JP2008121944A - Hot water storage type electric water heater - Google Patents

Hot water storage type electric water heater Download PDF

Info

Publication number
JP2008121944A
JP2008121944A JP2006304623A JP2006304623A JP2008121944A JP 2008121944 A JP2008121944 A JP 2008121944A JP 2006304623 A JP2006304623 A JP 2006304623A JP 2006304623 A JP2006304623 A JP 2006304623A JP 2008121944 A JP2008121944 A JP 2008121944A
Authority
JP
Japan
Prior art keywords
hot water
water storage
storage tank
type electric
storage type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006304623A
Other languages
Japanese (ja)
Inventor
Masahiro Kuroishi
正宏 黒石
Tomoko Sato
知子 佐藤
Makoto Hatakeyama
真 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2006304623A priority Critical patent/JP2008121944A/en
Publication of JP2008121944A publication Critical patent/JP2008121944A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water storage type electric water heater installable in a limited installation space and superior in extrusion performance of hot water in a hot water storage tank and a boiling-up performance. <P>SOLUTION: This hot water storage type electric water heater comprises the hot water storage tank 10, a water inlet portion 11 formed on the hot water storage tank, a hot water outlet portion 12 formed on a position different from the water inlet portion of the hot water storage tank, and a partitioning structure 20 forming a plurality of flow channels over the neighborhood of the water inlet portion to the neighborhood of the hot water outlet portion in the hot water storage tank. The hot water storage tank is installed with its lateral length longer than its vertical height with the hot water storage type electric water heater installed, and the resistance of the flow channels from a water inlet portion side to a hot water outlet portion side of the water and hot water flowing in each of the flow channels of the partitioning structure, is larger at lower-side flow channels where the water easily flows in by the action of gravity, than an upper-side flow channels where the water hardly flows in by the action of gravity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、設置された状態で貯湯タンクの上下方向の高さより横方向の長さが長くなるように貯湯タンクが配置され、限られた設置スペースに設置可能となった貯湯式電気温水器に関する。   The present invention relates to a hot water storage type electric water heater in which a hot water storage tank is disposed so that the length in the lateral direction is longer than the vertical height of the hot water storage tank in the installed state, and can be installed in a limited installation space. .

従来から建物の壁などに縦長の状態で設置され、貯湯タンクの下部から水を入れて上部から沸き上がった湯を出す貯湯式電気温水器が広く用いられてきた。設置状態で貯湯タンクがこのように縦長となった理由は、貯湯タンクの下部から入った水が温められると湯と水の密度差により湯が自然に上昇する作用を利用して湯の押出し性、即ち高温の湯を安定して押し出す性能を高めているためである。そして、近年、例えばトイレルーム内などの手洗い用の蛇口に温水を供給するために、トイレルーム内に電気温水器が直接設置されることが多くなっている。   Conventionally, a hot water storage type electric water heater that is installed in a vertically long state on a wall of a building and puts water from a lower part of a hot water storage tank and discharges hot water from the upper part has been widely used. The reason why the hot water storage tank is so long in the installed state is that the hot water can be pushed out by using the action of the hot water naturally rising due to the difference in density between the hot water and the water when the water entered from the bottom of the hot water tank is warmed. That is, the performance of stably extruding high-temperature hot water is enhanced. In recent years, for example, an electric water heater is often installed directly in a toilet room in order to supply hot water to a faucet for hand-washing such as in a toilet room.

トイレルームへの貯湯式電気温水器の設置に際して、トイレルーム内のインテリア性としての美観や統一感を損なわないために、貯湯式電気温水器自体を従来のように壁面に縦長の状態で直接設置する代わりに、例えば図18に点線で示すように洗面器カウンタやキャビネットの裏面でトイレルーム内から目に付かない場所に貯湯タンク50を寝かせた状態で設置されることが望まれている。   When installing a hot water storage type electric water heater in a toilet room, the hot water storage type electric water heater itself is installed directly on the wall surface in a vertically long state as before, so as not to impair the aesthetics and unity of the interior of the toilet room. Instead, for example, it is desired that the hot water storage tank 50 be laid in a place where it cannot be seen from the toilet room on the back of the basin counter or cabinet as shown by a dotted line in FIG.

このような貯湯式電気温水器はいわゆる横置き式電気温水器と呼ばれ、貯湯式電気温水器が設置された状態で貯湯タンクの上下方向の高さより横方向の長さが長くなるように貯湯タンクが配置された貯湯式電気温水器である。   Such a hot water storage type electric water heater is referred to as a so-called horizontal electric water heater, and in the state where the hot water storage type electric water heater is installed, the hot water storage tank has a horizontal length that is longer than the vertical height of the hot water storage tank. This is a hot water storage type electric water heater with a tank.

なお、かかる貯湯タンク50を寝かせた状態で設置する態様は、例えばキッチンカウンタの下面やキッチンキャビネットのケコミ部などに貯湯式電気温水器を設置する場合にも適用でき、これによってキッチンルームの壁面に貯湯式電気温水器を設置しなくて済み、キッチンルームの美観やインテリア性を向上できるので、このような設置形態は広く望まれている。   In addition, the aspect which installs this hot water storage tank 50 in the state which laid down can be applied, for example, also when installing a hot water storage type electric water heater in the underside of a kitchen counter, the crack part of a kitchen cabinet, etc., and, thereby, on the wall surface of a kitchen room Such a configuration is widely desired because it is not necessary to install a hot water storage type electric water heater, and the beauty and interior of the kitchen room can be improved.

このような寝かせた状態で設置される貯湯式電気温水器の場合、これをカウンタ下面などの狭いスペースに設置するためには、貯湯タンク50をかなり扁平の薄型形状にする必要がある。しかしながら、上下方向の高さを低くして扁平にした横長の貯湯タンク50を有する貯湯式電気温水器の場合、貯湯量一定で高さのみを単に低くすると、設置状態で貯湯タンク50が水平方向に広くなるため、湯と水が接する面が広くなって湯と水が混合し易くなる。そこで、このような薄型の貯湯タンクを備えた寝かせ置き式の貯湯式電気温水器の押し出し性を改善した特別な構成も考えられている(例えば、特許文献1参照)。   In the case of a hot water storage type electric water heater installed in such a laid state, in order to install it in a narrow space such as the lower surface of the counter, it is necessary to make the hot water storage tank 50 quite flat and thin. However, in the case of a hot water type electric water heater having a horizontally long hot water storage tank 50 whose height in the vertical direction is reduced and flattened, if the amount of hot water is kept constant and the height is simply lowered, the hot water storage tank 50 is installed in the horizontal direction in the installed state. Therefore, the surface in contact with hot water becomes wider and the hot water and water can be mixed easily. Then, the special structure which improved the extrusion property of the laying-down type hot water storage type electric water heater provided with such a thin hot water storage tank is also considered (for example, refer patent document 1).

かかる特許文献1に記載の貯湯式電気温水器は、図19に示すように、貯湯タンク50の内部に細長い隙間を有するハニカム体51を設け、貯湯タンク内の各流路断面積を小さくすることで、給水時に水が湯と混ざらずに湯を高温のまま出湯部側に押し出すようにしている。
特開平7−12405号公報(図1)
As shown in FIG. 19, the hot water storage type electric water heater described in Patent Document 1 is provided with a honeycomb body 51 having an elongated gap inside the hot water storage tank 50, and each channel cross-sectional area in the hot water storage tank is reduced. Thus, the water is not mixed with the hot water at the time of water supply, and the hot water is pushed out to the hot water outlet part side at a high temperature.
Japanese Patent Laid-Open No. 7-12405 (FIG. 1)

図19に示す従来型の貯湯式電気温水器の場合、貯湯タンク50の内部に細長い細管を有するハニカム体51を設け、このハニカム体51によって構成される各流路の流路断面積を縮小すると共に、貯湯タンク50の入水部52とハニカム体51の入口側開口部51aとの間に空間Xを設け、入水部52から入った水をこの空間Xを介してハニカム体51の各流路に均等に分配することで、給水時に入水部52から入水した水をハニカム体51の重力の作用方向で見て入口側上下方向に拡散させてハニカム体内に流入させ、水が湯と混ざらずに湯を高温のまま貯湯タンク50の出湯部53に押し出すようにしている。そして、ハニカム体で構成される各流路をこのような細管とせずに、図20に示すような流路断面積の大きい流路として構造の単純化と流路内の水や湯の流路抵抗の低下を図ることも考えられている。   In the case of the conventional hot water storage type electric water heater shown in FIG. 19, a honeycomb body 51 having elongated thin tubes is provided inside the hot water storage tank 50, and the cross-sectional area of each flow path constituted by the honeycomb body 51 is reduced. At the same time, a space X is provided between the water inlet portion 52 of the hot water storage tank 50 and the inlet side opening 51a of the honeycomb body 51, and the water that has entered from the water inlet portion 52 is passed through the space X to each flow path of the honeycomb body 51. By distributing evenly, the water that has entered from the water inlet 52 during water supply is diffused in the vertical direction on the inlet side as seen in the direction of gravity of the honeycomb body 51 and flows into the honeycomb body, so that the water does not mix with the hot water. The hot water is pushed out to the hot water outlet 53 of the hot water storage tank 50 at a high temperature. And each flow path comprised with a honeycomb body is not made into such a thin tube, but as a flow path with a large cross-sectional area as shown in FIG. 20, the structure is simplified and the flow path of water or hot water in the flow path It is also considered to reduce the resistance.

後者の構造を有する貯湯式電気温水器の場合、実際には入水部から入った水は湯との密度差によって入水直後に入水部とハニカム体の流路入口側との間の空間Xにおいてすぐに下に落ち込んでしまう。(図20の空間X内の下方に向かう水の流れを示す矢印P参照)。そして、この空間Xの下側に落ち込んだ水は、ハニカム体60の太い流路61にそのまま抵抗なく流入していく。その結果、ハニカム体60の各流路61において下側流路内の水が上側流路内の水よりも流路内を先行してしまい、ハニカム体60の各流路内の平均流速差が大きくなってしまう(図20のハニカム体60の各流路61を進む水の流れを示す矢印Q参照)。   In the case of the hot water storage type electric water heater having the latter structure, the water that has actually entered from the water inlet portion is immediately in the space X between the water inlet portion and the channel inlet side of the honeycomb body immediately after entering due to the density difference with the hot water. It will fall to the bottom. (Refer to arrow P indicating the flow of water downward in the space X of FIG. 20). Then, the water that has fallen below the space X flows into the thick channel 61 of the honeycomb body 60 without resistance. As a result, in each channel 61 of the honeycomb body 60, the water in the lower channel precedes the water in the upper channel, and the average flow velocity difference in each channel of the honeycomb body 60 is different. (See arrow Q indicating the flow of water traveling through each flow path 61 of the honeycomb body 60 in FIG. 20).

そのため、このような空間Xにおける水の落ち込みに抗してハニカム体内の流路を流れる水の平均流速差をできるだけ小さくするために、図19に示す上述の従来例のように目の細かいハニカム体51で貯湯タンク内の全体流路を構成すると、容積の大きな嵩張るハニカム体51を貯湯タンク内に収容しなければならず、貯湯タンク内の容積の多くをハニカム体51が占めるようになり、貯湯タンク内の貯湯量が減ってしまい、湯を頻繁に沸き上げる必要が生じる。   Therefore, in order to minimize the difference in the average flow rate of water flowing through the flow path in the honeycomb body against such a drop of water in the space X, a fine honeycomb body as in the above-described conventional example shown in FIG. When the entire flow path in the hot water storage tank is constituted by 51, the bulky honeycomb body 51 having a large volume must be accommodated in the hot water storage tank, and the honeycomb body 51 occupies most of the volume in the hot water storage tank. The amount of hot water stored in the tank is reduced, and it is necessary to boil hot water frequently.

本発明の目的は、限られた設置スペースに設置可能な横置き型の貯湯式電気温水器であって貯湯タンク内の湯の押し出し性や水やぬるま湯の沸き上げ性に優れた貯湯式電気温水器を提供することにある。   An object of the present invention is a horizontal-type hot water storage type electric water heater that can be installed in a limited installation space, and has excellent hot water push-out properties in hot water storage tanks and water and warm water boiling properties. Is to provide a vessel.

上述した課題を解決するために、本発明にかかる貯湯式電気温水器は、
貯湯タンクと、前記貯湯タンクの所定位置に備わった入水部と、前記貯湯タンクの前記入水部とは異なる位置に備わった出湯部と、前記貯湯タンク内の入水部近傍から出湯部近傍に亘って複数の流路を形成するように設けられた仕切り構造体とを有した貯湯式電気温水器であって、前記貯湯式電気温水器が設置された状態で前記貯湯タンクの上下方向の高さより横方向の長さが長くなるように当該貯湯タンクが備わった貯湯式電気温水器において、
前記仕切り構造体の各流路内を流れる水や湯の入水部側から出湯部側に至るまでの流路抵抗が、前記貯湯式電気温水器の設置状態で重力の作用により水が流入し易い下側流路の方が重力の作用により水が流入し難い上側流路よりも大きくなるようにしたことを特徴としている。
In order to solve the problems described above, a hot water storage type electric water heater according to the present invention is:
A hot water storage tank, a water inlet section provided at a predetermined position of the hot water storage tank, a hot water outlet section provided at a position different from the water inlet section of the hot water storage tank, and from the vicinity of the water inlet section in the hot water storage tank to the vicinity of the hot water outlet section. A hot water storage type electric water heater having a partition structure provided so as to form a plurality of flow paths, wherein the hot water storage type electric water heater is installed from the height in the vertical direction of the hot water storage tank. In the hot water storage type electric water heater equipped with the hot water storage tank so that the length in the lateral direction becomes longer,
The flow resistance from the water inlet / outlet side to the water / hot water flowing through each channel of the partition structure is such that water easily flows in by the action of gravity in the installed state of the hot water storage type electric water heater. The lower channel is characterized by being larger than the upper channel where water is difficult to flow in due to the action of gravity.

仕切り構造体に形成された複数の流路のうち、水と湯の密度差により重力が作用して水が貯湯タンク内で落ち込んで流入し易い下側流路を流れる水や湯の入水部側から出湯部側に至るまでの流路抵抗が上側流路を流れる水や湯の入水部側から出湯部側に至るまでの流路抵抗より大きくなるようにしたので、入水部から貯湯タンクに入った水が貯湯タンクの下側に向かった後、下側流路内を上側流路内よりも先行して流れなくなる。この間に貯湯タンクの入水部側と仕切り構造体の入水側端面との間の空間に水が充満してその上部の水が流路抵抗の小さい上側流路にスムーズに流入する。その結果、仕切り構造体の上側流路を流れる水の平均流速と下側流路を流れる水の平均流速の流速差を小さくする(等速分配する)ことができ、うろいのかい、その貯湯タンク内の湯の押し出し性が向上する。   Of the plurality of channels formed in the partition structure, gravity acts due to the density difference between the water and hot water, and the water or hot water inlet side that flows through the lower channel where water falls easily in the hot water storage tank. The flow resistance from the water inlet to the hot water side is larger than the flow resistance from the water or hot water inlet side to the hot water side flowing through the upper flow path. After the hot water goes to the lower side of the hot water storage tank, it does not flow in the lower flow path before the upper flow path. During this time, water fills the space between the water inlet portion side of the hot water storage tank and the water inlet side end surface of the partition structure, and the water in the upper part flows smoothly into the upper flow passage having a small flow passage resistance. As a result, the difference between the average flow rate of the water flowing in the upper channel of the partition structure and the average flow rate of the water flowing in the lower channel can be reduced (distributed at a constant speed). The pushability of hot water in the tank is improved.

更に、仕切り構造体の上側流路はこれを流れる水や湯の流路抵抗を積極的に小さくするので、上側流路を十分な大きさの流路断面積を有する流路とすることができる。これによって、より多くの貯湯容量を貯湯タンク内で確保することが可能となる。   Furthermore, since the upper flow path of the partition structure actively reduces the flow resistance of the water and hot water flowing through the partition structure, the upper flow path can be a flow path having a sufficiently large flow cross-sectional area. . Thereby, it becomes possible to secure more hot water storage capacity in the hot water storage tank.

