JP2008121718A - Water passage repairing method - Google Patents

Water passage repairing method Download PDF

Info

Publication number
JP2008121718A
JP2008121718A JP2006303157A JP2006303157A JP2008121718A JP 2008121718 A JP2008121718 A JP 2008121718A JP 2006303157 A JP2006303157 A JP 2006303157A JP 2006303157 A JP2006303157 A JP 2006303157A JP 2008121718 A JP2008121718 A JP 2008121718A
Authority
JP
Japan
Prior art keywords
grout material
pipe
air
water
admixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006303157A
Other languages
Japanese (ja)
Other versions
JP4536702B2 (en
Inventor
Shigeyuki Mouri
栄征 毛利
Toshikazu Hori
俊和 堀
Kenichi Matsushima
健一 松島
Tomonobu Makino
友宣 牧野
Masaya Hazama
昌也 硲
Koji Inoue
孝治 井上
Masahiro Yoshihara
正博 吉原
Kozo Ishikawa
浩三 石川
Toshiaki Futagawa
敏明 二川
Hiroto Shiwa
裕人 志和
Hideo Takahashi
秀夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
National Agriculture and Food Research Organization
Estec Co Ltd
Kurimoto Kasei Kogyo KK
Original Assignee
Sumitomo Osaka Cement Co Ltd
National Agriculture and Food Research Organization
Estec Co Ltd
Kurimoto Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, National Agriculture and Food Research Organization, Estec Co Ltd, Kurimoto Kasei Kogyo KK filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2006303157A priority Critical patent/JP4536702B2/en
Publication of JP2008121718A publication Critical patent/JP2008121718A/en
Application granted granted Critical
Publication of JP4536702B2 publication Critical patent/JP4536702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water passage repairing method using grout material (a) that gives minimum buoyancy to a new pipe. <P>SOLUTION: The grout material (a) is filled between an agricultural water tunnel water passage (a closed water passage) A and a reinforcing plastic composite pipe B inserted thereinto via filling ports 1. The grout material consists of milk a' which is formed of hardening material, kneaded water and admixture and to which the admixture as dispersant is added, and a bubble group c which is formed of diluted solution c' in which foaming agent is mixed and air c". It has a wet density of 0.5 t/m<SP>3</SP>or lower, a flow value of 140 mm or smaller, and a compression strength of 500 KN/m<SP>2</SP>or higher for a material age of 28 days, wherein air has a capacity ratio of 65% or more, the weight ratio of the kneaded water to the hardening material is 55% or less, and the weight ratio of the admixture to the hardening material is 0.1-0.5%, meaning low gravity. The grout material gives small buoyancy to the new pipe and serves for easy buoyancy preventing measures. In a construction site, the diluted solution in which the foaming agent is dissolved and air are manufactured by an bubble manufacturing device 14b, and the bubbles and the milk are kneaded by a kneading machine 14a and filled between the pipe B and the closed water passage via a filling pipe 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、老朽化した既設水路トンネル又は既設管水路等の閉水路に新管を順々に挿入してその各新管を継ぎ合わせて新配管を形成し、その新配管と前記既設水路トンネル等の間に新管の注入口を介してグラウト材を充填するパイプイントンネル工法による水路の改修方法、及び開水路に敷設された管の周りにグラウト材を充填する水路の改修方法に関するものである。   The present invention is to insert new pipes into a closed water channel such as an aging existing water channel tunnel or an existing pipe water channel one after another and join the new pipes to form a new pipe, and the new pipe and the existing water channel tunnel. It is related to the repair method of the water channel by the pipe-in tunnel method of filling the grout material through the inlet of the new pipe during the period, and the repair method of the water channel filling the grout material around the pipe laid in the open channel is there.

今日、上下水管路、農業用水配管路等として、過去に、ボックスカルバート、ヒューム管等により形成した既設水路トンネル又は既設管水路が老朽化した場合、それらのトンネル等内に、新管を順々に挿入して新配管を形成するパイプイントンネル工法等により、その水路を更新(改修)することが行われている。
以下、ボックスカルバート等よりなる既設水路トンネル、既設管水路等のように地中横方向に筒状の空間を形成した構造物を、総称して「閉水路」と称し、その閉水路内に配設される導管、新管からなる配管を「新配管」という。
また、これに対し溝状の水路等、筒状をなさない水路を総称して「開水路」という。
Today, when existing waterway tunnels or existing pipe waterways formed by box culverts, fume pipes, etc. have become obsolete in the past as water and sewage pipes, agricultural water pipes, etc. The water channel is renewed (renovated) by a pipe-in-tunnel method or the like that is inserted into the pipe to form a new pipe.
Hereinafter, a structure in which a cylindrical space is formed in the horizontal direction in the underground, such as an existing waterway tunnel made of box culverts, an existing pipe waterway, etc., is collectively referred to as a “closed waterway” and is arranged in the closed waterway. The pipes that are installed and the new pipes are called “new pipes”.
On the other hand, non-cylindrical water channels such as groove-shaped water channels are collectively referred to as “open water channels”.

これらの改修方法においては、その新配管(二次覆工管)と水路(一次覆工管)の間にグラウト材を充填する。
その一方法として、例えば、図6、図7に示すように、既設トンネル水路(閉水路)A内に新管Bを順々に挿入してその各新管Bを管継手Cを介して継ぎ合わせて新配管B’を形成し、その新配管B’(新管B)と閉水路(既設管)Aの間に新管Bの注入口を介してグラウト材aを充填するものがある(特許文献1、2参照)。
特開平9−166242号公報 特開平9−235996号公報
In these repair methods, the grout material is filled between the new pipe (secondary lining pipe) and the water channel (primary lining pipe).
As one method, for example, as shown in FIGS. 6 and 7, new pipes B are sequentially inserted into an existing tunnel water channel (closed water channel) A, and the new pipes B are connected to each other through a pipe joint C. In addition, a new pipe B ′ is formed, and the grout material a is filled between the new pipe B ′ (new pipe B) and the closed water channel (existing pipe) A through the inlet of the new pipe B ( (See Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 9-166242 JP-A-9-235996

これらの改修方法におけるグラウト材aの充填は、図7に示すように、15〜20本程の新管Bを継ぎ合わせた新配管長さを一回のグラウト材aの充填範囲とし、その範囲の両端の新管Bと閉水路Aの間に中間部間仕切り壁Dを形成し、新管Bに形成した注入口から、グラウト材aを新管Bと閉水路Aの間に注入して行っている。
また、このグラウト材aは、地盤に開削された溝(開水路)H内に敷設された管Bの周りに充填して、その管Bを地盤に固定する場合にも使用される(図5参照)。
As shown in FIG. 7, the filling of the grout material “a” in these refurbishing methods is performed by setting the new pipe length obtained by joining about 15 to 20 new pipes B as the filling range of the grout material “a” once. An intermediate partition wall D is formed between the new pipe B and the closed channel A at both ends of the pipe, and the grout material a is injected between the new pipe B and the closed channel A from the inlet formed in the new pipe B. ing.
Moreover, this grout material a is used also when filling the circumference | surroundings of the pipe | tube B laid in the groove | channel (open channel) H cut by the ground, and fixing the pipe | tube B to the ground (FIG. 5). reference).

これらの改修方法にも用いられるグラウト材としては、エアモルタル、エアミルクが公知であり、そのエアモルタル、エアミルクに関して代表的な従来の配合例として非特許文献1がある。この中で、一軸圧縮強さが500kN/m2以上のすべての配合について、W/C(混練水の硬化材に対する重量比)は60%以上(>55%)であり、湿潤密度は0.5t/m3を越えている。
「FCB工法(気泡混合軽量土を用いた軽量盛土工法) 三島信雄、益村公人共著 理工図書株式会社 平成12年7月30日 初版発行」
As grouting materials used in these repair methods, air mortar and air milk are known, and Non-Patent Document 1 is a typical conventional blending example for the air mortar and air milk. Among these, for all blends having a uniaxial compressive strength of 500 kN / m 2 or more, W / C (weight ratio of kneaded water to hardened material) is 60% or more (> 55%), and the wet density is 0.00. It exceeds 5t / m 3 .
"FCB method (lightweight embankment method using air bubbles mixed lightweight soil) Nobuo Mishima and Kimito Masumura Riko Books Co., Ltd. July 30, 2000 First edition issued"

