JP2008119739A - Method for quantitatively judging risk of rupture of worked article and die designing method using the same method - Google Patents

Method for quantitatively judging risk of rupture of worked article and die designing method using the same method Download PDF

Info

Publication number
JP2008119739A
JP2008119739A JP2006308797A JP2006308797A JP2008119739A JP 2008119739 A JP2008119739 A JP 2008119739A JP 2006308797 A JP2006308797 A JP 2006308797A JP 2006308797 A JP2006308797 A JP 2006308797A JP 2008119739 A JP2008119739 A JP 2008119739A
Authority
JP
Japan
Prior art keywords
breakage
risk
workpiece
occurrence
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006308797A
Other languages
Japanese (ja)
Other versions
JP4958083B2 (en
Inventor
Hajime Uemura
元 植村
Tetsuya Kondo
哲也 近藤
Naotatsu Mori
尚達 森
Kouichi Ito
耿一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M & M Res Kk
M & M Research kk
Original Assignee
M & M Res Kk
M & M Research kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M & M Res Kk, M & M Research kk filed Critical M & M Res Kk
Priority to JP2006308797A priority Critical patent/JP4958083B2/en
Publication of JP2008119739A publication Critical patent/JP2008119739A/en
Application granted granted Critical
Publication of JP4958083B2 publication Critical patent/JP4958083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make the quantitative judgement of the risk of rupture possible on the basis ob a numerical value by determining the degree of the risk of the rupture as the numerical value of a concrete value. <P>SOLUTION: In this method, the degree of the risk of the rupture which occurs on a worked article in a press working simulation of a material to be worked using a computer is determined by the concrete numerical value on the basis of a numerical formula by determining the numerical formula by which the degree of the risk of the rupture can be shown as the numerical value of the concrete value by grasping the numerical formula showing the existence (conditions) of the occurrence of the rupture presented by the theory of three-dimension local bifurcation from the viewpoint like the theory of instability and the design work of the die and the correcting work of the die using the method are performed. Since the degree of the risk of the rupture is obtained as the concrete numerical value in this invention, the judgement is accurately performed and the design work of the die and the correcting work of the die are correctly performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、コンピュータを用いた加工材(金属板材)のプレス加工シミュレーションにおいて、加工材に発生する破断の危険性を具体的数値によって定量的に判定する技術、及び、この方法を用いてプレス加工材に発生する破断の発生を回避する金型の設計作業や、金型の修正作業に関する技術である。   The present invention relates to a technology for quantitatively determining the risk of breakage occurring in a work material by specific numerical values in press work simulation of a work material (metal plate material) using a computer, and press work using this method. This is a technique related to mold design work and mold correction work to avoid the occurrence of breakage in the material.

プレス加工において破断を回避することは重要な要件である。
そこで、実際にプレス加工を行いその結果加工品に破断が発生することが判明した場合に、破断を回避するための金型の修正を行うことは時間とコスト損失が大きいので、通常は製造予定の金型を用いたプレス加工シミュレーションを行い、破断発生の有無を予測していた。
Avoiding breakage in press working is an important requirement.
Therefore, if it is found that the actual product will be crushed and the workpiece will break as a result, it will usually take time and cost loss to modify the mold to avoid breakage. A press working simulation using a metal mold was performed to predict the occurrence of breakage.

従来は、プレス加工シミュレーションから得られた加工材の変形の程度を表すひずみを用いて、加工材の板面内の最大と最小のひずみ方向で規定される平面に、プロットした板材変形の破断限界線図(以下、これを「ひずみによる成形限界線図」という。)によって破断発生の有無を判定していた。   Conventionally, using the strain representing the degree of deformation of the workpiece obtained from the press working simulation, the fracture limit of the plate deformation plotted on the plane defined by the maximum and minimum strain directions in the plate surface of the workpiece. The presence or absence of breakage was determined by a diagram (hereinafter referred to as a “strain limit diagram due to strain”).

しかし、ひずみによる成形限界線図を用いた判定では、破断発生の有無しか判別できず、破断発生の危険の程度、詰まり、破断の定量的な情報を得ることはできなかった。   However, in the determination using the forming limit diagram based on the strain, only the presence or absence of breakage can be determined, and the degree of risk of breakage, clogging, and quantitative information on breakage cannot be obtained.

また、ひずみによる成形限界線図は、事前にテストピースを試験し、その結果に基づき作成、若しくは理論式に基づき作成されていたので、適用可能な範囲が限定されるとの欠点や、ひずみの値が同じでも、そのひずみに至る過程が異なれば、破断の有無の判定が変わる、所謂ひずみ経路依存性と呼ばれる欠点があった。   In addition, since the strain limit diagram due to strain was prepared based on the test piece test results in advance or based on the theoretical formula, the applicable range was limited and the strain was limited. Even if the values are the same, if the process leading to the strain is different, the determination of the presence or absence of fracture changes, so-called strain path dependency.

