JP2008121531A - Fluid ejector - Google Patents

Fluid ejector Download PDF

Info

Publication number
JP2008121531A
JP2008121531A JP2006305578A JP2006305578A JP2008121531A JP 2008121531 A JP2008121531 A JP 2008121531A JP 2006305578 A JP2006305578 A JP 2006305578A JP 2006305578 A JP2006305578 A JP 2006305578A JP 2008121531 A JP2008121531 A JP 2008121531A
Authority
JP
Japan
Prior art keywords
fuel
nozzle hole
injection
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006305578A
Other languages
Japanese (ja)
Inventor
Takashi Mizobuchi
剛史 溝渕
Norio Yamamoto
則夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006305578A priority Critical patent/JP2008121531A/en
Priority to DE200710000670 priority patent/DE102007000670B4/en
Publication of JP2008121531A publication Critical patent/JP2008121531A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/184Discharge orifices having non circular sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide stable spray atomization and stable jetting direction, by using "a fuel flow of large flow strength" heading a nozzle port inlet. <P>SOLUTION: In respective nozzle ports 7 formed in a nozzle port plate 3 of a fuel injection valve, a long wall 7a having the long wall surface length is arranged on the downstream side of "the fuel flow A of large flow strength" heading the nozzle port inlet, and a short wall 7b having the short wall surface length is arranged on the upstream side of "the fuel flow A of large flow strength" heading the nozzle port inlet. The side for strongly pressing fuel flowing in the nozzle ports 7 is arranged as the long wall 7a, and the fuel injection direction can be stabilized by lengthening a distance for restricting fuel. While, atomization of the fuel is improved and stabilized, by opening a repetitive flow of the fuel separating to the opposite side to the outside of the nozzle ports 7 by reflection by being strongly pressed to the long wall 7a without being straightened by a nozzle port wall, by arranging the opposite side of the side for strongly pressing the fuel in the nozzle ports 7 as the short wall 7b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、噴孔から流体を噴出する構造を備えた流体噴射装置に関するもので、特に噴孔プレートを備えた燃料噴射弁に適用して好適な技術に関する。   The present invention relates to a fluid injection device having a structure for ejecting fluid from an injection hole, and more particularly to a technique suitably applied to a fuel injection valve provided with an injection hole plate.

(従来技術)
発明の背景技術を、燃料噴射弁を例に説明する。
内燃機関(以下、エンジン)に装着されている燃料噴射弁は、直接あるいは間接的に燃料を燃焼室に供給するための装置であり、燃料噴射弁より噴射された燃料は吸気管あるいは燃焼室において空気と混合されて可燃混合気を形成する。
燃料噴射弁から噴射された噴射燃料と空気の混合状態が、エンジン性能に影響を及ぼす。
可燃混合気の燃焼状態を良好にする技術として、噴射燃料の微粒化が知られている。噴射燃料を微粒化する技術として、燃料噴射弁の先端に複数の噴孔を設けた噴孔プレートを配置して、噴射燃料の微粒化を向上させる技術が知られている(例えば、特許文献1参照)。
(Conventional technology)
Background Art of the Invention A fuel injection valve will be described as an example.
A fuel injection valve mounted on an internal combustion engine (hereinafter referred to as an engine) is a device for supplying fuel directly or indirectly to a combustion chamber, and fuel injected from the fuel injection valve is collected in an intake pipe or a combustion chamber. Mixed with air to form a combustible mixture.
The mixed state of the injected fuel and air injected from the fuel injection valve affects the engine performance.
As a technique for improving the combustion state of a combustible air-fuel mixture, atomization of injected fuel is known. As a technique for atomizing the injected fuel, a technique for improving atomization of the injected fuel by arranging an injection hole plate provided with a plurality of injection holes at the tip of the fuel injection valve is known (for example, Patent Document 1). reference).

噴孔から噴射される噴射燃料の微粒化を向上させる手段として、図8(b)に示すように、壁面長(噴孔流路の噴孔長)をL、噴孔径(噴孔の直径)をDとした場合、その比であるL/Dを小さくする技術が知られている。
このことを、図8(a)、(b)を参照し、噴孔径Dが同じで、壁面長Lのみを変化させた場合を例に説明する。
As means for improving atomization of the fuel injected from the nozzle hole, as shown in FIG. 8B, the wall length (the nozzle hole length of the nozzle hole channel) is L, and the nozzle hole diameter (the diameter of the nozzle hole). When D is D, a technique for reducing L / D as the ratio is known.
This will be described with reference to FIGS. 8A and 8B in the case where the nozzle hole diameter D is the same and only the wall length L is changed.

L/Dの大きさに関わらず、燃料は高い乱れエネルギーを内包しつつ、噴孔入口から噴孔内に流入する。噴孔内に流入した燃料を、「流れ強度の大きい燃料流A」の上流側と下流側で分けて説明する。
「流れ強度の大きい燃料流A」の上流側(図8左側)から噴孔内に流入した燃料により、噴孔壁の片側(「流れ強度の大きい燃料流A」の上流側:図8左側)では、流入燃料の離反が生じる。
一方、噴孔壁の他の片側(「流れ強度の大きい燃料流A」の下流側:図8右側)には、高い乱れエネルギーを内包した燃料が押し付けられる。そして、噴孔壁で反射して反対側への離反(反復流れ)が発生する。その後、燃料は下流側へ流れるに従い、高圧で押し付けられて広がる方向へ開放される。
Regardless of the magnitude of L / D, the fuel flows from the nozzle hole inlet into the nozzle hole while containing high turbulent energy. The fuel that has flowed into the nozzle hole will be described separately on the upstream side and the downstream side of “fuel flow A having a high flow strength”.
One side of the nozzle hole wall (upstream side of the “high flow strength fuel flow A”: left side of FIG. 8) by the fuel flowing into the nozzle hole from the upstream side (left side of FIG. 8) of the “high flow strength fuel flow A” Then, separation of inflow fuel occurs.
On the other hand, fuel containing high turbulent energy is pressed against the other side of the nozzle hole wall (the downstream side of the “fuel flow A having a high flow strength”: the right side in FIG. 8). And it reflects in a nozzle hole wall and the separation (repetitive flow) to the opposite side generate | occur | produces. Thereafter, as the fuel flows downstream, the fuel is pressed at a high pressure and released in a spreading direction.

ここで、図8(a)に示すように壁面長Lが長い場合(L/Dが大きい場合)、噴孔内の途中で開放された燃料(拡散力が与えられた燃料)が、下流側の噴孔壁によって整流され、噴孔の流入時に内包されていた乱れエネルギーが減衰するとともに、下流側の噴孔壁により燃料の広がり角が抑制される。その結果、噴射後に空気との接触面積が低減し、微粒子効果が低減する。
これに対し、図8(b)に示すように壁面長Lが短い場合(L/Dが小さい場合)、噴孔による整流効果を抑制できるため、噴孔の流入時に内包されていた乱れエネルギーが減衰することなく燃料の燃料分裂(拡散噴射)に使用され、燃料分裂した燃料は噴孔内で整流されることなく噴孔出口より噴射される。即ち、噴射燃料の広がり角が増大する。その結果、噴射後に空気との接触面積が増大し、微粒子効果が高まる。
Here, as shown in FIG. 8 (a), when the wall length L is long (L / D is large), the fuel released in the middle of the nozzle hole (fuel imparted with diffusing force) The turbulent energy contained in the nozzle hole is attenuated, and the spread angle of the fuel is suppressed by the downstream nozzle wall. As a result, the area of contact with air is reduced after injection, and the particulate effect is reduced.
On the other hand, as shown in FIG. 8B, when the wall length L is short (when L / D is small), the rectifying effect by the nozzle holes can be suppressed, so that the turbulent energy contained at the time of injection of the nozzle holes is reduced. The fuel is used for fuel splitting (diffusion injection) without being attenuated, and the fuel split fuel is injected from the nozzle hole outlet without being rectified in the nozzle hole. That is, the spread angle of the injected fuel increases. As a result, the area of contact with air increases after injection, and the fine particle effect is enhanced.

