JP2008122133A - System for determining precipitation amount and pattern, and road-surface frozen state determination system - Google Patents

System for determining precipitation amount and pattern, and road-surface frozen state determination system Download PDF

Info

Publication number
JP2008122133A
JP2008122133A JP2006303765A JP2006303765A JP2008122133A JP 2008122133 A JP2008122133 A JP 2008122133A JP 2006303765 A JP2006303765 A JP 2006303765A JP 2006303765 A JP2006303765 A JP 2006303765A JP 2008122133 A JP2008122133 A JP 2008122133A
Authority
JP
Japan
Prior art keywords
precipitation
data
determination
detected
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006303765A
Other languages
Japanese (ja)
Inventor
Hiroshi Onodera
浩 小野寺
Koji Ueda
浩次 上田
Chuichi Shimomura
忠一 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUGOSU KK
Nagoya Electric Works Co Ltd
Original Assignee
ARUGOSU KK
Nagoya Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUGOSU KK, Nagoya Electric Works Co Ltd filed Critical ARUGOSU KK
Priority to JP2006303765A priority Critical patent/JP2008122133A/en
Publication of JP2008122133A publication Critical patent/JP2008122133A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unprecedented and epoch-making system for determining a precipitation amount and pattern. <P>SOLUTION: The system includes an optical snow grain detection means 1 for optically detecting the existence or quantity of snow grains "a" in the air, and a capacitance-type precipitation detection means 2 for detecting the existence or quantity of precipitation onto a measurement surface "s" by measuring a change in the amount of water contacting with the measurement surface "s" as a change in capacitance. The existence or quantity of snow grains "a" detected by the detection means 1 is taken as data "A" while the existence or quantity of precipitation onto the measurement surface "s" detected by the detection means 2 is taken as data "B". Criteria are previously set wherein the quantity of precipitation corresponding to combinations of the data "A" and the data "B" and its precipitation pattern are defined for every combination. The system includes a determination means determining, in the event of determination, the quantity of precipitation and its precipitation pattern based on the detected data A and B while referring to the criteria. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば冬期路面管理などに利用される降水量・降水形態判定システム,及び路面凍結状況判定システムに関するものである。   The present invention relates to a precipitation amount / precipitation form determination system and a road surface freezing state determination system used for, for example, winter road surface management.

寒冷地において冬期の降水(降雪や降雨)によって生ずる路面の凍結は、交通事故などの原因となり大変危険である。そこで、路面の凍結を阻止すべく凍結防止剤の散布や路面散水装置による散水といった路面管理が従来から実施されている。   Freezing of the road surface caused by winter precipitation (snow and rain) in cold regions is a very dangerous cause of traffic accidents. Therefore, road surface management such as spraying of an antifreezing agent and watering by a road surface watering device has been conventionally performed in order to prevent the road surface from freezing.

しかし、実際には、路面の降水状況や凍結状況を正確に把握せずにこのような路面管理が実施されている場合が多く、それ故、不必要な箇所で無駄にこの凍結防止剤の散布や路面散水装置による散水といった路面管理が実施されたり、反対に必要な箇所でこの路面管理の実施が不十分であったりといった状況を招いており非常に効率が悪い。   In practice, however, such road surface management is often carried out without accurately knowing the precipitation and freezing conditions on the road surface. The road surface management such as watering by the road surface watering device or the road surface watering device is implemented, or the road surface management is insufficiently performed at the necessary place, which is very inefficient.

従って、このような路面管理を的確に実施するには、路面の凍結の原因となる路面への降水状況やその降水形態(雨,雪,ミゾレ)を正確に把握することが重要である。   Therefore, in order to carry out such road surface management accurately, it is important to accurately grasp the state of precipitation on the road surface that causes the road surface to freeze and the form of precipitation (rain, snow, and miso).

ところで、従来から降水を観測するシステムとして気象庁のアメダス観測網が稼動している。   By the way, the AMeDAS observation network of the Japan Meteorological Agency has been operating as a system for observing precipitation.

これは、降水量(降雨量や降雪量)の他に気温,日照時間,風向きと風速などを観測でき、特に降雪地帯においては積雪深さといた気象要素をも観測するものである。   In addition to precipitation (rainfall and snowfall), temperature, sunshine duration, wind direction and wind speed, etc. can be observed, and particularly in snowy areas, weather factors such as snow depth are also observed.

しかし、このアメダス観測網は、観測点(アメダス観測機の設置箇所)の間隔が広い(約20km〜30kmも間隔が離れている場合もある)ので、それだけ観測精度が粗く、局地性の高い降水(降雨,降雪)を真に正確に観測することが困難であるという欠点を有している。また、リアルタイムでのデータ利用が困難であり、また、観測機自体のコストが非常に高いなどの種々の欠点も有している。   However, this AMeDAS observation network has a wide interval between observation points (locations where AMeDAS observation equipment is installed) (there may be a distance of about 20 km to 30 km), so that the observation accuracy is coarse and the locality is high. It has the disadvantage that it is difficult to observe precipitation (rainfall, snowfall) truly accurately. In addition, it is difficult to use data in real time, and there are various drawbacks such as very high cost of the observation device itself.

また、気象レーダによる降水の観測システムも従来から稼動している。   A precipitation observation system using a weather radar has also been in operation.

これは、レーダエコーによって上空の降水粒,即ち雲の位置を把握することで、前述のように観測精度が粗いアメダス観測網に比して局地的な降水も密に観測できるものであるが、しかし、レーダを使用する特性上、雲に到達するまでの降水粒,地形,建物などの障害の影響を受けて観測誤差が生じ易いという欠点を有している。また、上空約2000mにも達する高い位置にある雲から落下する降水粒は、当然、地表面に到達するまでに風に流され、レーダで検知した雲の位置と実際に降水粒が地表面に到達する位置とに位置ズレが生じてしまうという欠点を有している(特に、降水粒が雪(降雪粒)の場合、雲から落下して地表面に到達するまでに約20分もかかり、その間に風により10km以上流されることもある)。   This is because, by using radar echoes, it is possible to observe local precipitation more densely than the AMeDAS observation network, where the observation accuracy is coarse as described above, by grasping the position of precipitation particles, that is, clouds, in the sky. However, due to the characteristics of using radar, there is a drawback that observation errors are likely to occur due to the influence of precipitation particles, topography, buildings, etc. until reaching the clouds. In addition, precipitation particles falling from a high cloud that reaches about 2000m above the sky are naturally swept by the wind before reaching the ground surface, and the position of the clouds detected by the radar and the actual precipitation particles on the ground surface. It has the disadvantage that displacement will occur with the position it reaches (especially if the precipitation is snow (snow), it takes about 20 minutes to fall from the cloud and reach the ground surface. In the meantime, it may be carried over 10km by wind).

また、この気象レーダと上記アメダス観測網はいずれも、降水量を観測することはできても、その降水形態(雨,雪,ミゾレ)の判定は、温度を基にした判定であるために判定の信頼性が低い。   In addition, although this weather radar and the above-mentioned AMeDAS network can both observe precipitation, the determination of the precipitation form (rain, snow, and miso) is based on temperature. Is unreliable.

尚、アメダス観測網や気象レーダの他にも、例えば、特開平8−179052号公報に開示されているように、地表面付近に設置して降雪を観測する装置が従来からある。   In addition to the AMeDAS observation network and weather radar, for example, as disclosed in Japanese Patent Application Laid-Open No. 8-179052, there is a conventional apparatus that is installed near the ground surface and observes snowfall.

これは、投光部から投光して降雪粒に反射した反射光を受光部で受光検知することで降雪粒の有無若しくは多寡を光学式に検知するものである。しかし、この装置は、降雪粒の有無や多寡を検知し降雪量を良好に把握できるものの、降雨量を正確に把握するのは困難であり、また上述のアメダス観測機や気象レーダと同様に、温度に頼らずに降水形態を正確に判定できる機能は無い。   In this method, the presence or absence of snow particles is detected optically by detecting light received from the light projecting unit and reflected by the light receiving unit. However, although this device can detect the presence or absence of snow particles and the amount of snow and grasp the amount of snow well, it is difficult to accurately grasp the amount of rainfall, and like the above-mentioned AMeDAS observation machine and weather radar, There is no function that can accurately determine precipitation form without relying on temperature.

また、測定面に接触する水分量の変化を静電容量の変化として計測することで測定面への降水の有無や多寡を検知する装置も従来からある。   There is also a conventional device that detects the presence or absence of precipitation on the measurement surface by measuring the change in the amount of water in contact with the measurement surface as a change in capacitance.

これは、後述の実施例のように、表面を前記測定面とした基材の裏面に櫛型電極を付設し、この電極間に交流電解を印加し、前記測定面である基材の表面に接触した水分量の変化を静電容量の変化(インピーダンスを基本とする電圧変化)として計測することで、前記測定面への降水の有無や多寡を検知するものである(雪は、基板の裏面側に具備したヒータの熱で水滴に融解し測定する)。しかし、この装置は、測定面への降水の有無や多寡を検知し降水量を良好に把握できるものの、やはりその降水形態を正確に判定できる機能は無い。   This is because, as will be described later, a comb-shaped electrode is attached to the back surface of the base material whose surface is the measurement surface, and alternating current electrolysis is applied between the electrodes, and the surface of the base material that is the measurement surface is applied. By measuring the change in the amount of moisture in contact as a change in capacitance (voltage change based on impedance), it is possible to detect the presence or absence of precipitation on the measurement surface (snow is the back side of the substrate). Measured by melting into water droplets with the heat of the heater provided on the side). However, although this device can detect the presence or absence of precipitation on the measurement surface and the amount of precipitation and can grasp the amount of precipitation well, there is still no function that can accurately determine the form of precipitation.