このグラウト材aの充填作業において、グラウト材aの比重が高くなると、新管Bへの浮力も大きくなり、新管B等に管押さえ(支保工)を設けたり、複数回に分けてグラウト材aを打設したりする等の浮力(浮き上がり)防止策が必要となる。この対策はコストアップに繋がる。
また、一般的に、グラウト材aの比重を低くするためには、気泡群を増加させ、硬化材、混練水を減少させる必要がある。しかしながら、一般的には、硬化材と混練水は気泡群とは別に混練製造しており、硬化材Cと混練水Wの比率(W/C)はあまり小さくできない。すなわち、W/Cを小さくすると、ミキサーなどによる混練が不十分となり、製造不可となったり、ホースでの圧送時にポンプ圧が大きくなり、圧送困難となったりするからである。また、硬化材を減少させることは、グラウト材の比重を小さくするのには非常に有効であるが、硬化後のグラウト材の基本性能である強度が確保できない状態となる。
In the filling operation of the grout material a, if the specific gravity of the grout material a increases, the buoyancy to the new pipe B also increases, and a pipe presser (support work) is provided on the new pipe B or the like. It is necessary to take measures to prevent buoyancy (lifting) such as placing a. This measure leads to cost increase.
In general, in order to reduce the specific gravity of the grout material a, it is necessary to increase the number of bubbles and decrease the curing material and the kneading water. However, generally, the curing material and the kneading water are kneaded and manufactured separately from the bubble group, and the ratio (W / C) between the curing material C and the kneading water W cannot be made very small. That is, if W / C is made small, kneading by a mixer or the like becomes insufficient, making it impossible to manufacture, and pumping pressure becomes large when pumping with a hose, making pumping difficult. Further, reducing the curing material is very effective for reducing the specific gravity of the grout material, but the strength which is the basic performance of the grout material after curing cannot be ensured.

本発明は、上記の問題を解決しつつ、グラウト材による新管への浮力を極力小さくすることを課題とする。   An object of the present invention is to minimize the buoyancy of a grout material to a new pipe while solving the above problems.

上記課題を解決するために、本発明の水路の改修方法は、閉水路(A)内に新管(B)を順々に挿入してその各新管(B)を継ぎ合わせて新配管(B’)を形成し、その新配管(B’)と前記閉水路(A)の間に新管(B)の注入口(1)を介してグラウト材(a)を充填する水路の改修方法であって、上記グラウト材(a)として、硬化材、混練水及び混和剤からなりかつ該混和剤を分散剤として添加したミルク(a’)と、起泡剤入り希釈液(c’)及び空気(c”)からなる気泡群(c)とからなるものを用い、
上記グラウト材(a)の湿潤密度が0.5t/m3以下、同圧縮強度が材齢28日で500kN/m2以上、空気(c”)が容積比で65%以上、混練水の硬化材に対する重量比が55%以下としたものとし、
施工現場において、起泡剤を溶かした希釈液(c’)及び空気(c”)を気泡製造装置(14b)に送り込み、気泡製造後、その気泡と上記混和剤を添加したミルク(a’)を、それぞれ上記注入口(1)に接続した注入パイプ(10)に介設した混練機(14a)に送り込み、その混練機(14a)により混練して、上記組成の低比重のグラウト材(a)を製造し、そのグラウト材(a)を上記新配管(B’)と閉水路(A)の間に充填することを特徴とする。
In order to solve the above-described problem, the water channel repair method of the present invention is to insert new pipes (B) into the closed water path (A) one after another and join the new pipes (B) together to form new pipes ( B ′), and a method for repairing the water channel in which the grout material (a) is filled between the new pipe (B ′) and the closed water channel (A) through the inlet (1) of the new pipe (B). In the grout material (a), a milk (a ′) composed of a curing material, kneaded water and an admixture and added with the admixture as a dispersant, a dilute solution containing a foaming agent (c ′) and Using a bubble group (c) consisting of air (c ″),
The wet density of the grout material (a) is 0.5 t / m 3 or less, the compression strength is 500 kN / m 2 or more at the age of 28 days, the air (c ″) is 65% or more by volume ratio, and the kneaded water is cured. The weight ratio to the material shall be 55% or less,
At the construction site, the dilute solution (c ′) and air (c ″) in which the foaming agent is dissolved are sent to the bubble production device (14b), and after the production of the bubbles, the milk (a ′) to which the bubbles and the admixture are added. Are fed into a kneading machine (14a) interposed in an injection pipe (10) connected to the injection port (1), kneaded by the kneading machine (14a), and a low specific gravity grout material (a And the grout material (a) is filled between the new pipe (B ′) and the closed water channel (A).

また、本発明の水路の改修方法は、開水路(H)内に管(B)を敷設し、当該管(B)の周りにグラウト材(a)を充填する水路の改修方法であって、
上記グラウト材(a)として、硬化材、混練水及び混和剤からなりかつ該混和剤を分散剤として添加したミルク(a’)と、起泡剤入り希釈液(c’)及び空気(c”)からなる気泡群(c)とからなるものを用い、
上記グラウト材(a)の湿潤密度が0.5t/m3以下、同圧縮強度が材齢28日で500kN/m2以上、空気(c”)が容積比で65%以上、混練水の硬化材に対する重量比が55%以下としたものとし、
施工現場において、起泡剤を溶かした希釈液(c’)及び空気(c”)を気泡製造装置(14b)に送り込み、気泡製造後、その気泡と上記混和剤を添加したミルク(a’)を、それぞれ上記注入口(1)に接続した注入パイプ(10)に介設した混練機(14a)に送り込み、その混練機(14a)により混練して、上記組成の低比重のグラウト材(a)を製造し、そのグラウト材(a)を上記管(B)の周りに充填することを特徴とする。
Further, the water channel repair method of the present invention is a water channel repair method in which a pipe (B) is laid in an open water channel (H) and the grout material (a) is filled around the pipe (B).
As the grout material (a), a milk (a ′) composed of a curing material, kneaded water and an admixture and added with the admixture as a dispersant, a dilute solution containing a foaming agent (c ′) and air (c ″) ) Using a bubble group (c) consisting of
The wet density of the grout material (a) is 0.5 t / m 3 or less, the compression strength is 500 kN / m 2 or more at the age of 28 days, the air (c ″) is 65% or more by volume ratio, and the kneaded water is cured. The weight ratio to the material shall be 55% or less,
At the construction site, the dilute solution (c ′) and air (c ″) in which the foaming agent is dissolved are sent to the bubble production device (14b), and after the production of the bubbles, the milk (a ′) to which the bubbles and the admixture are added. Are fed into a kneading machine (14a) interposed in an injection pipe (10) connected to the injection port (1), kneaded by the kneading machine (14a), and a low specific gravity grout material (a And the grout material (a) is filled around the pipe (B).

さらに、本発明の水路の改修方法は、前記水路の改修方法において、上記ミルク(a’)、上記希釈液(c’)及び空気(c”)をその3系統でもって上記混練機(14a)に送り込み、その混練機(14a)により混練することを特徴とする。   Furthermore, the water channel repair method of the present invention is the water channel repair method, wherein the milk (a ′), the diluent (c ′) and the air (c ″) are used in the three systems, and the kneader (14a). And is kneaded by the kneader (14a).

すなわち、本発明は、まず、グラウト材の比重が高くなればなるほど、浮力も大きくなるため、そのグラウト材を出来るかぎり低比重のものとすることとしたのである。
つぎに、本発明は、低比重としても上記問題が極力生じないように、その上記グラウト材として、硬化材、混練水及び混和剤からなりかつ該混和剤を分散剤として添加したミルクと、起泡剤入り希釈液及び空気からなる気泡群とからなるものを用い、そのグラウト材の湿潤密度が0.5t/m3以下、同圧縮強度が材齢28日で500kN/m2以上、空気が容積比で65%以上、混練水の硬化材に対する重量比が55%以下としたものとしたのである。
That is, according to the present invention, since the buoyancy increases as the specific gravity of the grout material increases, the grout material has a specific gravity as low as possible.
Next, in order to prevent the above problem from occurring as much as possible even when the specific gravity is low, the present invention includes, as the grout material, a milk composed of a hardener, kneaded water, and an admixture, and the admixture added as a dispersant. Using a foamed diluent and a group of air bubbles, the wet density of the grout material is 0.5 t / m 3 or less, the compressive strength is 500 kN / m 2 or more at a material age of 28 days, and the air The volume ratio was 65% or more, and the weight ratio of the kneaded water to the cured material was 55% or less.

ここで、気泡群を混入したグラウト材は一般的にエアモルタル、エアミルクと呼ばれており、そのモルタルとミルクの差異は砂が入るかどうかである。本発明では、軽量化を図るため、砂が入らないミルク仕様とし、かつ、硬化材、混練水及び混和剤からなりかつ該混和剤を分散剤として添加したミルクと、起泡剤入り希釈液及び空気からなる気泡群とからなるものを用いることにより、グラウト材の軽量化を図りつつも、同圧縮強度が高いものを提供することが可能となる。さらに、そのグラウト材の湿潤密度が0.5t/m3以下、同圧縮強度が材齢28日で500kN/m2以上、空気が容積比で65%以上、混練水の硬化材に対する重量比が55%以下としたものとすることにより、水路の改修が適切に行えるものとなる。 Here, the grout material mixed with bubbles is generally called air mortar or air milk, and the difference between the mortar and milk is whether or not sand enters. In the present invention, in order to reduce the weight, a milk specification that does not contain sand, and a milk composed of a hardener, kneaded water, and an admixture and added with the admixture as a dispersant, a dilute solution containing a foaming agent, and By using the air bubble group consisting of air, it is possible to provide a grout material having a high compressive strength while reducing the weight. Further, the wet density of the grout material is 0.5 t / m 3 or less, the compression strength is 500 kN / m 2 or more at the age of 28 days, the volume ratio of air is 65% or more, and the weight ratio of the kneaded water to the cured material is By setting it to 55% or less, the waterway can be properly repaired.