このため、ひずみによる成形限界線図に基づき実際にプレス加工した際、該図の成形限界箇所(線)を越えた(破断と予測された)変形をさせても破断しない、また逆に、該箇所の手前(破断しないと予測された)まで変形させただけで、破断してしまう場合があるので、該図に基づく破断の判定には不確実さがあり、最終的な判定は熟練者の経験や勘を加味して行われていた。   For this reason, when it is actually pressed based on the forming limit diagram due to strain, it does not break even if it is deformed (predicted to break) beyond the forming limit point (line) in the drawing, and conversely, Since there is a case where it breaks even if it is deformed just before the part (predicted not to break), there is uncertainty in the judgment of breakage based on the figure, and the final judgment is an expert It was done with experience and intuition.

そこで本願発明者は、この出願前に上記欠点を解決するために、三次元局所分岐理論で提示されている、破断発生の有無(条件)を表す(最小値が0になったとき破断が発生する)下記数式を、

Figure 2008119739
ここで、
σは、破断発生時の応力テンソル
nは、分岐界面の法線ベクトル
mは、分岐界面に平行で且つ破断発生の方向のベクトル
Qは、変数に上記σとnとを用いた数式
min[]は、[]で表される数式の最小値である。
以下、上記数式を「数式1」という。
展開発展させて破断発生の有無(条件)を、破断発生時の応力の大きさと加工硬化率との比によって一意に表せる下記数式を求め、
Figure 2008119739
ここで、
σは、破断発生時の応力の大きさ
hは、加工材の加工硬化率
nは、分岐界面の法線ベクトル
mは、分岐界面に平行で且つ破断発生の方向のベクトル
sは、応力の方向を表す単位テンソル
HとΣは、変数に上記m、nを用い、パラメータにsが与えられる数式
min()は、括弧内の最小値
()crは、括弧内によって定義される局所変形の条件である。
以後、上記数式を「数式2」という。 Therefore, the inventor of the present application represents the presence or absence (condition) of the occurrence of breakage, which is presented in the three-dimensional local branching theory, in order to solve the above-mentioned drawbacks before this application (breakage occurs when the minimum value becomes 0). To the following formula:
Figure 2008119739
here,
σ is the stress tensor n at the time of fracture occurrence, the normal vector m of the branch interface is parallel to the branch interface, and the vector Q in the direction of fracture occurrence is the formula min [] using the above σ and n as variables. Is the minimum value of the mathematical expression represented by [].
Hereinafter, the above formula is referred to as “Formula 1”.
Develop and develop the following formula that can uniquely represent the presence or absence (conditions) of fracture occurrence by the ratio of the magnitude of stress at the time of fracture occurrence and the work hardening rate,
Figure 2008119739
here,
σ is the magnitude of stress at the time of fracture occurrence h is the work hardening rate n of the workpiece, the normal vector m of the branch interface is parallel to the branch interface, and the vector s in the direction of fracture occurrence is the direction of the stress The unit tensors H and Σ, which represent the above, use m and n as variables and s is given as a parameter. The formula min () is the minimum value in parentheses () cr is the local deformation condition defined by the parentheses. It is.
Hereinafter, the above formula is referred to as “Formula 2”.

該数式に基づき、或いは、該数式に基づき作成した加工材の成形限界線図を基に加工品に発生する破断の判定を行う方法、さらに、前記成形限界線図を変形が破断の可能性のない変形から一部の板厚が減少する局所変形が起こることで破断の可能性がある状態へ移るタイミング(以下、これを「破断の下限」という。)と、さらに、板厚の減少する局所変形の内部で板厚を貫通する局所変形が起こることで最終的に破断に至るタイミング(以下、これを「破断の上限」という。)との両方の値を同じ座標系にプロットし、即ち、縦軸に最大の応力の大きさσ1と加工硬化率hとの比σ1/hを、横軸に最小の応力の大きさσ2と加工硬化率hとの比σ2/hとをプロットした成形限界線図(図1参照、Aが破断の下限、Bが破断の上限)を用いたことを特徴とする加工品の破断の判定方法に関する解決策を提唱し、これらを出願した。
詳細は、該出願である末尾記載の特許文献1を参照されたい。
Based on the formula, or a method for determining breakage occurring in a workpiece based on a molding limit diagram of a workpiece created based on the formula, and further, the deformation of the molding limit diagram may be broken The timing of shifting to a state where there is a possibility of fracture due to the occurrence of local deformation in which a part of the plate thickness decreases from the undeformed deformation (hereinafter referred to as “lower limit of fracture”), and further, the local where the plate thickness decreases Plotting both values in the same coordinate system together with the timing (hereinafter referred to as the "upper limit of fracture") that ultimately leads to fracture due to the occurrence of local deformation that penetrates the plate thickness inside the deformation, Forming limit in which the vertical axis shows the ratio σ1 / h of the maximum stress magnitude σ1 and the work hardening rate h, and the horizontal axis plots the ratio σ2 / h of the minimum stress magnitude σ2 and the work hardening rate h Using a diagram (see FIG. 1, A is the lower limit of breakage, B is the upper limit of breakage) It proposed a solution for determining the method of fracture of the workpiece, characterized in that, filed them.
For details, refer to Patent Document 1 described at the end of the application.