より具体的には、例えば貯湯タンク内の全体流路を目の細かいハニカム構造体で構成したタイプの従来の貯湯式電気温水器の場合、容積の大きなハニカム構造体を貯湯タンク内に収容しなければならず、貯湯タンク内の容積の多くをハニカム構造体が占めるようになり、貯湯タンク内の貯湯量が減ってしまっていたが、本発明による構成では仕切り構造体の大部分を目の粗い流路で構成できるため、貯湯タンクの貯湯量を十分に確保できるようになる。   More specifically, for example, in the case of a conventional hot water type electric water heater of a type in which the entire flow path in the hot water storage tank is configured with a fine honeycomb structure, the large volume honeycomb structure must be accommodated in the hot water storage tank. However, the honeycomb structure occupies most of the volume in the hot water storage tank, and the amount of hot water stored in the hot water storage tank has been reduced. However, in the configuration according to the present invention, most of the partition structure is rough. Since it can be configured with a flow path, a sufficient amount of hot water can be secured in the hot water storage tank.

また、本発明の請求項2に記載の貯湯式電気温水器は、請求項1に記載の貯湯式電気温水器において、
前記仕切り構造体に形成された各流路のうち、前記上側流路の平均流路断面積が、前記下側流路の平均流路断面積よりも大きくなっていることを特徴としている。
The hot water storage type electric water heater according to claim 2 of the present invention is the hot water storage type electric water heater according to claim 1,
Among the channels formed in the partition structure, the average channel cross-sectional area of the upper channel is larger than the average channel cross-sectional area of the lower channel.

目の細かいハニカム構造体を仕切り構造体とした従来型の貯湯式電気温水器は、各流路が全体に細い管になっており、流路抵抗が大きくなる問題があったが、本発明のように仕切り構造体に形成された各流路の内、上側流路の平均流路断面積を下側流路の平均流路断面積よりも大きくすることで、貯湯タンクに入った水が仕切り構造体の各流路を流れる際の各流路間の平均流速差を小さくすることができ、貯湯タンク内全体の湯の押し出し性が向上する。   The conventional hot water storage type electric water heater with a fine honeycomb structure as a partition structure has a problem that the flow passage resistance is increased because each flow passage is a thin tube as a whole. In this way, by making the average channel cross-sectional area of the upper channel among the channels formed in the partition structure larger than the average channel cross-sectional area of the lower channel, the water entering the hot water storage tank is partitioned. The average flow velocity difference between the flow paths when flowing through the flow paths of the structure can be reduced, and the pushability of hot water in the entire hot water storage tank is improved.

これに加えて、仕切り構造体の上側流路は下側流路に比べて流路抵抗が小さく水や湯が流れ易くなるように大きな流路断面積を有しているので、この上側流路によって貯湯タンク内においてより多くの貯湯容量を確保することができる。   In addition, the upper channel of the partition structure has a larger channel cross-sectional area so that the channel resistance is smaller than that of the lower channel and water and hot water can easily flow. As a result, more hot water storage capacity can be secured in the hot water storage tank.

また、本発明の請求項3に記載の貯湯式電気温水器は、請求項1又は請求項2に記載の貯湯式電気温水器において、
前記仕切り構造体に形成された各流路のうち、前記下側流路の内壁の表面粗さが、前記上側流路の内壁の表面粗さよりも粗くなっていることを特徴としている。
Moreover, the hot water storage type electric water heater according to claim 3 of the present invention is the hot water storage type electric water heater according to claim 1 or 2,
Of the flow paths formed in the partition structure, the surface roughness of the inner wall of the lower flow path is rougher than the surface roughness of the inner wall of the upper flow path.

流路内壁面の表面粗さを下側流路の方が上側流路よりも粗くすることで、下側流路の表面粗さが水や湯が流れる際の抵抗となる。その結果、貯湯タンク内の湯の貯湯容量を低下させることなく、下側流路を流れる水や湯が受ける流路抵抗を上側流路を流れる水や湯が受ける流路抵抗よりも大きくすることができ、仕切り構造体に形成された複数の流路の湯の押し出し性を貯湯タンク上下方向に亘って均一化することができる。   By making the surface roughness of the inner wall surface of the flow path rougher in the lower flow path than in the upper flow path, the surface roughness of the lower flow path becomes a resistance when water or hot water flows. As a result, without decreasing the hot water storage capacity of the hot water in the hot water storage tank, the flow resistance received by the water and hot water flowing through the lower flow path should be greater than the flow resistance received by the water and hot water flowing through the upper flow path. Thus, the pushability of hot water in the plurality of flow paths formed in the partition structure can be made uniform in the vertical direction of the hot water storage tank.

また、本発明の請求項4に記載の貯湯式電気温水器は、請求項1又は請求項2に記載の貯湯式電気温水器において、
前記仕切り構造体に形成された各流路のうち、前記下側流路の内壁に突起が設けられていることを特徴としている。
Moreover, the hot water storage type electric water heater according to claim 4 of the present invention is the hot water storage type electric water heater according to claim 1 or 2,
Of each flow path formed in the partition structure, a protrusion is provided on the inner wall of the lower flow path.

仕切り構造体に形成された各流路のうち、下側流路の内壁に突起を設けることで、この突起が下側流路を流れる水や湯の抵抗となる。その結果、貯湯タンク内の湯の貯湯容量を低下させることなく、下側流路を流れる水や湯が受ける流路抵抗が上側流路を流れる水や湯が受ける流路抵抗よりも大きくなるようにすることができ、仕切り構造体に形成された複数の流路の湯の押し出し性を貯湯タンク上下方向に亘って均一化することができる。
特徴としている。
By providing a protrusion on the inner wall of the lower flow path among the flow paths formed in the partition structure, the protrusion serves as resistance of water or hot water flowing through the lower flow path. As a result, without reducing the hot water storage capacity of the hot water in the hot water storage tank, the flow resistance received by the water and hot water flowing through the lower flow path is greater than the flow resistance received by the water and hot water flowing through the upper flow path. The pushability of hot water in the plurality of flow paths formed in the partition structure can be made uniform in the vertical direction of the hot water storage tank.
It is a feature.

また、本発明の請求項5に記載の貯湯式電気温水器は、請求項1又は請求項2に記載の貯湯式電気温水器において、
前記仕切り構造体に形成された各流路のうち、前記下側流路の下流側が絞られて流路断面積が小さくなっていることを特徴としている。
A hot water storage type electric water heater according to claim 5 of the present invention is the hot water storage type electric water heater according to claim 1 or 2,
Among the flow paths formed in the partition structure, the downstream side of the lower flow path is narrowed to reduce the cross-sectional area of the flow path.

仕切り構造体に形成された各流路のうち、下側流路の下流側が絞られて上流よりも断面積が小さくなっていることで、下側流路の水や湯の抵抗となる。その結果、貯湯タンク内の湯の貯湯容量を低下させることなく、下側流路を流れる水や湯が受ける流路抵抗を、上側流路を流れる水や湯が受ける流路抵抗よりも大きくすることができ、仕切り構造体に形成された複数の流路の湯の押し出し性を貯湯タンク上下方向に亘って均一化することができる。   Of each flow path formed in the partition structure, the downstream side of the lower flow path is narrowed down and the cross-sectional area is smaller than that of the upstream, thereby providing resistance to water and hot water in the lower flow path. As a result, without decreasing the hot water storage capacity of the hot water in the hot water storage tank, the flow resistance received by the water and hot water flowing through the lower flow path is made larger than the flow path resistance received by the water and hot water flowing through the upper flow path. It is possible to make the pushability of the hot water in the plurality of flow paths formed in the partition structure uniform in the vertical direction of the hot water storage tank.

また、本発明の請求項6に記載の貯湯式電気温水器は、請求項1乃至請求項5の何れかに記載の貯湯式電気温水器において、
前記入水部が、前記貯湯式電気温水器の設置状態で前記貯湯タンクの上面か上面近傍に位置するように設けられていることを特徴としている。
Moreover, the hot water storage type electric water heater according to claim 6 of the present invention is the hot water storage type electric water heater according to any one of claims 1 to 5,
The water intake section is provided so as to be positioned on or near the upper surface of the hot water storage tank in the installed state of the hot water storage type electric water heater.

通常の貯湯式電気温水器では貯湯タンクの入水部から貯湯タンク内に入った水が貯湯タンク内で水と湯の密度差によってすぐに下方に落ち込み、仕切り構造体の上側流路に流入し難くなっていたのを、貯湯タンクの上面か上面近傍に位置するように設けた入水部から入水することで、上側流路に積極的に入水させることができ、結果的に仕切り構造体の各流路に水を上下に亘って均等分配し易くなる。   In a normal hot water storage type electric water heater, water that has entered the hot water storage tank from the hot water storage tank immediately falls downward due to the difference in water and hot water in the hot water storage tank, and does not easily flow into the upper channel of the partition structure. However, it is possible to positively enter the upper flow path by entering water from a water inlet provided so as to be located at or near the upper surface of the hot water storage tank, resulting in each flow of the partition structure. It becomes easy to distribute the water evenly over the road.

また、本発明の請求項7に記載の貯湯式電気温水器は、請求項1乃至請求項6の何れかに記載の貯湯式電気温水器において、
前記仕切り構造体が、当該仕切り構造体内の各流路間に隙間を生じさせないハニカム体形状を有することを特徴としている。
A hot water storage type electric water heater according to claim 7 of the present invention is the hot water storage type electric water heater according to any one of claims 1 to 6,
The partition structure has a honeycomb body shape that does not cause a gap between the flow paths in the partition structure.

仕切り構造体がこのようなハニカム形状を有することで、仕切り構造体を押し出し成型により容易に作れると共に、貯湯タンク全体の組み立ても簡単に行うことができる。   Since the partition structure has such a honeycomb shape, the partition structure can be easily formed by extrusion molding, and the entire hot water storage tank can be easily assembled.

また、本発明の請求項8に記載の貯湯式電気温水器は、請求項1乃至請求項6の何れかに記載の貯湯式電気温水器において、
前記仕切り構造体が、それぞれが流路を形成しかつ少なくとも一部の流路間が離間するように並設された複数のパイプ体からなることを特徴としている。
A hot water storage type electric water heater according to claim 8 of the present invention is the hot water storage type electric water heater according to any one of claims 1 to 6,
The partition structure is characterized by comprising a plurality of pipe bodies arranged in parallel so that each form a flow path and at least some of the flow paths are separated.

仕切り構造体がこのようなパイプ形状を有することで、仕切り構造体の材料が入手し易く部品コストを低減できる。   Since the partition structure has such a pipe shape, the material of the partition structure is easily available, and the component cost can be reduced.

また、このように離間したパイプを用いることで、この隙間を介して貯湯タンク内で水や湯が対流し易く湯の沸き上げ性が良くなる。   Further, by using the pipes separated in this way, water and hot water are easily convected in the hot water storage tank through this gap, and the boiling property of hot water is improved.

また、本発明の請求項9に記載の貯湯式電気温水器は、請求項1乃至請求項8の何れかに記載の貯湯式電気温水器において、
前記仕切り構造体の少なくとも何れか一つの流路の少なくとも一部に切り欠きが設けられ、当該切り欠きを介して前記仕切り構造体の当該切欠きを挟んだ隣接する少なくとも2つの流路が互いに連通していることを特徴としている。
The hot water storage type electric water heater according to claim 9 of the present invention is the hot water storage type electric water heater according to any one of claims 1 to 8,
A cutout is provided in at least a part of at least one flow path of the partition structure, and at least two adjacent flow paths sandwiching the cutout of the partition structure communicate with each other via the cutout. It is characterized by that.

仕切り構造体で構成される各流路のうち、このような切欠きを有する少なくとも一部の流路間で上下方向の対流を生じさせることができ、ヒータを貯湯タンクに内蔵した貯湯式電気温水器における貯湯タンク内の沸き上げ性を向上させる。   Hot water storage hot water with a heater built in a hot water storage tank that can generate convection in the vertical direction between at least some of the flow paths having the notches among the flow paths formed of the partition structure. The boiling property in the hot water storage tank in the vessel is improved.

また、本発明の請求項10に記載の貯湯式電気温水器は、請求項1乃至請求項9の何れかに記載の貯湯式電気温水器において、
前記貯湯タンクの入水部から入った水を前記仕切り構造体の各流路に上下に亘って水を分配しながら流出させる分散材が前記仕切り構造体の貯湯タンク入水部側に備わっていることを特徴としている。
A hot water storage type electric water heater according to claim 10 of the present invention is the hot water storage type electric water heater according to any one of claims 1 to 9,
Dispersing material for allowing water entering from the water inlet of the hot water storage tank to flow out while distributing the water vertically to the respective flow paths of the partition structure is provided on the hot water tank water inlet side of the partition structure. It is a feature.

このような分散材を仕切り構造体の各流路の入り口側に設けることで、分散材から流出した水を仕切り構造体の上下方向に亘って分配させることができる。その結果、仕切り構造体の各流路により均等な速度で水を流入させることができ、貯湯タンクの上下方向に亘った湯の均等な押し出しを達成する。   By providing such a dispersing material on the entrance side of each flow path of the partition structure, water flowing out from the dispersion material can be distributed in the vertical direction of the partition structure. As a result, it is possible to allow water to flow in at an equal speed through each flow path of the partition structure, thereby achieving uniform extrusion of hot water in the vertical direction of the hot water storage tank.

本発明によると、限られた設置スペースに設置可能な横置き型の貯湯式電気温水器であって貯湯タンク内の湯の押し出し性や水やぬるま湯の沸き上げ性に優れた貯湯式電気温水器を提供することができる。   According to the present invention, a horizontal type hot water storage type electric water heater that can be installed in a limited installation space, and is excellent in the pushability of hot water in a hot water storage tank and the boiling property of water and warm water. Can be provided.

より具体的には、仕切り構造体に形成された複数の流路のうち、水と湯の密度差により重力が作用して水が貯湯タンク内で落ち込んで流入し易い下側流路を流れる水や湯の入水部側から出湯部側に至るまでの流路抵抗が上側流路を流れる水や湯の入水部側から出湯部側に至るまでの流路抵抗より大きくなるようにしたので、入水部から貯湯タンクに入った水が貯湯タンクの下側に向かった後、下側流路内を上側流路内よりも先行して流れなくなる。この間に貯湯タンクの入水部側と仕切り構造体の入水側端面との間の空間に水が充満してその上部の水が流路抵抗の小さい上側流路にスムーズに流入する。その結果、仕切り構造体の上側流路を流れる水の平均流速と下側流路流れる水の平均流速の流速差を小さくする(等速分配する)ことができ、うろいのかい、その貯湯タンク内の湯の押し出し性が向上する。   More specifically, among the plurality of flow paths formed in the partition structure, water flows through a lower flow path in which gravity acts due to a density difference between water and hot water and water easily falls in the hot water storage tank. The flow resistance from the water inlet to the hot water outlet is larger than that from the water or hot water inlet to the hot water flowing through the upper flow path. After the water that has entered the hot water storage tank from the section goes to the lower side of the hot water storage tank, it does not flow in the lower flow path ahead of the upper flow path. During this time, water fills the space between the water inlet portion side of the hot water storage tank and the water inlet side end surface of the partition structure, and the water in the upper part flows smoothly into the upper flow passage having a small flow passage resistance. As a result, the difference between the average flow rate of the water flowing in the upper flow path of the partition structure and the average flow rate of the water flowing in the lower flow path can be reduced (distributed at a constant speed). The pushability of the inner hot water is improved.

更に、仕切り構造体の上側流路はこれを流れる水や湯の流路抵抗を積極的に小さくするので、上側流路を十分な大きさの流路断面積を有する流路とすることができる。これによって、より多くの貯湯容量を貯湯タンク内で確保することが可能となる。   Furthermore, since the upper flow path of the partition structure actively reduces the flow resistance of the water and hot water flowing through the partition structure, the upper flow path can be a flow path having a sufficiently large flow cross-sectional area. . Thereby, it becomes possible to secure more hot water storage capacity in the hot water storage tank.

