし、いわゆるコバ−ル(Fe52%、Ni29%、Co17%)やインコネル(Ni72%、Cr15%、Fe6%)を用いてもよい。さらに、断面積が小さく距離が長く、かつ振動が大きくならない形状、例えば板バネ形状などが好ましい。   Further, the locking member referred to in this embodiment is preferably made of a material such as SUS having a small outgas and a low thermal conductivity, and a material having a small thermal deformation and thermal expansion and contraction is preferred. For example, it may be a Cr-containing ternary alloy or a Co-containing ternary alloy, which is an alloy made of Fe or Ni, or so-called Kovar (Fe 52%, Ni 29%, Co 17%) or Inconel (Ni 72%, Cr 15%, Fe6). %) May be used. Furthermore, a shape in which the cross-sectional area is small and the distance is long and the vibration does not increase is preferable, for example, a leaf spring shape.

また、この実施形態にいう第二の温度調整部とは、典型的には鏡筒を加温、冷却するための装置等からなり、放射温度計や白金抵抗、熱電対等の温度計を備えていてもよい。真空雰囲気下でも温調がスム−ズに行えるペルチェ素子から構成されることが好ましい。さらに、真空度の低下を防止し原子レベルでの汚染を防ぐ意味から、アウトガスが少ない素材にて構成し、またはコ−ティングしたものが好ましく、高温処理やTiN等の表面処理されたものを用いてもよい。温調は状況に応じ加温してもよく、冷却してもよく、どちらにも対応できるものがより好ましい。   In addition, the second temperature adjustment unit referred to in this embodiment typically includes a device for heating and cooling the lens barrel, and includes a thermometer such as a radiation thermometer, a platinum resistor, and a thermocouple. May be. It is preferably composed of a Peltier element that can smoothly control the temperature even in a vacuum atmosphere. Furthermore, in order to prevent a decrease in the degree of vacuum and contamination at the atomic level, it is preferably made of a material with low outgas or coated, and a high-temperature treatment or a surface-treated material such as TiN is used. May be. The temperature control may be heated or cooled depending on the situation, and it is more preferable to be able to cope with both.

また、この実施形態にいう鏡筒外側とは、鏡筒の外殻であり最外殻であることに限定されない。すなわち、鏡筒が複数の層構造から構成される場合には、最内殻の外面を含めた外側であれば鏡筒外側である。好ましくは、輻射温調板の支持ステ−が係止される部分を有する層であって、熱が直接間接に伝達される最も近い外面層であるが、熱が伝わる限りにおいてさらにその外側層や外側層の内面側であってもよい。   Further, the outer side of the lens barrel referred to in this embodiment is an outer shell of the lens barrel and is not limited to being the outermost shell. That is, when the lens barrel has a plurality of layer structures, the outer side of the lens barrel is the outer side including the outer surface of the innermost shell. Preferably, it is a layer having a portion to which the support stage of the radiation temperature control plate is locked, and is the nearest outer layer to which heat is directly or indirectly transmitted. It may be the inner surface side of the outer layer.

また、この実施形態にいう非接触とは、典型的には物理的に離隔している状態をいう。しかし、振動や応力の発生伝達を防ぐことができる程度に保持されていれば、物理的に接触部分が含まれていても、実質的に非接触と考えられるので本発明を適用してもよい。
また、この実施形態にいう係止部とは、物理的、機械的に一定の保持状態を作り出すための接続箇所または締結箇所をいう。局所的な熱伝達は主としてこの係止部を介して行われるので、第二の温度調節部は、この係止部に対して温度調整が可能な位置に配置されることが好ましい。
In addition, the non-contact referred to in this embodiment typically means a state where they are physically separated. However, the present invention may be applied because it is considered to be substantially non-contact even if the contact portion is physically included as long as it is held to an extent that can prevent generation and transmission of vibration and stress. .
Moreover, the latching | locking part said to this embodiment means the connection location or fastening location for producing a fixed state physically and mechanically. Since local heat transfer is mainly performed through the engaging portion, the second temperature adjusting portion is preferably arranged at a position where the temperature can be adjusted with respect to the engaging portion.