しかし、図1を用いた前述の方法では、数式2は破断の有無しか判定できないので、プロットした値が破断の下限(A)を超えた後、破断の上限(B)に近づくにつれ、破断の危険性が高くなることは直感的に理解できるが、破断の危険性の程度を具体的数値によって判定することはできなかった。   However, in the above-described method using FIG. 1, Equation 2 can only determine the presence or absence of breakage, so that after the plotted value exceeds the lower limit of breakage (A), it approaches the upper limit of breakage (B). Although it can be intuitively understood that the risk increases, the degree of the risk of fracture cannot be determined by a specific numerical value.

本発明の課題は、前述した破断の危険性の程度を具体的値数値として求め、該数値に基づき破断の危険性を定量的に判定できるようにすることである。   An object of the present invention is to obtain the degree of risk of fracture described above as a specific numerical value and to quantitatively determine the risk of fracture based on the numerical value.

さらに、この方法をプレス加工の金型の設計作業や、金型の修正作業に用いて、加工材に発生する破断の回避を的確に行うことである。   Furthermore, this method is used for press work mold design work and mold correction work to accurately avoid breakage occurring in the work material.

本願発明は、前述した破断の危険性の程度を具体的値数値として求めるために、前述の出願において、三次元局所分岐理論で提示されている破断発生の有無(条件)を表す数式1から数式2を求めることに代えて、前記数式1を不安定論的観点から捉えて下記数式を求めるようにした点に特徴がある。
なお、三次元局所分岐理論と不安定論との関連については末尾の不特許文献3を参照されたい。

Figure 2008119739
ここで、
Iは、破断の危険性の程度を表わす不安定指数
σは、破断発生時の応力テンソル
nは、分岐界面の法線ベクトル
mは、分岐界面に平行で且つ破断発生の方向のベクトル
sは、応力の方向を表す単位テンソル
Wdは、要求仕事率、即ち、破断発生に必要なエネルギーの変化率
Wsは、供給仕事率、即ち、加工材に作用する応力が破断発生に影響を与えるエネルギーの変化率
である。
以後、上記数式を「数式3」という。 In the present invention, in order to obtain the degree of risk of fracture described above as a specific numerical value, in the above-mentioned application, Formula 1 to Formula representing presence / absence (condition) of occurrence of fracture presented in the three-dimensional local branch theory Instead of obtaining 2, the above-described mathematical formula 1 is grasped from the viewpoint of instability and the following mathematical formula is obtained.
For the relationship between the three-dimensional local bifurcation theory and the instability theory, refer to non-patent document 3 at the end.
Figure 2008119739
here,
I is the instability index σ representing the degree of risk of fracture, the stress tensor n at the time of fracture occurrence, the normal vector m of the branch interface, the vector s parallel to the branch interface and the direction of fracture occurrence is The unit tensor Wd representing the direction of stress is the required work rate, that is, the change rate Ws of energy required for occurrence of breakage, and the supply work rate, that is, the change in energy that the stress acting on the workpiece affects the occurrence of breakage. Rate.
Hereinafter, the above formula is referred to as “Formula 3”.

そして、該数式3のI(不安定指数)が、破断の危険性の程度を具体的値数値として示しているので、これに基づいて、コンピュータを用いた加工材のプレス加工シミュレーションにおける加工品に発生する破断の危険性の程度を具体的数値によって判定する方法、並びに、その方法を用いた金型の設計作業や、金型の修正作業を行う方法である。   And since I (unstable index) in Equation 3 indicates the degree of risk of breakage as a specific value, based on this, it can be used as a processed product in a press working simulation of a workpiece using a computer. This is a method of determining the degree of risk of breakage occurring by specific numerical values, and a method of performing mold design work and mold correction work using the method.

本願発明は、このようにして破断の危険性の程度を具体的数値として得ることができるので、例えば、図1のAB間の領域における破断の危険性の程度を的確に判定できる。   Since the present invention can thus obtain the degree of risk of fracture as a specific numerical value, for example, the degree of risk of fracture in the region between AB in FIG. 1 can be accurately determined.

また、コンピュータを用いた加工材のプレス加工シミュレーションにおける金型の設計作業や、金型の修正作業にこれを利用すれば、該数値を考察し当初設計した金型に破断発生の危険の程度が大きい箇所があれば、該箇所に作用する力を、破断発生の危険の程度が小さい別の箇所へ分散させることや、その際破断発生の危険の程度が大きい箇所があらたに発生しないような適切な分散箇所を選ぶことや、金型全体の破断発生の危険の程度が最適なバランスとなるようにすることなどが可能となる。   In addition, if this is used for the mold design work and the mold correction work in the press work simulation of the work material using a computer, the degree of risk of breakage in the initially designed mold is considered by considering the numerical value. If there is a large part, disperse the force acting on the part to another part where the risk of breakage is small, or appropriate so that a part with a high risk of breakage does not occur newly It is possible to select an appropriate dispersion point and to make an optimal balance between the degree of risk of breakage of the entire mold.