従って、路面の降水状況(降雪量や降雨量の多寡)を正確に把握することはできるものの、同様にその降水形態を正確に判定できるものが従来までにはなく、よって降水形態を正確に判定するには目視観測を行うしかないが、しかし、機械的(自動的)な判定ではなく人の手間が必要なため、それだけ厄介な上にどうしても観測頻度に限界がある。   Therefore, although it is possible to accurately grasp the precipitation condition on the road surface (the amount of snowfall and the amount of rainfall), it has never been possible to accurately determine the precipitation form, and therefore the precipitation form can be accurately determined. In order to do this, visual observation must be performed. However, since human labor is required instead of mechanical (automatic) determination, it is troublesome and the observation frequency is inevitably limited.

特開平8−179052号公報Japanese Patent Laid-Open No. 8-179052

本発明は、上述のような問題点に鑑みて完成したものであって、従来のように温度に頼った信頼性の低い判定か、或いは手間がかかり厄介な目視観測によって実施されていた降水形態の判定を、温度に関係無く機械的に精度良く判定でき、降水量の多寡も機械的に精度良く判定できるから、いつでもリアルタイムに降水量の多寡とその降水形態とを判定して精度良い降水状況の把握を可能とし、ひいては、路面の降水状況を正確に把握しそれを基にして路面管理を無駄なく効率的に実施することなどが可能で、しかもそのような秀れた判定システムを従来例のアメダス観測機のように高いコストを要さずに安価に実現できる極めて実用性に秀れた画期的な技術を提供することを課題とする。   The present invention has been completed in view of the above-described problems, and has been implemented by a conventional method of low-reliability determination relying on temperature as in the past, or by troublesome visual observation that is troublesome. Can be determined mechanically with high accuracy regardless of temperature, and the amount of precipitation can be determined mechanically with high accuracy, so it is always possible to determine the amount of precipitation and its precipitation form in real time at any time. As a result, it is possible to accurately grasp the rainfall condition on the road surface and efficiently implement road surface management based on it, and such an excellent judgment system is a conventional example. It is an object of the present invention to provide a revolutionary technology with extremely high practicality that can be realized at low cost without requiring high cost like the AMeDAS observation machine.

また、前述の通り安価に実現できるから、それだけ、観測地点を多数設けることもコスト上容易で、このように観測地点を多数設けることで降水量の多寡とその降水形態などの降水状況を点的ではなく面的に判定し把握でき、例えば所定の判定対照領域における降水分布とその降水形態との判定を実施することも容易に実現可能とする極めて実用性に秀れた画期的な技術を提供することを課題とする。   In addition, since it can be realized at a low cost as described above, it is easy to set up a large number of observation points. In this way, by setting up a large number of observation points, the amount of precipitation and the precipitation conditions such as the type of precipitation are pointed out. Rather than a ground-breaking technology with excellent practicality that makes it possible to easily determine the precipitation distribution and its precipitation form in a given control area. The issue is to provide.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

大気中の降雪粒aの有無若しくは多寡を光学的に検知する光学式降雪粒検知手段1と、測定面sに接触する水分量の変化を静電容量の変化として測定することでこの測定面sへの降水の有無若しくは多寡を検知する静電容量式降水検知手段2とを備え、前記光学式降雪粒検知手段1により検知する降雪粒aの有無若しくは多寡をデータA,前記静電容量式降水検知手段2により検知する測定面sへの降水の有無若しくは多寡をデータBとして、このデータAとデータBとの組み合わせに対応する降水量の多寡とその降水形態とをこのデータAとデータBとの各組み合わせ毎に予め規定した判定基準を設定しておき、判定時には、前記光学式降雪粒検知手段1により検知したデータAと前記静電容量式降水検知手段2により検知したデータBとの組み合わせに対応する降水量の多寡とその降水形態とを前記判定基準を参照して判定する判定手段を備えたことを特徴とする降水量・降水形態判定システムに係るものである。   An optical snow particle detecting means 1 for optically detecting the presence or absence of snow particles a in the atmosphere or the amount of water, and a change in the amount of moisture in contact with the measurement surface s is measured as a change in capacitance. Capacitance type precipitation detection means 2 for detecting the presence or absence of precipitation on the surface, and the presence or absence of snow particles a detected by the optical snow particle detection means 1 as data A, the capacitance type precipitation. Presence / absence or amount of precipitation on the measurement surface s detected by the detection means 2 is defined as data B, and the amount of precipitation corresponding to the combination of the data A and data B and the type of precipitation are represented as data A and data B. A predetermined determination criterion is set for each combination of the above, and at the time of determination, the data A detected by the optical snow particle detecting means 1 and the data B detected by the capacitive precipitation detecting means 2 and Those related to precipitation and precipitation type decision system characterized by amount of rainfall corresponding to the combination with the Its precipitation forms with a determination means by referring to said criterion.

また、前記静電容量式降水検知手段2により前記測定面sへの降水の有無を検知し、前記降水が無い場合には降水量ゼロと判定し、前記降水が有る場合には前記光学式降雪粒検知手段1により降雪粒aの有無を検知し、前記降雪粒aが無い場合には降水形態を雨と判定して前記静電容量式降水検知手段2により検知したデータBからその降水量の多寡を判定し、前記降雪粒aが有る場合にはこの光学式降雪粒検知手段1により検知したデータAと前記静電容量式降水検知手段2により検知したデータBとの組み合わせに対応する降水量の多寡とその降水形態とを前記判定基準を参照して判定するように前記判定手段を構成したことを特徴とする請求項1記載の降水量・降水形態判定システムに係るものである。   The capacitance type precipitation detection means 2 detects the presence or absence of precipitation on the measurement surface s, and determines that there is no precipitation when there is no precipitation, and when there is precipitation, the optical snowfall. The presence or absence of the snow particles a is detected by the grain detection means 1, and when the snow particles a are not present, the precipitation form is determined to be rain, and the precipitation amount is determined from the data B detected by the capacitive precipitation detection means 2. If the snowfall a is present, the amount of precipitation corresponding to the combination of the data A detected by the optical snowfall detection means 1 and the data B detected by the capacitive precipitation detection means 2 is determined. The precipitation / precipitation form determination system according to claim 1, wherein the determination means is configured to determine the amount of rain and its precipitation form with reference to the determination criterion.

また、前記光学式降雪粒検知手段1と静電容量式降水検知手段2とを一組の検知ユニットDとし、この検知ユニットDを所定の判定対照領域に複数設置して、この複数の各設置箇所に設置した各検知ユニットDにより検知したデータAとデータBとを基に前記判定基準を参照して各設置箇所における降水量の多寡とその降水形態とを判定する判定手段を備え、この各判定手段により判定した各設置箇所における降水量の多寡とその降水形態との判定データを収集してこの各検知ユニットDを複数設置した前記所定の判定対照領域における降水分布とその降水形態とを判定するデータ収集判定手段を備えたことを特徴とする請求項1,2のいずれか1項に記載の降水量・降水形態判定システムに係るものである。   The optical snow particle detecting means 1 and the capacitive precipitation detecting means 2 constitute a set of detection units D, and a plurality of the detection units D are installed in a predetermined determination control region. A determination means for determining the amount of precipitation and its precipitation form at each installation location with reference to the determination criteria based on the data A and data B detected by each detection unit D installed at the location; Judgment data of the amount of precipitation and its precipitation form at each installation location determined by the determination means are collected to determine the precipitation distribution and its precipitation form in the predetermined determination control region where a plurality of each of the detection units D are installed. The precipitation / precipitation form determination system according to any one of claims 1 and 2, further comprising a data collection determination unit configured to perform the data collection determination.

また、前記複数の検知ユニットDにより前記データAとデータBとを時々刻々と検知し、この時々刻々と検知される前記データAとデータBとを基に前記所定の判定対照領域における降水分布とその降水形態とを逐次判定するように前記データ収集判定手段を構成したことを特徴とする請求項3記載の降水量・降水形態判定システムに係るものである。   Further, the data A and the data B are detected every moment by the plurality of detection units D, and the precipitation distribution in the predetermined judgment reference region based on the data A and the data B detected every moment. 4. The precipitation / precipitation form determination system according to claim 3, wherein the data collection determination unit is configured to sequentially determine the precipitation form.