一方で、鏡筒内壁とミラ−を含めた鏡筒内デバイスは輻射を通じて熱の授受を行うことから、鏡筒内面で局所的な温度分布が生じる箇所に対して温調装置を配置してもよい。なお、投影光学系のミラ−輻射温調板の支持ステ−は、EUV露光装置においては複雑な構成となるので、通常鏡筒内壁に保持されボディまで引き出して係止されることはない。
また、この実施形態において鏡筒温度は好ましくは基準温度として23℃に保たれる。ただし、多くの発熱源や吸熱源、熱伝達媒体を備える露光装置にあっては、局所的に温度分布や温度不安定な箇所が生じる可能性があるため、このような影響を極力排除する意味から鏡筒は真空筐体ボディ中に保持されることが好ましい。
On the other hand, since the in-cylinder device including the inner wall of the lens barrel and the mirror transmits and receives heat through radiation, even if a temperature control device is arranged at a location where a local temperature distribution occurs on the inner surface of the lens barrel. Good. Since the support stage of the mirror radiation temperature control plate of the projection optical system has a complicated structure in the EUV exposure apparatus, it is normally held on the inner wall of the lens barrel and is not pulled out and locked to the body.
In this embodiment, the lens barrel temperature is preferably maintained at 23 ° C. as a reference temperature. However, in an exposure apparatus equipped with a large number of heat sources, heat sinks, and heat transfer media, there may be local temperature distribution and temperature instability, so this effect is eliminated as much as possible. Therefore, the lens barrel is preferably held in the vacuum housing body.

また、この実施形態にいう輻射温調板とは、例えばミラ−の冷却や加温を行うために熱授受の中継伝達が行える板状熱媒体をいうが、板の形状は円盤状、矩形、扇状でもよく、立体的3次元形状でもよく形状には拘束されない。効率的に熱の伝達が行えるとともに、アウトガスの少なく熱的安定性が高い素材が好まれるのでス−パ−インバ−であってもよい。   In addition, the radiation temperature control plate referred to in this embodiment refers to a plate-shaped heat medium that can perform relay transmission of heat exchange in order to cool or heat a mirror, for example. A fan shape or a three-dimensional shape may be used, and the shape is not restricted. Since a material that can efficiently transfer heat and has low outgas and high thermal stability is preferred, a super inverter may be used.

さらに、輻射熱を効率的に授受するための高輻射率素材をその一部または全部に配した輻射温調板でもよい。高輻射率素材は、珪素酸化物や窒化物、金属酸化物でもよく、Al23、TiC、SiC、ZrC、AlN、TiN、BN、SiO2、ZrO2、MgO、3Al23などを用いてもよい。
また、ガラス、無機化合物で輻射率0.6以上、好ましくは輻射率0.7以上の高輻射率素材を、アルミニウム合金等の熱伝導の比較的良好な金属を母材としてセラミックコ−トし、例えばスパッタ、溶射、ホ−ロ−、貼り合わせ等にて数μm〜100μmの厚さに構成してもよい。そのほか、母材には金、銀、銅、タングステン、モリブデン、亜鉛などでもよく、高輻射率素材部以外は輻射率0.3以下、好ましくは輻射率0.2以下とすることで、ミラ−対向面以外との熱の授受による影響を低減できる。
Furthermore, the radiation temperature control board which distribute | arranged the high emissivity raw material for efficiently giving and receiving radiant heat to the one part or all may be sufficient. The high emissivity material may be silicon oxide, nitride, metal oxide, Al 2 O 3 , TiC, SiC, ZrC, AlN, TiN, BN, SiO 2 , ZrO 2 , MgO, 3Al 2 O 3 etc. It may be used.
In addition, a high emissivity material with a radiation rate of 0.6 or more, preferably 0.7 or more, made of glass or an inorganic compound, is coated with a ceramic material using a metal with relatively good thermal conductivity such as an aluminum alloy as a base material. For example, a thickness of several μm to 100 μm may be formed by sputtering, thermal spraying, follow, bonding, or the like. In addition, the base material may be gold, silver, copper, tungsten, molybdenum, zinc, etc., except for the high emissivity material part, the emissivity is 0.3 or less, preferably 0.2 emissivity or less. It is possible to reduce the influence due to the transfer of heat from other than the opposite surface.