即ち、例えば貯湯タンク内の全体流路を目の細かいハニカム構造体で構成したタイプの従来の貯湯式電気温水器の場合、容積の大きなハニカム構造体を貯湯タンク内に収容しなければならず、貯湯タンク内の容積の多くをハニカム構造体が占めるようになり、貯湯タンク内の貯湯量が減ってしまっていたが、本発明による構成では仕切り構造体の大部分を目の粗い流路で構成できるため、貯湯タンクの貯湯量を十分に確保できるようになる。   That is, for example, in the case of a conventional hot water storage type electric water heater of a type in which the entire flow path in the hot water storage tank is configured with a fine honeycomb structure, a large volume honeycomb structure must be accommodated in the hot water storage tank, The honeycomb structure has occupied most of the volume in the hot water storage tank, and the amount of hot water stored in the hot water storage tank has been reduced. However, in the configuration according to the present invention, most of the partition structure is configured with a coarse flow path. As a result, a sufficient amount of hot water can be secured in the hot water storage tank.

以下、本発明の一実施形態にかかる貯湯式電気温水器について図1及び図2に基づいて説明する。本発明の一実施形態にかかる貯湯式電気温水器1は、貯湯式電気温水器1が設置された状態で貯湯タンク10の上下方向の高さより横方向の長さが長くなるように貯湯タンク10が配置される(以下、これを単に「横置き式」とする)ようになっている。そして、貯湯式電気温水器1は、両端部が入水部11と出湯部12を除いて閉塞した略円筒体形状を有する貯湯タンク10と、貯湯タンク10の一方の端部に設けられた入水部11と、貯湯タンク10の他方の端部に設けられた出湯部12と、貯湯タンク10の内部に設けられ、貯湯タンク10の設置状態で貯湯タンク内に収容され、タンク長手方向の入水部近傍から出湯部近傍に亘って所定の長さを有する押し出し管(仕切り構造体)20と、貯湯タンク10の内部に設けられたヒータ40(図2参照)と、貯湯タンク10の外側に設けられた図示しない温度センサを備えている。   Hereinafter, a hot water storage type electric water heater according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. The hot water storage type electric water heater 1 according to one embodiment of the present invention has a hot water storage tank 10 in which the horizontal length is longer than the vertical height of the hot water storage tank 10 in a state where the hot water storage type electric water heater 1 is installed. (Hereinafter, this is simply referred to as “horizontal type”). The hot water storage type electric water heater 1 includes a hot water storage tank 10 having a substantially cylindrical shape whose both ends are closed except for the water inlet 11 and the hot water outlet 12, and a water inlet provided at one end of the hot water tank 10. 11, a hot water outlet 12 provided at the other end of the hot water storage tank 10, a hot water storage tank 10, which is provided in the hot water storage tank 10 in the installed state of the hot water storage tank 10, and near the water inlet in the tank longitudinal direction 2 to the vicinity of the hot water supply portion, a push pipe (partition structure) 20 having a predetermined length, a heater 40 (see FIG. 2) provided inside the hot water storage tank 10, and provided outside the hot water storage tank 10. A temperature sensor (not shown) is provided.

押し出し管20は、本実施形態の場合、互いに離間して配置された多数の円筒体21,25からなり、各円筒体21,25はその両端部近傍において支持体31,32を介して貯湯タンク内に収容されている。なお、押し出し管20の各円筒体21,25は、貯湯式電気温水器の設置状態で重力の作用により水が流入し難い上側の複数の円筒体(以下、これらを「上側の円筒体25」とする)の内径が大きく、この各円筒体25を通る水や湯の流路抵抗が小さくようにしており、重力の作用により水が流入し易い下側の複数の円筒体(以下、これらを「下側の円筒体21」とする)の内径が小さく、この各円筒体21を通る水や湯の流路抵抗が大きくなるようにしている。   In the case of the present embodiment, the extrusion pipe 20 is composed of a large number of cylindrical bodies 21 and 25 that are spaced apart from each other, and each cylindrical body 21 and 25 is in the vicinity of both ends thereof via a support body 31 and 32 and a hot water storage tank. Is housed inside. In addition, each cylindrical body 21 and 25 of the extrusion pipe 20 includes a plurality of upper cylindrical bodies (hereinafter referred to as “upper cylindrical bodies 25”) in which water is difficult to flow in due to the action of gravity in the installed state of the hot water storage type electric water heater. The inner diameter of each of the cylinders 25 is large, and the flow resistance of the water and hot water passing through each of the cylinders 25 is made small. The inner diameter of the “lower cylinder 21” is small, and the flow resistance of water and hot water passing through each cylinder 21 is increased.

そして、押し出し管20を構成する各円筒体21,25、押し出し管20の各円筒体同士と貯湯タンク内周面との隙間で構成される細長の空間のそれぞれが貯湯タンク内で仕切り構造体としての押し出し管20に備わった独立した複数の流路を形成している。   And each cylindrical body 21 and 25 which comprises the extrusion pipe | tube 20, and each elongate space comprised by the clearance gap between each cylindrical body of the extrusion pipe | tube 20, and a hot water storage tank inner peripheral surface as a partition structure in a hot water storage tank. A plurality of independent flow paths provided in the extrusion pipe 20 are formed.

また、貯湯タンク10の入水部11と押し出し管20の入水部側端部との間には、入水部11から入った水を貯湯タンク内の上下方向に一旦溜め込む空間A(図1参照)が形成されている。   In addition, a space A (see FIG. 1) is provided between the water inlet 11 of the hot water storage tank 10 and the water inlet side end of the push pipe 20 to temporarily store the water entered from the water inlet 11 in the vertical direction in the hot water storage tank. Is formed.

これによって、貯湯タンク内に入水した水は貯湯タンク10の入水部11と押し出し管20の入水部側端部との間の空間Aにおいて一旦下側に向かった後、押し出し管20の下側円筒体21に流入しようとするが、この下側円筒体21は、小さな内径を有しこれを通過する水や湯の流路抵抗が大きいので、水が出湯部側にスムーズに入り込めず、その結果を水によって押し出される湯も出湯部側にスムーズに移動しなくなる。この間に押し出し管20の入水部側端部と貯湯タンク10の空間Aの上側まで水が溜まり、その状態から比較的内径の大きい押し出し管20の上側円筒体25に水が流入するようになる。これによって、押し出し管20の上側円筒体25に流入する水の平均流速と下側円筒体21に流入する水の平均流速の流速差が小さくなっている。   As a result, the water that has entered the hot water storage tank once goes downward in the space A between the incoming water portion 11 of the hot water storage tank 10 and the incoming water side of the extrusion pipe 20 and then the lower cylinder of the extrusion pipe 20. The lower cylindrical body 21 has a small inner diameter and the flow resistance of water and hot water passing through the lower cylindrical body 21 is large, so that water cannot smoothly enter the hot water outlet side. The hot water pushed out by the water also does not move smoothly to the hot water side. During this time, water accumulates from the water inlet side end of the extrusion pipe 20 to the upper side of the space A of the hot water storage tank 10, and from this state, the water flows into the upper cylindrical body 25 of the extrusion pipe 20 having a relatively large inner diameter. As a result, the difference in flow rate between the average flow rate of water flowing into the upper cylindrical body 25 of the extruded tube 20 and the average flow rate of water flowing into the lower cylindrical body 21 is reduced.

また、押し出し管20の出湯側端部は、貯湯タンク10の出湯側端壁よりも若干引っ込むように貯湯タンク内に収容され、これによって押し出し管20の出湯側端部(図1中右側端部)と貯湯タンク10の出湯部側端壁の間にも一定の容積を有した空間B(図1参照)が形成されている。なお、空間Aと空間Bとは、本実施形態のように貯湯タンク10にヒータ40が内蔵された貯湯式電気温水器の場合、貯湯タンク10の入水部11から水が入水した後に貯湯タンク内の水を沸き上げる際に沸き上げを効率的に行う対流用空間としての役目も果たしている。   Moreover, the hot water side end of the extrusion pipe 20 is accommodated in the hot water storage tank so as to be slightly retracted from the hot water side end wall of the hot water storage tank 10, whereby the hot water side end of the extrusion pipe 20 (the right side end in FIG. 1). ) And a hot water storage side end wall of the hot water storage tank 10 is also formed with a space B (see FIG. 1) having a constant volume. In the case of the hot water storage type electric water heater in which the heater 40 is built in the hot water storage tank 10 as in the present embodiment, the space A and the space B are in the hot water storage tank after the water enters from the water inlet 11 of the hot water storage tank 10. It also serves as a convection space for efficiently boiling water when boiling water.

そして、貯湯タンク10は、ここでは図示しない筐体内に収容されている。筐体には、貯湯タンク10の他に貯湯タンク10の入水部11又は出湯部12とこれらに接続される配管との間に介在する図示しない開閉バルブと、ヒータ40を駆動する図示しないヒータ駆動制御部が備わっている。   And the hot water storage tank 10 is accommodated in the housing | casing which is not illustrated here. In the case, in addition to the hot water storage tank 10, a not-shown opening / closing valve interposed between the water inlet 11 or the hot water outlet 12 of the hot water tank 10 and the pipe connected thereto, and a heater drive (not shown) for driving the heater 40 are provided. A control unit is provided.

貯湯タンク10は、ステンレス鋼(SUS)などの金属でできているが、この代わりに耐熱性の樹脂でできていても良い。又、貯湯タンク内に収容された押し出し管20もSUSでできているが、これも耐熱性の樹脂でできていても良い。貯湯タンク10や押し出し管20を金属製とした場合、これらの耐熱性や耐圧性を高めることができる。一方、貯湯タンク10や押し出し管20を樹脂製とした場合、これらの成型コストを低減できる。   The hot water storage tank 10 is made of a metal such as stainless steel (SUS), but may be made of a heat resistant resin instead. Moreover, although the extrusion pipe | tube 20 accommodated in the hot water storage tank is also made from SUS, this may also be made from heat resistant resin. When the hot water storage tank 10 and the extrusion pipe 20 are made of metal, these heat resistance and pressure resistance can be enhanced. On the other hand, when the hot water storage tank 10 and the extrusion pipe 20 are made of resin, these molding costs can be reduced.

また、貯湯タンク内のヒータ40は、押し出し管20と同様の長さを有する棒状体からなり、内部にニクロム線等の発熱体を有すると共に、その外側が防水性に優れた絶縁体で完全に囲繞され、貯湯式電気温水器1の設置状態で貯湯タンク10によって支持され、貯湯式電気温水器1の設置状態で押し出し管20の下部と貯湯タンク10の底面とで挟まれた貯湯タンク10の底部近傍(図1中下側部分)即ち貯湯式電気温水器1の設置状態で押し出し管20の下側に配置されるようになっている。   The heater 40 in the hot water storage tank is made of a rod-like body having the same length as that of the extruded tube 20 and has a heating element such as a nichrome wire inside, and the outside thereof is completely waterproof with an insulator having excellent waterproofness. The hot water storage tank 10 is enclosed and supported by the hot water storage tank 10 in the installed state of the hot water storage type electric water heater 1, and is sandwiched between the lower part of the extrusion pipe 20 and the bottom surface of the hot water storage tank 10 in the installed state of the hot water storage type electric water heater 1. Near the bottom (lower part in FIG. 1), that is, in the installed state of the hot water storage type electric water heater 1, it is arranged below the extrusion pipe 20.

そして、押し出し管20とヒータ40が上述のように同様の長さを有することで、このようなヒータ40により加熱することで貯湯タンク内全体に亘って対流を生じさせることができ、押し出し管内外の水と湯の対流を最も効果的に生じさせ、貯湯タンク内で湯を均等に沸き上げることを可能としている。   And since the extrusion pipe | tube 20 and the heater 40 have the same length as mentioned above, a convection can be produced over the whole hot water storage tank by heating with such a heater 40, and the extrusion pipe inside and outside The water and hot water convection is most effectively generated, and the hot water can be evenly heated in the hot water storage tank.

また、ヒータ40の長さをこのように長くすることで、単位表面積あたりの出力(ワット密度)を下げることによりヒータ表面での局所沸騰を抑制でき、ヒータ表面の腐食やスケールの付着などを抑制することでヒータの耐久性を向上させることができる。更に、局所沸騰によって沸騰音が発生する可能性を低く抑えている。   In addition, by increasing the length of the heater 40 in this way, local boiling on the heater surface can be suppressed by lowering the output (watt density) per unit surface area, thereby suppressing corrosion of the heater surface and scale adhesion. By doing so, the durability of the heater can be improved. Furthermore, the possibility that boiling noise is generated due to local boiling is kept low.

なお、上述の実施形態のようにヒータ40は貯湯タンク10の長手方向全体に亘って延在していなくても良い。即ち、ヒータ長さを押し出し管20より短くした状態で貯湯タンク内にヒータを設置しても良い。この場合、ヒータが撓み難くなり、貯湯式電気温水器の運搬中の耐振性を向上させることで貯湯式電気温水器の信頼性が向上する。   In addition, the heater 40 does not need to extend over the whole longitudinal direction of the hot water storage tank 10 like the above-mentioned embodiment. That is, the heater may be installed in the hot water storage tank in a state where the heater length is shorter than the extruded pipe 20. In this case, the heater is difficult to bend, and the reliability of the hot water storage type electric water heater is improved by improving the vibration resistance during transportation of the hot water storage type electric water heater.

また、図示しない温度センサは、例えばバイメタルなどの感温素子でできており、貯湯式電気温水器1の設置状態で貯湯タンク10の外側面に直接接触するように取り付けられ、貯湯タンク内の湯が一定の温度以下であることを検知したとき、ヒータ制御回路にこれを知らせ、ヒータ制御回路の制御によりヒータ40を適宜加熱して本実施形態では貯湯タンク内の湯を約85℃程度に保つようにしている。   A temperature sensor (not shown) is made of a temperature sensing element such as a bimetal, and is attached so as to be in direct contact with the outer surface of the hot water storage tank 10 when the hot water storage type electric water heater 1 is installed. Is detected to be below a certain temperature, this is notified to the heater control circuit, and the heater 40 is appropriately heated under the control of the heater control circuit to keep the hot water in the hot water storage tank at about 85 ° C. in this embodiment. I am doing so.

なお、本実施形態における「沸き上げ」とは、貯湯タンク内の水や比較的温度の低い所謂ぬるま湯を加熱して貯湯タンク内の湯が全体的に約85℃程度になるようにすることを言うが、貯湯式電気温水器の各種仕様に応じてこの沸き上げ温度は適宜変更されることは言うまでもない。   In the present embodiment, “boiling” refers to heating the water in the hot water storage tank or so-called warm water having a relatively low temperature so that the hot water in the hot water storage tank becomes approximately 85 ° C. as a whole. Needless to say, the boiling temperature is appropriately changed according to various specifications of the hot water storage type electric water heater.

続いて、上述した構成を有する貯湯式電気温水器1の設置の仕方と貯湯式電気温水器1を実際に使用した場合の作用をより詳細に説明する。貯湯式電気温水器1を設置するに当って、この貯湯式電気温水器1を例えば図18に示すトイレルームのカウンタの下部やキッチンのカウンタのケコミ部に貯湯タンク10の上下方向の高さより横方向の長さが長くなるように横置き状態で設置する。   Next, the method of installing the hot water type electric water heater 1 having the above-described configuration and the action when the hot water type electric water heater 1 is actually used will be described in more detail. When the hot water storage type electric water heater 1 is installed, the hot water storage type electric water heater 1 is placed in the lower part of the counter of the toilet room shown in FIG. Install in a horizontal position so that the length of the direction is long.

そして、貯湯タンク10の入水部11に水道水の一次側に至る配管を接続すると共に、出湯部12に蛇口と連結された混合バルブの一方に至る配管を接続する。なお、図17に示す従来型の横置き式貯湯式電気温水器ではヒータ930を貯湯タンク910の外部に設けて、貯湯タンク910とヒータの間で循環ポンプ951を介して湯を循環させることが必要となるが、本実施形態による貯湯式電気温水器1は、従来型の横置き式貯湯式電気温水器と異なり、貯湯タンク10の外部にヒータや循環ポンプ、循環パイプを設けた構成をとっていないので、全体的に小型となり、上述のような場所に横置き状態で設置しても省スペースを十分に保つことができる。   Then, a pipe reaching the primary side of the tap water is connected to the water inlet 11 of the hot water storage tank 10, and a pipe reaching one of the mixing valves connected to the faucet is connected to the hot water outlet 12. In the conventional horizontal hot water storage type electric water heater shown in FIG. 17, a heater 930 is provided outside the hot water storage tank 910, and hot water is circulated between the hot water storage tank 910 and the heater via a circulation pump 951. Although required, the hot water storage type electric water heater 1 according to the present embodiment has a configuration in which a heater, a circulation pump, and a circulation pipe are provided outside the hot water storage tank 10, unlike the conventional horizontal hot water storage type electric water heater. Therefore, the overall size is reduced, and a sufficient space saving can be maintained even when installed horizontally in the place as described above.