また、前記複数の検知ユニットDにより時々刻々と検知される前記データAとデータBとを基に前記所定の判定対照領域における降水分布とその降水形態とを前記データ収集判定手段により逐次判定し、この逐次判定した判定データから前記判定対照領域における降水分布とその降水形態の経時変化を把握して、この所定の判定対照領域における今後の降水分布とその降水形態とを予測する降水予測手段を備えたことを特徴とする請求項4記載の降水量・降水形態判定システムに係るものである。   Further, based on the data A and data B detected every moment by the plurality of detection units D, the precipitation distribution and the precipitation form in the predetermined determination control region are sequentially determined by the data collection determination unit, Precipitation prediction means for predicting the future precipitation distribution and the precipitation form in the predetermined judgment control region by grasping the temporal distribution of the precipitation distribution and the precipitation form in the judgment control region from the judgment data sequentially determined. The precipitation / precipitation form determination system according to claim 4, wherein:

また、気温測定手段を備え、請求項1〜5のいずれか1項に記載の降水量・降水形態判定システムにより判定した降雪量の有無若しくは多寡のデータと、前記気温測定手段により測定した気温のデータとの組み合わせに対応する路面の凍結状況をこの降雪量のデータと気温のデータとの各組み合わせ毎に予め規定した路面凍結状況判定基準を設定しておき、判定時には、検知した前記降雪量の有無若しくは多寡のデータと気温のデータとの組み合わせに対応する路面凍結状況を前記路面凍結状況判定基準を参照して判定する路面判定手段を備えたことを特徴とする路面凍結状況判定システムに係るものである。   Moreover, it is provided with temperature measurement means, and the presence or absence of snowfall or the amount of snow determined by the precipitation / precipitation form determination system according to any one of claims 1 to 5, and the temperature measured by the temperature measurement means The road surface freezing condition corresponding to the combination with the data is set in advance with the road surface freezing condition determination criterion defined in advance for each combination of the snowfall data and the temperature data. A road surface freezing condition judging system characterized by comprising road surface judging means for judging a road surface freezing condition corresponding to a combination of presence / absence or multiple data and temperature data with reference to the road surface freezing condition judging standard. It is.

本発明は上述のように構成したから、これまでは面倒な目視判定か、或いは温度条件に頼った精度の低い判定手法によって実施されていた降水形態(雨,雪,ミゾレ)の判定を、目視観測により人の手を煩わすことも無く機械的に、且つ温度条件は不要で、降水粒の有無若しくは多寡のデータと降水の有無若しくは多寡のデータとから降水量の多寡とその降水形態とを精度良く判定できる。   Since the present invention is configured as described above, the determination of the precipitation form (rain, snow, and miso), which has been performed by a troublesome visual determination or a low-accuracy determination method that relies on temperature conditions until now, Observations do not bother humans, and do not require temperature conditions, and the accuracy of the amount of precipitation and the form of precipitation based on the presence or absence of precipitation grains or the presence or absence of precipitation and the presence or absence of precipitation. Can judge well.

また、このような判定を実施するための検知手段としては、降雪粒を光学的に検知する既存の光学式降雪粒検知手段や、静電容量の変化により測定面へ接触する水分量の変化を検知する既存の静電容量式降水検知手段というあくまで既存の検知手段を採用できる為、極端にコスト高となる心配は無いし、例えばアメダス観測機のような高価な装置に比して非常にコスト安に実現できる。   In addition, as a detection means for carrying out such a determination, there is an existing optical snow particle detection means that optically detects snow particles, or a change in the amount of moisture that contacts the measurement surface due to a change in capacitance. Since the existing detection means of capacitance type precipitation detection means to be detected can be adopted, there is no worry of extremely high cost, and it is very expensive compared to expensive equipment such as AMeDAS It can be realized cheaply.

よって、本発明は、安価で精度の良い降水量の多寡とその降水形態との判定を実施でき、例えば路面凍結の原因となる降水状況を正確に把握でき路面管理に極めて好適であるなど、高い実用価値を有する画期的な降水量・降水形態判定システムとなる。   Therefore, the present invention can determine the amount of precipitation and its precipitation form at a low cost and with high accuracy, for example, it can accurately grasp the precipitation situation that causes road surface freezing, and is extremely suitable for road surface management. It will be a groundbreaking precipitation and precipitation form determination system with practical value.

また、請求項2記載の発明においては、降水が無いことが検知された場合には降水の多寡や降水形態の検知など無駄な検知は実施せず、また、降水が有ることが検知されても降雪粒は無いことが検知された場合には、データA(降雪粒の有無若しくは多寡)の結果に関わりなく降水形態を雨と判定するなど、無駄な検知や判定を実施せず効率的にして確実に降水量の多寡とその降水形態とを判定できるものとなる。   Further, in the invention according to claim 2, when it is detected that there is no precipitation, wasteful detection such as heavy precipitation and precipitation form is not performed, and even if it is detected that there is precipitation If it is detected that there are no snow particles, it is determined that the precipitation form is rain regardless of the result of data A (presence or absence of snow particles or a lot of rain). The amount of precipitation and the form of precipitation can be judged reliably.

また、請求項3〜5記載の発明においては、所定の判定対照領域に設置した多数の検知ユニットと、それらにより検知し判定した降水量の多寡やその降水形態といった判定データを収集するデータ収集判定手段により、前記所定の判定対照領域における降水分布やその降水形態といった降水状況を、点的にではなく面的に判定し把握できる。   Further, in the inventions according to claims 3 to 5, a data collection determination for collecting determination data such as a large number of detection units installed in a predetermined determination control region and the amount of precipitation detected and determined by the detection units and the precipitation form thereof By the means, it is possible to judge and grasp the precipitation situation such as the precipitation distribution and the precipitation form in the predetermined judgment reference area not in a point but in a plane.

しかも、例えば所定の判定対照領域に検知ユニットを密に多数設置すれば、局地性の高い降水状況をそれだけ密に、より精度良く把握することも可能で、また検知ユニットは既存の検知手段(市販の検知装置)で安価に実現できるから、コスト的にも検知ユニットを密に設置することが容易で、この点においても密で精度の良い面的な降水状況の判定・把握を容易に実現可能な一層秀れたものとなる。   In addition, for example, if a large number of detection units are installed densely in a predetermined judgment control region, it is possible to grasp the rainfall situation with high locality more densely and more accurately, and the detection unit can use existing detection means ( It can be realized inexpensively with a commercially available detection device), so it is easy to install detection units densely in terms of cost, and in this respect also, it is easy to judge and grasp the precise and precise precipitation conditions. It will be even better.

特に、請求項4,5記載の発明においては、所定の判定対照領域における降水分布やその降水形態といった降水状況を時系列的に判定でき、ひいてはこの降水状況の経時変化を時系列的に把握することも可能となるため、この降水状況の経時変化から、今後の降水分布やその降水形態の予測立ても非常に高精度に行うことができ、密で精度の良い降水予測を簡易に実現できる極めて秀れたものとなる。   Particularly, in the inventions according to claims 4 and 5, the precipitation situation such as the precipitation distribution and the precipitation form in the predetermined judgment control region can be judged in chronological order, and the temporal change of the precipitation situation can be grasped in chronological order. Therefore, it is possible to estimate the future precipitation distribution and its precipitation form with extremely high accuracy from this time-dependent change in precipitation conditions. It will be excellent.

また、請求項6記載の発明においては、上述したような本発明の秀れた判定システムを利用して、例えば路面の面的な又は道路面に沿った線的な降水状況の判定を行うことで、路面凍結の原因となるこの路面への降水状況を正確に把握でき、更には今後の路面凍結状況の予測立てを行うことも容易に実現可能で、これらを基にして正確で効率的な路面管理(凍結防止剤の散布や融雪水の散水)を実施することができ、この種の路面管理に極めて好適な画期的で実用価値の極めて高い路面凍結状況判定システムとなる。   Further, in the invention described in claim 6, for example, a determination of a linear precipitation situation along a road surface or along a road surface is performed using the excellent determination system of the present invention as described above. Therefore, it is possible to accurately grasp the precipitation situation on this road surface that causes road surface freezing, and it is also possible to easily predict the future road surface freezing condition, based on these, accurate and efficient Road surface management (spreading of antifreezing agent and watering of snowmelt water) can be carried out, and this is a groundbreaking and extremely practical road surface freezing condition determination system that is extremely suitable for this type of road surface management.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

本発明は、判定時に光学式降雪粒検知手段1と静電容量式降水検知手段2とにより検知して得られたデータを基にして降水量及び降水形態を判定する。   The present invention determines precipitation and precipitation form based on data obtained by detection by the optical snow particle detection means 1 and the electrostatic capacity type precipitation detection means 2 at the time of determination.

詳述すると、光学式降雪粒検知手段1により、大気中の降雪粒aの有無若しくは多寡を光学的に検知し、この検知結果をデータAとする。   More specifically, the optical snow particle detecting means 1 optically detects the presence or absence of snow particles a in the atmosphere, and the detection result is used as data A.

また、静電容量式降水検知手段2により、測定面sに接触する水分量の変化を静電容量の変化として測定することでこの測定面sへの降水の有無若しくは多寡を検知し、この検知結果をデータBとする。   Further, the capacitance type precipitation detection means 2 detects the presence or absence of precipitation on the measurement surface s by measuring the change in the amount of water in contact with the measurement surface s as a change in capacitance, and this detection. The result is data B.