本発明は上記課題を解決するために、本願出願人が以前出願した発明に代えて、即ち、三次元局所分岐理論で提示されている破断発生の有無(条件)を表す数式1から数式2を求めることに代えて、前記数式1を不安定論的観点から捉えて数式3を求め、さらに、該数式3のI(不安定指数)が、破断の危険性の程度を具体的値数値として示すことに着目し、これに基づきコンピュータを用いた加工材のプレス加工シミュレーションにおける加工品に発生する破断の危険性の程度を具体的数値によって判定するようにした点や、それを用いて金型の設計作業や、金型の修正作業を行うようにした点に特徴がある。   In order to solve the above-mentioned problem, the present invention replaces the invention previously filed by the applicant of the present application, that is, Equations 1 to 2 representing the presence or absence (condition) of occurrence of breakage presented in the three-dimensional local branch theory. Instead of obtaining, Equation 1 is obtained from the viewpoint of instability, and Equation 3 is obtained, and further, I (unstable index) of Equation 3 indicates the degree of risk of fracture as a specific numerical value. Based on this, based on this, the degree of risk of breakage occurring in the processed product in the press processing simulation of the workpiece using a computer is determined by specific numerical values, and the mold design using it It is characterized in that the work and the mold correction work are performed.

三次元局所分岐理論では、破断の発生を、それまで一様に変形していた状態から、一部のみが変形して他に変形が広がらない局所変形へ突然切り替わる分岐現象とみなし、その分岐現象が発生する条件に関する数式に基づき破断の判定を行っている。   In the three-dimensional local bifurcation theory, the occurrence of rupture is regarded as a bifurcation phenomenon that suddenly switches from a state of uniform deformation until then to a local deformation in which only one part is deformed and the other does not spread. The determination of breakage is performed based on a mathematical expression relating to the condition under which this occurs.

そして、破断の条件を前述した数式1で表わし、該数式1の最小値が0になったとき破断が発生する、即ち、破断発生の条件が満たされていると論じている。   Then, the breaking condition is expressed by the above-described Expression 1, and it is argued that the breaking occurs when the minimum value of the Expression 1 becomes 0, that is, the condition for the breaking is satisfied.

以下、数式1を展開し数式3を求める過程を詳述する。
ところで、数式1を最小値に限定されない一般的観点で表現すると、下記数式となる。

Figure 2008119739
ここで
σは、破断発生時の応力テンソル
nは、分岐界面の法線ベクトル
mは、分岐界面に平行で且つ破断発生の方向のベクトル
Qは、変数に上記σとnとを用いた数式である。
以下、上記数式を「数式4」という。 Hereinafter, the process of obtaining Formula 3 by expanding Formula 1 will be described in detail.
By the way, when Expression 1 is expressed from a general viewpoint that is not limited to the minimum value, the following Expression is obtained.
Figure 2008119739
Here, σ is the stress tensor n at the time of break occurrence, the normal vector m of the branch interface is parallel to the branch interface, and the vector Q in the direction of break occurrence is an equation using the above σ and n as variables. is there.
Hereinafter, the above formula is referred to as “Formula 4”.

ところで、前記背景技術の項で述べたように数式1は、σに関する数式H[m,n:s]と、hに関する数式Σ[m,n:s]とを用いた数式2で表現できる。
数式1を展開し数式2を求める過程の詳細は、末尾記載の特許文献4を参照されたい。
By the way, as described in the section of the background art, Formula 1 can be expressed by Formula 2 using Formula H [m, n: s] related to σ and Formula Σ [m, n: s] related to h.
For details of the process of expanding Formula 1 and obtaining Formula 2, refer to Patent Document 4 described at the end.

してみると、数式4もσに関する数式H[m,n:s]と、hに関する数式Σ[m,n:s]とを用いた下記のような数式で表現できる。

Figure 2008119739
σ(太文字)は、破断発生時の応力テンソル
σ(細文字)は、破断発生時の応力の大きさ
hは、加工材の加工硬化率
nは、分岐界面の法線ベクトル
mは、分岐界面を挟んだ両端が移動する方向のベクトル
sは、応力の方向を表す単位テンソル
HとΣは、変数に上記m、nを用い、パラメータにsが与えられる数式である。
以下,上記数式を数式5という。 Then, the mathematical formula 4 can also be expressed by the following mathematical formula using the mathematical formula H [m, n: s] related to σ and the mathematical formula Σ [m, n: s] related to h.
Figure 2008119739
σ (bold character) is the stress tensor at the time of rupture σ (thin character) is the magnitude of the stress at the time of rupture h, the work hardening rate n of the workpiece, the normal vector m of the branch interface is the branch The vector s in the direction in which both ends of the interface move is the unit tensors H and Σ representing the direction of stress, and is a mathematical formula in which m and n are used as variables and s is given as a parameter.
Hereinafter, the above formula is referred to as Formula 5.