次いで、蛇口を開くことで入水部11を介して水道水からの水を貯湯タンク10に流入させ、貯湯タンク内全体を水で満たす。次に電源を入れてヒータ制御回路を介して貯湯タンク内のヒータ40を作動させる。   Next, by opening the faucet, water from the tap water flows into the hot water storage tank 10 through the water inlet 11 and fills the entire hot water storage tank with water. Next, the power is turned on to operate the heater 40 in the hot water storage tank via the heater control circuit.

そして、貯湯式電気温水器1の貯湯タンク内に満たされた水がヒータ40によって上述したように約85℃まで加熱されて沸き上げられる。その後、使用者が蛇口を開くと水圧により水道水の一次側配管から入水部11を介して貯湯タンク内に水が供給される。これにより、この供給された分だけ貯湯式電気温水器1の出湯部12からこの沸き上がった湯が押し出され、混合栓を介して水と混合されて適当な温度の温水として蛇口から使用者に供給されると共に、この供給された分だけ水道水の一次側配管から入水部11を介して貯湯タンク内に水が供給される。   Then, the water filled in the hot water storage tank of the hot water storage type electric water heater 1 is heated to about 85 ° C. and heated up by the heater 40 as described above. Thereafter, when the user opens the faucet, water is supplied from the primary pipe of tap water into the hot water storage tank via the water inlet 11 by water pressure. As a result, the heated hot water is pushed out from the hot water outlet 12 of the hot water storage type electric water heater 1 by the supplied amount, mixed with water through the mixing plug, and supplied to the user from the faucet as hot water at an appropriate temperature. At the same time, water is supplied into the hot water storage tank from the primary side pipe of tap water through the water inlet 11 by the supplied amount.

この時、貯湯タンクに備わった温度センサが内部の温度を検知し、所定温度以下になったことを検知すると、ヒータ制御回路を介して貯湯タンク内のヒータ30を作動させ、再度沸き上げる。   At this time, when the temperature sensor provided in the hot water storage tank detects the internal temperature and detects that the temperature is lower than the predetermined temperature, the heater 30 in the hot water storage tank is operated via the heater control circuit, and is heated again.

貯湯タンク内に水が供給される際に、最初に貯湯タンクの入水側空間Aに水が入り、湯と水の密度差により最初は水が空間Aの下側に向かう。そして、この下側に向かった水は、押し出し管20の下側円筒体21を通って貯湯タンク10の出湯部側に抜けようとするが、押し出し管20の下側円筒体21の流路断面積は、押し出し管20の上側円筒体25の流路断面積よりも小さく、下側円筒体21を通る水や湯の流路抵抗が大きくなっている。そのため、下側に向かった水は押し出し管20の下側円筒体21をスムーズに抜けることができず、この間に入水部11から入った水が空間Aに全体的に充満する。   When water is supplied into the hot water storage tank, the water first enters the water entrance side space A of the hot water storage tank, and initially the water goes to the lower side of the space A due to the density difference between the hot water and the water. Then, the water directed to the lower side passes through the lower cylindrical body 21 of the extrusion pipe 20 and tries to escape to the hot water storage section side of the hot water storage tank 10, but the flow path of the lower cylindrical body 21 of the extrusion pipe 20 is interrupted. The area is smaller than the flow path cross-sectional area of the upper cylindrical body 25 of the extruded tube 20, and the flow resistance of water and hot water passing through the lower cylindrical body 21 is increased. For this reason, the water directed downward cannot smoothly pass through the lower cylindrical body 21 of the extrusion pipe 20, and the water that has entered from the water inlet 11 during this time is totally filled in the space A.

押し出し管20の上側円筒体25の内径は比較的大きく、この上側円筒体25を通る水や湯の流路抵抗も比較的小さいので、空間Aの上側まで達した水は押し出し管20の上側円筒体内に抵抗なく流入する。このように空間Aが水で一旦満たされた後に空間Aに全体的に充満した水が一次側水道水の水圧によって押し出し管20の下側円筒体21で形成される流路、及び上側円筒体25で形成される流路、並びに各円筒体間で形成される流路や各円筒体21,25と貯湯タンク10との隙間で形成される流路のそれぞれに互いの平均流速の差が小さくなるように水が流入し(水を等速分配し)、これによって重力の作用方向で見て押し出し管内の上下全体に亘って湯が略均等に押し出される。   Since the inner diameter of the upper cylindrical body 25 of the extruded tube 20 is relatively large and the flow resistance of water and hot water passing through the upper cylindrical body 25 is relatively small, the water reaching the upper side of the space A is the upper cylinder of the extruded tube 20. It flows into the body without resistance. In this way, after the space A is once filled with water, the water that is totally filled with the space A is formed by the lower cylindrical body 21 of the extruded pipe 20 by the water pressure of the primary side tap water, and the upper cylindrical body. 25, the flow path formed between the cylindrical bodies, and the flow path formed by the gaps between the cylindrical bodies 21 and 25 and the hot water storage tank 10, the difference between the average flow velocities is small. Thus, the water flows in (distributes the water at a constant speed), so that the hot water is pushed out substantially evenly over the entire upper and lower sides of the push-out pipe as viewed in the direction of gravity.

即ち、本実施形態によると押し出し管20で構成される仕切り構造体の各流路に水を等速分配することができ、これによって押し出し管内の湯が貯湯タンク内全体に亘って略均等に押し出される。その結果、各流路断面積の比較的大きいハニカム体を設けた図20に示す従来の横置き式電気温水器のように、下側の水が上側の水よりも先行して押し出されて出湯部から湯と水が混ざった状態で出湯する虞がない。   In other words, according to the present embodiment, water can be distributed at a constant speed to each flow path of the partition structure constituted by the extruded pipe 20, so that the hot water in the extruded pipe is pushed out almost uniformly throughout the hot water storage tank. It is. As a result, the lower water is pushed ahead of the upper water as in the conventional horizontal electric water heater shown in FIG. There is no risk of hot water coming out of the water in a state where hot water and water are mixed.

また、押し出し管20の上側円筒体25の流路断面積は、水や湯がこの上側円筒体25を通過する際に生じる流路抵抗を最小限に抑えるのに十分な大きさを有しているので、貯湯タンク10の良好な湯の押し出し性を確保することができる。また、貯湯式電気温水器を高地の住宅に設置した際に生じる一次側水道水の水圧低下による伴う湯の押し出し性の低下を防止する。   Further, the flow path cross-sectional area of the upper cylindrical body 25 of the extruded tube 20 is large enough to minimize the flow path resistance generated when water or hot water passes through the upper cylindrical body 25. As a result, good hot water pushability of the hot water storage tank 10 can be ensured. Moreover, the fall of the extrusion property of the hot water accompanying the fall of the water pressure of the primary side tap water which arises when installing a hot water storage type electric water heater in a highland house is prevented.

また、本実施形態に係る貯湯式電気温水器を後述するヒータ外付けタイプでポンプを介して湯を循環させる構造とした場合であっても、比較的目の細かい狭い流路を多数形成したハニカム体のみを備えた従来の横置き式電気温水器(図19参照)においてヒータや循環ポンプ、循環パイプを外付けした場合に必ず発生していた流路抵抗に伴うエネルギーロスを本発明では最小限に抑える。   Further, even when the hot water storage type electric water heater according to the present embodiment has a structure in which hot water is circulated through a pump with a heater external type, which will be described later, a honeycomb in which a large number of relatively narrow channels are formed. In the present invention, the energy loss due to the flow path resistance that is always generated when a heater, a circulation pump, and a circulation pipe are externally attached in a conventional horizontal electric water heater (see FIG. 19) having only a body is minimized in the present invention. Keep it down.

続いて、上述した実施形態に係る貯湯式電気温水器の各種変形例について説明する。なお、上述した実施形態と同等の構成については、対応する符号を付して詳細な説明を省略する。   Subsequently, various modifications of the hot water storage type electric water heater according to the above-described embodiment will be described. In addition, about the structure equivalent to embodiment mentioned above, a corresponding code | symbol is attached | subjected and detailed description is abbreviate | omitted.

最初に、上述の実施形態の第1変形例について説明する。この第1変形例は、図3に示すように上述の複数の円筒体からなる押し出し管20の代わりに端面視で格子状をなしかつ断面矩形状の複数の流路を有したハニカム構造の押し出し構造体120を備えている。そして、この押し出し構造体120は、貯湯式電気温水器の設置状態で貯湯タンクの高さ方向で見て上側半部の複数の流路(以下、これらを「上側流路125」とする)の各流路断面積が大きく、貯湯タンクの高さ方向で見て下側半部の複数の流路(以下、これらを「下側流路121」とする)の各流路断面積が小さくなっている。   Initially, the 1st modification of the above-mentioned embodiment is demonstrated. As shown in FIG. 3, this first modification is an extrusion of a honeycomb structure having a plurality of flow paths having a lattice shape and a rectangular cross section in an end view, instead of the above-described extruded pipes 20 made of a plurality of cylindrical bodies. A structure 120 is provided. The extruded structure 120 includes a plurality of upper half flow paths (hereinafter referred to as “upper flow paths 125”) as viewed in the height direction of the hot water storage tank in the installed state of the hot water storage type electric water heater. Each channel cross-sectional area is large, and each channel cross-sectional area of a plurality of channels (hereinafter referred to as “lower channel 121”) in the lower half as viewed in the height direction of the hot water storage tank is reduced. ing.

また、この押し出し構造体120の長さは上述の実施形態の押し出し管20と同等の長さを有し、かつ押し出し構造体120の材質も上述の実施形態の押し出し管20と同等の材質でできている。そして、この押し出し構造体120の上側半部に形成された複数の上側流路125はその流路断面積が大きいことから、これを流れる水や湯の流路抵抗が小さくなっている。一方、押し出し構造体120の下側半部に形成された複数の下側流路121はその流路断面積が小さいことから、これを流れる水や湯の流路抵抗が大きくなっている。これによって上述した実施形態と同等の効果、即ち、押し出し構造体120の下側流路121に流入する水の平均流速と上側流路125に流入する水の平均流速との流速差を小さくし(等速分配し)、貯湯タンク内の湯の押し出し性を向上させる効果を生じる。   The length of the extruded structure 120 is the same as that of the extruded tube 20 of the above-described embodiment, and the material of the extruded structure 120 can be the same material as that of the extruded tube 20 of the above-described embodiment. ing. Since the plurality of upper flow paths 125 formed in the upper half of the extruded structure 120 have a large flow path cross-sectional area, the flow resistance of water and hot water flowing therethrough is reduced. On the other hand, the plurality of lower channels 121 formed in the lower half of the extruded structure 120 have a small channel cross-sectional area, so that the channel resistance of water and hot water flowing therethrough is increased. Thus, the same effect as that of the above-described embodiment, that is, the difference in flow rate between the average flow rate of water flowing into the lower flow path 121 of the extruded structure 120 and the average flow rate of water flowing into the upper flow path 125 is reduced ( It distributes at a constant speed), and produces an effect of improving the pushability of hot water in the hot water storage tank.

なお、この押し出し構造体120は、その長手方向各縁部が貯湯タンクの内周面に溶接等の適当な手段で固定されているので、上述の実施形態で用いた支持体、即ち、押し出し管20を構成する各円筒体21,25を貯湯タンク内で支持する特別な支持体31,32を設ける必要がない。   The extruded structure 120 has its longitudinal edges fixed to the inner peripheral surface of the hot water storage tank by appropriate means such as welding, so the support used in the above-described embodiment, that is, the extruded pipe. It is not necessary to provide the special support bodies 31 and 32 for supporting the cylindrical bodies 21 and 25 constituting the body 20 in the hot water storage tank.

続いて、本発明の上述した実施形態の第2変形例について説明する。この第2変形例は、図4に示すように、上述の実施形態と同様に貯湯タンク210の内部に複数の円筒体221,225からなる押し出し管220を備えているが、各円筒体221,225の外径が等しい点で上述の実施形態と構成が異なっている。   Then, the 2nd modification of embodiment mentioned above of this invention is demonstrated. As shown in FIG. 4, the second modified example includes an extruded pipe 220 including a plurality of cylindrical bodies 221 and 225 inside the hot water storage tank 210 as in the above-described embodiment. The configuration is different from the above-described embodiment in that the outer diameter of 225 is equal.

そして、各円筒体221,225のうち、貯湯タンクの高さ方向で見て上側の円筒体225は上述の実施形態の円筒体25と同等の構成を有しているが、下側の円筒体221はその内周面が図5乃至図7に示す第2変形例の第1パターン乃至第3パターンでそれぞれ異なる形態を有している。   Of the cylindrical bodies 221 and 225, the upper cylindrical body 225 as viewed in the height direction of the hot water storage tank has the same configuration as the cylindrical body 25 of the above-described embodiment, but the lower cylindrical body. The inner peripheral surface 221 has different forms in the first pattern to the third pattern of the second modification shown in FIGS. 5 to 7.

最初に第2変形例の第1パターンについて説明する。第2変形例の第1パターンは押し出し管220の上側円筒体225の内周面が全体的に滑らかで、下側円筒体221の内周面が図5に示すように全体的に凹凸221aをなしており、結果的に下側円筒体221の内周面の表面粗さが上側円筒体225の内周面の表面粗さより粗くなっている。これによって、押し出し管220の上側円筒体225を流れる水や湯は内周面から大きな抵抗を受けることなく流路抵抗も比較的小さくなるが、下側円筒体221を流れる水や湯はこの凹凸221aから大きな抵抗を受けて流れ難くなり、流路抵抗も比較的大きくなる。   First, the first pattern of the second modification will be described. In the first pattern of the second modified example, the inner peripheral surface of the upper cylindrical body 225 of the extruded tube 220 is generally smooth, and the inner peripheral surface of the lower cylindrical body 221 is generally uneven as shown in FIG. As a result, the surface roughness of the inner peripheral surface of the lower cylindrical body 221 is rougher than the surface roughness of the inner peripheral surface of the upper cylindrical body 225. As a result, the water and hot water flowing through the upper cylindrical body 225 of the extruded tube 220 do not receive a large resistance from the inner peripheral surface and the flow resistance becomes relatively small, but the water and hot water flowing through the lower cylindrical body 221 It becomes difficult to flow due to a large resistance from 221a, and the flow path resistance becomes relatively large.

このようにして、押し出し管220の各円筒体221,225の外径を等しくしながら各円筒体221,225の内周面の表面粗さに関して上側円筒体225よりも下側円筒体221の方を粗くすることで、上側円筒体225に流入する水が受ける流路抵抗よりも下側円筒体221に流入する水が受ける流路抵抗を大きくすることができ、上述の実施形態と同等の効果、即ち、押し出し管220の下側円筒体221に流入する水の平均流速と上側円筒体225に流入する水や湯の平均流速の流速差を小さくし(等速分配し)、貯湯タンク内全体の湯の押し出し性を向上させる効果を生じる。   In this way, the outer cylindrical body 221 is lower than the upper cylindrical body 225 with respect to the surface roughness of the inner peripheral surface of each cylindrical body 221, 225 while making the outer diameter of each cylindrical body 221, 225 of the extruded tube 220 equal. By roughening the channel resistance, the channel resistance received by the water flowing into the lower cylindrical body 221 can be made larger than the channel resistance received by the water flowing into the upper cylindrical body 225, and an effect equivalent to that of the above-described embodiment. That is, the difference between the average flow velocity of the water flowing into the lower cylindrical body 221 of the extrusion tube 220 and the average flow velocity of the water and hot water flowing into the upper cylindrical body 225 is reduced (distributed at a constant speed), and the entire inside of the hot water storage tank. This produces the effect of improving the pushability of hot water.