本発明では、このデータAとデータBとの組み合わせに対応する降水量の多寡とその降水形態とを予め規定した判定基準を設定している。尚、この判定基準は、例えば後述の実施例のように(例えば図1中に図示した判定テーブル(表)のように)、データA中の降雪粒aの多寡のデータを配する領域と、データB中の降雪面sへの降水の多寡のデータを配する領域と、この双方の領域の各組み合わせ毎に各々対応する降水量の多寡とその降水形態との判定データを配する領域とから成り、検知したデータAとデータBとの組み合わせに対応する領域を参照することで降水量の多寡とその降水形態との判定データが得られるように設定するなどすれば良い。   In the present invention, a criterion for preliminarily defining the amount of precipitation corresponding to the combination of the data A and the data B and the precipitation form is set. In addition, this determination criterion is, for example, as in an embodiment described later (for example, as in the determination table (table) illustrated in FIG. 1), an area in which data on the amount of snow particles a in data A is arranged, From the area where the data of the amount of precipitation on the snow surface s in data B is arranged, and the area where the judgment data of the amount of precipitation corresponding to each combination of both areas and the precipitation form are arranged In other words, it may be set such that judgment data for the amount of precipitation and its precipitation form can be obtained by referring to an area corresponding to the combination of detected data A and data B.

従って、本発明は、従来から有る既存の光学式降雪粒検知手段1や静電容量式降水検知手段2を用いながら、これら検知手段から得られたデータA,データBを基に判定基準を参照するという従来までにはない手法を実施することで、例えば従来例のように温度の条件や目視観測に頼ることなく機械的に且つ精度良く降水量の多寡とその降水形態とを判定することを達成できることとなり、しかも各検知手段(光学式降雪粒検知手段1や静電容量式降水検知手段2)自体はあくまで既存品を採用できるから、著しく高コストとなる心配も無い(アメダス観測機のような高価な装置に比して非常にコスト安に実現可能なものである)。   Therefore, the present invention refers to the judgment criteria based on the data A and data B obtained from the conventional optical snow particle detecting means 1 and the electrostatic capacity type precipitation detecting means 2 while using the existing optical snow particle detecting means 1 and the electrostatic capacity type precipitation detecting means 2. By implementing an unprecedented technique, it is possible to determine the amount of precipitation and its precipitation form mechanically and accurately without relying on temperature conditions and visual observation as in the conventional example, for example. Each detection means (optical snowfall detection means 1 and capacitive precipitation detection means 2) itself can be an existing product to the last, so there is no concern about remarkably high costs (like the AMeDAS observation machine). Compared to expensive equipment).

また、例えば、前記光学式降雪粒検知手段1と静電容量式降水検知手段2とを一組の検知ユニットDとし、この検知ユニットDを所定の判定対照領域に複数設置して、この複数の各設置箇所に設置した各検知ユニットDにより検知したデータAとデータBとを基に前記判定基準を参照して各設置箇所における降水量の多寡とその降水形態とを判定する判定手段を備え、この各判定手段により判定した各設置箇所における降水量の多寡とその降水形態との判定データを収集してこの各検知ユニットDを複数設置した前記所定の判定対照領域における降水分布とその降水形態とを判定するデータ収集判定手段を備えたこととした場合には、各検知ユニットDで検知したデータを基に、前記データ収集判定手段によって所定の判定対照領域(観測地域)における降雪分布やその降水形態の判定を実施でき、この所定の判定対象領域における面的な降水状況の把握が可能となる。   In addition, for example, the optical snow particle detection means 1 and the electrostatic capacity type precipitation detection means 2 are set as a set of detection units D, and a plurality of the detection units D are installed in a predetermined determination control region. A determination means for determining the amount of precipitation in each installation location and its precipitation form with reference to the determination criteria based on the data A and data B detected by each detection unit D installed in each installation location; Collecting judgment data on the amount of precipitation and its precipitation form at each installation location judged by each judgment means, and the precipitation distribution and its precipitation form in the predetermined judgment control region where a plurality of each of the detection units D are installed If the data collection determination means for determining the data is provided, based on the data detected by each detection unit D, the data collection determination means performs a predetermined determination reference region (observation site). ) Can be performed determines snowfall distribution and its precipitation forms in, to grasp the faceted precipitation conditions in the predetermined determination target region becomes possible.

また、上述の通り、アメダス観測機のような高価な装置に比して本発明の検知ユニットDは安価に実現できるから、それだけこの検知ユニットDを所定の判定対象領域に密に多数設置することもコスト上容易であり、このように、密に降水量の多寡やその降水形態の判定を行うことで、局地性の高い降水状況をそれだけ密に精度良く把握することも容易に実現可能となる。   In addition, as described above, the detection unit D of the present invention can be realized at a lower cost than an expensive device such as an AMeDAS observation machine. Therefore, a large number of detection units D can be installed in a predetermined determination target area. In this way, it is possible to easily grasp the rainfall situation with high locality with high accuracy by making a dense judgment of the amount of precipitation and its precipitation form. Become.

また、例えば、前記複数の検知ユニットDにより前記データAとデータBとを時々刻々と検知し、この時々刻々と検知される前記データAとデータBとを基に前記所定の判定対照領域における降水分布とその降水形態とを逐次判定するように前記データ収集判定手段を構成すれば、前記所定の判定対照領域における降水分布とその降水形態とを逐次判定し解析することで前記判定対照領域における降水状況を面的に、且つ時系列的に把握することができる。   Further, for example, the data A and the data B are detected every moment by the plurality of detection units D, and the precipitation in the predetermined determination control region is based on the data A and the data B detected every moment. If the data collection determination means is configured to sequentially determine the distribution and its precipitation form, the precipitation distribution in the determination control area is analyzed by sequentially determining and analyzing the precipitation distribution and the precipitation form in the predetermined determination control area. The situation can be grasped in a plane and in time series.

従って、例えば、この逐次判定した判定データから前記判定対照領域における降水分布とその降水形態の経時変化を把握して、この所定の判定対照領域における今後の降水分布とその降水形態とを予測する降水予測手段を備えた構成とすれば、上述のように前記データ収集判定手段によって所定の判定対象領域における降水状況の経時変化を時系列的に正確に把握できるから、当然、この降水予測手段による今後の降水分布とその降水形態との予測も正確に立てることが可能となる。   Therefore, for example, it is possible to grasp the precipitation distribution in the determination control region and the temporal change of the precipitation form from the determination data determined sequentially, and to predict the future precipitation distribution and the precipitation form in the predetermined determination control region. If the configuration including the prediction unit is used, the data collection determination unit can accurately grasp the temporal change of the precipitation situation in the predetermined determination target region in time series as described above. It is also possible to make an accurate prediction of the precipitation distribution and its precipitation form.

また、このように所定の判定対照領域における降水状況、更には今後の降水状況の予測を、例えば冬期の路面の凍結状況の把握や予測に利用することで、精度の良い効率的な路面管理を実施することも可能である。   In addition, the prediction of the precipitation situation in the predetermined judgment control area and further the precipitation situation in the future is used for grasping and prediction of the frozen state of the road surface in winter, for example, so that accurate and efficient road surface management can be performed. It is also possible to implement.

特に、例えば、気温測定手段を備え、請求項1〜5のいずれか1項に記載の降水量・降水形態判定システムにより判定した降雪量の有無若しくは多寡のデータと、前記気温測定手段により測定した気温のデータとの組み合わせに対応する路面の凍結状況をこの降雪量のデータと気温のデータとの各組み合わせ毎に予め規定した路面凍結状況判定基準を設定しておき、判定時には、検知した前記降雪量の有無若しくは多寡のデータと気温のデータとの組み合わせに対応する路面凍結状況を前記路面凍結状況判定基準を参照して判定する路面判定手段を備えた構成とすれば、本発明の降水量・降水形態判定システムに気温測定手段を組み合わせることで路面の降雪・気温データを例えば面的に且つ時系列的に把握するといったことも容易に実現可能で、例えば路面凍結状況の正確な把握や、また凍結状況の経時変化を把握して今後の路面凍結状況の予測立てなどを実施することも実現可能な極めて画期的な路面凍結状況判定システムを実現することも可能となる。   In particular, for example, provided with an air temperature measurement means, the presence or absence of snowfall or the amount of snowfall determined by the precipitation / precipitation form determination system according to any one of claims 1 to 5, and the temperature measurement means Predetermined road surface freezing condition judgment criteria for each combination of the snowfall data and the temperature data are set for the road surface freezing state corresponding to the combination with the temperature data, and the detected snowfall is detected at the time of determination. If the road surface freezing state corresponding to the presence / absence of the amount or the combination of the temperature data and the temperature data is provided with road surface judging means for judging with reference to the road surface freezing state judgment standard, the precipitation amount of the present invention By combining temperature measurement means with the precipitation form determination system, it is also possible to easily understand road snowfall and temperature data, for example, in a plane and time series. For example, an extremely innovative road surface freezing condition judgment system that can accurately grasp the road surface freezing condition, and predict future road surface freezing conditions by grasping changes in freezing conditions over time, etc. It can also be realized.

本発明の具体的な実施例1について図面に基づいて説明する。   A first embodiment of the present invention will be described with reference to the drawings.