本発明は、低比重(軽い)であっても、混和剤を分散剤として添加し及びその添加順序により、所要の圧縮強度を得るグラウト材を使用することとしたので、新管のグラウト材による浮力防止策が簡易なもので良くなるなどの効果を得ることが出来る。また、新配管にかかるそのグラウト材による浮力に基づく負荷も低減できるため、新配管と水路の間へのグラウト材の充填長さも長くしたり、新配管として長いものを使用したりすることができるとともに、その充填(打設)スピードも上げることができて、コストダウンを図ることができる。   In the present invention, even when the specific gravity is low (light), the admixture is added as a dispersant and the grout material that obtains the required compressive strength is used depending on the order of addition. It is possible to obtain an effect that the buoyancy prevention measure is improved with a simple one. Moreover, since the load based on the buoyancy by the grout material applied to the new pipe can be reduced, the filling length of the grout material between the new pipe and the water channel can be increased, or a long new pipe can be used. At the same time, the filling (placement) speed can be increased, and the cost can be reduced.

以下、発明の最良の形態を例示することにより本発明を説明する。
本発明の実施形態としては、グラウト材として、硬化材、混練水及び混和剤からなりかつ該混和剤を分散剤として添加したミルクと、起泡剤入り希釈液及び空気からなる気泡群とからなるものを用い、そのグラウト材の湿潤密度が0.5t/m3以下、同圧縮強度が材齢28日で500kN/m2以上、空気が容積比で65%以上、混練水の硬化材に対する重量比が55%以下とした構成のものを採用する。
Hereinafter, the present invention will be described by illustrating the best mode of the invention.
As an embodiment of the present invention, as a grout material, it comprises a hardener, kneaded water and a milk mixed with an admixture and added with the admixture as a dispersant, and a foam group comprising a foamed diluent and air. The grout material has a wet density of 0.5 t / m 3 or less, the compression strength is 500 kN / m 2 or more at 28 days of age, the air is 65% or more by volume, and the weight of the kneaded water relative to the cured material A configuration with a ratio of 55% or less is adopted.

ここで、分散剤として添加される混和剤は、通常のコンクリート等で使用している混和剤であり、主なものとしてポリカルボン酸系、ナフタリンスルホン酸系、メラミンスルホン酸系などが挙げられる。その添加量としては、実験、実操業等において、混和剤の製造メーカーがコンクリート用として推奨している添加量の範囲内で適宜に選定して、目標強度を得られるように適宜量を使用する。例えば、混和剤は硬化材に対して重量比0.05%以上0.5%以下とする。   Here, the admixture added as a dispersant is an admixture used in ordinary concrete, and main examples thereof include polycarboxylic acid, naphthalene sulfonic acid, and melamine sulfonic acid. The amount added is appropriately selected within the range of the amount recommended by the admixture manufacturer for use in concrete in experiments, actual operations, etc., and used in an appropriate amount so that the target strength can be obtained. . For example, the admixture is 0.05% or more and 0.5% or less by weight with respect to the curing material.

また、硬化材は、ポルトランドセメント、高炉セメント、フライアッシュセメント、混合セメント、セメント系硬化材のほかにアルミナセメント、石灰、石膏、高炉スラグ、フライアッシュなどが1種あるいは複数種を混合したものが挙げられる。   Hardeners include Portland cement, blast furnace cement, fly ash cement, mixed cement, cement-type hardener, alumina cement, lime, gypsum, blast furnace slag, fly ash, etc. Can be mentioned.

つぎに、気泡群を構成する希釈液は、通常、起泡剤と水とから成り、その希釈倍率は起泡剤と水との比率となる。起泡剤としては、エアモルタル、エアミルク用として公知のものを用いることができ、例えば、住友大阪セメント(株)製の起泡剤(商品名:ライトフォーム)が挙げられる。その希釈倍率及び発泡倍率は、実験、実操業等において、起泡剤の製造メーカーが推奨している範囲内で調節すればよく、例えば、上記に例示した起泡剤の場合では希釈倍率20倍、発泡倍率25倍とすればよい。この場合、起泡剤1kgとすると、希釈倍率20倍では、水は19kgとなり、希釈液は20kgとなる。この希釈液20kgに対して発泡倍率25倍では空気量は480リットルとなり、起泡剤、水の密度を1kg/リットル、空気の質量を0kgとすると、気泡群の体積は500リットルとなる。したがって、気泡群の全質量は20kgとなり、気泡群の密度は20/500=0.04kg/リットル(40kg/m3)となる。 Next, the diluting liquid constituting the bubble group is usually composed of a foaming agent and water, and the dilution ratio is a ratio of the foaming agent and water. As the foaming agent, those known for air mortar and air milk can be used, and examples thereof include a foaming agent (trade name: Light Foam) manufactured by Sumitomo Osaka Cement Co., Ltd. The dilution ratio and expansion ratio may be adjusted within the range recommended by the foaming agent manufacturer in experiments, actual operations, etc. For example, in the case of the foaming agent exemplified above, the dilution ratio is 20 times. The expansion ratio may be 25 times. In this case, if the foaming agent is 1 kg, the water will be 19 kg and the diluent will be 20 kg at a dilution factor of 20 times. The air volume is 480 liters when the expansion ratio is 25 times with respect to 20 kg of this diluted solution, and the bubble group volume is 500 liters when the density of the foaming agent and water is 1 kg / liter and the mass of air is 0 kg. Therefore, the total mass of the bubble group is 20 kg, and the density of the bubble group is 20/500 = 0.04 kg / liter (40 kg / m 3 ).

本発明に用いるグラウト材は、上記の材料を用いて製造される。
そのグラウト材の圧縮強度は、材齢28日で500kN/m2以上である。
なお、グラウト材の設計に用いられる物性は湿潤密度と一軸圧縮強さ(強度)である。
この湿潤密度と強度には一般的に「密度を小さくすると強度も小さくなる」という関係があり、密度を小さくすると、気泡群が増加し、硬化材が減少し、逆に、強度を大きくすると(密度を大きくすると)、気泡群が減少し、硬化材が増加する。この関係から、湿潤密度を小さくしながら、強度を大きくすることは一般的に困難である。
例えば、気泡群の密度が40kg/m3であり、仮に、グラウト材(エアミルク)1m3がすべて気泡群とした場合、そのエアミルクは40kg/m3の湿潤密度となって、軽量なものとなるが、このようなグラウト材は硬化材が全く混入されていないのだから、強度発現は0となる(一軸圧縮強さ=0)。しかし、軽量化を進める上ではこの気泡群の質量が大きなウエイトを占めることとなる。
The grout material used in the present invention is manufactured using the above materials.
The compressive strength of the grout material is 500 kN / m 2 or more at a material age of 28 days.
The physical properties used for designing the grout material are wet density and uniaxial compressive strength (strength).
There is a general relationship between the wet density and the strength: “When the density is reduced, the strength is also reduced.” When the density is reduced, the number of bubbles increases and the amount of the hardened material decreases. Conversely, when the strength is increased ( Increasing the density) reduces the number of bubbles and increases the hardener. From this relationship, it is generally difficult to increase the strength while reducing the wet density.
For example, if the density of air bubbles is 40 kg / m 3 , and if all grout materials (air milk) 1 m 3 are air bubbles, the air milk has a wet density of 40 kg / m 3 and is lightweight. However, since such a grout material contains no hardener, the strength expression is 0 (uniaxial compressive strength = 0). However, the mass of the bubble group occupies a large weight for further weight reduction.