昨今、半導体露光装置は、g線からi線へ、そしてエキシマレ−ザ−(KrF/ArF)露光装置へと微細露光技術の進化が進み、さらにはリソグラフィ−装置として超微細露光技術であるEUVL(Extreme Ultra Violet Lithography)−極紫外線リソグラフィ−へとシフトしている。また、液晶ディスプレ−用露光装置においては、液晶パネル基板サイズごとに第7、第8世代、次世代へと大型化が進んでいる。   In recent years, fine exposure technology has progressed in semiconductor exposure apparatuses from g-line to i-line, and to an excimer laser (KrF / ArF) exposure apparatus. Furthermore, as a lithography apparatus, EUVL (ultra-fine exposure technique) (Extreme Ultra Violet Lithography) —Extreme Ultraviolet Lithography. In addition, in liquid crystal display exposure apparatuses, the size of liquid crystal panel substrates has been increased to the seventh, eighth, and next generations.

このEUV露光装置は、シリコンウエハに微細な回路イメ−ジを焼き付ける技術として157nmリソグラフィ−・ツ−ルの次の世代として、電子ビ−ムリソグラフィと並んで次世代コンピュ−タチップ開発のための有望な技術であって、チップ製造に用いられる DUV(遠紫外線)の 1/20 程度の波長の光線を用いる。
本実施形態により係止部の鏡筒の温度調整が非接触にて行え、鏡筒全体の温度は安定に保ちつつ、係止部から鏡筒に伝わる局所的な温度変化に対し、効率的かつ迅速に温度調整することが可能となる。
This EUV exposure system is promising for the development of next-generation computer chips along with electron beam lithography as the next generation of 157nm lithography tools as a technology for printing fine circuit images on silicon wafers. This technology uses a light beam having a wavelength of about 1/20 of DUV (far ultraviolet) used for chip manufacture.
According to the present embodiment, the temperature of the lens barrel of the locking portion can be adjusted in a non-contact manner, and the temperature of the entire lens barrel can be kept stable and efficient against local temperature changes transmitted from the locking portion to the lens barrel. It becomes possible to adjust the temperature quickly.

また、鏡筒の係止部材が係止される位置の温度変化を速やかに検出し、より正確な目標温度制御が可能となる。
また、効率的かつ迅速な放熱が可能となるとともに、緻密な冷却制御が可能となる。
また、細密なパタ−ンであっても正確に露光し、パタ−ンニングすることができ、その課程で生じる熱による鏡筒への影響を低減することができる。
Further, it is possible to quickly detect a temperature change at a position where the locking member of the lens barrel is locked, thereby enabling more accurate target temperature control.
In addition, efficient and quick heat dissipation is possible, and precise cooling control is possible.
Even a fine pattern can be accurately exposed and patterned, and the influence of the heat generated in the process on the lens barrel can be reduced.

また、鏡筒の温度の不均一や不安定等を低減し、作製素子への鏡筒温度に起因する影響を排除し、全体として安定した素子作製をすることができる。
また、鏡筒の温度の不均一や不安定等を低減し、鏡筒を設計基準温度に維持できるので、作製素子への上記影響を排除し、全体として安定した素子作製をすることができる。
この実施形態は、真空系顕微鏡等であってミラ−冷却機構等を有する装置にも適用することができる。また、SUS等でできた鏡筒は温度変化での伸縮が大きいため、本発明を適用すると効果はより大きいものとなる。
Further, it is possible to reduce unevenness and instability of the temperature of the lens barrel, eliminate the influence due to the temperature of the lens barrel on the manufacturing element, and to manufacture a stable element as a whole.
Further, since the temperature of the lens barrel is not uniform and unstable, and the lens barrel can be maintained at the design reference temperature, the above-described influence on the manufacturing element can be eliminated, and the element can be stably manufactured as a whole.
This embodiment can also be applied to an apparatus that is a vacuum microscope or the like and has a mirror cooling mechanism or the like. In addition, since a lens barrel made of SUS or the like has a large expansion and contraction due to a temperature change, the effect is greater when the present invention is applied.