本実施例は、大気中の降雪粒aの有無若しくは多寡を光学的に検知する光学式降雪粒検知手段1と、測定面sに接触する水分量の変化を静電容量の変化として測定することでこの測定面sへの降水の有無若しくは多寡を検知する静電容量式降水検知手段2とを備え、前記光学式降雪粒検知手段1により検知する降雪粒aの有無若しくは多寡をデータA,前記静電容量式降水検知手段2により検知する測定面sへの降水の有無若しくは多寡をデータBとして、このデータAとデータBとの組み合わせに対応する降水量の多寡とその降水形態とをこのデータAとデータBとの各組み合わせ毎に予め規定した判定基準を設定しておき、判定時には、前記光学式降雪粒検知手段1により検知したデータAと前記静電容量式降水検知手段2により検知したデータBとの組み合わせに対応する降水量の多寡とその降水形態とを前記判定基準を参照して判定する判定手段を備えた降水量・降水形態判定システムである。   In this embodiment, the optical snow particle detecting means 1 for optically detecting the presence or absence of snow particles a in the atmosphere or the amount of water, and measuring the change in the amount of water in contact with the measurement surface s as a change in capacitance. And a capacitance type precipitation detecting means 2 for detecting the presence or absence of precipitation on the measurement surface s, and the presence or absence of the snow particles a detected by the optical snow particle detection means 1 as data A, Presence or absence of precipitation on the measuring surface s detected by the capacitance type precipitation detection means 2 or the amount of precipitation as data B, the amount of precipitation corresponding to the combination of this data A and data B and its precipitation form are shown in this data. A predetermined determination criterion is set for each combination of A and data B. At the time of determination, the data A detected by the optical snow particle detection means 1 and the capacitance type precipitation detection means 2 are detected. A precipitation and precipitation type decision system amount of rainfall and the Its precipitation forms with a determination means by referring to the metric corresponding to the combination of the data B.

図1に図示した本実施例の光学式降雪粒検知手段1は、光を投光及び受光する投・受光部3を有するものであって、この投・受光部3から光(赤外線)を投光し、大気中の降雪粒a(雪片)に反射した反射光を前記投・受光部3で受光検知することで、前記降雪粒aの有無や多寡を検知するように構成した一般的な市販の光学式降雪粒検知機を採用している(降雪粒aの一つ一つをパルス数として検知する。この検知したパルス数が多い程降雪粒aが多いことになる)。   The optical snow particle detecting means 1 of this embodiment shown in FIG. 1 has a light projecting / receiving unit 3 that projects and receives light, and projects light (infrared rays) from the light projecting / receiving unit 3. A commercially available product configured to detect the presence or absence of the snow particles a by detecting the reflected light reflected on the snow particles a (snow pieces) in the atmosphere by the light projecting / receiving unit 3. (Each snowfall particle a is detected as the number of pulses. The larger the number of detected pulses, the more snowfall particles a).

また、図中,符号1sは、この光学式降雪粒検知機の稼動状態を走査する操作部や、検知結果をデジタル出力値として出力する出力部などを具備した制御部1sである。   In the figure, reference numeral 1s denotes a control unit 1s including an operation unit that scans the operating state of the optical snow particle detector, an output unit that outputs a detection result as a digital output value, and the like.

尚、これに限らず、例えば、投光部と受光部とを対向状態に設けて、投光部から受光部に光(赤外線)を投光し、途中で降雪粒aに遮光され透光部に到達しなかった光の数と、到達できた光の数とから降雪粒aの有無や多寡を検知するタイプの光学式降雪粒検知機など、本実施例の光学式降雪粒検知手段1と同様の機能を発揮し得るものであればどのようなものを採用しても良い。   However, the present invention is not limited to this. For example, a light projecting unit and a light receiving unit are provided in an opposing state, and light (infrared rays) is projected from the light projecting unit to the light receiving unit. The optical snow particle detection means 1 of this embodiment, such as an optical snow particle detector of the type that detects the presence or absence of snow particles a and the number of snow particles from the number of lights that did not reach and the number of lights that could reach, Any device that can exhibit the same function may be used.

また、図1及び図2に図示した静電容量式降雪検知手段2は、PTFE基材4(ポリテトラフルオロエチレン基材、或いはテフロン(登録商標)基材)の裏側に櫛型電極5を形成し、この電極間に交流電界を印加し、PTFE基材4上に接触する水分量の変化を静電容量の変化として計測する既存の検知機を採用している。   In addition, the capacitance type snowfall detecting means 2 shown in FIGS. 1 and 2 forms a comb-shaped electrode 5 on the back side of a PTFE base material 4 (polytetrafluoroethylene base material or Teflon (registered trademark) base material). Then, an existing detector that applies an alternating electric field between the electrodes and measures a change in the amount of moisture contacting the PTFE substrate 4 as a change in capacitance is employed.

具体的には、図2に図示したように、PTFE基材4の側方より下部をアルミフレーム6で囲繞し、PTFE基材4の裏面には櫛型電極5を沿設状態に配し、アルミフレーム6で囲繞したスペースにはウレタン素材(絶縁体)を充填したウレタンモールド7を設けたものである。また、図中符号8は、PTFE基材4を加熱するヒータ8である。   Specifically, as shown in FIG. 2, the lower part of the PTFE base material 4 is surrounded by an aluminum frame 6 from the side, and the comb-shaped electrode 5 is arranged along the back surface of the PTFE base material 4. A space surrounded by the aluminum frame 6 is provided with a urethane mold 7 filled with a urethane material (insulator). Reference numeral 8 in the figure denotes a heater 8 for heating the PTFE base material 4.

PTFE基材4の表面,即ち測定面sが乾燥状態では、櫛型電極5間の静電容量は前記PTFE基材4とウレタン素材の絶縁体(ウレタンモールド7)の誘電率で決定される。   When the surface of the PTFE substrate 4, that is, the measurement surface s is in a dry state, the capacitance between the comb electrodes 5 is determined by the dielectric constant of the PTFE substrate 4 and the urethane material insulator (urethane mold 7).

一方、降水によりPTFE基材4の表面に水分(水滴など)が接触することで前記誘電率が変化する。この誘電率変化、即ち、静電容量変化をインピーダンスを基本とした電圧変化として検出することで、前記測定面sへの降水の有無や多寡を検知するものである。   On the other hand, the dielectric constant changes when moisture (such as water droplets) comes into contact with the surface of the PTFE substrate 4 due to precipitation. By detecting the change in dielectric constant, that is, the change in capacitance as a voltage change based on impedance, the presence or absence of precipitation on the measurement surface s is detected.

尚、更に具体的に説明すると、内部回路では、前記電圧変化をADコンバータでCPUに取り込み、デジタル値(0〜255)として出力する。前記測定面sへの水分の接触(付着)量が多い程内部電圧が大きくなり、前記デジタル出力値は大きい数値となる。   More specifically, in the internal circuit, the voltage change is taken into the CPU by an AD converter and output as a digital value (0 to 255). The greater the amount of contact (adhesion) of moisture with the measurement surface s, the greater the internal voltage and the greater the digital output value.

ちなみに水分といっても、測定面sに水滴が付着した場合の誘電率変化(静電容量変化)は大きいものの、降雪粒aそのものが測定面sに付着(積雪)してもその変化は殆ど生じない。その為、ヒータ8によりPTFE基材4を加熱し、測定面sに付着した降雪粒sは水滴に融解して測定するものである。   Incidentally, although the moisture content is large, the change in the dielectric constant (capacitance change) when water droplets adhere to the measurement surface s is large, but even if the snow particles a themselves adhere to the measurement surface s (snow accumulation), the change is almost the same. Does not occur. Therefore, the PTFE substrate 4 is heated by the heater 8, and the snow particles s adhering to the measurement surface s are melted into water droplets and measured.

本実施例では、この光学式降雪粒検知手段1と静電容量式降水検知手段2とを一組の検知ユニットDとしている。   In the present embodiment, this optical snow particle detecting means 1 and the electrostatic capacity type precipitation detecting means 2 constitute a set of detection units D.

尚、この検知ユニットDは、路面(地表面)の降水状況を正確に検知できるよう、路面付近に設置するものとする。具体的には、図1に図示したように、光学式降雪粒検知手段1の投・受光部3は地表面から極端に上方に位置しない程度の高さ(例えば5〜6mの高さ)位置に設置する。また、路面に立設された既存の電信柱にこの投・受光部3を設置するなどしても良い。また、静電容量式降水検知手段2は、路面と同様の降水状態を検知できるように、路面近傍に測定面sを上向きにして設置する。図示した本実施例においては、この静電容量式降水検知手段2は、測定面sが測定したい路面(地表面)と略面一となるように路面に埋設状態に設けている。   In addition, this detection unit D shall be installed in the road surface vicinity so that the precipitation condition of a road surface (ground surface) can be detected correctly. Specifically, as shown in FIG. 1, the height of the light projecting / receiving unit 3 of the optical snow particle detecting means 1 is not so high as to be located above the ground surface (for example, a height of 5 to 6 m). Install in. Further, the light projecting / receiving unit 3 may be installed on an existing telephone pole standing on the road surface. Moreover, the electrostatic capacitance type precipitation detection means 2 is installed in the vicinity of the road surface with the measurement surface s facing upward so that the same precipitation state as the road surface can be detected. In the illustrated embodiment, the electrostatic capacity type precipitation detecting means 2 is provided in an embedded state on the road surface so that the measurement surface s is substantially flush with the road surface (ground surface) to be measured.

本実施例では、この検知ユニットDを、図3に図示したように、所定の判定対照領域に複数設置している。また、この複数の各設置箇所に設置した各検知ユニットDにより検知したデータAとデータBとを基に前記判定基準を参照して各設置箇所における降水量の多寡とその降水形態とを判定する判定手段を備えている。   In the present embodiment, as shown in FIG. 3, a plurality of the detection units D are installed in a predetermined determination control region. Further, based on the data A and data B detected by each detection unit D installed at each of the plurality of installation locations, the amount of precipitation at each installation location and its precipitation form are determined with reference to the determination criteria. Judgment means is provided.