このような特性を有するグラウト材において、土槽試験を行った場合、圧縮強度が材齢28日で100kN/m2のグラウト材を用いた場合は、新管Bへの保護効果が得られないばかりか、逆に変形を増大させる結果となる。これに対し、同500kN/m2のグラウト材を用いた場合は、新管Bへの保護効果が充分得られる。このため、本発明におけるグラウト材の圧縮強度は材齢28日で500kN/m2以上必要であることとした。
なお、上記の土槽試験は下記の非特許文献2〜3に記載された方法(工法)による。即ち、当該土槽試験は内空が□1.05m×H0.4mの三軸同時載荷可能な鋼製土槽に地盤材料として豊浦標準砂を充填したもの、土槽中央に配置される2mm厚の鋼製の既設管、既設管の内部に配置される内径150mmのFRP製の管及び既設管と管(FRP管)の間に充填される中込材で構成された模型土槽試験装置を用い、載荷重と管の変位の関係を求めるものである。
「老朽トンネルの改修を伴うパイプ・イン・トンネル工法に関する検討」(平成15年度農業土木学会大会講演要旨集) 「老朽管路の改修を伴うパイプ・イン・パイプ工法に関する検討」(平成17年度農業土木学会大会講演要旨集)
In a grout material having such characteristics, when a soil tank test is performed, when a grout material having a compressive strength of 100 kN / m 2 at a material age of 28 days is used, a protective effect on the new tube B cannot be obtained. On the contrary, it results in increasing deformation. On the other hand, when the same 500 kN / m 2 grout material is used, the protection effect on the new tube B is sufficiently obtained. Therefore, the compressive strength of the grout material in the present invention is required to be 500 kN / m 2 or more at a material age of 28 days.
In addition, said soil tank test is based on the method (construction method) described in the following nonpatent literatures 2-3. In other words, this soil tank test is a steel soil tank with an inner space of □ 1.05m x H0.4m, which can be loaded at the same time, filled with Toyoura standard sand as the ground material, and 2mm thick placed in the center of the tank. Steel model existing pipe, FRP pipe with an inner diameter of 150 mm arranged inside the existing pipe, and a model soil tank test device composed of an embedded material filled between the existing pipe and the pipe (FRP pipe) The relationship between the load and the displacement of the tube is obtained.
“Examination of pipe-in-tunnel method with repair of old tunnel” (Abstracts of Annual Meeting of the Agricultural Civil Society of Japan) “Examination of pipe-in-pipe construction method with repair of old pipelines” (Abstracts of Annual Meeting of the Agricultural Civil Society of Japan 2005)

また、グラウト材の湿潤密度は0.5t/m3以下である。
なお、新管への浮力を考慮すれば、湿潤密度はグラウト材の比重を下げる点から小さければ小さいほど有効であるが、圧縮強度を材齢28日で500kN/m2以上確保しながら、湿潤密度の要件を同時に確保できる範囲として0.5t/m3以下にすることとした。
Further, the wet density of the grout material is 0.5 t / m 3 or less.
In consideration of the buoyancy to the new pipe, the wet density is more effective as it lowers the specific gravity of the grout material. However, the wet strength is maintained while securing the compressive strength of 500 kN / m 2 or more at the age of 28 days. The range in which the density requirement can be secured simultaneously is set to 0.5 t / m 3 or less.

気泡群等に含まれる空気のグラウト材全体に対する容積比は、65%以上であり、70%以上であることが好ましい。空気が容積比で65%以上混入させたグラウト材は、従来のグラウト材に比べて極めて低比重のものとなり、新管への浮力も極力小さくなって、浮力防止策も簡易なものとすることが出来たり、その浮力防止策を講じなくても良くなったりする。また、管の長いものを使用することができる。一方、空気の容積比の上限は、グラウト材の機能の低下を招かない範囲において、適宜に設定すれば良いが、施工管理上から80%以下とすると良い。   The volume ratio of air contained in the bubble group to the entire grout material is 65% or more, and preferably 70% or more. Grout material containing 65% or more of the volume by volume of air should have a very low specific gravity compared to conventional grouting materials, buoyancy to the new pipe should be minimized, and buoyancy prevention measures should be simplified. Can be made, and it is not necessary to take measures to prevent buoyancy. Also, a long tube can be used. On the other hand, the upper limit of the volume ratio of air may be set as appropriate within a range that does not cause deterioration of the function of the grout material.

なお、空気量をどのように定めるかについて付言すると、例えば、グラウト材1m3中、気泡群が600リットルの場合、残りの400リットルを硬化材(例えば、高炉セメントB種)と混練水で分け合うこととなる。この場合、下記表1のように、グラウト材の密度はその組成(硬化材と混練水の割合)によって異なり、これにより、気泡群の量と密度は一義的な関係にはないことがわかる。このため、気泡群の量と密度は他の構成(硬化材と混練水の割合)等に基づき適宜に決定する。 It should be noted that how to determine the amount of air, for example, if the bubble group is 600 liters in 1 m 3 of the grout material, the remaining 400 liters are shared with the hardener (for example, blast furnace cement type B) and the kneaded water. It will be. In this case, as shown in Table 1 below, it can be seen that the density of the grout material varies depending on its composition (the ratio of the curing material and the kneaded water), and thus the amount and density of the bubble groups are not uniquely related. For this reason, the amount and density of the bubble group are appropriately determined based on other configurations (the ratio of the curing material and the kneaded water).

Figure 2008121718
Figure 2008121718

また、グラウト材のフロー値には特に制限はなく、適用個所に応じて、所望するグラウト材の流動性を適宜に設定すればよい。例えば、140mm以下とする。
そのフロー値は、日本道路公団規格「エアモルタル及びエアミルクの試験方法(JHSA 313−1992)」のコンシステンシー試験方法のシリンダー法に準拠したものである。即ち、内径8cm高さ8cmのシリンダーに試料を入れ、引き抜き後の試料の底面の直径を測定したものである。
Moreover, there is no restriction | limiting in particular in the flow value of a grout material, What is necessary is just to set the fluidity | liquidity of a desired grout material suitably according to an application part. For example, it is set to 140 mm or less.
The flow value is based on the cylinder method of the consistency test method of the Japan Highway Public Corporation Standard “Test Method for Air Mortar and Air Milk (JHSA 313-1992)”. That is, the sample was placed in a cylinder having an inner diameter of 8 cm and a height of 8 cm, and the diameter of the bottom surface of the sample after being pulled out was measured.

グラウト材の製造方法は、起泡剤を溶かした希釈液と空気により気泡を製造した後、その気泡と上記混和剤を添加したミルクを混練するものである。
即ち、グラウト材に上記混和剤を添加することが必要である。
なお、上記方法によらず、混和剤を添加しない場合、グラウト材の物性は以下のとおりとなる。
一例として、下記表2に各種配合によるグラウト材を作り、その28日強度(28日材齢での圧縮強度)を試験した場合の結果を示す。
この試験結果のように、W/Cが60%以上(NO1〜NO6)では、従来のセメント、コンクリートの分野と同様に、硬化材の量が増せば、一軸圧縮強さ(28日強度)は増加するが、W/Cが55%以下(NO7〜NO12)では、硬化材の量が増しても一軸圧縮強さは低下する。
この理由は、硬化材が凝集し、均質に分散されないためであると考えられる。現に硬化材の量が多いNO7〜NO12の圧縮試験用供試体を観察すると、直径1mm程度の黒っぽい粒が多く見受けられることが確認できる。
In the method for producing a grout material, bubbles are produced by using a diluted solution in which a foaming agent is dissolved and air, and then the bubbles and the milk to which the admixture is added are kneaded.
That is, it is necessary to add the admixture to the grout material.
In addition, regardless of the above method, when no admixture is added, the physical properties of the grout material are as follows.
As an example, Table 2 below shows the results of making grout materials with various blends and testing their 28-day strength (compressive strength at 28-day material age).
As shown in this test result, when the W / C is 60% or more (NO1 to NO6), the uniaxial compressive strength (28-day strength) increases as the amount of the hardener increases as in the conventional cement and concrete fields. Although it increases, when W / C is 55% or less (NO7 to NO12), the uniaxial compressive strength decreases even if the amount of the hardener increases.
The reason for this is considered to be that the hardener aggregates and is not uniformly dispersed. When the specimens for compression test of NO7 to NO12 having a large amount of the curing material are observed, it can be confirmed that many dark grains having a diameter of about 1 mm are observed.

Figure 2008121718
Figure 2008121718

また、他の例として、下記表3のような配合のグラウト材1m3を作り、その28日強度(28日材齢での圧縮強度)を試験した場合の結果を示す。この結果においても、上記表2の実験結果と同様に、一軸圧縮強さ(28日強度)は、硬化材量が増加し、W/Cが低下すると、強度が低下している。 As another example, the results are shown in the case where a grout material 1 m 3 having the composition shown in Table 3 below is prepared and tested for its 28-day strength (compressive strength at 28-day age). Also in this result, like the experiment result of Table 2, the uniaxial compressive strength (28-day strength) decreases as the amount of the hardener increases and W / C decreases.