なお、下側円筒体221の内周面の凹凸221aはどのような加工方法によって形成しても良い。即ち、例えばサンドブラストのような表面処理で細かい凹凸を作っても良く、その他の機械加工や下側円筒体221の押し出し成型時において内周面全体に亘って粗い凹凸を作っても良い。   The unevenness 221a on the inner peripheral surface of the lower cylindrical body 221 may be formed by any processing method. That is, for example, fine irregularities may be made by surface treatment such as sandblasting, and rough irregularities may be made over the entire inner peripheral surface during other machining or extrusion molding of the lower cylindrical body 221.

続いて、第2変形例の第2パターンについて説明する。第2変形例の第2パターンは、各上側円筒体225の内周面が上述した第1パターンと同様に滑らか、かつ長手方向全体に亘って一定の内径を有する一方、下側円筒体22は、図6に示すように、下側円筒体222の中心方向に向かって突出する突起部222aを各下側円筒体222の内周面に適当な間隔で設けている。このような突起部222aを各下側円筒体222に設けることによっても下側円筒体222を流れる水や湯に抵抗を与えることができ、このような突起部222aを有さない各上側円筒体225に比べて流路抵抗を大きくすることができる。その結果、上述したような第1パターンと同等の効果、即ち、押し出し管220の下側円筒体222に流入する水の平均流速と上側円筒体225に流入する水の平均流速の流速差を小さくし(等速分配し)、貯湯タンク内全体の湯の押し出し性を向上させる効果を生じる。   Subsequently, the second pattern of the second modification will be described. The second pattern of the second modification example is such that the inner peripheral surface of each upper cylindrical body 225 is smooth as in the first pattern described above and has a constant inner diameter over the entire longitudinal direction, while the lower cylindrical body 22 is As shown in FIG. 6, protrusions 222 a that protrude toward the center of the lower cylindrical body 222 are provided on the inner peripheral surface of each lower cylindrical body 222 at appropriate intervals. By providing such a protrusion 222a in each lower cylindrical body 222, resistance can be given to water and hot water flowing through the lower cylindrical body 222, and each upper cylindrical body not having such a protrusion 222a. Compared to 225, the flow path resistance can be increased. As a result, the same effect as the first pattern as described above, that is, the difference between the average flow velocity of the water flowing into the lower cylindrical body 222 of the extrusion tube 220 and the average flow velocity of the water flowing into the upper cylindrical body 225 is reduced. (Distributed at a constant speed), and the effect of improving the pushability of hot water in the entire hot water storage tank is produced.

続いて、第2変形例の第3パターンについて説明する。上述した第2変形例の第3パターンは、各上側円筒体225の内周面が上述した第1パターン及び第2パターンと同様に滑らか、かつ長手方向全体に亘って一定の内径を有する一方、各下側円筒体223は、図7に示すように、その内径が円筒体長手方向で上流側よりも下流側が所定長さだけ縮径した縮径部223aを有している。そして、この縮径部223aは絞りとしての役目を果たし、下側円筒体223を流れる水や湯に抵抗を与えている。   Subsequently, the third pattern of the second modification will be described. While the 3rd pattern of the 2nd modification mentioned above has the inner diameter which the inner peripheral surface of each upper cylindrical body 225 is smooth like the 1st pattern and the 2nd pattern mentioned above, and has the fixed inner diameter over the whole longitudinal direction, As shown in FIG. 7, each lower cylindrical body 223 has a reduced diameter portion 223 a whose inner diameter is reduced by a predetermined length on the downstream side of the upstream side in the longitudinal direction of the cylindrical body. The reduced diameter portion 223a serves as a throttle and provides resistance to water and hot water flowing through the lower cylindrical body 223.

このような各下側円筒体223を有する結果、各上側円筒体225に流入する水が受ける流路抵抗よりも各下側円筒体223に流入する水が受ける流路抵抗の方が大きくなり、上述した第2変形例の第1パターン及び第2パターンと同様の効果、即ち、押し出し管220の下側円筒体223に流入する水の平均流速と上側円筒体225に流入する水の平均流速の流速差を小さくし(等速分配し)、貯湯タンク内全体の湯の押し出し性を向上させる効果を生じる。   As a result of having such lower cylindrical bodies 223, the flow path resistance received by the water flowing into each lower cylindrical body 223 is greater than the flow path resistance received by the water flowing into each upper cylindrical body 225, The same effect as the first pattern and the second pattern of the second modification described above, that is, the average flow velocity of water flowing into the lower cylindrical body 223 of the extruded tube 220 and the average flow velocity of water flowing into the upper cylindrical body 225 The difference in flow velocity is reduced (distributed at a constant speed), and the effect of improving the pushability of hot water in the entire hot water storage tank is produced.

なお、上述した第2変形例の第1パターン乃至第3パターンとは異なり、第2変形例の更なる変形例として、上側円筒体225についてはこれら第1パターン乃至第3パターンと同形状とする一方、下側円筒体224が、図8に示すように、その長手方向下流側(図中右側)に一定の長さだけ円筒体自体の外径及び内径を共に縮径した縮径部224aを有していても良い。   Unlike the first to third patterns of the second modified example described above, as a further modified example of the second modified example, the upper cylindrical body 225 has the same shape as those of the first to third patterns. On the other hand, as shown in FIG. 8, the lower cylindrical body 224 has a reduced diameter portion 224a in which both the outer diameter and the inner diameter of the cylindrical body are reduced by a certain length on the downstream side in the longitudinal direction (right side in the figure). You may have.

このような縮径部224aを有することによっても、この縮径部224aが下側円筒体224を流れる水や湯の絞りとなり、上述の第2変形例の各パターンと同様の効果、即ち、押し出し管220の下側円筒体224に流入する水の平均流速と上側円筒体225に流入する水の平均流速の流速差を小さくし(等速分配し)、貯湯タンク内全体の湯の押し出し性を向上させる効果を生じる。   Also by having such a reduced diameter portion 224a, the reduced diameter portion 224a becomes a throttling of water or hot water flowing through the lower cylindrical body 224, and the same effect as each pattern of the second modified example described above, that is, extrusion The difference between the average flow velocity of the water flowing into the lower cylindrical body 224 of the pipe 220 and the average flow velocity of the water flowing into the upper cylindrical body 225 is reduced (distributed at a constant speed), and the pushability of hot water in the entire hot water storage tank is reduced. The effect is improved.

また、上述した実施形態の第3変形例として、図9に示すように、上述した第2変形例に係る押し出し管220と同等の押し出し管320の入水部側に円板状の分散材(バッフル)330を当接させた状態で設けても良い。   Moreover, as a 3rd modification of embodiment mentioned above, as shown in FIG. 9, the disk-shaped dispersion material (baffle) is shown in the water inlet part side of the extrusion pipe | tube 320 equivalent to the extrusion pipe | tube 220 which concerns on the 2nd modification mentioned above. ) 330 may be provided in contact with each other.

なお、この分散材330にはその厚さ方向に多数の小さな貫通孔(図3では図示せず)を有している。そして、この貫通孔は、貯湯式電気温水器の設置状態で分散材下側半部の貫通孔の内径が小さく、分散材上側半部の貫通孔の内径が大きくなっている。   The dispersion material 330 has a large number of small through holes (not shown in FIG. 3) in the thickness direction. And this through-hole has the small internal diameter of the through-hole of a dispersion | distribution material lower half part, and the internal diameter of the through-hole of a dispersion | distribution material upper half part is large in the installation state of the hot water storage type electric water heater.

これによって、貯湯タンク310の入水部311から入水して空間Aの下側に向かった水が分散材330の下側部分を通過し難くなり、この間に空間Aの上側まで水が充満して分散材上側の比較的内径の大きい貫通孔からも水を通し、結果的に押し出し管側に流出する水を重力の作用方向で見て上下に亘って分散させる。   As a result, water that enters from the water inlet 311 of the hot water storage tank 310 and goes to the lower side of the space A does not easily pass through the lower part of the dispersing material 330, and during this time, the water is filled up to the upper side of the space A and dispersed. Water is also passed through a through hole having a relatively large inner diameter on the upper side of the material, and as a result, the water flowing out to the side of the extruded tube is dispersed in the vertical direction as viewed in the direction of gravity.

そして、上述した第3変形例の押し出し管320の作用と相俟って、押し出し管320の各円筒体内及びこれら円筒体同士や貯湯タンク310の内周面との隙間で形成される各流路の湯の押し出し性を更に向上させることができる。   Then, in combination with the action of the extrusion pipe 320 of the third modified example described above, each flow path formed by a gap between each cylindrical body of the extrusion pipe 320 and these cylindrical bodies and the inner peripheral surface of the hot water storage tank 310. The pushability of hot water can be further improved.

なお、分散材330の出口側と押し出し管320の入口側とは必ずしも当接させる必要はなく、両者間に多少の隙間を有していても良い。しかしながら、両者を当接させた方が分散材330から流出した水がこれらの隙間で下方に向かうことが一切生じず、貯湯タンク内での湯の押し出し性を向上させる点では好ましいと言える。   Note that the outlet side of the dispersion material 330 and the inlet side of the extrusion tube 320 are not necessarily in contact with each other, and a slight gap may be provided between them. However, it can be said that it is preferable to bring them into contact with each other in that the water flowing out of the dispersion material 330 does not flow downward through these gaps, and the pushability of hot water in the hot water storage tank is improved.

続いて、貯湯式電気温水器の第4変形例について説明する。この第4変形例は、貯湯タンク内にヒータを内蔵した上述の実施形態と同等の基本的構成を有しているが、押し出し管420に工夫が施されている。具体的には、図10に示すように、押し出し管420の各円筒体(図10では一部の円筒体421〜423のみ図示)の端部開口部420a(421a〜423a)が、貯湯式電気温水器の設置状態で水平方向より下向きに開口すると共に、押し出し管420の各端部開口部420aのうち、上側の端部開口部421a(422a)が下側の端部開口部422a(423a)よりも水平方向に(貯湯タンクの長手方向端部内壁側(図10中右側)に)突出するようにこの押し出し管420が貯湯タンク内に収容されている。   Then, the 4th modification of a hot water storage type electric water heater is demonstrated. The fourth modification has a basic configuration equivalent to that of the above-described embodiment in which a heater is incorporated in a hot water storage tank, but the push-out pipe 420 is devised. Specifically, as shown in FIG. 10, end openings 420 a (421 a to 423 a) of the cylindrical bodies of the extruded pipe 420 (only some of the cylindrical bodies 421 to 423 are shown in FIG. 10) While opening downward from the horizontal direction in the installed state of the water heater, the upper end opening 421a (422a) is the lower end opening 422a (423a) of the end openings 420a of the extruded tube 420. The push-out pipe 420 is accommodated in the hot water storage tank so as to protrude more horizontally (toward the inner wall side of the longitudinal end of the hot water storage tank (right side in FIG. 10)).

貯湯タンク内にヒータが内蔵されると共に、押し出し管420がこのような構成を有することで、貯湯タンク内の湯の上昇流を押し出し管420の各円筒体内へ隈なく導くことができ、貯湯タンク内全体の水やぬるま湯を簡単な構造で効率良く沸き上げることができる。特に、このような開口部420aの下方にヒータが配置されていると、ヒータによって温められた高温の湯の上昇流がちょうど図10中の矢印に示すように各開口部420aに最短距離で入り込むので、その対流効果が大きくなる。   Since the heater is built in the hot water storage tank and the extrusion pipe 420 has such a configuration, the upward flow of the hot water in the hot water storage tank can be guided to each cylindrical body of the extrusion pipe 420 without any problem. The entire water and lukewarm water can be boiled efficiently with a simple structure. In particular, when a heater is arranged below such an opening 420a, the rising flow of hot water heated by the heater enters each opening 420a at the shortest distance as shown by the arrow in FIG. Therefore, the convection effect is increased.

なお、この場合、押し出し管420のヒータ設置側の端部開口部420aが水平方向より下向きに開口している構成と、押し出し管420の各端部開口部420aのうち、上側の端部開口部421a(422a)が下側の端部開口部422a(423a)よりも貯湯式電気温水器の設置状態で水平方向に突出するようになった構成の双方を必ずしも満たす必要はなく、何れか一方の構成を満たせば貯湯タンク内の水や湯の沸き上げ性向上をそれなりに達成することができる。   In this case, the end opening 420a on the heater installation side of the extruded tube 420 opens downward from the horizontal direction, and the upper end opening of each end opening 420a of the extruded tube 420 421a (422a) does not necessarily satisfy both of the configurations in which the hot water storage type electric water heater protrudes in the horizontal direction with respect to the lower end opening 422a (423a). If the configuration is satisfied, it is possible to improve the boiling property of water and hot water in the hot water storage tank.

また、この第4変形例の更なる変形例として、図11に示すような変形例が考えられる。この更なる変形例は、押し出し管430の各円筒体(図11では一部の円筒体431〜433のみ図示)の端部開口部430a(431a〜433a)に加えて各押し出し430の突出した部分の下側に対流促進用開口部430b(431b〜433b)が設けられている。そして、貯湯タンク内で自然対流により上昇した湯がこの対流促進用開口部430bを介して押し出し管内に流入するようになっている。   Further, as a further modification of the fourth modification, a modification as shown in FIG. 11 can be considered. In this further modification, in addition to the end openings 430a (431a to 433a) of each cylindrical body of the extruded tube 430 (only some of the cylindrical bodies 431 to 433 are shown in FIG. 11), the protruding portion of each extruded body 430 A convection promoting opening 430b (431b to 433b) is provided on the lower side. Then, hot water that has risen due to natural convection in the hot water storage tank flows into the extruded pipe through the convection promoting opening 430b.

貯湯タンク内にヒータが内蔵されると共に、押し出し管430がこのような構造を有することで、貯湯タンク内の湯の上昇流を上述した第3変形例と同様に各仕切り管内へ積極的により隈なく導くことができ、貯湯タンク内全体の水やぬるま湯を簡単な構造でより効率良く沸き上げることができる。   Since the heater is built in the hot water storage tank and the push pipe 430 has such a structure, the upward flow of the hot water in the hot water storage tank is positively introduced into each partition pipe in the same manner as the third modified example described above. The water and lukewarm water in the entire hot water storage tank can be boiled more efficiently with a simple structure.

続いて、上述した実施形態の第5変形例について説明する。この第5変形例は、貯湯式電気温水器の設置状態で本実施形態及びその変形例に関する貯湯タンクの配置状態に工夫を施した変形例であり、図12(a)に示すように、貯湯式電気温水器が被取付け対象物である例えばトイレルームのカウンタ下面やキッチンカウンタのケコミ部に取り付けられた状態で貯湯タンク510の出湯部512が入水部511よりも高く位置するすると共に、貯湯タンク510の入水部近傍の下面510aが出湯部近傍の下面510bよりも低く位置するようになっている。   Then, the 5th modification of embodiment mentioned above is demonstrated. This fifth modified example is a modified example in which the arrangement of the hot water storage tank related to the present embodiment and the modified example is devised in the installed state of the hot water storage type electric water heater, and as shown in FIG. The hot water storage part 512 of the hot water storage tank 510 is positioned higher than the incoming water part 511 in a state in which the electric water heater is attached to the attached object, for example, the counter lower surface of the toilet room or the kitchen counter part, and the hot water storage tank The lower surface 510a in the vicinity of the water inlet 510 is positioned lower than the lower surface 510b in the vicinity of the hot water outlet.

いわゆる横置き式の貯湯式電気温水器の場合、全体が扁平型をなしているので、入水部511から入った水が貯湯タンク内の底面全体に拡がり易く、その結果、出湯部側にこの水が容易に達して出湯部512からの湯と混ざりあう虞があるが、貯湯タンク510がこのような構成を有することで、貯湯タンク内の水や湯が対流する時に比重の違いで貯湯タンク内上部に向かって常に上昇していく高温の湯のみを出湯部512に確実に導くことができ、貯湯タンク内の湯の押し出し性をより向上させる。   In the case of a so-called horizontal hot water storage type electric water heater, since the whole is a flat type, the water entered from the water inlet 511 easily spreads to the entire bottom surface of the hot water storage tank. However, when the hot water storage tank 510 has such a configuration, when the water or hot water in the hot water storage tank convects, the difference in specific gravity will cause the hot water storage tank 510 to mix with the hot water from the hot water outlet 512. Only hot water that constantly rises toward the top can be reliably guided to the hot water outlet 512, and the pushability of hot water in the hot water storage tank is further improved.