(従来技術の問題点)
しかしながら、従来技術のように、L/Dを単に小さくする技術では、噴孔壁によって燃料の流れ方向を拘束する距離が短くなるため、微粒子化効果は高まるものの、狙い通りの噴射方向(噴射到達距離を含む)、つまり設計した噴射角度通りの噴射方向が得られなくなる可能性がある。
このように、設計通りの噴射方向が得られない場合、噴射毎の噴射方向のバラツキ、個体間によるバラツキが増大するため、エンジン搭載時にサイクル間または気筒間で混合気分布のバラツキが引き起こされて、エンジン性能を損なう可能性がある。
(Problems of conventional technology)
However, in the technique of simply reducing L / D as in the prior art, the distance to restrict the fuel flow direction by the nozzle hole wall is shortened, so that the effect of atomization is enhanced, but the target injection direction (injection arrival) In other words, there is a possibility that the injection direction according to the designed injection angle cannot be obtained.
In this way, when the injection direction as designed is not obtained, the variation in the injection direction for each injection and the variation among individuals increase, and this causes a variation in the mixture distribution between cycles or cylinders when the engine is mounted. The engine performance may be impaired.

一方、他の従来技術として、燃料旋回手段を備えた燃料噴射弁(スワール式燃料噴射弁)に対し、噴孔出口の燃料集中部に切欠(段差)を設けて壁面長Lの一部を短くし、噴霧の広がり(ペネローション)の向上を図る技術が知られている(例えば、特許文献2参照)。
しかし、この他の従来技術は、噴孔出口の燃料集中部において噴孔の一部を短く設けるものであるため、燃料の流れ方向を拘束する距離が短くなり、噴射方向のバラツキが増大することが懸念される。
特開平11−70347号公報 特開2004−353661号公報
On the other hand, as another prior art, with respect to a fuel injection valve (swirl type fuel injection valve) provided with fuel swirling means, a notch (step) is provided in the fuel concentration portion at the nozzle hole outlet to shorten a part of the wall length L. In addition, a technique for improving the spread of spray (penetration) is known (see, for example, Patent Document 2).
However, in this other prior art, since a part of the nozzle hole is provided short in the fuel concentration part at the nozzle hole outlet, the distance for restraining the fuel flow direction is shortened, and the variation in the injection direction is increased. Is concerned.
JP-A-11-70347 JP 2004-353661 A

本発明は、上記問題点に鑑みてなされたものであり、その目的は、噴孔の流体入口に向かう「流れ強度の大きい流体」の流れ方向を利用して、安定した噴霧の微粒化と、安定した噴射方向とを得ることのできる流体噴射装置の提供にある。   The present invention has been made in view of the above problems, and its purpose is to make stable atomization of spray by utilizing the flow direction of `` fluid with high flow strength '' toward the fluid inlet of the nozzle hole, An object of the present invention is to provide a fluid ejection device capable of obtaining a stable ejection direction.

[請求項1の手段]
請求項1の手段を採用する流体噴射装置における噴孔の壁面長(噴孔入口から噴孔出口に至る噴孔流路の壁面長)は、噴孔入口に向かう「流れ強度の大きい流体」の流れ方向の下流側が、噴孔入口に向かう「流れ強度の大きい流体」の流れ方向の上流側より長く設けられる。
このように、噴孔内において流体が強く押し付けられる側の壁面長を長く設けることで、流体が強く押し付けられる側において流体を拘束する距離を長くでき、噴孔から噴射される流体の噴射方向を安定化することができる。
また、噴孔壁に流体が強く押し付けられる側とは反対側の壁面長を短く設けることで、噴孔壁に流体が強く押し付けられて反射により反対側へ離反する燃料の反復流れを噴孔壁が整流することなく噴孔外へ開放する。このため、噴孔から噴射される流体の噴霧の微粒化を安定化することができる。
即ち、請求項1の手段を採用することにより、安定した噴霧の微粒化と、安定した噴射方向とを得ることができる。
[Means of claim 1]
The wall length of the nozzle hole (wall wall length of the nozzle hole flow path from the nozzle hole inlet to the nozzle hole outlet) in the fluid ejecting apparatus employing the means of claim 1 is the “fluid with high flow strength” toward the nozzle hole inlet. The downstream side in the flow direction is provided longer than the upstream side in the flow direction of the “fluid with high flow strength” toward the nozzle hole inlet.
In this way, by providing a longer wall length on the side where the fluid is strongly pressed in the nozzle hole, the distance for restraining the fluid on the side where the fluid is strongly pressed can be increased, and the injection direction of the fluid injected from the nozzle hole can be changed. Can be stabilized.
In addition, by providing a short wall length opposite to the side on which the fluid is strongly pressed against the nozzle hole wall, the repeated flow of fuel that is strongly pressed against the nozzle hole wall and separates to the opposite side due to reflection is provided. Opens out of the nozzle hole without rectification. For this reason, atomization of the spray of the fluid injected from the nozzle hole can be stabilized.
That is, by adopting the means of claim 1, stable atomization of the spray and a stable injection direction can be obtained.

[請求項2の手段]
請求項2の手段は、請求項1の手段を燃料噴射弁に適用したものである。
これにより、噴孔から噴射される燃料の噴射方向を安定化することができるとともに、噴孔から噴射される燃料の微粒化を安定化することができる。
このように、燃料の噴射方向と微粒化とが安定化するため、噴射毎の噴射方向のバラツキや、個体間のバラツキを抑え、狙い通りの噴射方向および微粒化を得ることができ、エンジン搭載時にエンジン性能を損なう不具合がない。
[Means of claim 2]
The means of claim 2 is obtained by applying the means of claim 1 to a fuel injection valve.
Thereby, the injection direction of the fuel injected from the nozzle hole can be stabilized, and atomization of the fuel injected from the nozzle hole can be stabilized.
In this way, since the fuel injection direction and atomization are stabilized, variation in the injection direction for each injection and variation between individuals can be suppressed, and the intended injection direction and atomization can be obtained, and the engine is mounted. There are no problems that sometimes impair engine performance.

[請求項3の手段]
請求項3の手段を採用する流体噴射装置(燃料噴射弁)は、噴孔入口に向かう「流れ強度の大きい燃料流」の流れ方向が、弁部材の駆動軸方向から見て外周から内周に向かうものである。
[Means of claim 3]
In the fluid injection device (fuel injection valve) employing the means of claim 3, the flow direction of the “fuel flow with high flow strength” toward the nozzle hole inlet is from the outer periphery to the inner periphery when viewed from the drive shaft direction of the valve member. It's what you head for.

[請求項4の手段]
請求項4の手段を採用する流体噴射装置(燃料噴射弁)は、噴孔入口に向かう「流れ強度の大きい燃料流」の流れ方向が、弁部材の駆動軸方向から見て内周から外周に向かうものである。
[Means of claim 4]
In the fluid injection device (fuel injection valve) employing the means of claim 4, the flow direction of the “fuel flow with high flow strength” toward the nozzle hole inlet is from the inner periphery to the outer periphery as viewed from the drive shaft direction of the valve member. It's what you head for.

[請求項5の手段]
請求項5の手段を採用する流体噴射装置(燃料噴射弁)は、
噴孔流路の壁面長を長く設けた長壁の壁面長をL1、
噴孔流路の壁面長を短く設けた短壁の壁面長をL2、
噴孔の直径をDとすると、
1.5≦L1/D
0.5≦L2/D≦1.3
を満足するものである。
このように設けることで、噴孔から噴射される燃料の噴射方向を安定化することができるとともに、噴孔から噴射される燃料の微粒化を安定化することができる。
これにより、上記「請求項2の手段」で述べたように、燃料の噴射方向と微粒化とが安定化するため、噴射毎の噴射方向のバラツキや、個体間のバラツキを抑え、狙い通りの噴射方向および微粒化を得ることができ、エンジン搭載時にエンジン性能を損なう不具合がない。
[Means of claim 5]
A fluid injection device (fuel injection valve) employing the means of claim 5 is provided.
The wall length of the long wall provided with a long wall length of the nozzle hole channel is L1,
The wall length of the short wall provided with a short wall length of the nozzle hole channel is L2,
If the diameter of the nozzle hole is D,
1.5 ≦ L1 / D
0.5 ≦ L2 / D ≦ 1.3
Is satisfied.
By providing in this way, the injection direction of the fuel injected from the nozzle hole can be stabilized, and atomization of the fuel injected from the nozzle hole can be stabilized.
This stabilizes the fuel injection direction and atomization as described in the above-mentioned “Means of Claim 2”. Therefore, variation in the injection direction for each injection and variation between individuals are suppressed, and as intended. The injection direction and atomization can be obtained, and there is no problem that impairs engine performance when the engine is mounted.