Figure 2008121718
Figure 2008121718

上記の例からわかるように、本発明においては、硬化材の凝集を防止し、グラウト材の強度を確保、増加させるために分散剤として混和剤を添加する。なお、分散剤は、一般的には、モルタル、コンクリートなどの流動性改善を目的として使用している。しかし、本発明では、グラウト材の流動性を良くするためではなく、気泡を混入した際の凝集防止として使用する。
また、本発明に係るグラウト材の製造方法においては、上記混和剤(分散剤)の添加方法は、気泡を混合する前のミルクに添加することが必要である。
これに対し、気泡を混合した後のミルクに上記混和剤を添加する方法(以下、単に「後添加」ともいう)では、硬化材の凝集を防止し、グラウト材の強度を確保するという効果が十分に得られない。
一例として、分散剤量を除き同一の配合で製造方法の異なる数種のグラウト材を作り、その物性を試験した場合の配合表、試験結果を表4に示す。
As can be seen from the above examples, in the present invention, an admixture is added as a dispersant in order to prevent aggregation of the curing material and to secure and increase the strength of the grout material. In addition, the dispersing agent is generally used for the purpose of improving fluidity of mortar, concrete, and the like. However, in the present invention, it is used not for improving the fluidity of the grout material but for preventing aggregation when bubbles are mixed.
Moreover, in the manufacturing method of the grout material which concerns on this invention, the addition method of the said admixture (dispersant) needs to add to the milk before mixing bubbles.
In contrast, the method of adding the above admixture to the milk after mixing the bubbles (hereinafter also simply referred to as “post-addition”) has the effect of preventing the aggregation of the hardener and ensuring the strength of the grout material. Not enough.
As an example, Table 4 shows the formulation table and test results when several types of grout materials with different production methods were prepared with the same formulation except for the amount of the dispersant, and the physical properties were tested.

Figure 2008121718
Figure 2008121718

なお、分散剤は、通常、後添加と呼ばれる最後に添加するのが最も効率的であり、そのことが一般的である。しかし、上記試験結果のとおり、本発明の配合割合では、最後に添加すると(表4 NO4〜5)、グラウト材の流動性を改善するのみで、硬化材の凝集防止に関しては十分ではない(表4 NO4〜5の「練り混ぜ時の状態」参照)。
これに対し、気泡を混合する前のミルクに添加する(表4 NO2〜3)と、ミルクは凝集もなく、良好なものであり、28日強度において満足のいける値を得ることができる(表4 NO2〜3の「練り混ぜ時の状態」及び「28日強度」参照)。
In addition, it is most efficient to add the dispersant at the end, which is usually called post-addition, and this is generally the case. However, as shown in the above test results, in the blending ratio of the present invention, when added at the end (Table 4 NO4 to 5), only the fluidity of the grout material is improved, and it is not sufficient for preventing aggregation of the hardened material (Table 4). 4 Refer to “No. 4-5“ State at the time of mixing ”).
On the other hand, when it is added to the milk before mixing the bubbles (Table 4 NO2 to 3), the milk is satisfactory without aggregation, and a satisfactory value can be obtained at 28 days strength (Table). 4 Refer to NO2-3 “State at the time of mixing” and “28 days strength”).

次に施工方法に関する実施形態を説明する。
本発明方法は、上記のグラウト材を、従来の種々の新配管と閉水路の間への充填用、又は開水路内に敷設された管の周りへの充填に使用するものであり、施工現場において、上記ミルク、起泡剤を溶かした希釈液、及び空気を、好ましくはその3系統でもって、それぞれ上記注入口に接続した注入パイプに介設した混練機に送り込み、その混練機により混練して低比重のグラウト材を製造し、そのグラウト材を上記新配管と水路の間に充填する等の方法を採用する。
Next, an embodiment related to a construction method will be described.
The method of the present invention uses the grout material described above for filling between various conventional new pipes and closed channels, or for filling around pipes laid in open channels. In the above, the milk, the diluting solution in which the foaming agent is dissolved, and the air, preferably in the three systems, are each sent to a kneading machine interposed in the injection pipe connected to the injection port and kneaded by the kneading machine. A low specific gravity grout material is manufactured, and the grout material is filled between the new pipe and the water channel.

一実施形態を図1(a)〜(f)、図2に示し、この実施形態は、図6で示した断面円形又は馬蹄形の農業用水トンネル水路(既設管・閉水路)A等内に強化プラスチック複合管(薄肉FRPM管)から成る新管Bを順々に挿入して、その各新管Bを継ぎ合わせて新配管B’を形成し、その新配管B’と閉水路Aの間に各新管Bの注入口(例えば、φ50mm)1を介してグラウト材aを充填するものである。
この新管Bの挿入、グラウト材aの充填用機材等は、農業用水トンネル水路Aの全長が一工区となり、その両端の出入口前に作業スペースHを確保して、それらの作業を行う。グラウト注入口1は、各新管Bにそれぞれ設ける必要はなく、グラウト材aの充填性を考慮して、1又は2、3・・新管B毎と任意である。
1 (a) to 1 (f) and FIG. 2 show an embodiment, and this embodiment is strengthened in an agricultural water tunnel channel (existing pipe / closed channel) A having a circular cross section or a horseshoe shape shown in FIG. New pipes B made of plastic composite pipes (thin-walled FRPM pipes) are inserted one after another, and the new pipes B are joined together to form new pipes B ′, and between the new pipes B ′ and the closed channel A The grout material a is filled through the inlet (for example, φ50 mm) 1 of each new tube B.
As for the equipment for inserting the new pipe B and filling the grout material a, the total length of the agricultural water tunnel A is one work area, and the work space H is secured before the entrances at both ends thereof to perform these operations. The grout inlet 1 does not have to be provided in each new pipe B, and is optional for each of the first, second, third, and new pipes B in consideration of the filling properties of the grout material a.

閉水路A内への新管Bの搬入(挿入)は、公知の搬送台車等を使用して適宜に行い、その新管Bの接続(継ぎ合わせ)も同様に、強化プラスチック複合管から成る管継手Cを用いる等の公知の手段を採用する(特許文献3等参照)。各新管Bはその継手部でもって閉水路Aに適宜な手段により固定する。
特開2001−21063号公報
Carrying in (inserting) the new pipe B into the closed channel A is appropriately performed using a known transport carriage or the like, and the connection (joining) of the new pipe B is similarly a pipe made of a reinforced plastic composite pipe. A known means such as using a joint C is employed (see Patent Document 3). Each new pipe B is fixed to the closed water channel A by an appropriate means with its joint.
Japanese Patent Laid-Open No. 2001-21063

閉水路A内への新管Bの搬送・接続が一工区(トンネル全長)に亘って完了すれば、図1(a)に示すように、その一工区の両端の閉水路Aと新管Bの端間にモルタル等により端部閉塞壁Dを形成してその間を閉塞する。その端部閉塞壁Dは、まず、最先の新管Bの先端と最終の新管Bの後端(新配管B’の両端)にモルタルバック(例えば、長さ:600mm)d1を取り付け、そのモルタルバックd1にグラウト材aを充填し、その固化後、セメント等の乾燥やひび割れ抵抗性に優れた材料をその壁の外側に充填して端面処理d2を行って形成する。   When the transfer and connection of the new pipe B into the closed channel A is completed over one work area (the entire length of the tunnel), as shown in FIG. 1A, the closed water path A and the new pipe B at both ends of the first work area. An end blockage wall D is formed between the two ends by a mortar or the like, and the gap is closed. The end clogging wall D is first attached with a mortar back (for example, length: 600 mm) d1 at the tip of the earliest new pipe B and the rear end of the final new pipe B (both ends of the new pipe B ′), The mortar bag d1 is filled with the grout material a, and after the solidification, a material excellent in drying and cracking resistance such as cement is filled on the outside of the wall, and the end surface treatment d2 is performed.

また、一方(図では右端)の端部閉塞壁Dにはその上部に排水口2を形成する。この排水口2の大きさ等は、後述の溜まり水bの排水性を実験・実際の施工などにおいて得られたデータによって適宜に決定する。なお、端部閉塞壁Dは他の公知の手段、例えば、発泡ウレタンなどの周知のものを採用することができる。   Moreover, the drainage port 2 is formed in the upper part in the edge part obstruction | occlusion wall D of one side (right end in a figure). The size or the like of the drain port 2 is appropriately determined based on the data obtained in experiments and actual construction, etc., for the drainage performance of the pool water b described later. Note that the end blocking wall D may employ other known means such as a well-known one such as urethane foam.