そして、データ収集判定手段を具備し、このデータ収集判定手段により、前記各判定手段により判定した各設置箇所における降水量の多寡とその降水形態との判定データを収集し、この各検知ユニットDが複数設置された前記所定の判定対照領域における降水分布とその降水形態とを面的に判定するものである。   And it comprises a data collection judgment means, and this data collection judgment means collects judgment data on the amount of precipitation and its precipitation form at each installation location judged by each judgment means, and each detection unit D The precipitation distribution and the precipitation form in the predetermined judgment control region installed in plurality are judged in a plane.

具体的には、図3に図示したように、各設置箇所に設置された検知ユニットDには、検知した検知結果をデータに変換してデータ収集判定手段の収集されたデータを記録・保存及び解析するデータ解析手段(パソコン)へとデータ送信するデータ送信手段(PDF及びパケット通信機など)を具備している。   Specifically, as shown in FIG. 3, the detection unit D installed at each installation location converts the detected detection result into data and records / saves the data collected by the data collection determination unit. Data transmitting means (PDF, packet communication device, etc.) for transmitting data to data analyzing means (personal computer) for analysis is provided.

従って、本実施例のデータ収集判定手段は、各検知ユニットD毎に具備してこの検知ユニットDで検知されたデータ(データA,データB)をデータ処理手段へと送信するデータ送信手段と、この各検知ユニットDから前記データ送信手段を介して送信されてきたデータから各検知ユニットDの設置箇所の降雪量の多寡とその降水形態とを判定する判定手段(パソコンによる処理)と、この判定手段を適宜な記録媒体に記録・保存及び所定の判定対照領域における降水分布やその降水形態を解析し出力するデータ処理手段(パソコン)とで構成されるものである。   Therefore, the data collection determination means of the present embodiment includes a data transmission means that is provided for each detection unit D and transmits data (data A, data B) detected by the detection unit D to the data processing means, Determination means (processing by a personal computer) for determining the amount of snowfall at the location where each detection unit D is installed and its precipitation form from the data transmitted from each detection unit D through the data transmission means, and this determination The means is constituted by data processing means (personal computer) which records and saves the means on an appropriate recording medium and analyzes and outputs the precipitation distribution and the precipitation form in a predetermined judgment control region.

また、本実施例では、各検知ユニットDにより前記データAとデータBとを時々刻々と検知し、この時々刻々と検知される前記データAとデータBとを基に前記所定の判定対照領域における降水分布とその降水形態とを逐次判定するように前記データ収集判定手段を構成している。   In this embodiment, the detection unit D detects the data A and the data B every moment, and based on the data A and the data B detected every moment, the predetermined determination control region The data collection determination means is configured to sequentially determine the precipitation distribution and its precipitation form.

尚、各検知ユニットDでは時々刻々と検知を行うが、この時々刻々とは、常時連続して検知を行う場合も含むし、例えば1分毎に断続して検知を行うなど所定時間毎に連続して検知を行う場合も含むものである。   In addition, each detection unit D performs detection every moment, but this every moment includes a case where detection is always performed continuously, for example, detection is performed intermittently every minute, for example, continuously every predetermined time. In this case, the detection is performed.

また、このように各検知ユニットDで時々刻々と検知した前記データAとデータBとは、上述のデータ送信手段(PDFやパケット通信機など)により逐次データ処理手段(パソコン)へとデータ送信される。そしてこれらデータを基にして、前記所定の判定対照領域における降水分布とその降水形態とをデータ処理手段(パソコン)に具備された判定手段により判定処理して、この逐次判定した判定データを適宜な保存媒体に記録・保存し、必要に応じて適宜データ取り出し(出力)可能としている。   Further, the data A and data B detected by the detection unit D in this manner are transmitted to the data processing means (personal computer) sequentially by the data transmission means (PDF, packet communication device, etc.). The Based on these data, the precipitation distribution in the predetermined determination control region and the precipitation form are determined by the determination means provided in the data processing means (personal computer), and the sequentially determined determination data is appropriately determined. It is recorded / saved in a storage medium, and data can be extracted (output) as needed.

この時々刻々と記録された過去の降水状況のデータから、前記判定対照領域における降水分布とその降水形態の経時変化を把握して、この所定の判定対照領域における今後の降水分布とその降水形態とを予測する降水予測手段を備えている。具体的にはデータ処理手段(パソコン)によるデータ解析により降水予測を立てる。   From the data of the past precipitation situation recorded from time to time, it is possible to grasp the precipitation distribution in the judgment control area and the temporal change of the precipitation form, and to determine the future precipitation distribution and the precipitation form in the predetermined judgment control area. Precipitation prediction means to predict Specifically, precipitation prediction is made by data analysis by a data processing means (personal computer).

また、上記の通り記録・保存された過去の降水状況のデータに加え、逐次送られてくる検知ユニットDからのデータを基にしてリアルタイムに更新される最新の降水状況のデータも随時加味して、降水予測をリアルタイムに更新するように降水予測手段を構成している。   In addition to the past precipitation status data recorded and stored as described above, the latest precipitation status data updated in real time based on the data from the detection unit D sent sequentially is also taken into account. The precipitation prediction means is configured to update the precipitation prediction in real time.

以上のように構成した本実施例の前記判定手段による降水量の多寡とその降水形態との判定フローを、図4を基に説明する。   The determination flow of the amount of precipitation and the precipitation form by the determination means of the present embodiment configured as described above will be described with reference to FIG.

先ず、検知ユニットDの静電容量式降水検知手段2により前記測定面sへの降水の有無を検知する。   First, the presence or absence of precipitation on the measurement surface s is detected by the capacitive precipitation detection means 2 of the detection unit D.

ここで、降水が無い場合には、降水量ゼロと判定し、検知・判定を終える。   Here, when there is no precipitation, it is determined that the amount of precipitation is zero, and the detection and determination are finished.

一方、降水が有る(測定面sへの水分の付着を検知した)場合には、続いて、光学式降雪粒検知手段1により降雪粒aの有無を検知する。   On the other hand, when there is precipitation (detection of moisture adhering to the measurement surface s), the optical snowfall particle detecting means 1 detects the presence or absence of the snow particle a.

ここで、前記降雪粒aが無い場合には、降水形態を降雨と判定し、前記静電容量式降水検知手段2により検知したデータBからその降水量の多寡を判定する。   Here, when there is no snow grain a, the precipitation form is determined to be rain, and the amount of precipitation is determined from the data B detected by the electrostatic capacity type precipitation detection means 2.

一方、降雪粒aが有る場合には、続いて、この光学式降雪粒検知手段1により検知したデータAと前記静電容量式降水検知手段2により検知したデータBとの組み合わせに対応する降水量の多寡とその降水形態とを、前記判定基準を参照して判定する。具体的には、図4に図示した判定テーブルを参照して前記データAとデータBとから降水量の多寡とその降水形態とを判定する。   On the other hand, if there is a snowfall a, then the precipitation corresponding to the combination of the data A detected by the optical snowfall detection means 1 and the data B detected by the capacitive precipitation detection means 2 Are determined with reference to the determination criteria. Specifically, the amount of precipitation and its precipitation form are determined from the data A and data B with reference to the determination table shown in FIG.

この判定テーブルは、本実施例では、データA中の降雪粒aの多寡(パルス数の大,中,小)のデータを配する領域と、データB中の測定面sへの降水の多寡(静電容量の大,中,小)のデータを配する領域と、この双方の領域の各組み合わせ毎に各々対応する降水量の多寡とその降水形態との判定データ(A〜Eの5種類のいずれか一つ)を配する領域とから成り、検知したデータAとデータBとの組み合わせに対応する領域の判定データを参照することで、降水量の多寡とその降水形態との判定データが得られるように設定している。   In the present embodiment, this determination table is based on the area where the data of snow particles a in the data A (the number of pulses is large, medium and small) and the amount of precipitation on the measurement surface s in the data B ( 5 types of judgment data (A to E) of the area where the data of the capacitance is large, medium and small, and the amount of precipitation corresponding to each combination of both areas and the precipitation form By referring to the judgment data of the area corresponding to the combination of the detected data A and data B, judgment data on the amount of precipitation and its precipitation form can be obtained. It is set to be able to.

即ち、例えば、静電容量式降水検知手段2で検知した検知データが「小」で、光学式降雪粒検知手段1により検知したデータが「中」だった場合、判定データはB、即ち、降水形態は雪で、その降水量(降雪量)は4〜8cm程度と判定する。   That is, for example, when the detection data detected by the capacitance type precipitation detection means 2 is “small” and the data detected by the optical snow particle detection means 1 is “medium”, the determination data is B, that is, precipitation The form is snow, and the amount of precipitation (snowfall) is determined to be about 4 to 8 cm.

尚、図示した本実施例は、あくまでも本実施例の判定システムのモデル例に過ぎず、例えば図4に図示された判定テーブルは「大,中,小」「A〜E」の大雑把に分類されているが、セル数を増やし、より細分化した判定テーブルを設定しても良い。   The illustrated embodiment is merely a model example of the determination system of the present embodiment. For example, the determination table illustrated in FIG. 4 is roughly classified into “large, medium, small” and “AE”. However, a more detailed determination table may be set by increasing the number of cells.