[請求項6の手段]
請求項6の手段を採用する流体噴射装置(燃料噴射弁)は、
噴孔流路の壁面長を長く設けた長壁の周方向範囲をR1、
長壁の周方向範囲R1の周方向の円弧中心をR1xとすると、
長壁の円弧中心R1xは、噴孔入口に向かう「流れ強度の大きい燃料流」の流れの順方向に対して所定角度ずれて設けられる。
このように設けることにより、噴孔から噴射される燃料の噴射方向を、「流れ強度の大きい燃料流」の流れの順方向に対してずらすことができる。即ち、長壁を設ける範囲をコントロールすることで、噴孔から噴射される燃料の噴射方向をコントロールすることができる。
[Means of claim 6]
A fluid injection device (fuel injection valve) employing the means of claim 6 is provided.
The circumferential direction range of the long wall provided with a long wall surface length of the nozzle hole channel is R1,
If the circular arc center in the circumferential direction of the circumferential range R1 of the long wall is R1x,
The arcuate center R1x of the long wall is provided at a predetermined angle with respect to the forward direction of the “fuel flow with high flow strength” toward the nozzle hole inlet.
By providing in this way, the injection direction of the fuel injected from the nozzle hole can be shifted with respect to the forward direction of the “fuel flow with high flow strength”. That is, by controlling the range in which the long wall is provided, the injection direction of the fuel injected from the injection hole can be controlled.

[請求項7の手段]
請求項7の手段を採用する流体噴射装置(燃料噴射弁)は、
噴孔流路の壁面長を長く設けた長壁の周方向範囲をR1、
噴孔流路の壁面長を短く設けた短壁の周方向範囲をR2とすると、
噴孔の噴射方向が、噴孔入口に向かう「流れ強度の大きい燃料流」の流れの順方向に対して90°より大きい場合は、
R1>R2を満足し、
噴孔の噴射方向が、噴孔入口に向かう「流れ強度の大きい燃料流」の流れの順方向に対して90°より小さい場合は、
R1<R2を満足するものである。
このように設けることで、噴孔内において流体が強く押し付けられる範囲を長壁とし、長壁に燃料が押し付けられて反対側へ離反する側の範囲を短壁とすることができる。
[Means of Claim 7]
A fluid injection device (fuel injection valve) employing the means of claim 7 is provided.
The circumferential direction range of the long wall provided with a long wall surface length of the nozzle hole channel is R1,
If the circumferential direction range of the short wall with a short wall surface length of the nozzle hole channel is R2,
When the injection direction of the nozzle hole is larger than 90 ° with respect to the forward direction of the flow of the “fuel flow with high flow strength” toward the nozzle hole inlet,
R1> R2 is satisfied,
When the injection direction of the injection hole is smaller than 90 ° with respect to the forward direction of the flow of the “fuel flow with high flow strength” toward the injection hole inlet,
R1 <R2 is satisfied.
By providing in this way, the range in which the fluid is strongly pressed in the nozzle hole can be a long wall, and the range on the side where the fuel is pressed against the long wall and separated from the opposite side can be a short wall.

最良の形態1は、本発明を燃料噴射弁に適用したものである。
燃料噴射弁は、
(a)燃料通路を形成する内周面に環状の弁座を有する略筒形状を呈する弁ボディと、
(b)この弁ボディ内において軸方向に変位可能に設けられ、弁座に着座することで弁ボディ内において燃料通路を閉じ、弁座から離座することで弁ボディ内において燃料通路を開く弁部材と、
(c)弁座の下流に設けられ、弁部材の離座により燃料通路から供給された燃料(流体の一例)を噴射する噴孔が形成された噴孔プレート(噴孔形成部材の一例)とを備える。
In the best mode 1, the present invention is applied to a fuel injection valve.
The fuel injection valve
(A) a valve body having a substantially cylindrical shape having an annular valve seat on an inner peripheral surface forming a fuel passage;
(B) A valve provided in the valve body so as to be displaceable in the axial direction, and closes the fuel passage in the valve body by sitting on the valve seat and opens the fuel passage in the valve body by separating from the valve seat. A member,
(C) an injection hole plate (an example of an injection hole forming member) provided downstream of the valve seat and formed with injection holes for injecting fuel (an example of fluid) supplied from the fuel passage by separating the valve member; Is provided.

この燃料噴射弁は、噴孔プレートの上流側表面に沿う噴孔入口に向かう「流れ強度の大きい燃料流」の流れ方向に対し、噴孔の燃料噴射方向(噴孔の中心軸)が交差したものである。
そして、噴孔入口から噴孔出口に至る噴孔流路の壁面長は、噴孔入口に向かう「流れ強度の大きい燃料流」の流れ方向の下流側が、噴孔入口に向かう「流れ強度の大きい燃料流」の上流側より長く設けられる。即ち、噴孔入口に向かう「流れ強度の大きい燃料流」の下流側の噴孔壁を軸方向に長く設けた長壁とし、噴孔入口に向かう「流れ強度の大きい燃料流」の上流側の噴孔壁を軸方向に短く設けた短壁としたものである。
In this fuel injection valve, the fuel injection direction of the injection hole (the central axis of the injection hole) intersects the flow direction of the “fuel flow with high flow strength” toward the injection hole inlet along the upstream surface of the injection hole plate. Is.
The wall length of the nozzle hole channel from the nozzle hole inlet to the nozzle hole outlet is such that the downstream side in the flow direction of the “fuel flow with high flow strength” toward the nozzle hole inlet is “high flow strength” toward the nozzle hole inlet. It is provided longer than the upstream side of the “fuel flow”. That is, the nozzle wall on the downstream side of the “fuel flow with high flow strength” toward the nozzle hole inlet is a long wall provided in the axial direction, and the jet on the upstream side of the “fuel flow with high flow strength” toward the nozzle hole inlet. The hole wall is a short wall provided short in the axial direction.

本発明を燃料噴射弁(インジェクタ)に適用した実施例1を、図1〜図3を参照して説明する。
燃料噴射弁は、例えばエンジンの燃焼室に燃料を直接噴射するものであっても、エンジンの燃焼室に燃焼用の空気を供給する吸気管内に燃料を噴射するものであっても良い。
この燃料噴射弁の基本構造は周知なものであり、図2に示すように、弁ボディ1、ニードル2、噴孔プレート3を備える。
なお、以下では、実施例の説明のために、燃料噴射弁の燃料噴射側を下方、その反対側を上方として説明するが、実際のエンジンへの搭載方向とは関係ないものである。
A first embodiment in which the present invention is applied to a fuel injection valve (injector) will be described with reference to FIGS.
For example, the fuel injection valve may inject fuel directly into the combustion chamber of the engine, or may inject fuel into an intake pipe that supplies combustion air to the combustion chamber of the engine.
The basic structure of this fuel injection valve is well known, and includes a valve body 1, a needle 2, and an injection hole plate 3 as shown in FIG.
In the following description, the fuel injection side of the fuel injection valve is described as the lower side and the opposite side as the upper side for the description of the embodiment, but this is not related to the actual mounting direction on the engine.

弁ボディ1は、エンジンシリンダヘッドや吸気管に取り付けられるインジェクタハウジング(以下、ハウジング)の下部に固定されたものである。
ハウジングは、略筒状を呈するものであり、上側に燃料入口が設けられ、外部から加圧圧送された燃料が燃料入口を介してハウジング内に供給される。
弁ボディ1は、略円筒形状を呈するものであり、弁ボディ1の内周には、ハウジング内に供給された燃料が導かれる燃料通路4が形成される。
また、燃料通路4を成す弁ボディ1の内周面には、ニードル2が着座する環状の弁座5が形成されている。この弁座5は、弁ボディ1の下部をテーパ状に縮径した形状の弁座円錐面によって形成されている。
The valve body 1 is fixed to a lower portion of an injector housing (hereinafter referred to as a housing) attached to an engine cylinder head or an intake pipe.
The housing has a substantially cylindrical shape, a fuel inlet is provided on the upper side, and fuel pressurized and pressurized from the outside is supplied into the housing through the fuel inlet.
The valve body 1 has a substantially cylindrical shape, and a fuel passage 4 through which fuel supplied into the housing is guided is formed on the inner periphery of the valve body 1.
An annular valve seat 5 on which the needle 2 is seated is formed on the inner peripheral surface of the valve body 1 that forms the fuel passage 4. The valve seat 5 is formed by a valve seat conical surface having a shape obtained by reducing the diameter of the lower portion of the valve body 1 in a tapered shape.