次に、マイクロデバイスの製造方法を説明する。マイクロデバイスとは、ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、マイクロマシン等である。以下の説明では、マイクロデバイスの典型例として半導体デバイスを前提に説明する。
図5は、マイクロデバイスの製造工程を示すフロ−チャ−トである。図5に示すように、まず、ステップS201(設計ステップ)では、マイクロデバイスの機能・性能設計(半導体デバイスの回路設計等)を行い、その機能を実現するためのパタ−ン設計を行う。続くステップS202(マスク製作ステップ)では、設計された回路パタ−ンを持つマスク(レチクル)を製作する。一方、ステップS203(ウエハ製造ステップ)では、シリコン等の半導体材料によりウエハを製造する。
Next, a method for manufacturing a micro device will be described. The microdevice is a semiconductor chip such as an IC or LSI, a liquid crystal panel, a CCD, a thin film magnetic head, a micromachine, or the like. In the following description, a semiconductor device is assumed as a typical example of a micro device.
FIG. 5 is a flowchart showing the manufacturing process of the microdevice. As shown in FIG. 5, first, in step S201 (design step), a microdevice function / performance design (semiconductor device circuit design, etc.) is performed, and a pattern design for realizing the function is performed. In the subsequent step S202 (mask manufacturing step), a mask (reticle) having the designed circuit pattern is manufactured. On the other hand, in step S203 (wafer manufacturing step), a wafer is manufactured using a semiconductor material such as silicon.

次に、ステップS204(ウエハ処理ステップ)では、上記のマスクとウエハを使用したフォトリソグラフィにより、ウエハ上に回路等を形成する。続くステップS205(デバイス組立ステップ)では、処理後のウエハを用いてデバイスを組み立てる。このステップS205には、ダイシング工程、ボンディング工程、及びパッケ−ジング工程(チップ封入)等の工程を、その必要に応じて含むものとする。   Next, in step S204 (wafer processing step), a circuit or the like is formed on the wafer by photolithography using the mask and wafer. In the subsequent step S205 (device assembly step), a device is assembled using the processed wafer. This step S205 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.

最後に、ステップS206(検査ステップ)では、組立後のマイクロデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした各工程を経た後に、マイクロデバイスが完成し、これが出荷される。
図6は、図5におけるウエハ処理ステップ(ステップS204)の詳細なフロ−を示す図である。図6に示すとおり、ウエハ処理ステップは、前処理工程と後処理工程とを複数段階に亘って繰り返し、ウエハ上に回路パタ−ンを積層するものである。各段階の前処理工程では、以下の処理のうち必要な処理のみを必要に応じて選択的に実行する。
Finally, in step S206 (inspection step), inspections such as an operation confirmation test and a durability test of the assembled micro device are performed. After going through each of these steps, the microdevice is completed and shipped.
FIG. 6 is a diagram showing a detailed flow of the wafer processing step (step S204) in FIG. As shown in FIG. 6, in the wafer processing step, a pre-processing process and a post-processing process are repeated over a plurality of stages, and a circuit pattern is laminated on the wafer. In the pre-processing process at each stage, only necessary processes among the following processes are selectively executed as necessary.

前処理工程のステップS211(酸化ステップ)では、ウエハの表面に酸化処理を施す。前処理工程のステップS212(CVDステップ)では、ウエハの表面に絶縁膜を形成する。前処理工程のステップS213(電極形成ステップ)では、ウエハの表面に電極を蒸着によって形成する。前処理工程のステップS214(イオン打込みステップ)では、ウエハにイオンを打ち込むことでn型、p型等の電気的性質を形成する。   In step S211 (oxidation step) of the pretreatment process, an oxidation process is performed on the surface of the wafer. In step S212 (CVD step) of the pretreatment process, an insulating film is formed on the surface of the wafer. In step S213 (electrode formation step) of the pretreatment process, electrodes are formed on the surface of the wafer by vapor deposition. In step S214 (ion implantation step) of the pretreatment process, electrical properties such as n-type and p-type are formed by implanting ions into the wafer.

後処理工程の最初のステップS215(レジスト形成ステップ)では、ウエハにレジストを塗布する。続くステップS216(露光ステップ)では、投影露光装置によりマスクの回路パタ−ンでウエハ上のレジストを露光する。この投影露光装置は、上述したEUV露光装置を用いることができる。
続くステップS217(現像ステップ)では、レジストを現像する現像処理をウエハに施し、さらにステップS218(エッチングステップ)では、レジストをエッチングマスクとしたエッチング処理をウエハに施す。最後のステップS219(レジスト除去ステップ)では、エッチング処理後に残存したレジストを除去する。
In the first step S215 (resist formation step) of the post-processing process, a resist is applied to the wafer. In the subsequent step S216 (exposure step), the resist on the wafer is exposed with the circuit pattern of the mask by the projection exposure apparatus. As the projection exposure apparatus, the EUV exposure apparatus described above can be used.
In the subsequent step S217 (developing step), a developing process for developing the resist is performed on the wafer, and in step S218 (etching step), an etching process using the resist as an etching mask is performed on the wafer. In the final step S219 (resist removal step), the resist remaining after the etching process is removed.