以上のようにして、各検知ユニットDで時々刻々と検知した前記データAとデータBとから各観測地点(検知ユニットD設置箇所)における降水量の多寡とその降水形態とを逐次判定し、この各検知ユニットDの判定データを解析して所定の判定対照領域における降水分布やその講師携帯を前記データ処理手段(パソコン)によりリアルタイムに解析・判定する。   As described above, the amount of precipitation at each observation point (the location where the detection unit D is installed) and its precipitation form are sequentially determined from the data A and data B detected every moment by each detection unit D. The determination data of each detection unit D is analyzed, and the precipitation distribution in the predetermined determination control region and the teacher's mobile phone are analyzed and determined in real time by the data processing means (personal computer).

また、この時々刻々と記録された過去の降水状況のデータから、前記判定対照領域における降水分布とその降水形態の経時変化を把握して、この所定の判定対照領域における今後の降水分布とその降水形態とを降水予測手段により予測するものである。を備えている。具体的にはデータ処理手段(パソコン)によるデータ解析により降水予測をリアルタイムに立てる。   In addition, it is possible to grasp the precipitation distribution in the judgment reference area and the temporal change of the precipitation form from the data of the past precipitation situation recorded every moment, and to calculate the future precipitation distribution and the precipitation in the predetermined judgment control area. The form is predicted by precipitation prediction means. It has. Specifically, precipitation prediction is made in real time by data analysis by a data processing means (personal computer).

よって、本実施例は、レーダーエコーのように降水粒の落下地点のズレによる観測地点のズレは生ぜず正確な判定が可能である。また、既存の検知装置やパソコンなどで比較的安価に実現可能なシステムであり、よって、コスト上、測定地点を多数設けることも容易である。   Therefore, in the present embodiment, an accurate determination can be made without causing a shift in the observation point due to a shift in the precipitation point of the precipitation particles unlike the radar echo. Further, the system can be realized at a relatively low cost with an existing detection device or a personal computer, and therefore, it is easy to provide a large number of measurement points in terms of cost.

以上から、本実施例は、例えば検知ユニットDを密に設置すれば、市町村レベルでの面的気象観測網を整備でき、除雪や路面管理を効率的に実施することでこれに関わる費用の低減化を図り得る。   From the above, in this embodiment, for example, if the detection units D are installed densely, a surface meteorological observation network at the municipality level can be established, and the costs related to this can be reduced by efficiently carrying out snow removal and road surface management. Can be realized.

また、密な観測地点による細かい観測ネットワークを構築でき、精度の高い降雨・降雪予測システムの構築を容易に図り得ると共に、それらを民間レベルでリアルタイムにデータ利用できる極めて便利なシステムも容易に実現可能である。   In addition, it is possible to build a detailed observation network with dense observation points, and to easily build a highly accurate rainfall / snow forecasting system, and to realize a very convenient system that can use data in real time at the private level. It is.

本発明の具体的な実施例2について図面に基づいて説明する。   A second embodiment of the present invention will be described with reference to the drawings.

実施例1に係る降水量・降水形態判定システムに、更に気温測定手段を備えた路面凍結状況判定システムである。   It is a road surface freezing condition determination system provided with temperature measurement means in addition to the precipitation amount / precipitation form determination system according to the first embodiment.

具体的には、降水量・降水形態判定システムにより判定した降雪量の有無若しくは多寡のデータと、前記気温測定手段により測定した気温のデータとの組み合わせに対応する路面の凍結状況をこの降雪量のデータと気温のデータとの各組み合わせ毎に予め規定した路面凍結状況判定基準を設定しておき、判定時には、検知した前記降雪量の有無若しくは多寡のデータと気温のデータとの組み合わせに対応する路面凍結状況を前記路面凍結状況判定基準を参照して判定する路面判定手段を備えたものである。   Specifically, the freezing condition of the road surface corresponding to the combination of the presence / absence or amount of snowfall determined by the precipitation / precipitation form determination system and the temperature data measured by the temperature measuring means is represented by the amount of snowfall. Predetermined road surface freezing condition determination criteria are set for each combination of data and temperature data, and at the time of determination, the road surface corresponding to the presence or absence of the detected snowfall amount or a combination of data and temperature data Road surface determination means for determining the frozen state with reference to the road surface frozen state determination criterion is provided.

前記気温測定手段は、検知ユニットDを設置する各設置箇所毎に夫々設け、各測定地点における地毎に前記気温測定手段により気温を測定する。   The air temperature measurement means is provided for each installation location where the detection unit D is installed, and the air temperature measurement means measures the air temperature for each ground at each measurement point.

また、この気温測定手段により測定した気温のデータは、上述のデータ送信手段によりデータ解析手段(パソコン)へと送信し、前記降水状況のデータと共に解析する。   The temperature data measured by the temperature measuring means is transmitted to the data analyzing means (personal computer) by the data transmitting means and analyzed together with the precipitation status data.

本実施例の路面凍結状況判定基準は、図5に図示した路面凍結状況判定テーブルに拠るものである。   The road surface freezing condition determination criteria of the present embodiment are based on the road surface freezing condition determination table shown in FIG.

図5に図示した路面凍結状況判定テーブルは、上述した実施例1の降水量・降水形態判定システムを使用して得られた降水状況のデータ、具体的には、降雪量のデータを配する領域と、前記気温判定手段によって検知した気温のデータを配する領域と、この双方の領域の各組み合わせ毎に各々対応する路面凍結状況を配する領域とから成るものである。前記降雪量のデータと、気温のデータBとの組み合わせに対応する領域の判定データを参照することで、その降雪条件と温度条件に対応する路面凍結状況の判定データが得られるように設定している。   The road surface freezing condition determination table shown in FIG. 5 is an area in which precipitation state data obtained by using the precipitation / precipitation form determination system of the first embodiment described above, specifically, snowfall amount data is arranged. And a region where the temperature data detected by the temperature determination means is arranged, and a region where the road surface freezing condition corresponding to each combination of both regions is arranged. By referring to the judgment data of the region corresponding to the combination of the snowfall data and the temperature data B, the judgment is made so that the judgment data of the road surface freezing condition corresponding to the snowfall condition and the temperature condition is obtained. Yes.

尚、図6は、従来の路面凍結状況判定テーブルであって、気温の条件は細かく細分化されているが、降雪量の条件が降雪が有るか否かの2パターンしかない為、大雑把な判定しか達成できないものである。   FIG. 6 is a conventional road surface freezing condition determination table, in which the temperature conditions are finely subdivided, but since there are only two patterns for whether there is snowfall or not, the rough determination It can only be achieved.

以上、本実施例は、降水状況だけで無く、気温測定手段により気温データを時系列的、面的に把握し、それらをデータ解析手段で解析して面的な、或いは道路に沿った線的な路面凍結状況のリアルタイムでの判定及び把握が可能で、これらデータを基にした今後の路面の凍結状況の予測なども容易に実現可能とする画期的なものである。   As described above, in the present embodiment, not only precipitation conditions but also temperature data is grasped in a time series and in a plane by the temperature measurement means, and the data is analyzed by the data analysis means in a plane or along a road. It is possible to judge and grasp the actual road surface freezing condition in real time, and to make it possible to easily predict the future road surface freezing condition based on these data.

尚、本発明は、実施例1,2に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   The present invention is not limited to the first and second embodiments, and the specific configuration of each component can be designed as appropriate.

実施例1に係る降水量・降水形態判定システムの検知ユニットDを示す説明斜視図である。It is a description perspective view which shows the detection unit D of the precipitation and precipitation form determination system which concerns on Example 1. FIG. 実施例1に係る降水量・降水形態判定システムの静電容量式降水検知手段2の説明正断面図である。It is an explanatory front sectional view of the electrostatic capacity type precipitation detection means 2 of the precipitation / precipitation form determination system according to the first embodiment. 実施例1に係る降水量・降水形態判定システムの使用態様説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of how to use a precipitation / precipitation form determination system according to a first embodiment. 実施例1に係る降水量・降水形態判定システムの判定フローを示す図である。It is a figure which shows the determination flow of the precipitation and precipitation form determination system which concerns on Example 1. FIG. 実施例2に係る路面凍結状況判定システムの路面状況判定基準を示す図である。It is a figure which shows the road surface condition criteria of the road surface freezing condition determination system which concerns on Example 2. FIG. 従来の路面凍結状況判定基準を示す図である。It is a figure which shows the conventional road surface freezing condition criteria.