ニードル2は、略棒状を呈し、ハウジング内(弁ボディ1内を含む)において軸方向へ変位可能に設けられている。
燃料噴射弁には、ハウジング内においてニードル2を軸方向(上下方向)へ駆動変位させる駆動手段が内蔵されている。この駆動手段は、電動アクチュエータ(電磁アクチュエータ、ピエゾアクチュエータ等)によりニードル2を軸方向へ直接駆動するタイプであっても良いし、ニードル2を軸方向へ駆動する油圧を電動バルブ(電磁弁、ピエゾアクチュエータ弁等)で制御する油圧駆動タイプであっても良い。
The needle 2 has a substantially rod shape and is provided so as to be displaceable in the axial direction in the housing (including the valve body 1).
The fuel injection valve incorporates drive means for drivingly displacing the needle 2 in the axial direction (vertical direction) within the housing. This driving means may be of a type in which the needle 2 is directly driven in the axial direction by an electric actuator (electromagnetic actuator, piezo actuator, etc.), and the hydraulic pressure for driving the needle 2 in the axial direction is an electric valve (electromagnetic valve, piezo). It may be a hydraulic drive type controlled by an actuator valve or the like.

ニードル2の下部は円柱形状を呈し、その下端には弁ボディ1の弁座5に着座して弁ボディ1内において燃料通路4を閉塞可能な当接部6が設けられている。この当接部6は、ニードル2の下部の円柱面と、ニードル2の下端に設けられたニードル円錐面との境部によって設けられている。なお、ニードル円錐面の円錐角は、上述した弁座円錐面の円錐角より大きいものである。このニードル円錐面の下端、即ちニードル2の下端は平坦に設けられており、ニードル2が弁座5に着座した状態で、ニードル2の下端が噴孔プレート3に接触しないように設けられている。   A lower portion of the needle 2 has a cylindrical shape, and a contact portion 6 is provided at the lower end of the needle 2 so as to be seated on the valve seat 5 of the valve body 1 and close the fuel passage 4 in the valve body 1. The abutting portion 6 is provided by a boundary portion between a cylindrical surface below the needle 2 and a needle conical surface provided at the lower end of the needle 2. The cone angle of the needle cone surface is larger than the cone angle of the valve seat cone surface described above. The lower end of the needle conical surface, that is, the lower end of the needle 2 is provided flat, and is provided so that the lower end of the needle 2 does not contact the nozzle hole plate 3 while the needle 2 is seated on the valve seat 5. .

噴孔プレート3は、弁座5の下流に設けられたものであり、溶接やリテーニングナット等の固定技術により、弁ボディ1の下端面に密着して固定されている。
この噴孔プレート3には、上面(弁ボディ1内に連通する面)と、下面(外部)とを連通する複数の噴孔7が形成されている。
噴孔7が形成されている位置について説明する。
この実施例1の噴孔7は、弁ボディ1の下端において内周径が最小となる部位xよりも内側に噴孔入口が設けられている。
The nozzle hole plate 3 is provided downstream of the valve seat 5 and is fixed in close contact with the lower end surface of the valve body 1 by a fixing technique such as welding or a retaining nut.
The nozzle hole plate 3 is formed with a plurality of nozzle holes 7 that communicate the upper surface (the surface communicating with the valve body 1) and the lower surface (the outside).
The position where the nozzle hole 7 is formed will be described.
The injection hole 7 of the first embodiment is provided with an injection hole inlet on the inner side of a portion x where the inner peripheral diameter is the smallest at the lower end of the valve body 1.

このため、ニードル2が弁座5から離座すると、弁座5と当接部6との間を通過して噴孔プレート3へ流入する燃料の流れ方向は、図2に示すように、ニードル2の駆動軸方向から見て外周から内周に向かう。即ち、ニードル2が離座すると、ニードル2の下端と噴孔プレート3の上面との間において、燃料が外周から内周に向かって供給される。
この結果、図1に示すように、噴孔プレート3の上面(噴孔形成部材の上流側表面に相当する)には、「流れ強度の大きい燃料流」が生じる。なお、以下では、「流れ強度の大きい燃料流」をAで示し、「流れ強度の小さい燃料流」をBで示す。
For this reason, when the needle 2 is separated from the valve seat 5, the flow direction of the fuel that passes between the valve seat 5 and the contact portion 6 and flows into the nozzle hole plate 3 is as shown in FIG. As viewed from the direction of the drive shaft 2, the outer periphery is directed to the inner periphery. That is, when the needle 2 is separated, the fuel is supplied from the outer periphery toward the inner periphery between the lower end of the needle 2 and the upper surface of the nozzle hole plate 3.
As a result, as shown in FIG. 1, a “fuel flow having a high flow strength” is generated on the upper surface of the nozzle hole plate 3 (corresponding to the upstream surface of the nozzle hole forming member). In the following, “a fuel flow having a high flow strength” is indicated by A, and “a fuel flow having a low flow strength” is indicated by B.

噴孔7は、噴孔プレート3を上下に貫通形成されたものであり、噴孔プレート3の上面に生じる「流れ強度の大きい燃料流A」の流れ方向に対し、噴孔7の燃料噴射方向(噴孔形成穴の軸方向)が交差して設けられている。具体的に、図2では、説明の一例として、噴孔7の噴射方向(噴孔プレート3の上面に対する噴孔形成穴の軸方向)が、噴孔入口に向かう「流れ強度の大きい燃料流A」の順方向(0°)に対して90°より大きく設けられる例を示すが、後述する実施例5(図7参照)に示すように、噴孔7の噴射方向は限定されるものではない。   The injection hole 7 is formed so as to penetrate the injection hole plate 3 in the vertical direction. (Axial direction of the nozzle hole forming hole) is provided to intersect. Specifically, in FIG. 2, as an example of the description, the injection direction of the injection hole 7 (the axial direction of the injection hole forming hole with respect to the upper surface of the injection hole plate 3) is directed toward the injection hole inlet. In the example shown in Example 5 (see FIG. 7) described later, the injection direction of the injection hole 7 is not limited. .

噴孔7は、噴孔プレート3において上面と下面を連通する穴であり、噴孔入口(噴孔7の上部開口)から噴孔出口(噴孔7の下部開口)に至る噴孔流路が形成される。
この噴孔流路の噴孔軸方向の長さを壁面長と称す。
この壁面長は、噴孔プレート3の上面において、噴孔入口に向かう「流れ強度の大きい燃料流A」の下流側(図1の右側)が、噴孔入口に向かう「流れ強度の大きい燃料流A]の上流側(図1の左側)より長く設けられている。
即ち、噴孔入口に向かう「流れ強度の大きい燃料流A」の下流側(この実施例では燃料噴射弁の中心軸に近い側:噴孔プレート3の内周側)の噴孔壁を軸方向に長く設けた長壁7aとし、噴孔入口に向かう「流れ強度の大きい燃料流A」の上流側(この実施例では燃料噴射弁の中心軸とは異なる側:噴孔プレート3の外周側)の噴孔壁を軸方向に短く設けた短壁7bとしたものである。
The nozzle hole 7 is a hole that connects the upper surface and the lower surface of the nozzle hole plate 3, and the nozzle hole channel that extends from the nozzle hole inlet (upper opening of the nozzle hole 7) to the nozzle hole outlet (lower opening of the nozzle hole 7). It is formed.
The length of the nozzle hole channel in the nozzle hole axis direction is referred to as the wall length.
The wall length is such that, on the upper surface of the nozzle hole plate 3, the downstream side (the right side of FIG. 1) of the “high flow strength fuel flow A” heading toward the nozzle hole inlet is the “high flow strength fuel stream” heading toward the nozzle hole inlet. A] is longer than the upstream side (the left side in FIG. 1).
That is, the nozzle hole wall on the downstream side (in this embodiment, the side close to the central axis of the fuel injection valve: the inner peripheral side of the nozzle hole plate 3) toward the nozzle hole inlet is axially directed. And a long wall 7a provided long on the upstream side of the "fuel flow A with high flow strength" toward the nozzle hole inlet (in this embodiment, the side different from the central axis of the fuel injection valve: the outer peripheral side of the nozzle hole plate 3). The nozzle hole wall is a short wall 7b that is short in the axial direction.