一工区の両端(新配管B’の両端)に端部閉塞壁Dが形成されれば、その工区の一方の端の作業スペースHに、グラウト材aの充填プラント機材Eを搬入し、そのプラント機材Eからグラウト材aの注入ホース10を新管B内に送り込む。
プラント機材Eは、種々の態様が考えられるが、例えば、図3に示すものとしたり、図4に示すように、トラックTにそのプラント機材Eを装備することにより、各施工現場に移動可能としたりすることができる。
このとき、端部閉塞壁Dは両端の形成を待たずとも、片側の閉塞壁Dが完成した時点でグラウト材aの注入ホース10の取り付け、引き続いて注入工程に入ることも可能である。この場合、最後に挿入した新管Bにグラウト材aが到達するまでの間に、端部閉塞壁Dを形成すればよい。
If end blockage walls D are formed at both ends of one work area (both ends of the new pipe B ′), the grout material a filling plant equipment E is carried into the work space H at one end of the work area, and the plant The injection hose 10 of grout material a is fed into the new pipe B from the equipment E.
The plant equipment E can have various modes. For example, as shown in FIG. 3 or as shown in FIG. 4, the plant equipment E can be moved to each construction site by installing the plant equipment E on the truck T. Can be.
At this time, the end closing wall D can be attached to the injection hose 10 of the grout material a and subsequently enter the injection step when the closing wall D on one side is completed without waiting for the formation of both ends. In this case, the end blockage wall D may be formed before the grout material a reaches the new tube B inserted last.

その注入ホース(注入パイプ)10は、プラント機材Eからグラウト材供給ホース11が一工区の閉水路A(新配管)の全長に亘って送り込み可能になっており、そのグラウト材供給ホース11の先端部に三方バルブ12を介して2本の注入ホース13a、13bを選択的に連通可能に接続したものである。   The injection hose (injection pipe) 10 is configured such that the grout material supply hose 11 can be fed from the plant equipment E over the entire length of the closed channel A (new pipe) in one work area. Two injection hoses 13a and 13b are connected to the part through a three-way valve 12 so as to be selectively communicated.

その供給ホース11のプラント機材E側にはブレンダー(混練機)14a、気泡製造装置14bが介設されており、気泡製造装置14bに起泡剤を溶かした希釈液c’と空気c”が送り込まれて混合されて気泡群cとなり、その気泡群cがミルクa’が送り込まれている混練機14aにさらに送り込まれ、この混練機14aにより、気泡群c(希釈液c’、空気c”)とミルクa’がさらに混練されて、その気泡群cの空気c”が、全体に対する容積比で、65%以上、80%以下のエアミルク(グラウト材)aが作られる。気泡製造装置14bを設けずに、起泡剤を溶かした希釈液c’と空気c”を他方の混練機14aに直接に送り込むこともできる。   A blender (kneader) 14a and a bubble production device 14b are interposed on the plant equipment E side of the supply hose 11, and a dilute c ′ and air c ″ in which a foaming agent is dissolved are fed into the bubble production device 14b. Are mixed into a bubble group c, and the bubble group c is further fed into the kneader 14a into which the milk a 'is fed. The kneader 14a causes the bubble group c (diluent c', air c "). And milk a ′ are further kneaded, and the air c ”of the bubble group c is 65% or more and 80% or less of air milk (grouting material) a by volume. The bubble production apparatus 14b is provided. Alternatively, the dilute solution c ′ in which the foaming agent is dissolved and the air c ″ can be directly fed into the other kneader 14a.

そのグラウト材aが三方バルブ12を介して2本の注入ホース13a、13bに選択的に送り込まれる。注入ホース13a、13bはその先端に接続金具15が設けられており、この接続金具15により、各新管Bの後端上部の注入口1に接続される。図中、16は供給ホース11に介設されたグラウト材aのリリーフバルブ、17は圧力計である。   The grout material a is selectively fed into the two injection hoses 13a and 13b through the three-way valve 12. The injection hose 13a, 13b is provided with a connection fitting 15 at its tip, and is connected to the injection port 1 at the upper rear end of each new tube B by this connection fitting 15. In the figure, 16 is a relief valve for the grout material a interposed in the supply hose 11, and 17 is a pressure gauge.

上記ミルクa’は、ミルク混練ミキサーにおいて硬化材と水が混練されるとともに混和剤が分散剤として添加されて圧送ポンプを介して、気泡群cの希釈液c’は、起泡剤(発泡剤)を溶かして気泡発生装置の送液ポンプから、気泡群cの空気c”はコンプレッサーから気泡発生装置を介して、それぞれ3系統に分けて上記混練機14a、気泡製造装置14bにそれぞれ送り込まれる(図3、4参照)。なお、グラウト材aの注入開始時には、JHS A313 フロー試験、及びJIS A1216 一軸圧縮強度試験で定められた試験により、そのグラウト材aがそれらの試験条件を満たしているか確認する。   The milk a ′ is prepared by mixing a hardening material and water in a milk kneading mixer and adding an admixture as a dispersant. ) And the air c ″ of the bubble group c is sent from the compressor to the kneader 14a and the bubble production device 14b through the bubble generation device in three systems, respectively ( (See Fig. 3 and 4.) At the start of injection of grout material a, it is confirmed whether the grout material a satisfies the test conditions by the tests specified in the JHS A313 flow test and the JIS A1216 uniaxial compressive strength test. To do.

新配管B’両端の閉水路Aと新管B間の端部閉塞壁Dによる閉塞が完了すれば、図1(b)に示すように、その注入ホース13a、13bの一方を一端の新管Bの注入口1に接続し、三方バルブ12により、その注入ホース13aにグラウト材aが送り込まれるようにした後、その一方の注入ホース13aにグラウト材aを送り込むと、グラウト材aは、その注入口1から閉水路Aと新管Bの間に入り込み、新管Bの上部から下部に向かい注入口1からある勾配をもって新配管B’と閉水路Aの間を流れて徐々に充填されながら、配管B’の他方の端部(次段の注入口1)に向かって流れる。このとき、注入圧力は、例えば、0.1MPaとする。   When the closing by the end blocking wall D between the closed water channel A and the new pipe B at both ends of the new pipe B ′ is completed, one of the injection hoses 13a and 13b is connected to the new pipe at one end as shown in FIG. After the grout material a is fed into the injection hose 13a by the three-way valve 12 after being connected to the B inlet 1 and the grout material a is fed into one of the injection hoses 13a, the grout material a It enters between the closed channel A and the new pipe B from the inlet 1 and flows from the inlet 1 to the lower side of the new pipe B with a certain gradient and flows between the new pipe B ′ and the closed channel A while being gradually filled. , And flows toward the other end (the next-stage inlet 1) of the pipe B ′. At this time, the injection pressure is, for example, 0.1 MPa.

この注入口1へのグラウト材aの注入が進み、図2に示すように、次段の注入口1(隣の新管Bの注入口1)にそのグラウト材aが至ってリークすれば、一方の注入ホース13aへのグラウト材aの送り込みを止めるとともに、他方の注入ホース13bを次段の注入口1に接続し、三方バルブ12によりその他方の注入ホース13bにグラウト材aを送り込んで、次段の注入口1から閉水路Aと新管Bの間にグラウト材aを送り込む。そのグラウト材aは、前述と同様に、その注入口1から閉水路Aと新管Bの間に入り込み、その間に徐々に充填されながら、新配管B’の他方の端部(次段の注入口1)に向かって流れる。   If the injection of the grout material a into the injection port 1 proceeds and, as shown in FIG. 2, the grout material a reaches the next injection port 1 (the injection port 1 of the adjacent new pipe B) and leaks, The feeding of the grout material a to the injection hose 13a is stopped, the other injection hose 13b is connected to the next injection port 1, and the grout material a is sent to the other injection hose 13b by the three-way valve 12, Grout material a is fed between the closed channel A and the new pipe B from the stage inlet 1. As described above, the grout material a enters between the closed channel A and the new pipe B from the inlet 1 and gradually fills between them, while the other end of the new pipe B ′ (the next stage note). Flows towards inlet 1).

このように、グラウト材aの充填を、次に注入する次段の注入口1からのグラウト材aのリークを確認した後、その次段の注入口1にグラウト材aの注入ホース13bを接続して注入することは、次段の注入口1からグラウト材aがリークすれば、その注入口1までグラウト材aが至ったことであり、その至った状態で、その次段の注入口1からグラウト材aを注入することとなるため、図2に示すように、次段の注入口1から送り込まれたグラウト材aが前段の注入口1に向かって進み、前段の注入口1からのグラウト材aの充填層との間に空気層を形成する恐れが殆んどなくなる。   Thus, after confirming the leakage of the grout material a from the next injection port 1 to be injected next, the injection hose 13b of the grout material a is connected to the injection port 1 of the next step. When the grout material a leaks from the next-stage injection port 1, the grout material a has reached the injection port 1, and in that state, the next-stage injection port 1. As shown in FIG. 2, the grout material a fed from the next-stage inlet 1 proceeds toward the previous-stage inlet 1, and from the previous-stage inlet 1, as shown in FIG. There is almost no risk of forming an air layer between the filled layer of the grout material a.