このマイクロデバイスの製造方法では、図6のステップS216(露光ステップ)において上述した露光装置を使用するので、マイクロデバイスを高スル−プットに製造することができる。   In this microdevice manufacturing method, since the exposure apparatus described above is used in step S216 (exposure step) in FIG. 6, the microdevice can be manufactured at a high throughput.

半導体製造装置メ−カやその製造装置を用いた半導体製造工程、液晶製造装置メ−カやその製造装置を用いた液晶製造工程に利用できる。特に、露光に関係する製造装置メ−カに利用できる。   The present invention can be used in a semiconductor manufacturing apparatus manufacturer and a semiconductor manufacturing process using the manufacturing apparatus, and a liquid crystal manufacturing process using the liquid crystal manufacturing apparatus manufacturer and the manufacturing apparatus. In particular, it can be used for a manufacturing apparatus manufacturer related to exposure.

本発明の実施形態にかかる模式図The schematic diagram concerning embodiment of this invention 本発明の実施形態にかかる露光装置概念図FIG. 1 is a conceptual diagram of an exposure apparatus according to an embodiment of the present invention. 本発明の実施形態フロ−Embodiment flow of the present invention 熱伝達の模式図Schematic diagram of heat transfer マイクロデバイスの製造工程を示すフロ−チャ−トFlow chart showing the manufacturing process of microdevices ウエハ処理ステップの説明フロ−Wafer processing step description flow

符号の説明Explanation of symbols

10・・露光光、11・・ミラ−、12、18・・輻射温調板、13・・鏡筒、14・・支持ステ−、15、19・・液冷ジャケット、16、17・・ペルチェ素子、1a・・温度計、1b・・支持ステ−、1c・・ボディ、1d・・係止部、
10..Exposure light, 11..Mirror, 12, 18..Radiation temperature control plate, 13..Tube, 14..Supporting stage, 15..19..Liquid cooling jacket, 16. 17..Peltier Element, 1a, thermometer, 1b, support stage, 1c, body, 1d, locking part,

Claims (6)