長壁7aと短壁7bは、図2に示すように、噴孔プレート3の厚みを下面側で変更することで形成している。具体的に、この実施例における複数の噴孔7は、噴孔プレート3の中心(燃料噴射弁の中心軸)の周囲に、所定間隔を隔てて輪状に形成されたものであり、噴孔プレート3の厚みを各噴孔出口を境に内周側を肉厚に設けることで、各噴孔7に上述した長壁7aと短壁7bとを形成している。
なお、噴孔出口における長壁7aと短壁7bの長さ変化は、図2(a)に示すように段差が設けられるものであっても良いし、図2(b)に示すように連続的に変化するものであっても良い。
As shown in FIG. 2, the long wall 7 a and the short wall 7 b are formed by changing the thickness of the nozzle hole plate 3 on the lower surface side. Specifically, the plurality of injection holes 7 in this embodiment are formed in a ring shape around the center of the injection hole plate 3 (the central axis of the fuel injection valve) at a predetermined interval. The above-described long wall 7a and short wall 7b are formed in each nozzle hole 7 by providing a thickness of 3 with the inner peripheral side being thicker with each nozzle hole outlet as a boundary.
In addition, the length change of the long wall 7a and the short wall 7b at the nozzle hole exit may be provided with a step as shown in FIG. 2 (a) or continuously as shown in FIG. 2 (b). It may change to.

従来技術で示したように、壁面長をL、噴孔径をDとした場合、L/Dを小さくすることで噴射燃料の微粒化を向上でき、L/Dを大きくすることで噴射方向の安定化を向上できる。燃料噴射弁におけるL/Dと噴射粒径との関係、およびL/Dと噴射方向の安定化との関係を、図3のグラフに示す。
この図3に示すように、
0.5≦L/D≦1.3の範囲で噴射燃料の微粒化が期待でき、
1.5≦L/Dの範囲で噴射燃料の安定化が期待できる。
As shown in the prior art, when the wall length is L and the nozzle hole diameter is D, atomization of the injected fuel can be improved by reducing L / D, and the injection direction can be stabilized by increasing L / D. Can be improved. The graph of FIG. 3 shows the relationship between L / D and the injection particle size and the relationship between L / D and stabilization of the injection direction in the fuel injection valve.
As shown in FIG.
In the range of 0.5 ≦ L / D ≦ 1.3, atomization of the injected fuel can be expected,
Stabilization of the injected fuel can be expected in the range of 1.5 ≦ L / D.

そこで、この実施例における長壁7aと短壁7bは、次の関係に設けられる。
噴孔流路の壁面長を長く設けた長壁7aの壁面長をL1、
噴孔流路の壁面長を短く設けた短壁7bの壁面長をL2、
噴孔7の直径をDとした場合、
1.5≦L1/D
0.5≦L2/D≦1.3
を満足するものである。
Therefore, the long wall 7a and the short wall 7b in this embodiment are provided in the following relationship.
The wall surface length of the long wall 7a provided with a long wall surface length of the nozzle hole channel is L1,
The wall length of the short wall 7b provided with a short wall surface length of the nozzle hole channel is L2,
When the diameter of the nozzle hole 7 is D,
1.5 ≦ L1 / D
0.5 ≦ L2 / D ≦ 1.3
Is satisfied.

実施例1の燃料噴射弁の各噴孔7は、上述したように、噴孔入口に向かう「流れ強度の大きい燃料流A」の下流側に壁面長の長い長壁7aが設けられ、噴孔入口に向かう「流れ強度の大きい燃料流A」の上流側に壁面長の短い短壁7bが設けられる。
このように、噴孔7内に流入した燃料が強く押し付けられる側を長壁7aとして設けることで、長壁7aに強く押し付けられた燃料を長い距離拘束することができ、噴孔7から噴射される流体の噴射方向を安定化することができる。即ち、燃料が強く押し付けられる長壁7aによって安定した噴射方向を得ることができる。
As described above, each nozzle hole 7 of the fuel injection valve of the first embodiment is provided with the long wall 7a having a long wall surface on the downstream side of the “fuel flow A having a large flow strength” toward the nozzle hole inlet. A short wall 7b having a short wall surface length is provided on the upstream side of the “fuel flow A having a high flow strength” toward the front.
In this way, by providing the long wall 7a on the side on which the fuel flowing into the injection hole 7 is strongly pressed, the fuel strongly pressed against the long wall 7a can be restrained for a long distance, and the fluid injected from the injection hole 7 The injection direction can be stabilized. That is, a stable injection direction can be obtained by the long wall 7a to which the fuel is strongly pressed.

一方、噴孔7内において燃料が強く押し付けられる側とは反対側を短壁7bとして設けることで、長壁7aに強く押し付けられて反射により反対側へ離反する燃料の反復流れを噴孔壁が整流せず、噴孔7の外へ開放する。即ち、長壁7aで反射した燃料は、短壁7bが妨げることなく外部に開放され、短壁7b側から噴射される燃料の霧化の向上および安定化が図られる。   On the other hand, the side opposite to the side where the fuel is strongly pressed in the nozzle hole 7 is provided as a short wall 7b, so that the nozzle wall rectifies the repetitive flow of fuel which is strongly pressed against the long wall 7a and separates to the opposite side by reflection. Without opening to the outside of the nozzle hole 7. That is, the fuel reflected by the long wall 7a is released to the outside without being interrupted by the short wall 7b, and the atomization of fuel injected from the short wall 7b side is improved and stabilized.

このように、実施例1の燃料噴射弁は、本発明が適用されることで、安定した噴霧の微粒化と、安定した噴射方向とを得ることができる。
そして、燃料の噴射方向と微粒化とが安定化することにより、噴射毎の噴射方向のバラツキや、個体間のバラツキを抑え、狙い通りの噴射方向および微粒化を得ることができ、エンジン搭載時にエンジン性能を損なう不具合がない。
Thus, the fuel injection valve of Example 1 can obtain the atomization of the stable spray and the stable injection direction by applying the present invention.
And by stabilizing the fuel injection direction and atomization, it is possible to suppress the variation in the injection direction for each injection and the variation between individuals, and to obtain the injection direction and atomization as intended. There are no problems that impair engine performance.

実施例2を図4を参照して説明する。なお、以下の実施例において、上記実施例と同一符号は、同一機能物を示すものである。
この実施例2に示す燃料噴射弁は、図4(b)に示すように、上記実施例1と同様、噴孔入口に向かう「流れ強度の大きい燃料流A」の流れ方向が、外周から内周に向かうものである。
A second embodiment will be described with reference to FIG. In the following examples, the same reference numerals as those in the above examples indicate the same functional objects.
As shown in FIG. 4B, the fuel injection valve shown in the second embodiment has a flow direction of the “fuel flow A having a high flow strength” toward the nozzle hole inlet from the outer periphery, as in the first embodiment. It goes to the lap.

そして、この実施例2は、図4(a)に示すように、長壁7aの周方向中心R1xを「流れ強度の大きい燃料流A」の流れの順方向(0°)からずらしたものである。
このことを言葉を代えて説明すると、
長壁7aの周方向範囲をR1、
長壁7aの周方向範囲R1の周方向中心(周方向の円弧中心)をR1xとした場合に、 噴孔入口に向かう「流れ強度の大きい燃料流A」の流れの順方向(0°)に対して、長壁7aの円弧中心R1xを所定角度ずらして設けたものである。
In the second embodiment, as shown in FIG. 4A, the circumferential center R1x of the long wall 7a is shifted from the forward direction (0 °) of the flow of “fuel flow A having a high flow strength”. .
Explaining this in words,
The circumferential range of the long wall 7a is R1,
When the circumferential center (circumferential arc center) of the circumferential range R1 of the long wall 7a is R1x, the forward direction (0 °) of the flow of “fuel flow A with high flow strength” toward the nozzle hole inlet Thus, the arc center R1x of the long wall 7a is shifted by a predetermined angle.