この作用を繰り返して、図1(d)に示すように、グラウト材aが他方の端部閉塞壁Dに至り、その壁D上部の排水口2からリークし(図1(e)参照)、やがて、新配管B’全長のグラウト材aの充填が終了する(図1(f))。これらの充填作業が終了すれば、注入ホース10等を除去して作業を終了する。   By repeating this action, as shown in FIG. 1 (d), the grout material a reaches the other end closed wall D and leaks from the drain port 2 at the top of the wall D (see FIG. 1 (e)). Eventually, the filling of the grout material a over the entire length of the new pipe B ′ is completed (FIG. 1 (f)). When these filling operations are completed, the injection hose 10 and the like are removed and the operation is completed.

このグラウト材aの充填作業が、新配管B’の一端から他端(一工区)まで、一日でいっきに行え得れば良いが、通常、その全長を一日で充填することは困難である。このため、数日に分けて行うことになるが、その場合には、図1(c)に示すように、一日の作業終了時には、グラウト材aの充填終了は、注入口1からのリーク確認直後とし(グラウト材aは点線の位置まで充填されている)、次の日の作業開始は、その注入口1からのグラウト材aの注入により、実線のごとく再開する。   The grout material a need only be filled in one day from one end of the new pipe B ′ to the other end (one work zone), but it is usually difficult to fill the entire length in one day. . For this reason, it is carried out in several days. In this case, as shown in FIG. 1C, at the end of the day's work, the end of filling of the grout material a is caused by leakage from the inlet 1. Immediately after confirmation (the grout material a is filled up to the position of the dotted line), the start of the next day is resumed as shown by the solid line by the injection of the grout material a from the inlet 1.

このようにすれば、上述の前段の注入口1から次段の注入口1へのグラウト材aの注入切り換えのように、一日の作業終了時には翌日に注入する注入口1までグラウト材aが至っており、その至った状態で、その注入口1からグラウト材aを注入することとなるため、翌日に送り込まれたグラウト材aが前日の最終の注入口1に向かって進んで、前日のグラウト材aの充填層との間に空気層を形成する恐れが殆んどなくなり、一日、作業を止めた支障はなくなる。この場合、作業をあける(止める)日数は一日に限らず、支障がない限りにおいて任意である。   In this way, the grout material a is supplied to the injection port 1 to be injected the next day at the end of the day's work, like the above-described injection switching of the grout material a from the preceding injection port 1 to the next injection port 1. In that state, the grout material a is injected from the inlet 1 so that the grout material a fed on the next day advances toward the final inlet 1 of the previous day, and the grout of the previous day There is almost no fear of forming an air layer with the packed layer of the material a, and the trouble of stopping the work for one day is eliminated. In this case, the number of days to open (stop) the work is not limited to one day, but is arbitrary as long as there is no trouble.

この実施形態において、グラウト材aを、例えば、表5に示す配合にすれば、流動性(フロー値により定まる性能であって、打設性能を支配する。)が良好、一軸強度(N/mm2):0.5以上、(圧縮)空気量(容量%):70程度、比重:0.5程度を得て、500m程度の新配管B’と閉水路Aの間に、グラスト材aを一気に打設してもその施工性に支障はない。   In this embodiment, for example, if the grout material a is blended as shown in Table 5, the fluidity (performance determined by the flow value and governs the casting performance) is good, and the uniaxial strength (N / mm 2). ): 0.5 or more, (compressed) air volume (volume%): about 70, specific gravity: about 0.5, and between the new pipe B 'of about 500 m and the closed channel A, the glazing material a is blown Even if it is placed, there is no problem in its workability.

Figure 2008121718
Figure 2008121718

しかし、このグラウト材aは、遮水性(硬化後の透水性能(遮水性能)を示す。)、滞水下施工性(閉水路内に多少の溜り水があっても、打ち込み時に材料分離を発生せず、かつ比重が大きいことから、水に潜り込むことで、水を押し出す性能)に劣るため、新配管B’と閉水路Aの間へのグラウト材aの充填につれて、新配管B’と閉水路Aの間の溜まり水bは押し出され難い。このため、上記排水口2から吸水するなどの手段を採用して、その溜まり水bの排出を適宜に行う。   However, this grout material a is water-impervious (shows the water permeability after curing (water-impervious performance)), and works under water (even if there is some accumulated water in the closed channel, the material is separated at the time of driving. Since it does not occur and the specific gravity is large, it is inferior to the ability to push out water by diving into water). Therefore, as the grout material a is filled between the new pipe B ′ and the closed channel A, the new pipe B ′ The accumulated water b between the closed channels A is difficult to be pushed out. For this reason, a means such as water absorption from the drain port 2 is adopted to appropriately discharge the accumulated water b.

実施形態は、農業用水トンネル水路Aの更新の場合であったが、本発明は、その農業用水トンネル水路Aの更新に限らず、上下水管などの既設管を更新すべく、その既設管を閉水路としてその中に新管を順々に挿入して新配管を形成する等の既設管更新方法やパイプインパイプ工法のみならず、既設の水路にパイプを施設するパイプイン水路工法などにおいても採用できることは言うまでもない。
そのとき、トンネル等の両端に開口部がある管路ではなく、水道管などの開口部がない管路では、例えば、立坑を形成し、その立坑にその新管B、各種の機材等を搬入して、新管Bの挿入・グラウト材aの充填を行う。
また、プラント機材Eは、新配管B’内に搬入可能なものとすることができる。
The embodiment is a case of updating the agricultural water tunnel channel A. However, the present invention is not limited to the updating of the agricultural water tunnel channel A, and the existing tube is closed to update the existing pipes such as the water and sewage pipes. Adopted not only in existing pipe renewal methods and pipe-in-pipe construction methods such as forming new pipes by inserting new pipes in order as water channels, but also in pipe-in water channel construction methods that install pipes in existing water channels Needless to say, you can.
At that time, for example, in a pipe with no opening such as a water pipe instead of a pipe having an opening at both ends of a tunnel or the like, a vertical shaft is formed, and the new pipe B and various equipments are carried into the vertical shaft. Then, the new tube B is inserted and the grout material a is filled.
In addition, the plant equipment E can be carried into the new pipe B ′.

さらに、図5に示すように、地盤に開削された溝(開水路)H内に敷設された管B(配管B’)の周りに、上記配合のグラウト材aを充填しても、上記実施形態と同様な作用効果を得ることができる。   Furthermore, as shown in FIG. 5, the above-described implementation is performed even when the grout material a having the above composition is filled around the pipe B (pipe B ′) laid in the groove (open channel) H cut in the ground. The same effect as the form can be obtained.

本発明の実施形態の作用説明図Action explanatory diagram of the embodiment of the present invention 同実施形態の作用説明図Action explanatory diagram of the same embodiment 同実施形態の作用説明図Action explanatory diagram of the same embodiment 同実施形態の作用説明図Action explanatory diagram of the same embodiment 同実施形態の作用説明図Action explanatory diagram of the same embodiment 同実施形態の作用説明図Action explanatory diagram of the same embodiment 同実施形態の作用説明用一部拡大図Partial enlarged view for explaining the operation of the embodiment 同実施形態のプラント機材の一例の概略図Schematic of an example of plant equipment of the same embodiment 同プラント機材の他例の概略断面図Schematic cross section of another example of the plant equipment 他の実施形態の断面図Cross-sectional view of another embodiment 従来例の断面図Cross section of conventional example 同一部切り欠き斜視図Same part cutaway perspective view

符号の説明Explanation of symbols

A 閉水路(農業用水トンネル水路、既設管)
B 新管
B’ 新配管
C 管継手
D 端部閉塞壁
H 溝(作業スペース)
a グラウト材(エアミルク)
a’ミルク
b 溜まり水
c 気泡群
c’ 起泡剤を溶かした希釈液
c” 空気
1 注入口
2 排水口
10 グラウト材注入ホース
11 グラウト材供給ホース
12 三方バルブ
13a、13b グラウト材注入ホース
14a ブレンダー(混練機)
14b 気泡製造装置
15 接続金具
16 リリーフバルブ
A Closed channel (agricultural water tunnel channel, existing pipe)
B New pipe B 'New pipe C Pipe fitting D End blockage wall H Groove (work space)
a Grout wood (air milk)
a′milk b pooled water c bubble group c ′ dilute solution c dissolving foaming agent ”air 1 inlet 2 drain port 10 grout material injection hose 11 grout material supply hose 12 three-way valve 13a, 13b grout material injection hose 14a blender (Kneading machine)
14b Bubble production device 15 Connection fitting 16 Relief valve

Claims (3)