符号の説明Explanation of symbols

1 光学式降雪粒検知手段
2 静電容量式降水検知手段
D 検知ユニット
a 降雪粒
s 測定面
1 Optical snow particle detection means 2 Capacitance type precipitation detection means D Detection unit a Snow particles

Claims (6)

大気中の降雪粒の有無若しくは多寡を光学的に検知する光学式降雪粒検知手段と、測定面に接触する水分量の変化を静電容量の変化として測定することでこの測定面への降水の有無若しくは多寡を検知する静電容量式降水検知手段とを備え、前記光学式降雪粒検知手段により検知する降雪粒の有無若しくは多寡をデータA,前記静電容量式降水検知手段により検知する測定面への降水の有無若しくは多寡をデータBとして、このデータAとデータBとの組み合わせに対応する降水量の多寡とその降水形態とをこのデータAとデータBとの各組み合わせ毎に予め規定した判定基準を設定しておき、判定時には、前記光学式降雪粒検知手段により検知したデータAと前記静電容量式降水検知手段により検知したデータBとの組み合わせに対応する降水量の多寡とその降水形態とを前記判定基準を参照して判定する判定手段を備えたことを特徴とする降水量・降水形態判定システム。   Optical snow particle detection means that optically detects the presence or absence of snow particles in the atmosphere and the amount of moisture that contacts the measurement surface is measured as a change in capacitance to measure precipitation on this measurement surface. A measurement surface for detecting the presence or absence of snow particles detected by the optical snow particle detecting means using data A, the capacitance type precipitation detecting means. Presence of the amount of precipitation and the form of precipitation corresponding to the combination of data A and data B as the data B and the presence or absence of precipitation in the data B A reference is set, and at the time of determination, it corresponds to a combination of data A detected by the optical snow particle detecting means and data B detected by the capacitive precipitation detecting means. Precipitation and precipitation type decision system characterized by the amount of water and its precipitation forms with a determining means for determining with reference to the criteria. 前記静電容量式降水検知手段により前記測定面への降水の有無を検知し、前記降水が無い場合には降水量ゼロと判定し、前記降水が有る場合には前記光学式降雪粒検知手段により降雪粒の有無を検知し、前記降雪粒が無い場合には降水形態を雨と判定して前記静電容量式降水検知手段により検知したデータBからその降水量の多寡を判定し、前記降雪粒が有る場合にはこの光学式降雪粒検知手段により検知したデータAと前記静電容量式降水検知手段により検知したデータBとの組み合わせに対応する降水量の多寡とその降水形態とを前記判定基準を参照して判定するように前記判定手段を構成したことを特徴とする請求項1記載の降水量・降水形態判定システム。   Presence or absence of precipitation on the measurement surface is detected by the capacitance type precipitation detection means. If there is no precipitation, it is determined that there is no precipitation. If there is precipitation, the optical snow particle detection means is used. The presence or absence of snow particles is detected. If there is no snow particles, the precipitation form is determined to be rain, and the amount of precipitation is determined from the data B detected by the electrostatic capacity type precipitation detecting means. In the case where there is a raindrop, the amount of precipitation corresponding to the combination of the data A detected by the optical snow particle detecting means and the data B detected by the capacitive precipitation detecting means and the precipitation form are determined as the determination criteria. The precipitation / precipitation form determination system according to claim 1, wherein the determination means is configured to determine with reference to. 前記光学式降雪粒検知手段と静電容量式降水検知手段とを一組の検知ユニットとし、この検知ユニットを所定の判定対照領域に複数設置して、この複数の各設置箇所に設置した各検知ユニットにより検知したデータAとデータBとを基に前記判定基準を参照して各設置箇所における降水量の多寡とその降水形態とを判定する判定手段を備え、この各判定手段により判定した各設置箇所における降水量の多寡とその降水形態との判定データを収集してこの各検知ユニットを複数設置した前記所定の判定対照領域における降水分布とその降水形態とを判定するデータ収集判定手段を備えたことを特徴とする請求項1,2のいずれか1項に記載の降水量・降水形態判定システム。   The optical snowfall detection means and the capacitive precipitation detection means are used as a set of detection units, and a plurality of detection units are installed in a predetermined judgment reference region, and the detections installed at the plurality of installation locations. Each of the installations determined by each of the determination means is provided with determination means for determining the amount of precipitation and its precipitation form at each installation location with reference to the determination criteria based on the data A and data B detected by the unit. Data collection judgment means is provided for judging the precipitation distribution and the precipitation form in the predetermined judgment control region in which the judgment data of the amount of precipitation at the location and the precipitation form are collected and a plurality of the detection units are installed. The precipitation / precipitation form determination system according to any one of claims 1 and 2. 前記複数の検知ユニットにより前記データAとデータBとを時々刻々と検知し、この時々刻々と検知される前記データAとデータBとを基に前記所定の判定対照領域における降水分布とその降水形態とを逐次判定するように前記データ収集判定手段を構成したことを特徴とする請求項3記載の降水量・降水形態判定システム。   The data A and data B are detected every moment by the plurality of detection units, and the precipitation distribution and the precipitation form in the predetermined judgment reference region based on the data A and data B detected every moment The precipitation / precipitation form determination system according to claim 3, wherein the data collection determination unit is configured to sequentially determine. 前記複数の検知ユニットにより時々刻々と検知される前記データAとデータBとを基に前記所定の判定対照領域における降水分布とその降水形態とを前記データ収集判定手段により逐次判定し、この逐次判定した判定データから前記判定対照領域における降水分布とその降水形態の経時変化を把握して、この所定の判定対照領域における今後の降水分布とその降水形態とを予測する降水予測手段を備えたことを特徴とする請求項4記載の降水量・降水形態判定システム。   Based on the data A and data B detected every moment by the plurality of detection units, the precipitation distribution and the precipitation form in the predetermined determination control region are sequentially determined by the data collection determination means, and this sequential determination A precipitation prediction means for grasping the precipitation distribution in the judgment control area and the temporal change in the precipitation form from the judgment data obtained and predicting the future precipitation distribution and the precipitation form in the predetermined judgment control area. The precipitation / precipitation form determination system according to claim 4, 気温測定手段を備え、請求項1〜5のいずれか1項に記載の降水量・降水形態判定システムにより判定した降雪量の有無若しくは多寡のデータと、前記気温測定手段により測定した気温のデータとの組み合わせに対応する路面の凍結状況をこの降雪量のデータと気温のデータとの各組み合わせ毎に予め規定した路面凍結状況判定基準を設定しておき、判定時には、検知した前記降雪量の有無若しくは多寡のデータと気温のデータとの組み合わせに対応する路面凍結状況を前記路面凍結状況判定基準を参照して判定する路面判定手段を備えたことを特徴とする路面凍結状況判定システム。   Presence / absence or amount of snowfall determined by the precipitation / precipitation form determination system according to any one of claims 1 to 5, and temperature data measured by the temperature measurement means The road surface freezing condition corresponding to the combination of the snowfall amount data and the temperature data is set in advance for each combination of the snowfall amount data and the temperature data. A road surface freezing state determination system comprising road surface determination means for determining a road surface freezing state corresponding to a combination of various data and temperature data with reference to the road surface freezing state determination criterion.
JP2006303765A 2006-11-09 2006-11-09 System for determining precipitation amount and pattern, and road-surface frozen state determination system Pending JP2008122133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303765A JP2008122133A (en) 2006-11-09 2006-11-09 System for determining precipitation amount and pattern, and road-surface frozen state determination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303765A JP2008122133A (en) 2006-11-09 2006-11-09 System for determining precipitation amount and pattern, and road-surface frozen state determination system

Publications (1)

Publication Number Publication Date
JP2008122133A true JP2008122133A (en) 2008-05-29

Family

ID=39507052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303765A Pending JP2008122133A (en) 2006-11-09 2006-11-09 System for determining precipitation amount and pattern, and road-surface frozen state determination system

Country Status (1)

Country Link
JP (1) JP2008122133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393370B1 (en) 2012-06-25 2014-05-09 강정철 Apparatus for measuring strength and quantity of rainfall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393370B1 (en) 2012-06-25 2014-05-09 강정철 Apparatus for measuring strength and quantity of rainfall

Similar Documents

Publication Publication Date Title
US6977597B2 (en) Vehicle mounted travel surface and weather condition monitoring system
US7400267B1 (en) Methods for determining need for treating a vehicle travel surface
KR100719064B1 (en) Multi-Frequency Capacitive Measurement Device and Method of Operating the Same
US8555714B2 (en) Apparatus for measuring the amount of snow cover and snowfall using electrical conduction
KR101404834B1 (en) Method and device for predicting the sliding friction of road surface, and storage medium for storing a program therefor
KR101682940B1 (en) Total management system for removing snow and ice on road and method for processing thereof
US20030103547A1 (en) Roadway freezing point monitoring system and method
KR102380856B1 (en) Deicer scatter system and method with autonomous operation function of winter service truck
KR20130088244A (en) Automatically upon snows or ice road spray to spray my spray system unattended
CN110820615A (en) Intelligent ice and snow weather early warning system and method applied to photovoltaic pavement section
Ghobrial et al. Continuous monitoring of river surface ice during freeze-up using upward looking sonar
JP2972173B2 (en) Road surface freezing prevention method, road surface information movement collection system, and road surface freezing prevention device
JP3601344B2 (en) Road surface freezing prediction method and its apparatus
Abdelaal et al. A flexible surface-mountable sensor for ice detection and non-destructive measurement of liquid water content in snow
CN104134098A (en) Prediction method and prediction system for pavement ice formation early warning time
KR102475003B1 (en) SYSTEM FOR MANAGING SNOW REMOVAL USING IoT
JP2008122133A (en) System for determining precipitation amount and pattern, and road-surface frozen state determination system
KR102380852B1 (en) System and method for making a decision on snow removal work
JP2002196085A (en) System for predicting road surface condition
Xiao et al. Asphalt pavement water film thickness detection and prediction model: A review
JP3809519B2 (en) Road surface condition estimation method
JP2003185506A (en) Estimating method for road surface temperature
Sarayloo A Sensor for Measuring Liquid Water Content of Wet Snow on Superstructures
KR100912341B1 (en) Moisture detector and the operate method of spraying device for liquid thawing agents using the smae
JP4742388B2 (en) Road surface condition estimation system at fixed observation points and routes