この実施例2に示すように、長壁7aの周方向中心R1xを「流れ強度の大きい燃料流A」の流れの順方向からずらして設けることにより、噴孔7から噴射される燃料の噴射方向を、「流れ強度の大きい燃料流A」の流れの順方向に対してずらすことができる。即ち、長壁7aを設ける範囲をコントロールすることで、噴孔7から噴射される燃料の噴射方向をコントロールすることができ、空気と霧化燃料の混合性を高めることができる。   As shown in the second embodiment, the circumferential direction center R1x of the long wall 7a is shifted from the forward direction of the flow of the “high flow strength fuel flow A”, whereby the injection direction of the fuel injected from the injection hole 7 is changed. , “The fuel flow A having a high flow strength” can be shifted with respect to the forward direction of the flow. That is, by controlling the range in which the long wall 7a is provided, the injection direction of the fuel injected from the injection hole 7 can be controlled, and the mixing property of air and atomized fuel can be improved.

実施例3を図5を参照して説明する。
上記の実施例1、2では、噴孔入口に向かう「流れ強度の大きい燃料流A」の流れ方向が、外周から内周に向かう例を示した。
これに対し、この実施例3は、噴孔入口に向かう「流れ強度の大きい燃料流A」の流れ方向が、内周から外周に向かうものである。
A third embodiment will be described with reference to FIG.
In the first and second embodiments, the flow direction of the “fuel flow A having a high flow strength” toward the nozzle hole inlet is directed from the outer periphery toward the inner periphery.
On the other hand, in the third embodiment, the flow direction of the “fuel flow A having a high flow strength” toward the nozzle hole inlet is directed from the inner periphery to the outer periphery.

この実施例3の燃料噴射弁は、図5に示すように、噴孔入口が、弁ボディ1の下端において内周径が最小となる部位xよりも外側に設けられており、噴孔プレート3の上面に形成された凹部3aによって噴孔プレート3の上面に供給された燃料を外周側の噴孔入口に導く構成を採用している。このため、噴孔入口に向かう「流れ強度の大きい燃料流A」の流れ方向が、内周から外周に向かうものである。   As shown in FIG. 5, in the fuel injection valve of the third embodiment, the injection hole inlet is provided outside the portion x where the inner peripheral diameter is minimum at the lower end of the valve body 1. A configuration is adopted in which the fuel supplied to the upper surface of the nozzle hole plate 3 is guided to the outer peripheral nozzle hole inlet by the recess 3a formed on the upper surface of the nozzle hole. For this reason, the flow direction of the “fuel flow A having high flow strength” toward the nozzle hole inlet is from the inner periphery to the outer periphery.

このため、この実施例3では、噴孔7の長壁7aは噴孔プレート3の外周側に設けられ、噴孔7の短壁7bは噴孔プレート3の内周側に設けられる。
なお、噴孔出口における長壁7aと短壁7bの長さ変化は、図5(a)に示すように段差が設けられるものであっても良いし、図5(b)に示すように連続的に変化するものであっても良い。
このように、噴孔入口に向かう「流れ強度の大きい燃料流A」の流れ方向が、内周から外周に向かうものであっても、実施例3の構成を採用することにより、実施例1と同様の効果を得ることができる。
Therefore, in the third embodiment, the long wall 7 a of the injection hole 7 is provided on the outer peripheral side of the injection hole plate 3, and the short wall 7 b of the injection hole 7 is provided on the inner peripheral side of the injection hole plate 3.
In addition, the length change of the long wall 7a and the short wall 7b at the nozzle hole exit may be provided with a step as shown in FIG. 5 (a) or continuously as shown in FIG. 5 (b). It may change to.
Thus, even when the flow direction of the “fuel flow A with high flow strength” toward the nozzle hole inlet is from the inner periphery to the outer periphery, the configuration of the third embodiment is adopted to Similar effects can be obtained.

実施例4を図6を参照して説明する。
この実施例4に示す燃料噴射弁は、図6(b)に示すように、上記実施例3と同様、噴孔入口に向かう「流れ強度の大きい燃料流A」の流れ方向が、内周から外周に向かうものである。
A fourth embodiment will be described with reference to FIG.
As shown in FIG. 6B, in the fuel injection valve shown in the fourth embodiment, the flow direction of the “fuel flow A having a high flow strength” toward the nozzle hole inlet is from the inner periphery as in the third embodiment. It goes to the outer periphery.

そして、この実施例4は、図6(a)に示すように、長壁7aの周方向中心R1xを「流れ強度の大きい燃料流A」の流れの順方向(0°)からずらしたものである。
このことを言葉を代えて説明すると、
長壁7aの周方向範囲をR1、
長壁7aの周方向範囲R1の周方向中心(周方向の円弧中心)をR1xとした場合に、 噴孔入口に向かう「流れ強度の大きい燃料流A」の流れの順方向(0°)に対して、長壁7aの周方向中心R1xを所定角度ずらして設けたものである。
In the fourth embodiment, as shown in FIG. 6A, the circumferential center R1x of the long wall 7a is shifted from the forward direction (0 °) of the flow of the “high flow strength fuel flow A”. .
Explaining this in words,
The circumferential range of the long wall 7a is R1,
When the circumferential center (circumferential arc center) of the circumferential range R1 of the long wall 7a is R1x, the forward direction (0 °) of the flow of “fuel flow A with high flow strength” toward the nozzle hole inlet Thus, the center R1x in the circumferential direction of the long wall 7a is shifted by a predetermined angle.

この実施例4に示すように、長壁7aの周方向中心R1xを「流れ強度の大きい燃料流A」の流れの順方向からずらして設けることにより、噴孔入口に向かう「流れ強度の大きい燃料流A」の流れ方向が、内周から外周に向かうものであっても、実施例4の構成を採用することにより、実施例2と同様の効果を得ることができる。   As shown in the fourth embodiment, the center R1x in the circumferential direction of the long wall 7a is shifted from the forward direction of the flow of “fuel flow A with high flow strength”, thereby providing “fuel flow with high flow strength toward the nozzle hole inlet”. Even if the flow direction of “A” is from the inner periphery to the outer periphery, the same effect as in the second embodiment can be obtained by adopting the configuration of the fourth embodiment.

実施例5を図7を参照して説明する。
上記の各実施例では、図7(a)に示すように、噴孔7の噴射方向(噴孔プレート3の上面に対する噴孔形成穴の軸方向)が、噴孔入口に向かう「流れ強度の大きい燃料流A」の順方向(0°)に対して90°より大きく設けられる例を示した。
しかるに、噴孔7の噴射方向は、図7(b)に示すように、噴孔7の噴射方向が、噴孔入口に向かう「流れ強度の大きい燃料流A」の順方向(0°)に対して略90°であっても良いし、図7(c)に示すように、噴孔7の噴射方向が、噴孔入口に向かう「流れ強度の大きい燃料流A」の順方向(0°)に対して90°より小さく設けられるものであっても良い。
A fifth embodiment will be described with reference to FIG.
In each of the above-described embodiments, as shown in FIG. 7A, the injection direction of the injection hole 7 (the axial direction of the injection hole forming hole with respect to the upper surface of the injection hole plate 3) moves toward the injection hole inlet. An example is shown in which a larger fuel flow A ”is provided than 90 ° with respect to the forward direction (0 °).
However, as shown in FIG. 7B, the injection direction of the injection hole 7 is such that the injection direction of the injection hole 7 is in the forward direction (0 °) of the “fuel flow A with high flow strength” toward the injection hole inlet. In contrast, as shown in FIG. 7C, the injection direction of the injection hole 7 is the forward direction of the “fuel flow A having a high flow strength” toward the injection hole inlet (0 °). ) May be provided smaller than 90 °.