三次元局所分岐理論では、前記数式1の左辺値が0になる瞬間を破断と定義していたので、数式1から展開し求めた該数式5の左辺値が0になる瞬間を破断と定義できる。   In the three-dimensional local branch theory, the moment when the left-side value of Equation 1 is 0 is defined as a break, so the moment when the left-side value of Equation 5 obtained by developing from Equation 1 is 0 can be defined as a break. .

ここで上記数式5を不安論的観点から捉え、安定規準式の形式で表現し直すと、前述した数式3となる。
なお、三次元局所分岐理論についての詳細は、末尾記載の非特許文献1の第9章215頁を参照されたい。
Here, when Equation 5 is taken from an anxiety point of view and expressed in the form of a stability criterion equation, Equation 3 described above is obtained.
For details of the three-dimensional local branching theory, refer to Chapter 9, page 215 of Non-Patent Document 1 described at the end.

なお、その理由は、加工材の破断に関しては分岐基準と安定基準は一致するため、分岐の条件を表す数式(数式5)と、安定基準、即ち、不安定の条件を表す数式(数式3)は同じである事ことによる。
なお、詳細は、末尾の非特許文献3を参照されたい。
The reason for this is that the branching criterion and the stability criterion coincide with each other with respect to the breakage of the workpiece. Therefore, a mathematical expression representing the branching condition (Formula 5) and a mathematical expression representing the stability criterion, that is, the unstable condition (Formula 3). Is the same.
For details, refer to the non-patent document 3 at the end.

そして、三次元局所分岐理論に説明されている加工材の破断の経過(具体的には、図1の破断の下限Aから破断の上限Bに至る経過)を、不安定論的観点で解釈すると、
破断の下限Aの前後
具体的には、加工材の変形が破断の可能性のない「一様な変形」から一部の板厚が減少する「局所変形」が起こる過程は、Aの手前の「一様な変形」が変化しない安定平衡な状態から、Aの後方の「一様な変形」が「局所変形」に変化する不安定平衡な状態に至る過程とも解釈できる。
破断の上限Bの前後
具体的には、加工材の「局所変形」が進行し「破断が発生する」経過は、Bの手前の「局所変形」との観点では変化のない安定平衡な状態から、Bの後方の「局所変形」から「破断発生」へと変化する不安定平衡な状態に至る過程とも解釈できる。
And, the process of breakage of the workpiece described in the three-dimensional local branch theory (specifically, the process from the lower limit A of fracture to the upper limit B of fracture in FIG. 1) is interpreted from an unstable viewpoint,
Before and after the lower limit of fracture A More specifically, the process in which the deformation of the work material undergoes “local deformation” in which a part of the plate thickness decreases from “uniform deformation” where there is no possibility of fracture is It can be interpreted as a process from a stable equilibrium state where “uniform deformation” does not change to an unstable equilibrium state where “uniform deformation” behind A changes to “local deformation”.
Before and after the upper limit B of breakage Specifically, the progress of “local deformation” of the workpiece and “breakage” occurs from a stable equilibrium state that does not change in terms of “local deformation” before B. , B can be interpreted as a process leading to an unstable equilibrium state changing from “local deformation” behind “B” to “breaking”.

そこで数式3を、不安定論的観点から捉えて求めた点を考慮し、且つ、プレス加工における加工材の破断発生の経過の上記(2)項の破断発生に準拠し考察すれば、
Wdは、「局所変形」から「破断発生」へと変化するために必要なエネルギーの変化率(以下、これを「破断発生に必要なエネルギーの変化率」、又は、「要求仕事率」という。)であり、
Wsは、「局所変形」から「破断発生」へと変化するために加工材に作用する応力が破断発生に影響を与えるエネルギーの変化率(以下、これを「加工材に作用する応力が破断発生に影響を与えるエネルギーの変化率」、又は、「供給仕事率」という。)であり、Iは、平衡状態の安定性を表している。
Therefore, considering the point obtained by taking Equation 3 from the viewpoint of instability, and considering in accordance with the occurrence of breakage in the above item (2) of the progress of breakage of the work material in press working,
Wd is the rate of change of energy required to change from “local deformation” to “breakage occurrence” (hereinafter referred to as “rate of change of energy necessary for breakage occurrence” or “required power”). ) And
Ws is the rate of change in energy at which the stress acting on the workpiece affects the occurrence of fracture because it changes from “local deformation” to “break occurrence” (hereinafter referred to as “the stress acting on the workpiece breaks. The rate of change in energy that affects the “power supply rate” or “supply power”), and I represents the stability of the equilibrium state.

ところで、不安定論では、平衡状態の安定性とは「ある特定の平衡状態が諸々の外乱に耐えて維持する能力」のことであると定義されている。つまり、平衡状態を維持する定量的な能力の高さを意味する。
してみると、Iは、破断発生までの余裕を意味しているので、破断の危険性の程度を表す指数(以下、これを「不安定指数」という。)といえる。
そして、数式3によって、この不安定指数Iの値は、具体的数値として定量的に求めることができ、この点に着目した点が本願発明の特徴である。
By the way, instability theory, the stability of the equilibrium state is defined as “the ability of a particular equilibrium state to withstand and maintain various disturbances”. In other words, it means a high quantitative ability to maintain an equilibrium state.
Therefore, since I means a margin until the occurrence of breakage, it can be said that the index represents the degree of risk of breakage (hereinafter referred to as “unstable index”).
Then, the value of the instability index I can be quantitatively obtained as a specific numerical value by the mathematical formula 3, and this point is a feature of the present invention.