なお、本変形例では、図12(a)に示すように、貯湯タンク510の出湯部側端部が入水部側端部より高くなるように全体的に傾いた状態で貯湯タンク510が設置されているが、貯湯タンク510をこのように傾けて設置することを必ずしも必要としない。具体的には、図12(b)に示すように、貯湯タンク自体は傾いていないが、貯湯タンク520の入水部521の近傍の下面520aが出湯部522の近傍の下面520bよりも低くなるように、貯湯タンク520の下面のみが入水部側に向かうに従って下方に向かうテーパ面をなしていても良い。また、この場合、貯湯タンク520の下面全体がテーパ面をなす代わりに緩やかな段差をなして入水部近傍の下面が出湯部近傍の下面より低くなっていても良い。   In this modification, as shown in FIG. 12 (a), the hot water storage tank 510 is installed in a state of being inclined as a whole so that the end of the hot water storage tank 510 is higher than the end of the hot water storage section. However, it is not always necessary to install the hot water storage tank 510 in such an inclined manner. Specifically, as shown in FIG. 12B, the hot water storage tank itself is not inclined, but the lower surface 520a of the hot water storage tank 520 near the water inlet 521 is lower than the lower surface 520b of the hot water outlet 522 near. In addition, only the lower surface of the hot water storage tank 520 may have a tapered surface that goes downward as it goes toward the water inlet. In this case, the entire lower surface of the hot water storage tank 520 may have a gentle step instead of forming a tapered surface, and the lower surface near the water inlet may be lower than the lower surface near the hot water outlet.

続いて、上述した実施形態の第6変形例及び第7変形例について説明する。この第6変形例及び第7変形例は、貯湯式電気温水器がその筐体内に単一の貯湯タンクを収容するのではなく、複数の貯湯タンクを収容した形態の変形例である。そして、第6変形例は、貯湯式電気温水器の設置状態で貯湯タンク610,620,630を図13に示すように水平方向に並列に配置した状態で連結パイプ601,602,611,621,631を介して互いに並列に連結した構成を有している。同じく上述した実施形態の第7変形例は、貯湯式電気温水器の設置状態で貯湯タンク710,720,730を図14に示すように鉛直方向に並列に配置した状態で連結パイプ701,702,711,721,731を介して互いに並列に連結した構成を有している。   Subsequently, a sixth modification and a seventh modification of the above-described embodiment will be described. The sixth modification and the seventh modification are modifications in a form in which the hot water storage type electric water heater does not house a single hot water storage tank in its housing but houses a plurality of hot water storage tanks. In the sixth modification, the hot water storage tanks 610, 620, 630 are arranged in parallel in the horizontal direction as shown in FIG. 13 with the hot water storage type electric water heater installed, and the connecting pipes 601, 602, 611, 621 are connected. 631 are connected in parallel with each other via the H.631. Similarly, in the seventh modification of the above-described embodiment, the hot water storage tanks 710, 720, 730 are arranged in parallel in the vertical direction as shown in FIG. It has the structure connected mutually in parallel via 711,721,731.

貯湯タンクをこのように複数設けてこれらを互いに連結することで、貯湯式電気温水器の貯湯容量を増やしながら貯湯式電気温水器の全体形状の自由度を高めることができ、トイレルームの下面やキッチンカウンタのケコミ部などの限られた設置スペースを有効活用しながら貯湯容量のより大きい貯湯式電気温水器を所望のスペースに設置できる。   By providing a plurality of hot water storage tanks and connecting them together, it is possible to increase the degree of freedom of the overall shape of the hot water type electric water heater while increasing the hot water storage capacity of the hot water type electric water heater. A hot water storage type electric water heater having a larger hot water storage capacity can be installed in a desired space while effectively utilizing a limited installation space such as a kitchen counter of the kitchen counter.

なお、これら第6変形例及び第7変形例とは異なり、複数の貯湯タンクを直列若しくは端面視でマトリックス状に配置した状態で互いに連結して筐体内に収容した貯湯式電気温水器の構成としても同様の効果を発揮し得る。即ち、図15に示すように、貯湯タンク610,620,630をそれぞれ連結パイプ603,604,605,606で直列に連結した場合、上述のように各貯湯タンクを連結パイプで並列に連結した場合に較べて各貯湯タンク内に流入する水の平均流速が速くなるため、押し出し中に湯水が混ざり難くなり、押し出し性が向上する。   Unlike these sixth and seventh modifications, the hot water storage type electric water heater is configured such that a plurality of hot water storage tanks are connected to each other in a state of being arranged in a matrix in series or in an end view and housed in a housing. Can exert the same effect. That is, as shown in FIG. 15, when hot water storage tanks 610, 620, 630 are connected in series by connecting pipes 603, 604, 605, 606, respectively, when hot water storage tanks are connected in parallel by connecting pipes as described above Since the average flow velocity of the water flowing into each hot water storage tank is faster than that of the hot water, it becomes difficult for hot water to be mixed during extrusion and the pushability is improved.

なお、上述した実施形態及びその各種変形例について、図16に示すような第8変形例が考えられる。この変形例は、第1変形例にかかる押し出し管120(円筒体121〜126)よりも内径及び外径の大きい押し出し管820(821〜824)を貯湯タンク810内に備えると共に、押し出し管820の内部を仕切り板820a(821a〜824a)で仕切って複数の流路(本変形例では各円筒体内を4つの流路)に分割するようになっている。また、押し出し管820の外周部には切欠き(図示せず)が形成されると共に、各仕切り板820a(821a〜824a)にも矩形状の連通開口部(図示せず)が形成されている。   In addition, about the embodiment mentioned above and its various modifications, the 8th modification as shown in FIG. 16 can be considered. In this modification, an extrusion pipe 820 (821 to 824) having an inner diameter and an outer diameter larger than the extrusion pipe 120 (cylindrical bodies 121 to 126) according to the first modification is provided in the hot water storage tank 810. The inside is partitioned by a partition plate 820a (821a to 824a) and divided into a plurality of flow paths (in this modification, each cylindrical body has four flow paths). Further, notches (not shown) are formed in the outer peripheral portion of the extruded tube 820, and rectangular communication openings (not shown) are also formed in the partition plates 820a (821a to 824a). .

このように各押し出し管820の内部を仕切り板820aで更に複数の流路に分割することで、上述の第6変形例の作用を同様に発揮することに加えて、貯湯タンク810内に収容する押し出し管の総本数を減らしながら多数の流路を貯湯タンク810内に形成することができ、これにより貯湯タンク810の組み付け工数の低減を図ることが可能となる。   As described above, the inside of each extruded tube 820 is further divided into a plurality of flow paths by the partition plate 820a, so that the operation of the above-described sixth modified example is similarly exhibited, and the hot water storage tank 810 is accommodated. A large number of flow paths can be formed in the hot water storage tank 810 while reducing the total number of extruded pipes, thereby reducing the number of steps for assembling the hot water storage tank 810.

続いて、上述した実施形態の更なる変形例について説明する。この更なる変形例は、ここでは詳細には図示しないが、押し出し管を構成する各筒体の断面形状を円形とする代わりに正六角形とした変形例である。貯湯タンクに収容される押し出し管の各筒体がこのような形状を有することでも、貯湯タンク内部とこの貯湯タンク内に支持された各筒体の外側との間で形成される流路の断面積をより小さくでき、その結果、貯湯タンクの湯の押し出し性を向上させることができる。   Then, the further modification of embodiment mentioned above is demonstrated. Although not shown in detail here, this further modified example is a modified example in which the cross-sectional shape of each cylindrical body constituting the extruded tube is a regular hexagon instead of a circular shape. Even if each cylinder of the extrusion pipe accommodated in the hot water storage tank has such a shape, the flow path formed between the inside of the hot water storage tank and the outside of each cylindrical body supported in the hot water storage tank is cut off. The area can be further reduced, and as a result, the pushability of hot water in the hot water storage tank can be improved.

なお、押し出し管を構成する各筒体の断面形状をこの変形例のように正六角形とする代わりにそれぞれの筒体の断面形状を三角形、四角形、及び正六角形以外の多角形の何れかとしても良い。また、各筒体の断面形状を全て同じ形状にする代わりに各筒体の断面形状が三角形、四角形、多角形の少なくとも2つ以上の断面の組み合わせからなるように異なる断面形状の筒体を組み合わせても良い。   In addition, instead of using a regular hexagon as the cross-sectional shape of each cylinder constituting the extruded tube, the cross-sectional shape of each cylinder may be any one of a triangle, a square, and a polygon other than a regular hexagon. good. Also, instead of making the cross-sectional shapes of each cylinder all the same, the cylinders having different cross-sectional shapes are combined so that the cross-sectional shape of each cylinder is a combination of at least two cross-sections of triangle, quadrangle, and polygon. May be.

このような組み合わせの筒体からなる押し出し管を様々な外形形状を有する貯湯タンクに適宜収容することで、貯湯タンクの湯の押し出し性と水や湯の沸き上げ性を損なうことなく貯湯タンクの小型化を図ることができ、ひいては貯湯式電気温水器の小型化を達成することが可能となる。   By appropriately storing the push-out pipe composed of such a combination of cylinders in a hot water storage tank having various outer shapes, the hot water tank's hot water pushability and water and hot water boiling characteristics are not impaired. Therefore, it is possible to achieve downsizing of the hot water storage type electric water heater.

また、上述した実施形態の更に別の変形例として、ここでは詳細に図示しないが、上述した貯湯タンクにヒータを内蔵した実施形態及びその各種変形例の貯湯式電気温水器のうち、以下の更に別の変形例が考えられる。この更に別の変形例は、貯湯タンク内に設けた押し出し管を構成する各円筒体の代わりに、周面長手方向一部に亘って切欠きを備えた円筒体からなる複数の円筒体を貯湯タンクの内部に収容している。なお、各円筒体は隣接する円筒体同士がそれぞれ周方向に接するように例えば溶接等で固定され、かつ外側の円筒体が貯湯タンクの内周壁に接するように例えば溶接等で固定されて貯湯タンク内に収容されているのが良い。   Further, as yet another modified example of the above-described embodiment, although not shown in detail here, among the above-described hot water storage tank according to the embodiment in which a heater is built in the hot water storage tank and various modified examples thereof, the following further Another variation is conceivable. In this further modification, instead of each cylindrical body constituting the extruded pipe provided in the hot water storage tank, a plurality of cylindrical bodies made of cylindrical bodies having notches over a part in the longitudinal direction of the circumferential surface are stored. It is housed inside the tank. Each cylindrical body is fixed by, for example, welding so that adjacent cylindrical bodies are in contact with each other in the circumferential direction, and is fixed by, for example, welding, so that the outer cylindrical body is in contact with the inner peripheral wall of the hot water storage tank. It is good to be housed inside.

これによって、各円筒体がそれぞれ断面積の小さい狭い通路を形成すると共に、貯湯タンクの内周壁と各円筒体との間の隙間も流路としての役目を果たすようになる。なお、各円筒体に形成された切欠きは、長手方向の適当な場所に適当な長さに亘って部分的に形成されていれば良い。   Accordingly, each cylindrical body forms a narrow passage having a small cross-sectional area, and the gap between the inner peripheral wall of the hot water storage tank and each cylindrical body also serves as a flow path. In addition, the notch formed in each cylindrical body should just be partially formed over the suitable length in the suitable place of a longitudinal direction.

貯湯タンク内の各円筒体にこのような切欠きが形成されることで、隣接する各円筒体同士の隙間や円筒体と貯湯タンク内壁面との間に形成される押し出し対流用空間から切り欠きを介して各円筒体内の流路にヒータで温められた湯が流入すると共に、各円筒体内の流路の水や温度の比較的低いぬるま湯が切欠きを介して各円筒体同士の隙間や円筒体と貯湯タンク内周壁との隙間に形成される押し出し対流用空間に流出する。   By forming such a notch in each cylindrical body in the hot water storage tank, a notch is formed from the space between adjacent cylindrical bodies or from the extruded convection space formed between the cylindrical body and the inner wall surface of the hot water storage tank. The hot water heated by the heater flows into the flow passages in each cylindrical body through each of the cylindrical bodies, and the water in the flow passages in each cylindrical body and the warm water having a relatively low temperature are notched through the notches. It flows out into the space for extrusion convection formed in the gap between the body and the inner peripheral wall of the hot water storage tank.

これによって、貯湯式電気温水器の使用中に貯湯タンク内の水や湯の重力の作用方向で見て上下の対流をこの円筒体同士や円筒体と貯湯タンク内周壁との隙間の間で積極的に生じさせる。即ち、貯湯タンクにヒータを内蔵したタイプの貯湯式電気温水器において、貯湯タンク内の図1に示す対流用空間A,Bのみならず、これに加えて一方の対流用空間A(B)から上下の押し出し管を介して他方の対流用空間B(A)に至る貯湯タンク内周壁近傍に沿った大きな迂回経路、並びに各押し出し管の適所に形成された切欠きを介して貯湯タンク内の水又は湯がタンク内で全体的に対流するようになっている。   As a result, when using the hot water storage type electric water heater, the vertical convection is positively observed between the cylinders or between the cylinder and the gap between the cylinder and the inner peripheral wall of the hot water tank as viewed in the direction of gravity of the water and hot water in the hot water tank. To make it happen. That is, in the hot water storage type electric water heater of the type in which the heater is built in the hot water storage tank, not only the convection spaces A and B shown in FIG. 1 in the hot water storage tank but also one of the convection spaces A (B). A large detour path along the vicinity of the inner peripheral wall of the hot water storage tank that reaches the other convection space B (A) through the upper and lower extrusion pipes, and water in the hot water storage tank through notches formed at appropriate positions of the respective extrusion pipes Alternatively, hot water is convected entirely in the tank.

なお、押し出し管の各円筒体に切欠きを設ける代わりに長孔等の形状を有する連通開口部を各円筒体に設けても良い。また、押し出し管の一部の円筒体にこのような切欠きや長孔を設けても良い。このような切欠きや長孔を介して、水やヒータで温められた湯が各円筒体の周囲から切欠きを通じて各円筒体に入ると共に、切欠きからその分仕各円筒体の周囲に押し出されるようになっている。   Instead of providing a notch in each cylindrical body of the extruded tube, a communication opening having a shape such as a long hole may be provided in each cylindrical body. Moreover, you may provide such a notch and a long hole in the cylindrical body of a part of extrusion pipe | tube. Through such a notch or slot, water or hot water heated by the heater enters each cylinder through the notch from the periphery of each cylinder, and is pushed out from the notch to the periphery of each cylinder. It is supposed to be.

また、各流路の離間した位置に少なくとも2つの切欠きを設けた方がそれぞれの入口側連通開口部と出口側連通開口部としての役目を果たすようになり、貯湯タンク内の水や湯の対流をより促進をさせることができる。   In addition, providing at least two notches at spaced positions in each flow path will serve as the respective inlet-side communication opening and outlet-side communication opening, and the water and hot water in the hot water storage tank Convection can be further promoted.

また、このような切欠きを各円筒体の全長に亘って形成しても良い。この場合、各円筒体の切欠きが形成されていない周面同士で接していたり、切欠きが形成されていない周面と貯湯タンク内周面に接していたりすれば、特別な支持体でこれらの円筒体を支持する必要がない。   Moreover, you may form such a notch over the full length of each cylindrical body. In this case, if each cylindrical body is in contact with the peripheral surfaces where notches are not formed, or is in contact with the peripheral surface where notches are not formed and the inner peripheral surface of the hot water storage tank, these are supported by a special support. It is not necessary to support the cylindrical body.

切欠きを各円筒体に全長に亘って形成した場合、各切欠きを介してその円筒体内外の水や湯が連通するようになる。そのため、各円筒体の長手方向の一部に切欠きを形成した場合に較べて貯湯タンク内の湯の押し出し性は若干低下するが、貯湯タンク内の水や湯の対流効果に関してはかなり高めることができる。   When the notch is formed in each cylinder over the entire length, water and hot water inside and outside the cylinder communicate with each other through each notch. Therefore, the pushability of hot water in the hot water storage tank is slightly lower than when notches are formed in the longitudinal direction of each cylindrical body, but the convection effect of the hot water and hot water in the hot water storage tank is considerably increased. Can do.