そして、図7(a)に示すように、噴孔7の噴射方向が「流れ強度の大きい燃料流A」の順方向(0°)に対して90°より大きい場合は、図7(a’)に示すように、長壁7aの周方向範囲R1を、短壁7bの周方向範囲R2より長く設けるものである(R1>R2)。
また、図7(b)に示すように、噴孔7の噴射方向が「流れ強度の大きい燃料流A」の順方向(0°)に対して略90°の場合は、図7(b’)に示すように、長壁7aの周方向範囲R1と、短壁7bの周方向範囲R2とを、略同じに設けるものである(R1≒R2)。
さらに、図7(c)に示すように、噴孔7の噴射方向が「流れ強度の大きい燃料流A」の順方向(0°)に対して90°より小さい場合は、図7(c’)に示すように、長壁7aの周方向範囲R1を、短壁7bの周方向範囲R2より短く設けるものである(R1<R2)。
Then, as shown in FIG. 7A, when the injection direction of the nozzle hole 7 is larger than 90 ° with respect to the forward direction (0 °) of the “fuel flow A with high flow strength”, FIG. ), The circumferential range R1 of the long wall 7a is longer than the circumferential range R2 of the short wall 7b (R1> R2).
Further, as shown in FIG. 7B, when the injection direction of the nozzle hole 7 is approximately 90 ° with respect to the forward direction (0 °) of “the fuel flow A having a high flow strength”, FIG. ), The circumferential range R1 of the long wall 7a and the circumferential range R2 of the short wall 7b are provided approximately the same (R1≈R2).
Further, as shown in FIG. 7C, when the injection direction of the nozzle hole 7 is smaller than 90 ° with respect to the forward direction (0 °) of the “fuel flow A having a high flow strength”, FIG. ), The circumferential range R1 of the long wall 7a is shorter than the circumferential range R2 of the short wall 7b (R1 <R2).

このように設けることで、噴孔7内において流体が強く押し付けられる範囲を長壁7aにでき、且つ長壁7aに燃料が押し付けられて反対側へ離反する側の範囲を短壁7bとすることができ、噴孔7の噴射方向に関わらず、長壁7aと短壁7bとにより、安定した噴霧の微粒化と、安定した噴射方向とを得ることができる。   By providing in this way, the range in which the fluid is strongly pressed in the nozzle hole 7 can be the long wall 7a, and the range on the side where the fuel is pressed against the long wall 7a and away from the opposite side can be the short wall 7b. Regardless of the injection direction of the injection hole 7, the long wall 7a and the short wall 7b can provide stable atomization of the spray and a stable injection direction.

〔変形例〕
上記の実施例では、噴孔プレート3を備える燃料噴射弁(例えば、ガソリンエンジンに搭載される燃料噴射弁)に本発明を適用する例を示したが、弁座5が形成される弁ボディ1(ノズルボディ)に直接的に噴孔7が形成される燃料噴射弁(例えば、ディーゼルエンジンに搭載される燃料噴射弁)に本発明を適用しても良い。
[Modification]
In the above-described embodiment, an example in which the present invention is applied to a fuel injection valve (for example, a fuel injection valve mounted on a gasoline engine) provided with an injection hole plate 3 has been described, but a valve body 1 in which a valve seat 5 is formed. You may apply this invention to the fuel injection valve (for example, fuel injection valve mounted in a diesel engine) in which the nozzle hole 7 is directly formed in (nozzle body).

上記の実施例では、本発明を燃料噴射弁に適用する例を示したが、本発明は、燃料に関わらず、噴射流体の安定した噴霧の微粒化と、安定した噴射方向とを得ることができる技術であり、燃料噴射弁とは異なる他の噴射装置(例えば、被加工物に蒸着物質を噴射する噴射ノズル等)に本発明を適用しても良い。   In the above embodiment, the example in which the present invention is applied to the fuel injection valve has been shown. However, the present invention can obtain a stable atomization of the spray fluid and a stable injection direction regardless of the fuel. The present invention may be applied to another injection device (for example, an injection nozzle that injects a vapor deposition material onto a workpiece) that is a technique that can be used and is different from a fuel injection valve.

噴孔プレートに形成された噴孔を示す断面図である(実施例1)。It is sectional drawing which shows the nozzle hole formed in the nozzle hole plate (Example 1). 燃料噴射弁の燃料噴射部を示す要部断面図である(実施例1)。It is principal part sectional drawing which shows the fuel-injection part of a fuel injection valve (Example 1). L/Dと噴射粒径の関係、L/Dと噴射方向の安定化の関係を示すグラフである(実施例1)。It is a graph which shows the relationship between L / D and the injection particle size, and the relationship between L / D and stabilization of an injection direction (Example 1). ニードルの駆動方向から見た燃料流と噴孔との関係を示す説明図、および燃料噴射弁の燃料噴射部を示す要部断面図である(実施例2)。It is explanatory drawing which shows the relationship between the fuel flow seen from the drive direction of the needle, and a nozzle hole, and principal part sectional drawing which shows the fuel-injection part of a fuel injection valve (Example 2). 燃料噴射弁の燃料噴射部を示す要部断面図である(実施例3)。(Example 3) which is principal part sectional drawing which shows the fuel-injection part of a fuel injection valve. ニードルの駆動方向から見た燃料流と噴孔との関係を示す説明図、および燃料噴射弁の燃料噴射部を示す要部断面図である(実施例4)。(Example 4) which is explanatory drawing which shows the relationship between the fuel flow seen from the drive direction of a needle, and a nozzle hole, and the principal part which shows the fuel-injection part of a fuel-injection valve. 噴孔の噴射方向と長壁および短壁の範囲の関係を示す説明図である(実施例5)。It is explanatory drawing which shows the relationship between the injection direction of a nozzle hole, and the range of a long wall and a short wall (Example 5). 噴孔プレートに形成された噴孔を示す断面図である(従来例)。It is sectional drawing which shows the nozzle hole formed in the nozzle hole plate (conventional example).

符号の説明Explanation of symbols

1 弁ボディ
2 ニードル(弁部材)
3 噴孔プレート(噴孔形成部材)
4 燃料通路
5 弁座
7 噴孔
7a 長壁
7b 短壁
A 流れ強度の大きい燃料流(噴孔入口に向かう流れ強度の大きい流体の流れ)
B 流れ強度の小さい燃料流(噴孔入口に向かう流れ強度の小さい流体の流れ)
D 噴孔の直径
L1 長壁の壁面長
L2 短壁の壁面長
R1 長壁の周方向範囲
R1x 長壁の周方向中心(円弧中心)
R2 短壁の周方向範囲
1 Valve body 2 Needle (Valve member)
3 injection hole plate (hole formation member)
4 Fuel passage 5 Valve seat 7 Injection hole 7a Long wall 7b Short wall A Fuel flow with high flow strength (flow of fluid with high flow strength toward the injection hole inlet)
B Fuel flow with low flow strength (flow of fluid with low flow strength toward the nozzle hole inlet)
D Diameter of the nozzle hole L1 Wall length L2 of the long wall Wall length R1 of the short wall R1 circumferential range of the long wall R1x Center of the long wall in the circumferential direction (arc center)
R2 Short wall circumferential range

Claims (7)