そして、この数式3を、プレス加工における加工材の破断発生前後に準拠し考察すれば、Wd=Ws(I=0)の時が「局所変形」から「破断発生」へと変化する分岐点である。
してみると、供給仕事率(Ws)と要求仕事率(Wd)との差で表されるI(不安定指数)の値は、破断発生までの余裕(平衡状態の安定性)詰まり「破断発生の可能性の程度」を表しており、この値は具体的数値として求めることができる。
そして、前述の[背景技術]の項末尾でも述べたように、破断の下限と破断の上限との間の領域が、破断発生の危険領域であることは従来から知られていたが「破断発生の可能性の程度」を具体的数値として定量的に求めるとが出来なかった。
しかるに、本願発明は、不安定指数を用いて該領域の「破断発生の可能性の程度」を具体的数値として定量的に求めることができるので、破断の上限、または、破断の下限に達するまでに、どれだけの余裕が残されているかを把握できる。
Then, if this Equation 3 is considered in accordance with before and after the occurrence of breakage of the workpiece in press working, the branch point at which Wd = Ws (I = 0) changes from “local deformation” to “breakage”. is there.
As a result, the value of I (unstable index) represented by the difference between the supply power (Ws) and the required power (Wd) is clogged with a margin (stability in the equilibrium state) until breakage occurs. The degree of the possibility of occurrence ”, and this value can be obtained as a specific numerical value.
As described at the end of the above [Background Art] section, it has been conventionally known that the area between the lower limit of fracture and the upper limit of fracture is a risk area of fracture occurrence. It was not possible to quantitatively calculate the "degree of possibility" as a specific numerical value.
However, since the present invention can quantitatively determine the “degree of possibility of breakage” of the region as a specific numerical value using the instability index, until the upper limit of breakage or the lower limit of breakage is reached. It is possible to grasp how much room is left.

図2は、破断の下限(A)と破断の上限(B)との間の領域における不安定指数の値(C)を具体的例に従って計算した結果を表したグラフ(縦軸は不安定指数I、横軸は破断発生時の応力の大きさと加工硬化率との比σ/h)である。   FIG. 2 is a graph showing the result of calculating the value (C) of the instability index in a region between the lower limit (A) of fracture and the upper limit (B) of fracture according to a specific example (the vertical axis represents the instability index). I, the horizontal axis is the ratio σ / h) between the magnitude of stress at the time of fracture occurrence and the work hardening rate.

本願発明は、該グラフを用いると、加工品全体の破断の危険性の程度(状況)を的確に捉えることができ、例えば、コンピュータを用いた加工材のプレス加工シミュレーションにおける金型の設計作業や、金型の修正作業において、
[AB間の領域について]
該領域に破断発生の危険の程度が大きい箇所(Iの値が0に近い箇所)があれば、該箇所に作用する力を、破断発生の危険の程度が小さい別の箇所へ分散させることや、その際破断発生の危険の程度が大きい箇所があらたに発生しないような適切な分散箇所を選ぶことが可能となり、
[Bを越えた領域ついて]
該領域では破断が確実に発生するのであるが、Iの値を考察すれば、その破断を解消させるためにどの程度の修正(手直し)が必要かの目安となる。
[Aの手前の領域ついて]
この領域でのIの値は、AB間の領域におけるIの値が、殆どの場合はA線に沿って指数関数的に上昇するので、考察する必要は少ないが、該領域でIの値によってより安全な(最適なバランスの)金型の設計が可能となる。
The present invention can accurately grasp the degree (situation) of the risk of rupture of the entire work piece by using the graph. For example, the design work of the mold in the press work simulation of the work material using a computer, In the mold correction work,
[Region between AB]
If there is a location where the risk of fracture occurrence is large (location where the value of I is close to 0) in the region, the force acting on the location may be distributed to another location where the risk of fracture occurrence is small In that case, it becomes possible to select an appropriate dispersive part so that a part with a high risk of breakage does not occur newly,
[Region beyond B]
In this region, the breakage occurs surely, but considering the value of I, it becomes a measure of how much correction (repair) is necessary to eliminate the breakage.
[Regarding the area in front of A]
In this region, the value of I in the region between AB almost always increases exponentially along the A line, so there is little need to consider, but depending on the value of I in this region A safer (optimally balanced) mold design is possible.