閉水路(A)内に新管(B)を順々に挿入してその各新管(B)を継ぎ合わせて新配管(B’)を形成し、その新配管(B’)と前記閉水路(A)の間に新管(B)の注入口(1)を介してグラウト材(a)を充填する水路の改修方法であって、
上記グラウト材(a)として、硬化材、混練水及び混和剤からなりかつ該混和剤を分散剤として添加したミルク(a’)と、起泡剤入り希釈液(c’)及び空気(c”)からなる気泡群(c)とからなるものを用い、
上記グラウト材(a)の湿潤密度が0.5t/m3以下、同圧縮強度が材齢28日で500kN/m2以上、空気(c”)が容積比で65%以上、混練水の硬化材に対する重量比が55%以下としたものとし、
施工現場において、起泡剤を溶かした希釈液(c’)及び空気(c”)を気泡製造装置(14b)に送り込み、気泡製造後、その気泡と上記混和剤を添加したミルク(a’)を、それぞれ上記注入口(1)に接続した注入パイプ(10)に介設した混練機(14a)に送り込み、その混練機(14a)により混練して、上記組成の低比重のグラウト材(a)を製造し、そのグラウト材(a)を上記新配管(B’)と閉水路(A)の間に充填する水路の改修方法。
A new pipe (B) is inserted into the closed channel (A) one after another and the new pipes (B) are joined together to form a new pipe (B ′). The new pipe (B ′) and the closed pipe are closed. A method of repairing a water channel that fills grout material (a) through an inlet (1) of a new pipe (B) between water channels (A),
As the grout material (a), a milk (a ′) composed of a curing material, kneaded water and an admixture and added with the admixture as a dispersant, a dilute solution containing a foaming agent (c ′) and air (c ″) ) Using a bubble group (c) consisting of
The wet density of the grout material (a) is 0.5 t / m 3 or less, the compression strength is 500 kN / m 2 or more at the age of 28 days, the air (c ″) is 65% or more by volume ratio, and the kneaded water is cured. The weight ratio to the material shall be 55% or less,
At the construction site, the dilute solution (c ′) and air (c ″) in which the foaming agent is dissolved are sent to the bubble production device (14b), and after the production of the bubbles, the milk (a ′) to which the bubbles and the admixture are added. Are fed into a kneading machine (14a) interposed in an injection pipe (10) connected to the injection port (1), kneaded by the kneading machine (14a), and a low specific gravity grout material (a ) And filling the grout material (a) between the new pipe (B ′) and the closed channel (A).
開水路(H)内に管(B)を敷設し、当該管(B)の周りにグラウト材(a)を充填する水路の改修方法であって、
上記グラウト材(a)として、硬化材、混練水及び混和剤からなりかつ該混和剤を分散剤として添加したミルク(a’)と、起泡剤入り希釈液(c’)及び空気(c”)からなる気泡群(c)とからなるものを用い、
上記グラウト材(a)の湿潤密度が0.5t/m3以下、同圧縮強度が材齢28日で500kN/m2以上、空気(c”)が容積比で65%以上、混練水の硬化材に対する重量比が55%以下としたものとし、
施工現場において、起泡剤を溶かした希釈液(c’)及び空気(c”)を気泡製造装置(14b)に送り込み、気泡製造後、その気泡と上記混和剤を添加したミルク(a’)を、それぞれ上記注入口(1)に接続した注入パイプ(10)に介設した混練機(14a)に送り込み、その混練機(14a)により混練して、上記組成の低比重のグラウト材(a)を製造し、そのグラウト材(a)を上記管(B)の周りに充填する水路の改修方法。
A method of repairing a water channel in which a pipe (B) is laid in an open water channel (H) and the grout material (a) is filled around the tube (B),
As the grout material (a), a milk (a ′) composed of a curing material, kneaded water and an admixture and added with the admixture as a dispersant, a dilute solution containing a foaming agent (c ′) and air (c ″) ) Using a bubble group (c) consisting of
The wet density of the grout material (a) is 0.5 t / m 3 or less, the compression strength is 500 kN / m 2 or more at the age of 28 days, the air (c ″) is 65% or more by volume ratio, and the kneaded water is cured. The weight ratio to the material shall be 55% or less,
At the construction site, the dilute solution (c ′) and air (c ″) in which the foaming agent is dissolved are sent to the bubble production device (14b), and after the production of the bubbles, the milk (a ′) to which the bubbles and the admixture are added. Are fed into a kneading machine (14a) interposed in an injection pipe (10) connected to the injection port (1), kneaded by the kneading machine (14a), and a low specific gravity grout material (a ) And filling the grout material (a) around the pipe (B).
上記ミルク(a’)、上記希釈液(c’)及び空気(c”)をその3系統でもって上記混練機(14a)に送り込み、その混練機(14a)により混練することを特徴とする請求項1又は2に記載の水路の改修方法。 The milk (a ′), the diluent (c ′) and air (c ″) are fed into the kneading machine (14a) by the three systems and kneaded by the kneading machine (14a). Item 3. A method for repairing a waterway according to item 1 or 2.
JP2006303157A 2006-11-08 2006-11-08 Waterway repair method Active JP4536702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303157A JP4536702B2 (en) 2006-11-08 2006-11-08 Waterway repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303157A JP4536702B2 (en) 2006-11-08 2006-11-08 Waterway repair method

Publications (2)

Publication Number Publication Date
JP2008121718A true JP2008121718A (en) 2008-05-29
JP4536702B2 JP4536702B2 (en) 2010-09-01

Family

ID=39506691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303157A Active JP4536702B2 (en) 2006-11-08 2006-11-08 Waterway repair method

Country Status (1)

Country Link
JP (1) JP4536702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112196057A (en) * 2020-09-18 2021-01-08 长江生态环保集团有限公司 In-pipe grouting device and grouting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193648A (en) * 1989-12-22 1991-08-23 Sekisui Chem Co Ltd Cement-based filler composition and method for lining existing pipe
JPH09166242A (en) * 1995-12-15 1997-06-24 Sekisui Chem Co Ltd Construction method for pipe duct
JPH1171146A (en) * 1997-06-16 1999-03-16 Dai Ichi Kogyo Seiyaku Co Ltd Foaming agent for concrete
JP2003090026A (en) * 2001-09-17 2003-03-28 Sumitomo Osaka Cement Co Ltd Channel repair method
JP2004026530A (en) * 2002-06-21 2004-01-29 Daiichi Kasei Sangyo Kk Plastic lightweight grouting material, its producing process, and its filling construction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193648A (en) * 1989-12-22 1991-08-23 Sekisui Chem Co Ltd Cement-based filler composition and method for lining existing pipe
JPH09166242A (en) * 1995-12-15 1997-06-24 Sekisui Chem Co Ltd Construction method for pipe duct
JPH1171146A (en) * 1997-06-16 1999-03-16 Dai Ichi Kogyo Seiyaku Co Ltd Foaming agent for concrete
JP2003090026A (en) * 2001-09-17 2003-03-28 Sumitomo Osaka Cement Co Ltd Channel repair method
JP2004026530A (en) * 2002-06-21 2004-01-29 Daiichi Kasei Sangyo Kk Plastic lightweight grouting material, its producing process, and its filling construction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112196057A (en) * 2020-09-18 2021-01-08 长江生态环保集团有限公司 In-pipe grouting device and grouting method
CN112196057B (en) * 2020-09-18 2021-10-12 长江生态环保集团有限公司 In-pipe grouting device and grouting method

Also Published As

Publication number Publication date
JP4536702B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US6415824B2 (en) Method and composition for grouting water-flooded conduits
KR20070005645A (en) Concrete composition, process for producing the same, method of regulating viscosity, and method of constructing cast-in-place concrete pile from the concrete composition
KR101709125B1 (en) Rapid hardening and pseudo-plastic backfill material for sewer pipe and Constructing method using the same
CN100370171C (en) Excavation-free integral restoration method of underground conduit and inspection well
US20140221534A1 (en) Tunneling annulus grout
JP4944734B2 (en) Cement fixing material
JP3686888B2 (en) Gap filling material and gap filling method
KR100538513B1 (en) Construction method for repairing and reinforcing strip-lining pipeline
Ono Application of ultra‐high‐strength fiber‐reinforced concrete for irrigation channel repair works
JP5959096B2 (en) Grout material composition for existing pipe lining, cured product thereof, and lining construction method for existing pipe
JP4536702B2 (en) Waterway repair method
US20150027346A1 (en) Tunneling annulus grout
JP5334379B2 (en) Hollow steel pipe reinforcement method for power transmission tower
JP4264234B2 (en) Two-component filler for underground bonding
JP4651979B2 (en) Filler
JP2018150477A (en) Grout material and grout injection method
KR100891147B1 (en) Repairing and reinforcing method of pipe using linear strip-lining
KR102531971B1 (en) Soil strengthening and water blocking grouting method
JP2010018474A (en) Filler
JP4651403B2 (en) Filler
KR102531968B1 (en) Steel pipe simultaneous injection grouting method for tunnel construction
KR101010732B1 (en) Repairing and reinforcing method of pipe using linear strip-lining and filler composition
Brown et al. High performance concrete and drilled shaft construction
JP3999602B2 (en) Mechanical underground bonding method and two-component filling system
KR102513974B1 (en) Block type retaining wall construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4536702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250