流体の噴射を行う噴孔が形成された噴孔形成部材を備え、
この噴孔形成部材の上流側表面に沿った前記噴孔の流体入口に向かう流れ強度の大きい流体の流れ方向と、前記噴孔の流体噴射方向とが交差して形成された流体噴射装置において、
前記噴孔の流体入口から流体出口に至る噴孔流路の壁面長は、
前記流体入口に向かう流れ強度の大きい流体の流れ方向の下流側が、前記流体入口に向かう流れ強度の大きい流体の流れ方向の上流側より長く設けられていることを特徴とする流体噴射装置。
An injection hole forming member formed with an injection hole for injecting fluid;
In the fluid ejecting apparatus formed by intersecting the flow direction of the fluid having a large flow strength toward the fluid inlet of the nozzle hole along the upstream surface of the nozzle hole forming member and the fluid jet direction of the nozzle hole,
The wall length of the nozzle passage from the fluid inlet to the fluid outlet of the nozzle hole is
A fluid ejecting apparatus, wherein a downstream side in a flow direction of a fluid having a high flow strength toward the fluid inlet is provided longer than an upstream side in a flow direction of the fluid having a high flow strength toward the fluid inlet.
請求項1に記載の流体噴射装置において、
この流体噴射装置は、燃料の噴射を行う燃料噴射弁に適用されるものであり、
この燃料噴射弁は、
(a)燃料通路を形成する内周面に環状の弁座を有する弁ボディと、
(b)この弁ボディ内において軸方向に変位可能に設けられ、前記弁座に着座することで前記弁ボディ内において前記燃料通路を閉じ、前記弁座から離座することで前記弁ボディ内において前記燃料通路を開く弁部材と、
(c)前記噴孔形成部材に相当するものであり、前記弁座の下流に設けられ、前記弁部材の離座により前記燃料通路から供給された燃料を噴射する前記噴孔が形成された噴孔プレートと、
を備えることを特徴とする流体噴射装置。
The fluid ejection device according to claim 1,
This fluid injection device is applied to a fuel injection valve that injects fuel,
This fuel injection valve
(A) a valve body having an annular valve seat on an inner peripheral surface forming a fuel passage;
(B) It is provided in the valve body so as to be displaceable in the axial direction, and the fuel passage is closed in the valve body by being seated on the valve seat, and in the valve body by being separated from the valve seat. A valve member for opening the fuel passage;
(C) An injection nozzle that corresponds to the injection hole forming member and that is provided downstream of the valve seat and in which the injection hole for injecting fuel supplied from the fuel passage by the seating of the valve member is formed. A hole plate,
A fluid ejecting apparatus comprising:
請求項2に記載の流体噴射装置において、
前記噴孔の流体入口に向かう流れ強度の大きい燃料流の流れ方向は、前記弁部材の駆動軸方向から見て外周から内周に向かうことを特徴とする流体噴射装置。
The fluid ejection device according to claim 2,
The fluid ejecting apparatus according to claim 1, wherein the flow direction of the fuel flow having a high flow strength toward the fluid inlet of the nozzle hole is directed from the outer periphery to the inner periphery as viewed from the drive shaft direction of the valve member.
請求項2に記載の流体噴射装置において、
前記噴孔の流体入口に向かう流れ強度の大きい燃料流の流れ方向は、前記弁部材の駆動軸方向から見て内周から外周に向かうことを特徴とする流体噴射装置。
The fluid ejection device according to claim 2,
A fluid ejecting apparatus, wherein a flow direction of a fuel flow having a high flow strength toward a fluid inlet of the nozzle hole is directed from an inner periphery to an outer periphery as viewed from a drive shaft direction of the valve member.
請求項2〜請求項4のうちのいずれかに記載の流体噴射装置において、
前記噴孔流路の壁面長を長く設けた長壁の壁面長をL1、
前記噴孔流路の壁面長を短く設けた短壁の壁面長をL2、
前記噴孔の直径をDとすると、
1.5≦L1/D
0.5≦L2/D≦1.3
を満足することを特徴とする流体噴射装置。
In the fluid ejection device according to any one of claims 2 to 4,
The wall length of the long wall provided with a long wall length of the nozzle hole channel is L1,
The wall length of a short wall provided with a short wall length of the nozzle hole channel is L2,
If the diameter of the nozzle hole is D,
1.5 ≦ L1 / D
0.5 ≦ L2 / D ≦ 1.3
A fluid ejecting apparatus characterized by satisfying
請求項2〜請求項5のうちのいずれかに記載の流体噴射装置において、
前記噴孔流路の壁面長を長く設けた長壁の周方向範囲をR1、
前記長壁の周方向範囲R1の周方向の円弧中心をR1xとすると、
前記長壁の円弧中心R1xは、前記噴孔の流体入口に向かう流れ強度の大きい燃料流の流れの順方向に対して所定角度ずれて設けられることを特徴とする流体噴射装置。
In the fluid ejection device according to any one of claims 2 to 5,
The circumferential direction range of the long wall provided with a long wall surface length of the nozzle hole channel is R1,
When the arc center in the circumferential direction of the circumferential range R1 of the long wall is R1x,
The long wall circular arc center R1x is provided at a predetermined angle with respect to a forward direction of a fuel flow having a high flow strength toward the fluid inlet of the nozzle hole.
請求項2〜請求項6のうちのいずれかに記載の流体噴射装置において、
前記噴孔流路の壁面長を長く設けた長壁の周方向範囲をR1、
前記噴孔流路の壁面長を短く設けた短壁の周方向範囲をR2とすると、
前記噴孔の噴射方向が、前記噴孔の流体入口に向かう流れ強度の大きい燃料流の流れの順方向に対して90°より大きい場合は、
R1>R2を満足し、
前記噴孔の噴射方向が、前記噴孔の流体入口に向かう流れ強度の大きい燃料流の流れの順方向に対して90°より小さい場合は、
R1<R2を満足する
ことを特徴とする流体噴射装置。
In the fluid ejection device according to any one of claims 2 to 6,
The circumferential direction range of the long wall provided with a long wall surface length of the nozzle hole channel is R1,
If the circumferential direction range of the short wall provided with a short wall surface length of the nozzle hole channel is R2,
When the injection direction of the nozzle hole is larger than 90 ° with respect to the forward direction of the fuel flow having a high flow intensity toward the fluid inlet of the nozzle hole,
R1> R2 is satisfied,
When the injection direction of the nozzle hole is smaller than 90 ° with respect to the forward direction of the flow of fuel flow having a high flow strength toward the fluid inlet of the nozzle hole,
A fluid ejecting apparatus satisfying R1 <R2.
JP2006305578A 2006-11-10 2006-11-10 Fluid ejector Pending JP2008121531A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006305578A JP2008121531A (en) 2006-11-10 2006-11-10 Fluid ejector
DE200710000670 DE102007000670B4 (en) 2006-11-10 2007-11-09 Fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305578A JP2008121531A (en) 2006-11-10 2006-11-10 Fluid ejector

Publications (1)

Publication Number Publication Date
JP2008121531A true JP2008121531A (en) 2008-05-29

Family

ID=39277779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305578A Pending JP2008121531A (en) 2006-11-10 2006-11-10 Fluid ejector

Country Status (2)

Country Link
JP (1) JP2008121531A (en)
DE (1) DE102007000670B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096199A (en) * 2015-11-26 2017-06-01 日立オートモティブシステムズ株式会社 Fuel injection valve
JP2019116896A (en) * 2019-03-19 2019-07-18 株式会社Soken Fuel injection valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011007885A1 (en) * 2011-04-21 2012-10-25 Continental Automotive Gmbh Nozzle assembly for an injection valve and injection valve
EP2896811B1 (en) 2014-01-15 2016-10-19 Continental Automotive GmbH Nozzle assembly and fuel injection valve for a combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137931A (en) * 2002-10-16 2004-05-13 Mitsubishi Electric Corp Fuel injection valve
JP2006105003A (en) * 2004-10-04 2006-04-20 Keihin Corp Fuel injection valve and method of processing fuel injection hole in it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750768B2 (en) * 1996-10-25 2006-03-01 株式会社デンソー Fluid injection nozzle
JP2004353661A (en) * 2003-05-01 2004-12-16 Hitachi Ltd Fuel injection valve and cylinder injection type internal combustion engine having it
US7198207B2 (en) * 2004-11-05 2007-04-03 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137931A (en) * 2002-10-16 2004-05-13 Mitsubishi Electric Corp Fuel injection valve
JP2006105003A (en) * 2004-10-04 2006-04-20 Keihin Corp Fuel injection valve and method of processing fuel injection hole in it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096199A (en) * 2015-11-26 2017-06-01 日立オートモティブシステムズ株式会社 Fuel injection valve
WO2017090308A1 (en) * 2015-11-26 2017-06-01 日立オートモティブシステムズ株式会社 Fuel injection valve
JP2019116896A (en) * 2019-03-19 2019-07-18 株式会社Soken Fuel injection valve

Also Published As

Publication number Publication date
DE102007000670B4 (en) 2010-06-24
DE102007000670A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
US9587608B2 (en) Valve for a flowing fluid
KR100482712B1 (en) Direct injection fuel injector and internal combustion engine mounting the same
JP4233754B2 (en) Flat head needle of pressurized vortex fuel injector
JP5875443B2 (en) Fuel injection valve
WO2012086003A1 (en) Fuel injection valve
JPH01271656A (en) Fuel injection valve
US7104475B2 (en) Low pressure fuel injector nozzle
JP2012246897A (en) Fuel injector
US9328706B2 (en) Fuel injector
US7185831B2 (en) Low pressure fuel injector nozzle
JP2004353661A (en) Fuel injection valve and cylinder injection type internal combustion engine having it
US10975822B2 (en) Nozzle head and fluid injection valve
JP2008121531A (en) Fluid ejector
US6915968B2 (en) Fuel injector
JP2011220132A (en) Fuel injection valve
JP5610079B2 (en) Fuel injection valve
JP2006207452A (en) Fuel injection valve
JP2009257216A (en) Fuel injection valve
JP2004332543A (en) Fuel injection valve
JPWO2018101118A1 (en) Fuel injection device
JP2015078603A (en) Fuel injection valve
JP2000038974A (en) Fluid injection nozzle
JP2004332657A (en) Fuel injection valve
JP2010084755A (en) Fuel jet nozzle
JP2005282420A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713