また、前述の不安定指数は、板厚方向のある1点についての値を求めたものである。
しかし、プレス成形加工の対象となる加工材は、薄い板であるが有限の厚みを持っていることを考慮すると、板表面と板内部では異なった応力が作用するので、板厚方向の不安定指数は異なった値であることが想像できる。
そこで、板厚方向における不安定指数を積算すれば、加工材の板厚方向の断面全体に関する「破断発生の危険の程度」を正確に求めることができ、該積算値は、加工材の板厚方向における金型の設計作業や金型の修正作業にも利用できる。

日本塑性加工学会編、コロナ社2004年7月7日発行「静的解法FEM―板成形」 菅野昭吉、新田惇、伊藤耿一、鎌田好博、佐川武俊著、日本塑性加工学会2001年発行「塑性と加工」(定期刊行物)第42巻第489号の1076頁−1079頁「せん断帯分岐解析法と単一粒子による結果(せん断帯形成によるFCC結晶の延性破壊 第1報)」 伊藤耿一著、日本塑性加工学会1998年発行「塑性と加工」(定期刊行物)第39巻第444号の24頁−28頁「板材成形における塑性不安定・分岐現象」 特願2006−289605
The above-mentioned instability index is a value obtained for one point in the thickness direction.
However, considering the fact that the workpiece that is the object of press forming is a thin plate but has a finite thickness, different stresses act on the plate surface and inside the plate, making it unstable in the plate thickness direction. You can imagine that the index is a different value.
Therefore, by integrating the instability index in the plate thickness direction, it is possible to accurately determine the “degree of risk of occurrence of fracture” for the entire cross section in the plate thickness direction of the workpiece, and the integrated value is the plate thickness of the workpiece. It can also be used for mold design work and mold correction work in the direction.

Edited by Japan Society for Technology of Plasticity, published by Corona on July 7, 2004 "Static Solution FEM-Plate Molding" Akiyoshi Sugano, Satoshi Nitta, Junichi Ito, Yoshihiro Kamada, Taketoshi Sagawa, Japan Society for Technology of Plasticity 2001, “Plasticity and Processing” (periodical publication) Vol. 42, No. 489, pages 1076-1079 Band branching analysis method and results with single particles (ductile fracture of FCC crystals due to shear band formation 1st report) " Ito Junichi, Japan Society for Technology of Plasticity, published in 1998, “Plastics and Processing” (Regular Publication) Vol. 39, No. 444, pp. 24-28 “Plastic Instability / Branching Phenomena in Sheet Forming” Japanese Patent Application No. 2006-289605

σ/hに基づく加工材の成形限界線図Forming limit diagram of workpiece based on σ / h 不安定指数の変化を表すグラフGraph showing changes in instability index

Claims (5)

コンピュータを用いた加工材のプレス加工シミュレーションにおいて、要求仕事率、即ち、破断発生に必要なエネルギーの変化率と、供給仕事率、即ち、加工材に作用する応力が破断発生に影響を与えるエネルギーの変化率との差で表わされる不安定指数に基づいて、加工品に発生する破断の危険性の程度を具体的数値によって判定する、ことを特徴とする破断の危険性の定量的判定方法。   In the press working simulation of a workpiece using a computer, the required power, that is, the rate of change of energy necessary for occurrence of breakage, and the supply power, that is, the energy that affects the occurrence of breakage of the stress acting on the workpiece. A method for quantitatively determining the risk of breakage, characterized in that the degree of risk of breakage occurring in a processed product is determined by a specific numerical value based on an instability index expressed by a difference from a change rate. 請求項1に記載の不安定指数を下記式で求める、ことを特徴とする破断の危険性の定量的判定方法。
Figure 2008119739
ここで、
Iは、破断の危険性の程度を表わす不安定指数
σは、破断発生時の応力テンソル
nは、分岐界面の法線ベクトル
mは、分岐界面に平行で且つ破断発生の方向のベクトル
sは、応力の方向を表す単位テンソル
Wdは、要求仕事率、即ち、破断発生に必要なエネルギーの変化率
Wsは、供給仕事率、即ち、加工材に作用する応力が破断発生に影響を与えるエネルギーの変化率
である。
A method for quantitatively determining the risk of fracture, wherein the instability index according to claim 1 is obtained by the following equation.
Figure 2008119739
here,
I is the instability index σ representing the degree of risk of fracture, the stress tensor n at the time of fracture occurrence, the normal vector m of the branch interface, the vector s parallel to the branch interface and the direction of fracture occurrence is The unit tensor Wd representing the direction of stress is the required work rate, that is, the change rate Ws of energy required for occurrence of breakage, and the supply work rate, that is, the change in energy that the stress acting on the workpiece affects the occurrence of breakage. Rate.
請求項1に記載の不安定指数を加工材の板厚方向に求め、これらを積算することで、加工材の板厚方向の断面全体に関する破断の危険性を具体的数値によって判定する、ことを特徴とする破断の危険性の定量的判定方法。 The instability index according to claim 1 is obtained in the plate thickness direction of the workpiece, and by integrating these, the risk of breakage regarding the entire cross section in the plate thickness direction of the workpiece is determined by a specific numerical value. Quantitative determination method of the risk of breaking as a feature. 請求項2に記載の不安定指数(I)を縦軸に、横軸に加工材に作用する応力の大きさ(σ)と加工硬化率(h)との比(σ/h)を設定した座標系に、破断の下限を表す線(A)と、破断の上限を表す線(B)と、前記不安定指数(I)の値とをプロットしたグラフを用いて、加工品に発生する破断の危険性の程度を判定する、ことを特徴とする破断の危険性の定量的判定方法。 The instability index (I) according to claim 2 is set on the vertical axis, and the ratio (σ / h) between the magnitude (σ) of the stress acting on the workpiece and the work hardening rate (h) is set on the horizontal axis. Breakage occurring in a workpiece using a graph in which a line (A) representing the lower limit of breakage, a line (B) representing the upper limit of breakage, and the value of the instability index (I) are plotted in the coordinate system A method for quantitatively determining the risk of breakage, characterized in that the degree of risk is determined. 請求項1ないし4に記載のいずれか一つの破断の危険性の定量的判定方法を用いて、加工材のプレス加工シミュレーションにおける金型の設計作業や、金型の修正作業を行う、ことを特徴とする金型設計方法。 Using the quantitative determination method of the risk of fracture according to any one of claims 1 to 4, performing a mold design work or a mold correction work in a press working simulation of a workpiece. Mold design method.
JP2006308797A 2006-11-15 2006-11-15 Quantitative judgment method for risk of fracture of work piece and mold design method using the method Active JP4958083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308797A JP4958083B2 (en) 2006-11-15 2006-11-15 Quantitative judgment method for risk of fracture of work piece and mold design method using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308797A JP4958083B2 (en) 2006-11-15 2006-11-15 Quantitative judgment method for risk of fracture of work piece and mold design method using the method