なお、切欠きは円筒体の半分より上側に形成されているのが良い。このような切欠きを介して円筒体から円筒体周囲の押し出し対流用空間に湯を流出させるときにその分代わりに円筒体内に冷水が流入した場合、切欠きが仮に仕切り管の半分より下側に形成されていると、円筒体内に流入した冷水が、湯と水の密度差により切欠きから円筒体の外部下側に容易に流出し、しだいに貯湯タンクの下部にこれらの冷水が溜まってしまう。その結果、貯湯タンクの下側に配置した円筒体全体が冷水で満たされてしまい、貯湯タンクの出湯部から湯を出すときに、下側の円筒体に充満した冷水が出湯部から湯と混合して出てしまう虞がある。一方、本変形例のように切欠きを円筒体の半分より上側に形成することで、円筒体内に流入した冷水が円筒体内で留まり、貯湯タンクの下方に積極的に向かうことがないので、このような不都合を回避することができる。   The notch is preferably formed above the half of the cylindrical body. When hot water flows out from the cylinder to the extruded convection space around the cylinder through such a notch, if the cold water instead flows into the cylinder, the notch is temporarily below the half of the partition tube. The cold water that has flowed into the cylindrical body easily flows out from the notch to the lower outside of the cylindrical body due to the density difference between the hot water and the water, and gradually accumulates in the lower part of the hot water storage tank. End up. As a result, the entire cylinder placed under the hot water storage tank is filled with cold water, and when hot water is discharged from the hot water outlet of the hot water storage tank, the cold water filled in the lower cylindrical body is mixed with hot water from the hot water outlet. There is a risk of getting out. On the other hand, by forming the notch above the half of the cylindrical body as in this modification, cold water that has flowed into the cylindrical body stays in the cylindrical body and does not actively head down below the hot water storage tank. Such inconvenience can be avoided.

また、ヒータは上述の実施形態及びその各種変形例に示したような細長い円柱状のヒータであることに限定されず、例えば発熱体であるニクロム線を防水性と耐熱性に優れた樹脂で完全に囲繞しかつその外側を金属でできた可撓性のシース(鞘管)で覆ったいわゆるシースヒータを用いて、これを貯湯タンクの一方の端部から挿入して他方の端部近傍でU字状に折り曲げて再び一方の端部から外部に導出するようにしても良い。   Further, the heater is not limited to the elongated cylindrical heater as shown in the above-described embodiment and its various modifications. For example, a nichrome wire as a heating element is completely made of a resin excellent in waterproofness and heat resistance. A so-called sheath heater that is surrounded by a flexible sheath (sheath tube) made of metal and inserted from one end of the hot water storage tank, and is U-shaped in the vicinity of the other end. It may be bent into a shape and led out from one end to the outside again.

また、ヒータは必ずしも貯湯タンクの内部に設ける必要はなく、例えば板状ヒータを貯湯タンクの外側に直接当接させて貯湯タンク外壁を介して貯湯タンク内の水や湯を熱伝導可能なように設けても良い。この場合、貯湯タンク内のいわゆる死に水の容積をなくすために貯湯式電気温水器の設置状態で貯湯タンクの底面にヒータを設けるのが良い。   In addition, the heater is not necessarily provided inside the hot water storage tank. For example, a plate-like heater is brought into direct contact with the outside of the hot water storage tank so that the water and hot water in the hot water storage tank can conduct heat through the outer wall of the hot water storage tank. It may be provided. In this case, in order to eliminate the so-called dead water volume in the hot water storage tank, it is preferable to provide a heater on the bottom surface of the hot water storage tank with the hot water storage type electric water heater installed.

また、上述した実施形態及びその各種変形例において貯湯タンクは全て両端部が閉塞した円筒形状を有していた。貯湯タンクが円筒形状を有することで耐圧性を高めることができるが、貯湯タンクはこのような形状に限定されるものでなく、例えば直方体形状で貯湯タンクを構成しても構わない。このように例えば直方体形状で貯湯タンクを構成することで、一般的に箱型形状を有する筐体内に貯湯タンクを収容した場合、筐体の内部にデッドスペースを生じさせることなく貯湯タンクを収容することができ、貯湯式電気温水器全体の小型化を図りつつその貯湯容量を高めることができる。   Further, in the above-described embodiment and various modifications thereof, all the hot water storage tanks have a cylindrical shape with both ends closed. Although the hot water storage tank has a cylindrical shape, pressure resistance can be increased. However, the hot water storage tank is not limited to such a shape, and for example, the hot water storage tank may be configured in a rectangular parallelepiped shape. In this way, for example, by forming the hot water storage tank in a rectangular parallelepiped shape, when the hot water storage tank is generally housed in a box-shaped housing, the hot water storage tank is housed without causing a dead space inside the housing. Therefore, the hot water storage capacity can be increased while downsizing the entire hot water storage type electric water heater.

以上説明したように、仕切り構造体に形成された複数の流路のうち、水と湯の密度差により重力が作用して水が貯湯タンク内で落ち込んで流入し易い下側流路を流れる水や湯の入水部側から出湯部側に至るまでの流路抵抗が上側流路を流れる水や湯の入水部側から出湯部側に至るまでの流路抵抗より大きくなるようにしたので、入水部から貯湯タンクに入った水が貯湯タンクの下側に向かった後、下側流路内を上側流路内よりも先行して流れなくなる。この間に貯湯タンクの入水部側と仕切り構造体の入水側端面との間の空間に水が充満してその上部の水が流路抵抗の小さい上側流路にスムーズに流入する。その結果、仕切り構造体の上側流路を流れる水の平均流速と下側流路を流れる水の平均流速の流速差を小さくする(等速分配する)ことができ、うろいのかい、その貯湯タンク内の湯の押し出し性が向上する。   As described above, among the plurality of flow paths formed in the partition structure, the gravity flows due to the difference in density between the water and the hot water, and the water flows through the lower flow path where water easily falls and flows in the hot water storage tank. The flow resistance from the water inlet to the hot water outlet is larger than that from the water or hot water inlet to the hot water flowing through the upper flow path. After the water that has entered the hot water storage tank from the section goes to the lower side of the hot water storage tank, it does not flow in the lower flow path ahead of the upper flow path. During this time, water fills the space between the water inlet portion side of the hot water storage tank and the water inlet side end surface of the partition structure, and the water in the upper part flows smoothly into the upper flow passage having a small flow passage resistance. As a result, the difference between the average flow rate of the water flowing in the upper channel of the partition structure and the average flow rate of the water flowing in the lower channel can be reduced (distributed at a constant speed). The pushability of hot water in the tank is improved.

更に、仕切り構造体の上側流路はこれを流れる水や湯が受ける流路抵抗を積極的に小さくするので、上側流路を十分な大きさの流路断面積を有する流路とすることができる。これによって、より多くの貯湯容量を貯湯タンク内で確保することが可能となる。   Furthermore, since the upper channel of the partition structure actively reduces the channel resistance received by the water and hot water flowing through the partition structure, the upper channel can be a channel having a sufficiently large channel cross-sectional area. it can. Thereby, it becomes possible to secure more hot water storage capacity in the hot water storage tank.

より具体的には、例えば貯湯タンク内の全体流路を目の細かいハニカム構造体で構成したタイプの従来の貯湯式電気温水器の場合、容積の大きなハニカム構造体を貯湯タンク内に収容しなければならず、貯湯タンク内の容積の多くをハニカム構造体が占めるようになり、貯湯タンク内の貯湯量が減ってしまっていたが、本発明による構成では仕切り構造体の大部分を目の粗い流路で構成できるため、貯湯タンクの貯湯量を十分に確保できるようになる。   More specifically, for example, in the case of a conventional hot water type electric water heater of a type in which the entire flow path in the hot water storage tank is configured with a fine honeycomb structure, the large volume honeycomb structure must be accommodated in the hot water storage tank. However, the honeycomb structure occupies most of the volume in the hot water storage tank, and the amount of hot water stored in the hot water storage tank has been reduced. However, in the configuration according to the present invention, most of the partition structure is rough. Since it can be configured with a flow path, a sufficient amount of hot water can be secured in the hot water storage tank.

また、目の細かいハニカム構造体を仕切り構造体とした従来型の貯湯式電気温水器は、各流路が全体に細い管になっており、流路抵抗が大きくなる問題があったが、本発明のように仕切り構造体に形成された各流路の内、仕切り構造体上側流路の平均流路断面積を仕切り構造体下側流路の平均流路断面積よりも大きくすることで、貯湯タンクに入った水が仕切り構造体の各流路を流れる際の平均流速差を小さくすることができ、貯湯タンク内全体の湯の押し出し性が向上する。   In addition, the conventional hot water storage type electric water heater that uses a fine honeycomb structure as a partition structure has a problem that the flow path resistance is increased because each flow path is a thin tube as a whole. Of each channel formed in the partition structure as in the invention, by making the average channel cross-sectional area of the upper channel of the partition structure larger than the average channel cross-sectional area of the lower channel of the partition structure, It is possible to reduce the average flow velocity difference when the water that has entered the hot water storage tank flows through each flow path of the partition structure, and the hot water pushability of the entire hot water storage tank is improved.

これに加えて、仕切り構造体の上側流路は下側流路に比べて流路抵抗が小さく水や湯が流れ易くなるように大きな流路断面積を有しているので、この上側流路によって貯湯タンク内においてより多くの貯湯容量を確保することができる。   In addition, the upper channel of the partition structure has a larger channel cross-sectional area so that the channel resistance is smaller than that of the lower channel and water and hot water can easily flow. As a result, more hot water storage capacity can be secured in the hot water storage tank.

また、流路内壁面の表面粗さを仕切り構造体下側流路の方が仕切り構造体上側流路よりも粗くすることで、下側流路の表面粗さが水や湯が流れる際の抵抗となる。その結果、貯湯タンク内の湯の貯湯容量を低下させることなく、下側流路を流れる水や湯が受ける流路抵抗を上側流路を流れる水や湯が受ける流路抵抗よりも大きくすることができ、仕切り構造体に形成された複数の流路の湯の押し出し性を貯湯タンク上下方向に亘って均一化することができる。   In addition, the surface roughness of the inner wall surface of the flow path is made rougher in the lower flow path of the partition structure than in the upper flow path of the partition structure, so that the surface roughness of the lower flow path can be reduced when water or hot water flows. It becomes resistance. As a result, without decreasing the hot water storage capacity of the hot water in the hot water storage tank, the flow resistance received by the water and hot water flowing through the lower flow path should be greater than the flow resistance received by the water and hot water flowing through the upper flow path. Thus, the pushability of hot water in the plurality of flow paths formed in the partition structure can be made uniform in the vertical direction of the hot water storage tank.

また、仕切り構造体に形成された各流路のうち、仕切り構造体下側流路の内壁に突起を設けることで、この突起が下側流路を流れる水や湯の抵抗となる。その結果、貯湯タンク内の湯の貯湯容量を低下させることなく、下側流路を流れる水や湯が受ける流路抵抗を上側流路を流れる水や湯が受ける流路抵抗よりも大きくすることができ、仕切り構造体に形成された複数の流路の湯の押し出し性を貯湯タンク上下方向に亘って均一化することができる。   In addition, by providing a protrusion on the inner wall of the lower flow path of the partition structure among the flow paths formed in the partition structure, the protrusion becomes a resistance to water and hot water flowing through the lower flow path. As a result, without decreasing the hot water storage capacity of the hot water in the hot water storage tank, the flow resistance received by the water and hot water flowing through the lower flow path should be greater than the flow resistance received by the water and hot water flowing through the upper flow path. Thus, the pushability of hot water in the plurality of flow paths formed in the partition structure can be made uniform in the vertical direction of the hot water storage tank.

また、仕切り構造体に形成された各流路のうち、仕切り構造体下側流路の下流側が絞られて上流よりも断面積が小さくなっていることで、下側流路の水や湯の抵抗となる。その結果、貯湯タンク内の湯の貯湯容量を低下させることなく、仕切り構造体下側流路を流れる水や湯が受ける流路抵抗を仕切り構造体上側流路を流れる水や湯が受ける流路抵抗よりも大きくすることができ、仕切り構造体に形成された複数の流路の湯の押し出し性を貯湯タンク上下方向に亘って均一化することができる。   In addition, among the channels formed in the partition structure, the downstream side of the partition structure lower channel is squeezed and the cross-sectional area is smaller than the upstream, so that the water and hot water in the lower channel are reduced. It becomes resistance. As a result, without reducing the hot water storage capacity of the hot water storage tank, the flow resistance received by the water and hot water flowing through the partition structure upper flow path and the flow resistance received by the water and hot water flowing through the partition structure lower flow path are received. The resistance can be greater than the resistance, and the hot water pushability of the plurality of flow paths formed in the partition structure can be made uniform in the vertical direction of the hot water storage tank.

また、通常の貯湯式電気温水器では貯湯タンクの入水部から貯湯タンク内に入った水が貯湯タンク内で水と湯の密度差によってすぐに下方に落ち込み、仕切り構造体の上側流路に流入し難くなっていたのを、貯湯タンクの上面か上面近傍に位置するように設けた入水部から入水することで、仕切り構造体の上側流路に積極的に入水させることができ、結果的に仕切り構造体の各流路に水を上下に亘って均等分配し易くなる。   In addition, in a normal hot water storage type electric water heater, water that has entered the hot water storage tank from the hot water storage tank immediately falls downward due to the density difference between the hot water and the hot water and flows into the upper flow path of the partition structure. It was difficult to do so, by entering water from the water inlet provided so as to be located on the upper surface of the hot water storage tank or in the vicinity of the upper surface, it was possible to positively enter the upper flow path of the partition structure. It becomes easy to distribute water equally to each flow path of the partition structure.

また、仕切り構造体がその各流路間に隙間を生じさせないハニカム体形状を有することで、仕切り構造体を押し出し成型により容易に作れると共に、組み立ても簡単に行うことができる。   In addition, since the partition structure has a honeycomb body shape that does not cause a gap between the flow paths, the partition structure can be easily formed by extrusion molding and can be easily assembled.

また、仕切り構造体が、それぞれが流路を形成しかつ少なくとも一部の流路間が離間するように並設された複数のパイプ体からなることで、仕切り構造体の材料が入手し易く部品コストを低減できる。   In addition, the partition structure is composed of a plurality of pipe bodies arranged in parallel so that each of them forms a flow path and at least a part of the flow paths are separated, so that the material of the partition structure is easily available Cost can be reduced.

また、仕切り構造体の少なくとも何れか一つの流路の少なくとも一部に切り欠きが設けられ、当該切り欠きを介して前記仕切り構造体の当該切欠きを挟んだ隣接する少なくとも2つの流路が互いに連通していることで、仕切り構造体で構成される各流路のうち、このような切欠きを有する少なくとも一部の流路間で上下方向の対流を生じさせることができ、ヒータを貯湯タンクに内蔵した貯湯式電気温水器における貯湯タンク内の沸き上げ性を向上させる。   In addition, a cutout is provided in at least a part of at least one of the flow paths of the partition structure, and at least two adjacent flow paths sandwiching the cutout of the partition structure through the cutouts mutually. By communicating with each other, it is possible to cause vertical convection between at least some of the flow paths formed of the partition structure and having such a notch. The hot water storage tank inside the hot water storage type electric water heater is improved.

また、貯湯タンクの入水部から入った水を仕切り構造体の各流路に上下に亘って水を分配しながら流出させる分散材が前記仕切り構造体の貯湯タンク入水部側に備わっていることで、分散材から流出した水が仕切り構造体の上下方向に亘って分配させる。その結果、仕切り構造体の各流路により均等な速度で水を流入させることができ、貯湯タンクの上下方向に亘った湯の均等な押し出しを達成する。   In addition, a dispersion material that allows water that has entered from the water inlet of the hot water storage tank to flow out while distributing the water vertically to each flow path of the partition structure is provided on the water storage tank water inlet side of the partition structure. Then, the water flowing out from the dispersion material is distributed over the vertical direction of the partition structure. As a result, it is possible to allow water to flow in at an equal speed through each flow path of the partition structure, thereby achieving uniform extrusion of hot water in the vertical direction of the hot water storage tank.