鏡筒内に露光光を反射させるミラーと、
ミラー温度を調整する第一の温度調整部と、
前記第一の温度調整部を前記鏡筒内に係止する係止部材と、
前記鏡筒を温度調整する第二の温度調整部を備え、
前記第二の温度調整部は、前記係止部材が前記鏡筒に係止される位置に対向する鏡筒外側であって、前記鏡筒と非接触に設置されていることを特徴とする露光装置。
A mirror that reflects exposure light into the lens barrel;
A first temperature adjustment unit for adjusting the mirror temperature;
A locking member for locking the first temperature adjusting unit in the lens barrel;
A second temperature adjustment unit for adjusting the temperature of the lens barrel;
The exposure is characterized in that the second temperature adjusting unit is disposed outside the lens barrel facing the position where the locking member is locked to the lens barrel and is not in contact with the lens barrel. apparatus.
前記係止部材と前記鏡筒を係止する部位の前記鏡筒温度を検出し、前記第二の温度調整部を制御するための温度検出部を備える
請求項1に記載の露光装置。
The exposure apparatus according to claim 1, further comprising: a temperature detection unit configured to detect the temperature of the lens barrel at a portion where the locking member and the lens barrel are locked, and to control the second temperature adjustment unit.
前記第二の温度調整部が、少なくとも輻射熱を受ける輻射温調板と電子冷却素子、を含むことを特徴とする
請求項1または請求項2に記載の露光装置。
The exposure apparatus according to claim 1, wherein the second temperature adjusting unit includes at least a radiation temperature adjusting plate that receives radiant heat and an electronic cooling element.
前記露光装置の露光光波長がEUV領域である
請求項1乃至請求項3のいずれか一項に記載の露光装置。
The exposure apparatus according to any one of claims 1 to 3, wherein an exposure light wavelength of the exposure apparatus is in an EUV region.
鏡筒内に露光光を反射させるミラーと、ミラー温度を調整する第一の温度調整部と、前記第一の温度調整部を前記鏡筒内に係止する係止部材と、前記鏡筒を温度調整する第二の温度調整部を備え、前記第二の温度調整部が、前記係止部材が前記鏡筒に係止される鏡筒外側位置であって、前記鏡筒と非接触に設けられており、前記係止部材と前記鏡筒を係止する部位の鏡筒温度を検出する温度検出部を備え、
前記鏡筒温度を検出する温度検出部から鏡筒の温度を検出する工程と、
前記検出した温度に基づき前記第二の温度調整部の出力制御を行う工程と、
を有する半導体素子または液晶素子の製造方法。
A mirror for reflecting exposure light in the lens barrel; a first temperature adjusting portion for adjusting a mirror temperature; a locking member for locking the first temperature adjusting portion in the lens barrel; and the lens barrel. A second temperature adjusting portion for adjusting the temperature, wherein the second temperature adjusting portion is located outside the lens barrel where the locking member is locked to the lens barrel, and is provided in a non-contact manner with the lens barrel A temperature detecting unit for detecting a temperature of a lens barrel at a portion for locking the locking member and the lens barrel;
Detecting the temperature of the lens barrel from a temperature detection unit for detecting the temperature of the lens barrel;
Performing output control of the second temperature adjustment unit based on the detected temperature;
A method for manufacturing a semiconductor device or a liquid crystal device having the following.
液冷放熱方式のペルチェ素子と輻射温調板からなり、露光光を反射させるミラーと非接触に設置され、鏡筒内に設けられたミラー冷却装置と、
液冷放熱方式のペルチェ素子と輻射温調板からなり、前記鏡筒の外部に前記鏡筒と非接触に支持され、かつ、前記ミラー冷却装置を鏡筒内部に係止する係止部位の裏面外側に設けられた鏡筒温調装置と、
前記ミラー冷却装置を前記鏡筒内部に係止する係止部位の裏面外側に接触して設けられた温度計を備え、
前記温度計からの鏡筒温度を検出する工程と、
前記検出した温度に基づき前記鏡筒温調装置の出力を制御することにより鏡筒を所定の基準温度に均一保持する工程と、
を有する半導体素子または液晶素子の製造方法。



A liquid cooling and heat dissipation type Peltier element and a radiation temperature control plate, installed in a non-contact manner with a mirror that reflects exposure light, and a mirror cooling device provided in the lens barrel,
The back surface of the locking part which consists of a Peltier element of liquid cooling and heat dissipation and a radiation temperature control plate, is supported outside the lens barrel in contact with the lens barrel, and locks the mirror cooling device inside the lens barrel A lens barrel temperature control device provided on the outside;
A thermometer provided in contact with the outside of the rear surface of the locking portion for locking the mirror cooling device inside the lens barrel;
Detecting the temperature of the lens barrel from the thermometer;
A step of uniformly holding the lens barrel at a predetermined reference temperature by controlling the output of the lens barrel temperature control device based on the detected temperature;
A method for manufacturing a semiconductor device or a liquid crystal device having the following.



JP2006304878A 2006-11-10 2006-11-10 Exposure apparatus and method for manufacturing semiconductor device or liquid crystal device using the same Expired - Fee Related JP4893249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304878A JP4893249B2 (en) 2006-11-10 2006-11-10 Exposure apparatus and method for manufacturing semiconductor device or liquid crystal device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304878A JP4893249B2 (en) 2006-11-10 2006-11-10 Exposure apparatus and method for manufacturing semiconductor device or liquid crystal device using the same

Publications (2)

Publication Number Publication Date
JP2008124174A true JP2008124174A (en) 2008-05-29
JP4893249B2 JP4893249B2 (en) 2012-03-07

Family

ID=39508621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304878A Expired - Fee Related JP4893249B2 (en) 2006-11-10 2006-11-10 Exposure apparatus and method for manufacturing semiconductor device or liquid crystal device using the same

Country Status (1)