Publications (2)

Publication Number Publication Date
JP2008119739A true JP2008119739A (en) 2008-05-29
JP4958083B2 JP4958083B2 (en) 2012-06-20

Family

ID=39505061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308797A Active JP4958083B2 (en) 2006-11-15 2006-11-15 Quantitative judgment method for risk of fracture of work piece and mold design method using the method

Country Status (1)

Country Link
JP (1) JP4958083B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339396A (en) * 1995-04-12 1996-12-24 Nippon Steel Corp Processor for numerical simulation result in deformation process of metal plate
JP2005283130A (en) * 2004-03-26 2005-10-13 Kawasaki Heavy Ind Ltd Estimation method of ductile fracture limit, its program, recording medium and fracture testing machine
JP2007232714A (en) * 2006-02-01 2007-09-13 Nippon Steel Corp Method and apparatus for acquiring breaking limit, program and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339396A (en) * 1995-04-12 1996-12-24 Nippon Steel Corp Processor for numerical simulation result in deformation process of metal plate
JP2005283130A (en) * 2004-03-26 2005-10-13 Kawasaki Heavy Ind Ltd Estimation method of ductile fracture limit, its program, recording medium and fracture testing machine
JP2007232714A (en) * 2006-02-01 2007-09-13 Nippon Steel Corp Method and apparatus for acquiring breaking limit, program and recording medium

Also Published As

Publication number Publication date
JP4958083B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Calamaz et al. Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials
Chen et al. Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process
Wang et al. Shear localization sensitivity analysis for Johnson–Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4V
Hatanaka et al. Finite element simulation of the shearing mechanism in the blanking of sheet metal
Buffa et al. Numerical procedure for residual stresses prediction in friction stir welding
Teng et al. Finite element modelling on cutting mechanism of nano Mg/SiC metal matrix composites considering cutting edge radius
Al-Momani et al. An application of finite element method and design of experiments in the optimization of sheet metal blanking process
Ducobu et al. On the introduction of adaptive mass scaling in a finite element model of Ti6Al4V orthogonal cutting
Gurusamy et al. On the performance of modified Zerilli-Armstrong constitutive model in simulating the metal-cutting process
Hambli Finite element simulation of fine blanking processes using a pressure-dependent damage model
Opoz et al. Chip formation mechanism using finite element simulation
Denkena et al. Development of cutting edge geometries for hard milling operations
Cheng et al. A modified Lou-Huh model for characterization of ductile fracture of DP590 sheet
JP2009061477A (en) Method for estimating stretch flange crack in thin plate press forming simulation
Mali et al. FE based simulation and experimental validation of forces in dry turning of aluminium 7075
Chen et al. A new approach to the determination of plastic flow stress and failure initiation strain for aluminum alloys cutting process
Hambli BLANKSOFT: a code for sheet metal blanking processes optimization
Komori Simulation of shearing by node separation method
Hao et al. Failure feature and characterization of material of shear band in cutting Inconel718
Zhao et al. Investigation and prediction of tearing failure during extrusion based on a modified shear damage model
Bouzakis et al. Coated tools’ wear description in down and up milling based on the cutting edge entry impact duration
Li et al. Material behavior modeling in machining simulation of 7075-T651 aluminum alloy
JP4958083B2 (en) Quantitative judgment method for risk of fracture of work piece and mold design method using the method
Lipscomb et al. Evaluation of plastic zone development in WE43 magnesium alloy upon friction stir processing using finite element modeling
Mabrouki et al. Material modeling and experimental study of serrated chip morphology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250