本発明の一実施形態に係る貯湯式電気温水器の貯湯タンクをその内部構造と共に概略的に示す断面図である。It is sectional drawing which shows schematically the hot water storage tank of the hot water storage type electric water heater which concerns on one Embodiment of this invention with the internal structure. 図1に示した貯湯タンクを押し出し管を含む位置においてタンク中心軸線と垂直に切断した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which cut | disconnected the hot water storage tank shown in FIG. 1 perpendicularly | vertically with the tank center axis line in the position containing an extrusion pipe. 図1に示した貯湯タンクの第1変形例を図2に対応して示す概略断面図である。FIG. 6 is a schematic cross-sectional view corresponding to FIG. 2 showing a first modification of the hot water storage tank shown in FIG. 1. 図1に示した貯湯タンクの第2変形例を図1に対応して概略的に示す断面図である。It is sectional drawing which shows roughly the 2nd modification of the hot water storage tank shown in FIG. 1 corresponding to FIG. 図4に示した貯湯タンクの第2変形例の第1パターンを下側円筒体の中心軸線を含むように切断した断面図である。It is sectional drawing which cut | disconnected the 1st pattern of the 2nd modification of the hot water storage tank shown in FIG. 4 so that the center axis line of a lower side cylindrical body might be included. 図4に示した貯湯タンクの第2変形例の第2パターンを下側円筒体の中心軸線を含むように切断した断面図である。It is sectional drawing which cut | disconnected the 2nd pattern of the 2nd modification of the hot water storage tank shown in FIG. 4 so that the center axis line of a lower cylindrical body might be included. 図4に示した貯湯タンクの第2変形例の第3パターンを下側円筒体の中心軸線を含むように切断した断面図である。It is sectional drawing which cut | disconnected the 3rd pattern of the 2nd modification of the hot water storage tank shown in FIG. 4 so that the center axis line of a lower cylindrical body might be included. 図4に示した貯湯タンクの第2変形例の更なる変形例を下側円筒体の中心軸線を含むように切断した断面図である。It is sectional drawing cut | disconnected so that the further modification of the 2nd modification of the hot water storage tank shown in FIG. 4 might include the center axis line of a lower cylindrical body. 図1に示した貯湯タンクの第3変形例を図1に対応して概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a third modification of the hot water storage tank shown in FIG. 1 corresponding to FIG. 1. 図1に示した貯湯タンクの第4変形例をその作用と共に部分的に示す概略側面図である。It is a schematic side view which shows partially the 4th modification of the hot water storage tank shown in FIG. 1 with the effect | action. 図10に示した貯湯タンクの第4変形例の更なる変形例をその作用と共に部分的に示す概略側面図である。It is a schematic side view which shows partially the further modification of the 4th modification of the hot water storage tank shown in FIG. 10 with the effect | action. 図1に示した貯湯タンクの第5変形例を図1に対応して示す概略側面図(図12(a))及びこの第5変形例の更なる変形例を示す概略側面図(図12(b))である。A schematic side view (FIG. 12 (a)) showing a fifth modification of the hot water storage tank shown in FIG. 1 corresponding to FIG. 1, and a schematic side view showing a further modification of this fifth modification (FIG. 12 ( b)). 図1に示した貯湯タンクの第6変形例を示す概略斜視図である。It is a schematic perspective view which shows the 6th modification of the hot water storage tank shown in FIG. 図1に示した貯湯タンクの第7変形例を示す概略斜視図である。It is a schematic perspective view which shows the 7th modification of the hot water storage tank shown in FIG. 図1に示した貯湯タンクの第6変形例の更なる変形例を図13に対応して示す概略断面図である。FIG. 14 is a schematic sectional view showing a further modification of the sixth modification of the hot water storage tank shown in FIG. 1 corresponding to FIG. 13. 図1に示した貯湯タンクの第8変形例を図2に対応して示す概略断面図である。FIG. 10 is a schematic cross-sectional view corresponding to FIG. 2 showing an eighth modification of the hot water storage tank shown in FIG. 1. 図19に関連した従来の貯湯式電気温水器の構造を概略的に示す全体構成図である。It is a whole block diagram which shows schematically the structure of the conventional hot water storage type electric water heater relevant to FIG. 横置き式貯湯式電気温水器の設置状態の一例を概略的に示す説明図である。It is explanatory drawing which shows roughly an example of the installation state of a horizontal installation type hot water storage type electric water heater. 従来の貯湯式電気温水器に備わる貯湯タンクの構造の一例を図1に対応して示す概略断面図である。It is a schematic sectional drawing which shows an example of the structure of the hot water storage tank with which the conventional hot water storage type electric water heater is equipped corresponding to FIG. 図19に関連した従来の貯湯式電気温水器の構造をタンク内の水の流れと共に示す全体構成図である。It is a whole block diagram which shows the structure of the conventional hot water storage type electric water heater relevant to FIG. 19 with the flow of the water in a tank.

符号の説明Explanation of symbols

1 貯湯式電気温水器
10 貯湯タンク
11 入水部
12 出湯部
20 押し出し管(仕切り構造体)
21 下側円筒体
25 上側円筒体
31,32 支持体
40 ヒータ
50 貯湯タンク
51 ハニカム体
51a 入口側開口部
52 入水部
53 出湯部
60 ハニカム体
61 流路
120 押し出し構造体
121 下側流路
125 上側流路
210,220 押し出し管
221 下側円筒体
221a 凹凸
222 下側円筒体
222a 突起部
223 下側円筒体
223a 縮径部
224 下側円筒体
224a 縮径部
225 上側円筒体
310 貯湯タンク
311 入水部
320 押し出し管
330 分散材(バッフル)
420 押し出し管
420a 端部開口部
421〜423 円筒体
421a〜423a 端部開口部
430 押し出し管
430a(431a〜433a) 端部開口部
430b(431b〜433b) 対流促進用開口部
431〜433 円筒体
510 貯湯タンク
510a,510b 下面
511 入水部
512 出湯部
520 貯湯タンク
520a,520b 下面
521 入水部
522 出湯部
610,620,630 貯湯タンク
601〜606,611,621,631 連結パイプ
710,720,730 貯湯タンク
701,702,711,721,731 連結パイプ
810 貯湯タンク
820 押し出し管
820a(821a〜825a) 仕切り板
821,822 (上側)円筒体
823〜825 (下側)円筒体
910 貯湯タンク
930 ヒータ
951 循環ポンプ
952,953 循環パイプ
A,B,X 空間
DESCRIPTION OF SYMBOLS 1 Hot water storage type electric water heater 10 Hot water storage tank 11 Water inlet 12 Hot water outlet 20 Extrusion pipe (partition structure)
DESCRIPTION OF SYMBOLS 21 Lower cylindrical body 25 Upper cylindrical body 31,32 Support body 40 Heater 50 Hot water storage tank 51 Honeycomb body 51a Inlet side opening 52 Water inlet part 53 Hot water outlet part 60 Honeycomb body 61 Flow path 120 Extrusion structure 121 Lower side flow path 125 Upper side Flow path 210, 220 Extrusion pipe 221 Lower cylindrical body 221a Concavity and convexity 222 Lower cylindrical body 222a Projection part 223 Lower cylindrical body 223a Reduced diameter part 224 Lower cylindrical body 224a Reduced diameter part 225 Upper cylindrical body 310 Hot water storage tank 311 Water inlet part 320 Extrusion pipe 330 Dispersing material (baffle)
420 Extrusion pipe 420a End opening 421-423 Cylindrical body 421a-423a End opening 430 Extrusion pipe 430a (431a-433a) End opening 430b (431b-433b) Convection promotion opening 431-433 Cylindrical body 510 Hot water storage tank 510a, 510b Lower surface 511 Water inlet 512 Hot water outlet 520 Hot water storage tank 520a, 520b Lower surface 521 Water inlet 522 Hot water outlet 610, 620, 630 Hot water storage tank 601-606, 611, 621, 631 Connection pipe 710, 720, 730 Hot water storage tank 701, 702, 711, 721, 731 Connection pipe 810 Hot water storage tank 820 Extrusion pipe 820a (821a to 825a) Partition plate 821, 822 (Upper side) cylindrical body 823 to 825 (Lower side) cylindrical body 910 Hot water storage tank 9 30 Heater 951 Circulation pump 952, 953 Circulation pipe A, B, X Space

Claims (10)

貯湯タンクと、前記貯湯タンクの所定位置に備わった入水部と、前記貯湯タンクの前記入水部とは異なる位置に備わった出湯部と、前記貯湯タンク内の入水部近傍から出湯部近傍に亘って複数の流路を形成するように設けられた仕切り構造体とを有した貯湯式電気温水器であって、前記貯湯式電気温水器が設置された状態で前記貯湯タンクの上下方向の高さより横方向の長さが長くなるように当該貯湯タンクが備わった貯湯式電気温水器において、
前記仕切り構造体の各流路内を流れる水や湯の入水部側から出湯部側に至るまでの流路抵抗が、前記貯湯式電気温水器の設置状態で重力の作用により水が流入し易い下側流路の方が重力の作用により水が流入し難い上側流路よりも大きくなるようにしたことを特徴とする貯湯式電気温水器。
A hot water storage tank, a water inlet section provided at a predetermined position of the hot water storage tank, a hot water outlet section provided at a position different from the water inlet section of the hot water storage tank, and from the vicinity of the water inlet section in the hot water storage tank to the vicinity of the hot water outlet section. A hot water storage type electric water heater having a partition structure provided so as to form a plurality of flow paths, wherein the hot water storage type electric water heater is installed from the height in the vertical direction of the hot water storage tank. In the hot water storage type electric water heater equipped with the hot water storage tank so that the length in the lateral direction becomes longer,
The flow resistance from the water inlet / outlet side to the water / hot water flowing through each channel of the partition structure is such that water easily flows in by the action of gravity in the installed state of the hot water storage type electric water heater. A hot water storage type electric water heater characterized in that the lower flow path is larger than the upper flow path where water hardly flows in due to the action of gravity.
前記仕切り構造体に形成された各流路のうち、前記上側流路の平均流路断面積が、前記下側流路の平均流路断面積よりも大きくなっていることを特徴とする、請求項1に記載の貯湯式電気温水器。   The average channel cross-sectional area of the upper channel among the channels formed in the partition structure is larger than the average channel cross-sectional area of the lower channel. Item 2. A hot water storage type electric water heater according to item 1. 前記仕切り構造体に形成された各流路のうち、前記下側流路の内壁の表面粗さが、前記上側流路の内壁の表面粗さよりも粗くなっていることを特徴とする、請求項1又は請求項2に記載の貯湯式電気温水器。   The surface roughness of the inner wall of the lower channel among the channels formed in the partition structure is rougher than the surface roughness of the inner wall of the upper channel. The hot water storage type electric water heater according to claim 1 or 2. 前記仕切り構造体に形成された各流路のうち、前記下側流路の内壁に突起が設けられていることを特徴とする、請求項1又は請求項2に記載の貯湯式電気温水器。   The hot water storage type electric water heater according to claim 1 or 2, wherein a protrusion is provided on an inner wall of the lower flow path among the flow paths formed in the partition structure. 前記仕切り構造体に形成された各流路のうち、前記下側流路の下流側が絞られて流路断面積が小さくなっていることを特徴とする、請求項1又は請求項2に記載の貯湯式電気温水器。   The flow path cross-sectional area is reduced by narrowing the downstream side of the lower flow path among the flow paths formed in the partition structure, according to claim 1 or 2. Hot water storage type electric water heater. 前記入水部が、前記貯湯式電気温水器の設置状態で前記貯湯タンクの上面か上面近傍に位置するように設けられていることを特徴とする、請求項1乃至請求項5の何れかに記載の貯湯式電気温水器。   6. The water intake section according to claim 1, wherein the water storage section is provided so as to be located on an upper surface of the hot water storage tank or in the vicinity of the upper surface in the installed state of the hot water storage type electric water heater. The hot water storage type electric water heater described. 前記仕切り構造体が、当該仕切り構造体内の各流路間に隙間を生じさせないハニカム体形状を有することを特徴とする、請求項1乃至請求項6の何れかに記載の貯湯式電気温水器。   The hot water storage type electric water heater according to any one of claims 1 to 6, wherein the partition structure has a honeycomb body shape that does not cause a gap between the flow paths in the partition structure. 前記仕切り構造体が、それぞれが流路を形成しかつ少なくとも一部の流路間が離間するように並設された複数のパイプ体からなることを特徴とする、請求項1乃至請求項6の何れかに記載の貯湯式電気温水器。   The partition structure is composed of a plurality of pipe bodies arranged in parallel so that each form a flow path and at least some of the flow paths are separated from each other. A hot water storage type electric water heater according to any one of the above. 前記仕切り構造体の少なくとも何れか一つの流路の少なくとも一部に切り欠きが設けられ、当該切り欠きを介して前記仕切り構造体の当該切欠きを挟んだ隣接する少なくとも2つの流路が互いに連通していることを特徴とする、請求項1乃至請求項8の何れかに記載の貯湯式電気温水器。   A cutout is provided in at least a part of at least one flow path of the partition structure, and at least two adjacent flow paths sandwiching the cutout of the partition structure communicate with each other via the cutout. The hot water storage type electric water heater according to any one of claims 1 to 8, wherein the hot water storage type electric water heater is provided. 前記貯湯タンクの入水部から入った水を前記仕切り構造体の各流路に上下に亘って水を分配しながら流出させる分散材が前記仕切り構造体の貯湯タンク入水部側に備わっていることを特徴とする、請求項1乃至請求項9の何れかに記載の貯湯式電気温水器。
Dispersing material for allowing water entering from the water inlet of the hot water storage tank to flow out while distributing the water vertically to the respective flow paths of the partition structure is provided on the hot water tank water inlet side of the partition structure. The hot water storage type electric water heater according to any one of claims 1 to 9, wherein the hot water storage type electric water heater is characterized.
JP2006304623A 2006-11-09 2006-11-09 Hot water storage type electric water heater Pending JP2008121944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304623A JP2008121944A (en) 2006-11-09 2006-11-09 Hot water storage type electric water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304623A JP2008121944A (en) 2006-11-09 2006-11-09 Hot water storage type electric water heater

Publications (1)

Publication Number Publication Date
JP2008121944A true JP2008121944A (en) 2008-05-29

Family

ID=39506892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304623A Pending JP2008121944A (en) 2006-11-09 2006-11-09 Hot water storage type electric water heater

Country Status (1)

Country Link
JP (1) JP2008121944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007764A (en) * 2010-06-22 2012-01-12 Rinnai Corp Combustion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007764A (en) * 2010-06-22 2012-01-12 Rinnai Corp Combustion device

Similar Documents

Publication Publication Date Title
JP4949818B2 (en) Water heater
EP2154443A1 (en) Heating hot water supply apparatus
JP2008121940A (en) Hot water storage type electric water heater
CN201119216Y (en) Water cooling header structure for water cooling heat radiation system
KR100903799B1 (en) Boiler for hot water circulation mat
JP2008121944A (en) Hot water storage type electric water heater
KR20230127232A (en) inline heater
EP2672193A1 (en) Boiler having integrated nitrogen tank and heat exchanger
JP4251172B2 (en) Heat pump water heater
KR102354053B1 (en) Cold water manufacturing apparatus
US20140003801A1 (en) Water heating system
JP2008082666A (en) Hot water storage type electric water heater
KR100393917B1 (en) Electric boiler using thermal oil
JP2008121945A (en) Hot water storage type electric water heater
JP2008070006A (en) Hot water storage type electric water heater
JP2008121943A (en) Hot water storage type electric water heater
US20090320512A1 (en) Refrigerator comprising a water tank
EP3998432A1 (en) Storage tank unit
JP2007271228A (en) Hot water storage type electric water heater
KR200383468Y1 (en) Heat Diffusion Type Bend Heater For A Vessel Oil Storage Tank
JP2012032118A (en) Hot water supply pipe
JP2008057898A (en) Hot water storage type electric water heater
KR20090003116U (en) hot water circulation mat structure
KR101826786B1 (en) Heating apparatus for hot water tank of bidet
KR100559244B1 (en) A pipeless heat radiator by a slim thickness