Country Link
JP (1) JP4893249B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029511A (en) * 2009-07-28 2011-02-10 Nikon Corp Optical system, exposure device and method of manufacturing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483778B (en) 2015-08-31 2018-03-30 上海微电子装备(集团)股份有限公司 Based on relative position measurement to Barebone, double-workpiece-table system and measuring system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039851A (en) * 2002-07-03 2004-02-05 Nikon Corp Mirror cooling device and aligner
JP2004039696A (en) * 2002-06-28 2004-02-05 Canon Inc Reflection mirror device, aligner, and method for manufacturing device
JP2004246039A (en) * 2003-02-13 2004-09-02 Canon Inc Holding device, exposure device having same holding device and device manufacturing method
JP2004273864A (en) * 2003-03-10 2004-09-30 Canon Inc Thermostatic vacuum container and exposure device using it
JP2004304145A (en) * 2003-03-19 2004-10-28 Nikon Corp Exposure apparatus
JP2004363559A (en) * 2003-05-14 2004-12-24 Canon Inc Optical member holder
JP2006147778A (en) * 2004-11-18 2006-06-08 Nikon Corp Manufacturing method of exposure device and micro device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039696A (en) * 2002-06-28 2004-02-05 Canon Inc Reflection mirror device, aligner, and method for manufacturing device
JP2004039851A (en) * 2002-07-03 2004-02-05 Nikon Corp Mirror cooling device and aligner
JP2004246039A (en) * 2003-02-13 2004-09-02 Canon Inc Holding device, exposure device having same holding device and device manufacturing method
JP2004273864A (en) * 2003-03-10 2004-09-30 Canon Inc Thermostatic vacuum container and exposure device using it
JP2004304145A (en) * 2003-03-19 2004-10-28 Nikon Corp Exposure apparatus
JP2004363559A (en) * 2003-05-14 2004-12-24 Canon Inc Optical member holder
JP2006147778A (en) * 2004-11-18 2006-06-08 Nikon Corp Manufacturing method of exposure device and micro device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029511A (en) * 2009-07-28 2011-02-10 Nikon Corp Optical system, exposure device and method of manufacturing device

Also Published As

Publication number Publication date
JP4893249B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US7349063B2 (en) Reflection mirror apparatus, exposure apparatus and device manufacturing method
USRE49066E1 (en) Chucks and clamps for holding objects of a lithographic apparatus and methods for controlling a temperature of an object held by a clamp of a lithographic apparatus
US7212274B2 (en) Cooling system, exposure apparatus having the same, and device manufacturing method
US7191599B2 (en) Cooling apparatus and method, and exposure apparatus having the cooling apparatus
WO1999026278A1 (en) Exposure apparatus and method of manufacturing the same, and exposure method
US7804578B2 (en) Exposure apparatus and device manufacturing method
JP2004363559A (en) Optical member holder
JP4307130B2 (en) Exposure equipment
JP2005203754A (en) Lithography apparatus and device manufacturing method
US20090103063A1 (en) Cooling apparatus for optical member, barrel, exposure apparatus, and device manufacturing method
US7292307B2 (en) Cooling apparatus, optical element having the same, and exposure apparatus
US7633597B2 (en) Exposure method and apparatus, and device manufacturing method
US20040165161A1 (en) Cooling mechanism
JP2004246039A (en) Holding device, exposure device having same holding device and device manufacturing method
JP4305003B2 (en) EUV optical system and EUV exposure apparatus
JP4893249B2 (en) Exposure apparatus and method for manufacturing semiconductor device or liquid crystal device using the same
JP2006073895A (en) Cooling device, aligner, and device manufacturing method
JP4393227B2 (en) Exposure apparatus, device manufacturing method, and exposure apparatus manufacturing method
JP2009170793A (en) Temperature regulator, optical system, lithographic exposure apparatus, and method of manufacturing device
JP4393226B2 (en) Optical system, exposure apparatus using the same, and device manufacturing method
JP2008124079A (en) Photolithography unit and process for fabricating semiconductor device or liquid crystal device by using it
JP2006173245A (en) Aligner and process for manufacturing device
JP5518015B2 (en) Load lock apparatus, exposure apparatus, and device manufacturing method
JP2004335585A (en) Cooling device, aligner equipped therewith, method of manufacturing device and cooling method
JP2011155230A (en) Substrate processing apparatus, temperature control method of substrate processing apparatus, and method of manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees