JP2008118801A - Control method for sensorless permanent magnet synchronous motor (pmsm) - Google Patents

Control method for sensorless permanent magnet synchronous motor (pmsm) Download PDF

Info

Publication number
JP2008118801A
JP2008118801A JP2006301032A JP2006301032A JP2008118801A JP 2008118801 A JP2008118801 A JP 2008118801A JP 2006301032 A JP2006301032 A JP 2006301032A JP 2006301032 A JP2006301032 A JP 2006301032A JP 2008118801 A JP2008118801 A JP 2008118801A
Authority
JP
Japan
Prior art keywords
pmsm
current
pmsms
phase
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006301032A
Other languages
Japanese (ja)
Other versions
JP4295306B2 (en
Inventor
Mitsuru Takahashi
満 高橋
Keiichi Kamimura
佳一 上村
Yoshihiko Shimizu
義彦 清水
Atsushi Kamibayashi
篤 上林
Gi-Su Choi
起洙 崔
Seidan Shu
盛男 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMIMURA KOGYO KK
Original Assignee
KAMIMURA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMIMURA KOGYO KK filed Critical KAMIMURA KOGYO KK
Priority to JP2006301032A priority Critical patent/JP4295306B2/en
Priority to KR1020070039356A priority patent/KR101307024B1/en
Priority to TW096114895A priority patent/TWI431924B/en
Priority to CN2007101272751A priority patent/CN101179250B/en
Publication of JP2008118801A publication Critical patent/JP2008118801A/en
Application granted granted Critical
Publication of JP4295306B2 publication Critical patent/JP4295306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/54Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting two or more dynamo-electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method capable of assuring the synchronous start of at least two sensorless PMSMs by one inverter device, preventing oscillation generation during stable rated operation and low speed rotation, and controlling safe stop in case of failure. <P>SOLUTION: This synchronous start method provides for at least two sensorless permanent magnet synchronous motors (PMSM) which use a three-phase alternate power source as power. The three-phase alternate current with ultra-low frequency is temporarily applied to at least two PMSMs by one inverter device for a certain period to ensure that the motors can be synchronously started with low rotation, then their rotational speeds can be raised by gradually increasing the frequency of the power source to reach the rated rotation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はセンサーレスの永久磁石同期電動機(Permanent Magnet Synchronous Motor、以下PMSMと称す)の制御方法、詳しくは単一のインバータ装置により2台以上のセンサーレスのPMSMを同期始動させ、定格速度にて連続運転し、逆回転状態からの始動を可能にし、定格よりも低速の回転運転時に生ずる振動等の発生を防止するようにし、また故障時には安全に停止させるようにしたセンサーレスのPMSMの制御方法に関するものである。   The present invention relates to a control method of a sensorless permanent magnet synchronous motor (hereinafter referred to as PMSM), more specifically, two or more sensorless PMSMs are synchronously started by a single inverter device at a rated speed. Sensorless PMSM control method that enables continuous operation, starting from the reverse rotation state, preventing vibrations, etc. that occur during rotation operation at a speed lower than the rated value, and stopping safely when a failure occurs It is about.

従来、三相交流を電源とするPMSMは回転子の磁極の位置を検出するセンサー(位置検出装置)を装着して、このセンサーにより回転子の磁極の位置を検出し、検出した回転子の磁極位置に応じて固定子巻線の各相に電流を流して回転磁界を発生させ、磁極から発生する磁界との相互作用によりトルクを生じさせて、負荷に動力を伝達する始動方式が採用されている。   Conventionally, a PMSM that uses a three-phase alternating current as a power source is equipped with a sensor (position detection device) that detects the position of the magnetic pole of the rotor, and detects the position of the magnetic pole of the rotor using this sensor. Depending on the position, a starting method is adopted in which a current is passed through each phase of the stator winding to generate a rotating magnetic field, torque is generated by interaction with the magnetic field generated from the magnetic pole, and power is transmitted to the load. Yes.

このようなセンサー付のPMSMと制御回路とインバータ装置の合計コストは、交流電動機の代表例である誘導電動機とインバータ装置の合計コストに較べてかなり高価となるほか、センサーに故障が発生する問題もあるため、例えば送風ファン等一定の回転速度以上の条件で使用されるPMSMにおいては、センサーをなくしてコストを低減したセンサーレス方式のPMSMが採用されている。このセンサーレスPMSMにおいては、連続運転中の制御をセンサー付のものと同レベルに保つために固定子巻線端子に現れる種々のデータを検出し、その特性を算定して複雑に制御するようにしている(例えば、特開2001−268974号、特開2002−272195号参照)。
特開2001−268974号公報 特開2002−272195号公報
The total cost of such a PMSM with a sensor, a control circuit, and an inverter device is considerably higher than the total cost of an induction motor and an inverter device, which is a typical example of an AC motor, and there is also a problem that a failure occurs in the sensor. For this reason, for example, a PMSM of a sensorless type in which the cost is reduced by eliminating a sensor is used in a PMSM used under conditions of a certain rotational speed or more such as a blower fan. In this sensorless PMSM, in order to keep the control during continuous operation at the same level as that with a sensor, various data appearing at the stator winding terminals are detected, and the characteristics are calculated and controlled in a complicated manner. (For example, refer to JP-A-2001-268974 and JP-A-2002-272195).
JP 2001-268974 A JP 2002-272195 A

しかしながら、従来方法によりセンサーレスのPMSMを始動する際は、始動用の別個特別な制御装置を必要とし、または制御方法をさらに複雑化することによって始動から制御する必要があり、この制御方式の複雑さにより始動に失敗することがあるという課題があった。また電源を供給するインバータ装置はPMSM1台に対して各1台が必要であってコスト低減の実現を妨げているという課題がある。   However, when starting the sensorless PMSM by the conventional method, a separate special control device for starting is required or it is necessary to control from the start by further complicated the control method. As a result, there has been a problem that starting may fail. In addition, there is a problem that one inverter device for supplying power is required for each PMSM, which hinders cost reduction.

本発明は、三相交流電源を動力とする2台以上のセンサーレスのPMSMの同期始動方式であって、該2台以上のPMSMに単一のインバータ装置より超低周波の三相交流電流を一定時間印加して低回転にて同期始動させた後、電源の周波数を漸次高くして回転速度を上昇させ定格回転に到達するようにしたことで、単一のインバータ装置により2台以上のPMSMを確実に始動するようにして、かかる課題を解決するようにしたのである。   The present invention is a synchronous start method of two or more sensorless PMSMs powered by a three-phase AC power source, and an ultra-low frequency three-phase AC current is applied to the two or more PMSMs from a single inverter device. After applying for a certain period of time and synchronously starting at a low speed, the frequency of the power supply is gradually increased to increase the rotational speed and reach the rated speed. The problem was solved by making sure that the system was started.

本発明は、簡易な制御方法により、単一のインバータ装置にて2台以上のセンサーレスPMSMを同期始動から連続運転まで制御できるようにしたので、大幅なコストダウンを図ることができるという効果を生ずる。   The present invention enables a simple control method to control two or more sensorless PMSMs from a synchronous start to a continuous operation with a single inverter device, so that a significant cost reduction can be achieved. Arise.

2台以上を含むセンサーレスのPMSMを逆回転の状態から始動することができるという効果を生ずる。   There is an effect that a sensorless PMSM including two or more units can be started from a reverse rotation state.

センサーレスのPMSMの定格回転よりも低速な回転時における振動等の発生を防止して安定且つ静粛な低速運転を実現することができるという効果を生ずる。   This produces an effect that stable and quiet low-speed operation can be realized by preventing vibrations and the like from rotating at a lower speed than the rated rotation of the sensorless PMSM.

センサーレスのPMSMの故障等における異常な回転状態を検知し制御して停止等を安全裡に行うことができるという効果を生ずる   It produces the effect that it can be safely stopped by detecting and controlling the abnormal rotation state due to failure of sensorless PMSM etc.

本発明は、三相交流電源を動力とする2台以上のセンサーレスのPMSMの同期始動方式であって、該2台以上のPMSMに単一のインバータ装置より超低周波の三相交流電流を一定時間印加して低回転にて同期始動させた後、電源の周波数を漸次高くして回転速度を上昇させ定格回転に到達するようにしたことで、単一のインバータ装置により2台以上のPMSMを確実に始動するようにしたのである。
または2台以上のPMSMの各三相巻線のうちのいずれか二相の巻線にインバータ装置から直流電流を印加して固定子磁軸を作ることにより回転子磁極を吸引し、2台以上のPMSMを同時に同期化させた後、三相交流電圧の周波数を漸次高くして定格回転に到達するようにして同期始動するようにしたのである。
PMSMが外因により逆回転しているときは、2台以上のPMSMの三相巻線間を各相ごとに接続しておき、当該PMSM間に電気制動電流を発生させることによって全てのPMSMを逆回転の状態にて同一の回転速度に同期化させ、該同期した回転速度におけるPMSMの発生電圧・周波数を検知して、その角速度±許容角速度の周波数の電圧・電流をインバータ装置より印加することにより電源と同期化させた後、正回転方向の回転磁界に転換することにより停止状態を挟んで定格回転に到達するようにして同期始動するようにしたのである。
同期運転中の2台以上のPMSMの回転速度を低下させ負荷トルクが低減した状態で運転する際、発生する電圧・周波数および電流値をインバータ装置のIGBT回路の出力側で検出し、該インバータ装置より供給する電流の位相をPMSMの発生電圧より15°以上の進相とし内部相差角δを大きくすることにより、2台以上のPMSMを振動・乱調・脱調等を発生させないで運転するようにしたのである。
PMSMの回転速度に対応して発生する周波数・電圧・電流をインバータ装置のIGBT回路で検出するとともに異常を発生したPMSMから発生する異周波数の電圧・電流をIGBT回路で検出するようにして、同期運転中の2台以上のPMSMのうちの1台が故障等にて同期速度から脱調し回転速度が低下した際に発生する異常周波数の電流を該IGBT回路で検出して該インバータ装置の出力を遮断し、健全なPMSMの回転を安全に停止するようにしたのである。
The present invention is a synchronous start method of two or more sensorless PMSMs powered by a three-phase AC power source, and an ultra-low frequency three-phase AC current is applied to the two or more PMSMs from a single inverter device. After applying for a certain period of time and synchronously starting at low rotation, the frequency of the power supply is gradually increased to increase the rotation speed and reach the rated rotation, so that two or more PMSMs can be achieved by a single inverter device. Was made to start reliably.
Alternatively, the rotor magnetic poles are attracted by applying a direct current from the inverter device to any two of the three or more PMSM three-phase windings to create a stator magnetic axis, and two or more After the PMSMs were synchronized at the same time, the frequency of the three-phase AC voltage was gradually increased to reach the rated rotation so as to start synchronously.
When the PMSM is rotating in reverse due to an external cause, the three-phase windings of two or more PMSMs are connected for each phase, and an electric braking current is generated between the PMSMs to reverse all PMSMs. By synchronizing to the same rotation speed in the state of rotation, detecting the voltage / frequency of PMSM generated at the synchronized rotation speed, and applying the voltage / current of the frequency of the angular speed ± allowable angular speed from the inverter device After being synchronized with the power supply, it is switched to a rotating magnetic field in the positive rotation direction so that the synchronous rotation is started so as to reach the rated rotation across the stop state.
When operating in a state where the rotational speed of two or more PMSMs during synchronous operation is reduced and the load torque is reduced, the generated voltage, frequency and current value are detected on the output side of the IGBT circuit of the inverter device, and the inverter device The phase of the current to be supplied is advanced by 15 ° or more from the voltage generated by the PMSM, and the internal phase difference angle δ is increased so that two or more PMSMs can be operated without causing vibration, turbulence, step-out, etc. It was.
The frequency, voltage and current generated corresponding to the rotation speed of the PMSM are detected by the IGBT circuit of the inverter device, and the voltage and current of the different frequency generated from the PMSM where the abnormality has occurred are detected by the IGBT circuit to synchronize. The IGBT circuit detects an abnormal frequency current that occurs when one of the two or more PMSMs in operation is out of the synchronous speed due to a failure or the like and the rotational speed decreases, and the output of the inverter device And the PMSM rotation is stopped safely.

同期始動方式とは、三相交流電源を動力とする同期電動機を始動させる方式の1つで、図6に示すように駆動側の同期発電機Gと被駆動側の同期電動機Mの両者を同期機とし、停止状態で両者の三相の端子間を互いに接続して励磁電流もそれぞれ流しておき、始動に際して同期発電機Gに直結された駆動機Dをゆっくり回転させると、同期発電機Gは回転して超低周波の電流を同期電動機Mに供給して同期電動機M側に発生する回転磁界と励磁電流とにより生じている磁界との作用で同期電動機Mを同期電動機Gに同期化し、その後、同期電動機G側の回転を上昇させることにより同期したまま回転の上昇を続け、高速の定格回転速度まで上昇させる方式のことである。
このような同期始動方式は大容量の同期電動機、例えば揚水発電所のポンプ水車に直結される発電電動機の始動用として、あるいは大容量のタービン発電機の始動用などとして、接続された系統に始動時の大きな負荷をかけず、円滑に始動できる方法として賞用されていて、各種の実用例において詳細な解析が行なわれ、各種のパラメータによる同期始動の可能範囲が確認されている。
The synchronous start method is one of the methods for starting a synchronous motor powered by a three-phase AC power source. As shown in FIG. 6, the synchronous generator G on the driving side and the synchronous motor M on the driven side are synchronized. When the machine is stopped, the three-phase terminals of the two are connected to each other and the excitation currents are made to flow. When the drive machine D directly connected to the synchronous generator G is slowly rotated at the start, the synchronous generator G By rotating and supplying a very low frequency current to the synchronous motor M, the synchronous motor M is synchronized with the synchronous motor G by the action of the rotating magnetic field generated on the synchronous motor M side and the magnetic field generated by the excitation current, and thereafter In this method, the rotation on the side of the synchronous motor G is increased, and the rotation continues to increase while being synchronized and is increased to a high rated rotation speed.
Such a synchronous start system is used to start a large capacity synchronous motor, for example, a generator motor directly connected to a pump turbine of a pumped storage power plant, or a large capacity turbine generator. This method is used as a method that can start smoothly without applying a large load, and detailed analysis is performed in various practical examples to confirm the possible range of synchronous starting with various parameters.

PMSMに同期始動方式を適用しようとする場合は、先づPMSMの出力が100W〜数kWであるので前記一般の電動機に較べて非常に小容量であって、その電機子巻線の抵抗値Rが単位法で0.04〜0.2pu(4〜20%)と非常に大きくなること、また励磁が永久磁石であるためにPMSMの励磁E2は固定した一定値であること、および電源の供給が同期発電機Gの代わりにIGBT(Insulated Gate Bipolar Transistor)回路等を使用したインバータ電源となる等の相違点がある。これらについて、詳細な計算は非常に複雑であるので、明らかにされているパラメータから影響の少ないパラメータを省略した簡単な計算によってその同期始動の可能範囲となる回転速度N1(あるいは角速度ω1)を求めた。なお、インバータ装置よりω1の電源を一定時間PMSMに印加しているとする。 When the synchronous start method is to be applied to the PMSM, the output of the PMSM is 100 W to several kW first, so it has a very small capacity compared to the general motor, and the resistance value R of the armature winding. Is 0.04 to 0.2 pu (4 to 20%) in the unit method, and because the excitation is a permanent magnet, the PMSM excitation E 2 is a fixed and constant value, and the power supply is synchronized. There is a difference in that an inverter power supply using an IGBT (Insulated Gate Bipolar Transistor) circuit or the like instead of the generator G is used. Since the detailed calculation for these is very complicated, the rotational speed N 1 (or angular speed ω 1 ) within which the synchronous start is possible by a simple calculation that omits parameters that have little influence from the parameters that have been clarified. Asked. It is assumed that the power of ω 1 is applied to PMSM for a certain time from the inverter device.

1)1C1M(1台のインバータ装置で1台のPMSMを始動)の場合
(a)回路と電流
図1は電源(インバータ装置)から非常に低速な周波数f1に対応した角速度ω1(単位法で0.01オーダー)の電圧をPMSMに供給している状態を示すものである。
0を定格時の相電圧、定格時の電流をI0(A)、f0を定格周波数とすると、超低速時N1min-1で廻っている時の電圧Vは、
V=V0・(f1/f0)=V0・(ω1/ω0) ・・・(1)
ここでLmはモータのリアクタンスに対応するインダクタンスである。
回路のインピーダンスZは、ω1LmがRmに較べ非常に小さいので、
1) In the case of 1C1M (starting one PMSM with one inverter device) (a) Circuit and current FIG. 1 shows an angular velocity ω 1 (unit method) corresponding to a very low frequency f 1 from the power source (inverter device). This shows a state where a voltage of 0.01 order) is being supplied to the PMSM.
When V 0 is the rated phase voltage, the rated current is I 0 (A), and f 0 is the rated frequency, the voltage V when rotating at N 1 min -1 at ultra-low speed is
V = V 0 · (f 1 / f 0 ) = V 0 · (ω 1 / ω 0 ) (1)
Here, Lm is an inductance corresponding to the reactance of the motor.
The impedance Z m of the circuit, omega 1 Lm is very small compared with Rm,

Figure 2008118801
Figure 2008118801

図1の回路に流れる電流I1(A)は
1≒V/Rm=V0・(ω1/ω0)・(1/Rm) ・・・(3)
なお、電源の抵抗を無視すれば、RmはPMSMの抵抗となる。
The current I 1 (A) flowing through the circuit of FIG. 1 is I 1 ≈V / Rm = V 0 · (ω 1 / ω 0 ) · (1 / Rm) (3)
If the resistance of the power supply is ignored, Rm becomes the resistance of PMSM.

(b)トルクの算定
(イ)同期機の定格時に発生するF0は次式で表される
0=0.707・Bm1・A1・Kw・cosδ[N/m2] ・・・(4)
Bm1;永久磁石の発生する磁束の内、基本波磁束密度の波高値[T]
1 ;電機子巻線による電気装荷で A1=(I0・ΣZ)/(πD)(A/m)
で表される。(ΣZは三相巻線の全直列導体数、Dは固定子の内径(m))
Kw ;巻線係数、δ;内部相差角でcosδ≒1とする。
(B) Calculation of torque (a) F 0 generated when the synchronous machine is rated is expressed by the following formula: F 0 = 0.707 · Bm 1 · A 1 · Kw · cos δ [N / m 2 ] (4 )
Bm 1 ; Crest value of fundamental wave magnetic flux density [T] among magnetic fluxes generated by permanent magnets
A 1 : Electric loading by armature winding A 1 = (I 0 · ΣZ) / (πD) (A / m)
It is represented by (ΣZ is the number of all series conductors of the three-phase winding, D is the inner diameter of the stator (m))
Kw: Winding coefficient, δ: Internal phase difference angle cos δ≈1.

数百WクラスのPMSMの場合に適用される数値を上記の(4)式に入れるとF0の概略値を求めることができる。
0≒0.707・0.3・104・1.0・1.0=0.212・104[N/m2]・・・(5)
一方I1については具体的なPMSMの2種類(200Wと150Wの出力)について計算する。
200W;一相の抵抗値Rm=7Ω
150W;一相の抵抗値Rm=20Ω
上記(3)式の相電圧は端子電圧が200Vであるので、
0=200/√3=115.5V ・・・(6)
ω1/ω0=0.005, 0.01, 0.02, 0.03, 0.06(pu)のそれぞれについてI1を求める。
An approximate value of F 0 can be obtained by putting a numerical value applied in the case of a PMSM of several hundred W class into the above equation (4).
F 0 ≒ 0.707 ・ 0.3 ・ 10 4・ 1.0 ・ 1.0 = 0.212 ・ 10 4 [N / m 2 ] ・ ・ ・ (5)
On the other hand, I 1 is calculated for two specific types of PMSM (200 W and 150 W output).
200W; resistance of one phase Rm = 7Ω
150W; resistance of one phase Rm = 20Ω
Since the terminal voltage of the phase voltage of the above equation (3) is 200V,
V 0 = 200 / √3 = 115.5 V (6)
I 1 is obtained for each of ω 1 / ω 0 = 0.005, 0.01, 0.02, 0.03, and 0.06 (pu).

Figure 2008118801
Figure 2008118801

(ロ)200W機の発生トルク
200W機の定格電流 I0=1.0(A),回転子の表面積 S=0.01(m2),定格回転速度 N0=1300min-1,回転子半径 r=0.033m,であるので、上記(5)式を用いてPMSM全体の力F1および発生トルクTを算定する。
1=F0・(I1/1.0)・S[N], T=F1・r[Nm]・・・(7)
(B) Generated torque of 200W machine Rated current of 200W machine I 0 = 1.0 (A), Surface area of rotor S = 0.01 (m 2 ), Rated rotation speed N 0 = 1300min −1 , Rotor radius r = 0.033m Therefore, the force F 1 and the generated torque T of the entire PMSM are calculated using the above equation (5).
F 1 = F 0 · (I 1 /1.0)·S[N], T = F 1 · r [Nm] (7)

Figure 2008118801
Figure 2008118801

(ハ)150W機の発生トルク
150W機の定格電流 I1=0.7(A),回転子の表面積 S=0.008(m2),定格回転速度 N0=1300min-1,回転子半径 r=0.0285mを使用すると、同様にF1とTが算定することができる。
(C) Generated torque of 150W machine Rated current of 150W machine I 1 = 0.7 (A), rotor surface area S = 0.008 (m 2 ), rated rotational speed N 0 = 1300min −1 , rotor radius r = 0.0285m , F 1 and T can be calculated similarly.

Figure 2008118801
Figure 2008118801

3)GD2に必要なエネルギーとトルク
回転体がGD2(kgm2)のはずみ車効果を有し、N0(min-1)の回転速度で回転しているときに保有するエネルギーE0は、
0=1.37・GD2・(N0/1000)2(kWS)
=(1/730)・GD2・N0 2(WS orJ) ・・・(8)
GD2はPMSMの負荷であるファンのGD2がPMSMより非常に大きく、200W機と150W機で同一のものを使用しているものとする。
GD2=0.124[kgm2
したがって、E0=(1/730)・0.124・13002=287(WS or J) ・・・(9)
ω1/ω0の回転速度の時に保有するエネルギーEは、
E=E0・(ω1/ω0)2 (WS or J) ・・・(10)
一方、固定子巻線に三相電流が流れ(ω1/ω0の低周波)、ゆっくりした回転磁界が発生すると、この磁界により回転子の表面に着磁されているN,Sの磁界との間で力が発生し、最初のN,S極で同期化しなければ同期化は不可能となる。
回転子磁極を8極構成とすると、1極あたりの機械角θ1は、
θ1=2π/8=0.785[rad] ・・・(11)
回転子をθ1動かすのに必要なトルクをTmとすると、それに必要なエネルギーWは、
W=Tm・θ1[Nm or J]=0.785・Tm ・・・(12)
上記(10)=(12)とすると、
W=287・(ω1/ω0)2=0.785・Tm ・・・(13)
ゆえに、 Tm=365・(ω1/ω02 ・・・(14)
200W機について必要なTmと(ロ)で求めた発生トルクTとを比較する。
3) energy and torque rotating body required to GD 2 has a flywheel effect of GD 2 (kgm 2), the energy E 0 held when rotating at a rotational speed of N 0 (min -1), the
E 0 = 1.37 · GD 2 · (N 0/1000) 2 (kWS)
= (1/730) · GD 2 · N 0 2 (WS or J) (8)
GD 2 is assumed that the fan GD 2 which is the load of PMSM is much larger than PMSM, and the same 200 W machine and 150 W machine are used.
GD 2 = 0.124 [kgm 2 ]
Therefore, E 0 = (1/730) · 0.124 · 1300 2 = 287 (WS or J) (9)
The energy E held at the rotational speed of ω 1 / ω 0 is
E = E 0 · (ω 1 / ω 0 ) 2 (WS or J) (10)
On the other hand, when a three-phase current flows through the stator winding (low frequency of ω 1 / ω 0 ) and a slow rotating magnetic field is generated, N and S magnetic fields magnetized on the surface of the rotor by this magnetic field A force is generated between the two, and synchronization is impossible unless the first N and S poles are synchronized.
If the rotor magnetic pole has an 8-pole configuration, the mechanical angle θ 1 per pole is
θ 1 = 2π / 8 = 0.785 [rad] (11)
If the torque required to move the rotor θ 1 is Tm, the energy W required for it is
W = Tm · θ 1 [Nm or J] = 0.785 · Tm (12)
If (10) = (12) above,
W = 287 · (ω 1 / ω 0 ) 2 = 0.785 · Tm (13)
Therefore, Tm = 365 · (ω 1 / ω 0 ) 2 (14)
The required Tm for the 200 W machine is compared with the generated torque T obtained in (b).

Figure 2008118801
Figure 2008118801

この計算結果より、(ω1/ω0)の値が約0.03pu(すなわち3%)以下の速度であれば同期化し、それ以上では同期化が難しいことが判る。 From this calculation result, it can be seen that if the value of (ω 1 / ω 0 ) is about 0.03 pu (that is, 3%) or less, synchronization is achieved, and if it is more than that, synchronization is difficult.

同様にして、150W機についても計算する。   Similarly, the calculation is performed for the 150 W machine.

Figure 2008118801
Figure 2008118801

この計算結果より、ω1/ω0の値が約0.01pu(すなわち1%)の速度でも同期化が難しいことが判る。 From this calculation result, it can be seen that synchronization is difficult even when the value of ω 1 / ω 0 is about 0.01 pu (ie, 1%).

4)同期始動が可能な条件
以上の計算結果により、同期始動可能な条件とは、電源からある一定の低周波数(ω1に対応)の電圧をPMSMに印加し、流れた電流によりPMSMに供給されるトルクおよびエネルギーが、ある期間内でGD2を含めてω1まで達するに必要な回転子エネルギーを上回り、余裕を持って供給することができることであることが判る。
4) Conditions under which synchronous start is possible Based on the above calculation results, conditions under which synchronous start is possible are that a voltage of a certain low frequency (corresponding to ω 1 ) is applied to the PMSM from the power source and supplied to the PMSM by the flowing current. It can be seen that the torque and energy produced can exceed the rotor energy required to reach ω 1 including GD 2 within a certain period and can be supplied with a margin.

上記の200W機では、ω1が0.03pu(すなわち3%)以内でω1を固定しておけば、同期化が可能である。
一方150W機のω1は0.01pu(すなわち1%)以下と、同期化範囲が狭く安定した同期化が難しいので、この場合は電源電圧Vを増加させることにより安定した始動が可能となる。
よって安定に同期化させるには、PMSMの抵抗値を小さくする、あるいは電源電圧を許容できる範囲で上げる等の方法が考えられるが、これらは[モータコスト+インバータコスト]=トータルコストでみなければならない。PMSMの体格を大にして抵抗値を下げるか、インバータ装置に余裕を設ける方がよいかの判断は重要であるが、使用条件等に応じて選択すればよい。
上記の例は1C1M(1台のインバータ装置で1台のPMSMを始動)の場合であり、1CXM(1台のインバータ装置で2台以上のPMSMを始動)の場合、X台同士の同期化の問題が追加されるのでさらなる余裕が必要となる。
In the above 200W machine, omega 1 is if secure the omega 1 within 0.03Pu (or 3%), it is possible to synchronize.
On the other hand, since ω 1 of the 150 W machine is 0.01 pu (ie, 1%) or less and the synchronization range is narrow and stable synchronization is difficult, stable startup is possible by increasing the power supply voltage V in this case.
Therefore, in order to synchronize stably, methods such as reducing the resistance value of PMSM or increasing the power supply voltage within an allowable range can be considered, but these must be considered as [motor cost + inverter cost] = total cost. Don't be. Although it is important to determine whether it is better to increase the physique of PMSM to lower the resistance value or to provide a margin for the inverter device, it may be selected according to the use conditions and the like.
The above example is for 1C1M (starting one PMSM with one inverter device), and for 1CXM (starting two or more PMSMs with one inverter device) As the problem is added, further margin is required.

以上1)〜4)に示した始動方法によれば、PMSMにセンサーは必要なく(センサーレス)、三相用のインバータ装置の出力周波数の電圧・電流を低周波状態(数%以下、主には3%以下)で数秒間の一定時間PMSMに印加すれば、図2に示すように2台以上のPMSMでも電源に同期化することが可能となり、その後インバータ装置の電源周波数を上げることにより高速の定格回転速度まで同期したままで上昇させることができることとなる。   According to the starting methods shown in the above 1) to 4), the PMSM does not require a sensor (sensorless), and the voltage / current of the output frequency of the three-phase inverter device is in a low frequency state (several percent or less, mainly 3% or less), if applied to the PMSM for a fixed time of several seconds, it becomes possible to synchronize with two or more PMSMs as shown in FIG. 2, and then increase the power frequency of the inverter device to increase the speed. Thus, it can be increased while being synchronized up to the rated rotational speed.

次に同期始動方法の第2実施例を説明する。図3に示すように三相巻線のうち、先づ二相の巻線(図ではUV間)に直流電流を流し、それにより発生する固定子磁軸(回転しない)により回転子磁極を吸引して磁軸を合わせて同期化し、次に通常のインバータ装置のようにVW間、WU間と位相切り替えを行い、周波数を上げてゆくようにしたのである。この場合も最初の磁極を磁軸に合わせるには数秒の一定時間Δt(回転子が固有振動により振動しながら同期化し安定化するまで)が必要である。   Next, a second embodiment of the synchronous start method will be described. As shown in FIG. 3, among the three-phase windings, a DC current is first passed through the two-phase windings (between UV in the figure), and the rotor magnetic poles are attracted by the stator magnetic axis (not rotating) generated thereby. Then, the magnetic axes are aligned and synchronized, and then the phase is switched between VW and WU as in a normal inverter device, and the frequency is increased. Also in this case, in order to align the first magnetic pole with the magnetic axis, a certain time Δt of several seconds (until the rotor is synchronized and stabilized while vibrating due to natural vibration) is required.

図3は1台のPMSMについてのものであり、この方法を2台以上X台のPMSMの始動に対して適用する場合は、同期化条件は多少厳しいものとなるが、PMSMの抵抗値・GD2・印加電圧等を検討することにより確実な同期化を達成することができるものである。第1,第2実施例のいずれの同期始動方法を選択するかは、制御方式および台数を含めた全体バランスの検討により決定すればよいのである。 FIG. 3 is for one PMSM. When this method is applied to the start of two or more PMSMs, the synchronization condition is somewhat severe, but the PMSM resistance value GD 2. Reliable synchronization can be achieved by examining the applied voltage. Which synchronous start method is selected in the first and second embodiments may be determined by examining the overall balance including the control method and the number of units.

1CXM(1台のインバータ装置でX台)でPMSMを始動する場合、前記したように、同時始動の可否を決定する一番の要素はPMSMの電機子抵抗値であり、次にGD2、電源電圧が影響する。すなわち2台以上のPMSMを同時に始動させる場合、それらの抵抗値に余裕をもたせるとともに、インバータ装置により供給する電圧および周波数(低電圧、低周波数)およびその保持期間をゆっくり保つことにより始動電流(同期化電流)がPMSMに流れ込み、2台の場合は2台を同時に始動して完全に同期化させることが重要となる。この同期化が完全に実施されれば、さらに電源周波数を上げてPMSMの回転速度を増加してゆく過程では、互いに同期化力が働くので安定して上昇することとなる。この上昇過程および定格回転速度到達後の運転制御はPMSMの電圧および周波数の検出によるクローズド・ループ制御に切り替えることよって安定した運転が可能である。そして、単一のインバータ装置により2台以上のPMSMを確実に始動させることができるので、センサーレスのPMSMのコストを含め全体のコストを大幅に低減することができることとなる。 When starting PMSM with 1CXM (X units with one inverter device), as described above, the most important factor for determining whether or not simultaneous starting is possible is the armature resistance value of PMSM, then GD 2 , power supply Voltage affects. In other words, when two or more PMSMs are started at the same time, there is a margin in their resistance values, and the starting current (synchronous) is maintained by slowly maintaining the voltage and frequency (low voltage, low frequency) supplied by the inverter device and its holding period. Current) flows into the PMSM, and in the case of two, it is important to start the two simultaneously and synchronize completely. If this synchronization is completely implemented, in the process of further increasing the power supply frequency and increasing the rotational speed of the PMSM, the synchronization force acts on each other, so that it rises stably. The operation control after the ascending process and reaching the rated rotational speed can be stably operated by switching to closed loop control based on detection of voltage and frequency of PMSM. Since two or more PMSMs can be reliably started by a single inverter device, the overall cost including the cost of the sensorless PMSM can be greatly reduced.

センサーレスのPMSMが使われている個所が例えば大きな空調設備等である場合、PMSMに直結された負荷は送風ファンであり、あるPMSMのセット(単一のインバータ装置により稼働する2台以上のPMSM)を停止するために電源を切ると、他の運転中の送風ファンのつくる陽圧環境の影響で停止した送風ファンに圧力が加わり、通常とは反対の逆回転で廻ることとなる。その回転速度は定格回転速度の40%にも達することがある。
本発明は、そのような逆回転時の状況で、2台以上のセンサーレスPMSMの場合でも確実に単一のインバータ電源と同期化させ、安定して始動させる方法を提案するものである。
When the sensorless PMSM is used in, for example, a large air conditioner, the load directly connected to the PMSM is a blower fan, and a PMSM set (two or more PMSMs operated by a single inverter device) When the power is turned off to stop the air), pressure is applied to the air blower fan that has stopped due to the influence of the positive pressure environment created by the air blower fan during other operations, and the fan rotates in the reverse rotation opposite to normal. The rotational speed may reach 40% of the rated rotational speed.
The present invention proposes a method for reliably synchronizing with a single inverter power source and stably starting even in the case of two or more sensorless PMSMs in such a reverse rotation situation.

2台の送風ファンがそれぞれ別電源(各個用のインバータ装置)のものであれば異なった回転速度(例えば一方は−N3min-1,他方は−N4min-1)で回転するところ、1C1Mの場合は両PMSMの各相の巻線間を接続しておくことで、逆回転によって生ずる両PMSM間に流れる電流により発電制動が発生し、2台のPMSMを両PMSMのそれぞれの回転のほぼ中間の−N5min-1という同一回転速度にて同期した状態にして、すなわち2つのPMSMを1つのPMSMに見立てることのできる状態にすることができる。
この状態でPMSMから発生する電圧・周波数を検知し、IGBT回路からそれに対応した電圧を印加することにより2台のPMSMを同時に同期化させて、回転を−N5min-1(逆回転)〜0min-1(停止)〜N0min-1(定格回転速度)に上昇させることができる。
If the two blower fans are of different power sources (inverter devices for each unit), they rotate at different rotational speeds (for example, one is -N 3 min -1 and the other is -N 4 min -1 ). In the case of 1C1M, by connecting the windings of each phase of both PMSMs, dynamic braking occurs due to the current flowing between the two PMSMs caused by the reverse rotation, and the two PMSMs are connected to the respective rotations of the two PMSMs. It is possible to achieve a state of being synchronized at the same rotational speed of approximately -N 5 min −1 , that is, two PMSMs can be regarded as one PMSM.
In this state, the voltage / frequency generated from the PMSM is detected, and a corresponding voltage is applied from the IGBT circuit to simultaneously synchronize the two PMSMs, and the rotation is -N 5 min -1 (reverse rotation) to It can be increased from 0 min -1 (stop) to N 0 min -1 (rated rotational speed).

さらに詳しく説明すると、2台のPMSM(a)(b)の場合(1C2M)、IGBT回路からの出力端子に両PMSMの三相の端子をそれぞれ接続しておくのである。そこでこのセットを何らかの理由で停止するためにIGBT回路の出力を切ると、PMSM(a)(b)はN0min-1(定格回転速度)〜0min-1(停止)〜逆回転となるが、両機は電気的に接続されているので、逆回転した場合でも同期状態を保って、−N5min-1の同一回転速度で廻ることとなる。もし、両PMSM間に接続がなく単独である運転の場合、PMSM(a)(b)は各ファン特性等の相違によりそれぞれ−N3min-1,−N4min-1の違った回転速度で廻ることになるが、電気的に接続した場合は制動電流が流れるので電気制動トルクが働き、−N3min-1と−N4min-1の中間の−N5min-1の回転速度で同期して回転することとなる。
したがって、電源基盤からその時のPMSMの発生電圧および周波数(PMSMは発電機として作用)を検知し、インバータ装置はその電圧V5に対応した逆回転磁界の三相の電圧と周波数を印加して所定の電流を流して電源と同期化させ、その後電源の二相を切り替えて正方向の回転磁界とすることにより0min-1の状態まで移行することができるのである。
More specifically, in the case of two PMSMs (a) and (b) (1C2M), the three-phase terminals of both PMSMs are respectively connected to the output terminals from the IGBT circuit. Therefore, when the output of the IGBT circuit is turned off to stop this set for some reason, PMSM (a) (b) becomes N 0 min −1 (rated speed) to 0 min −1 (stop) to reverse rotation. Since the two machines are electrically connected, even if they rotate in the reverse direction, they remain synchronized and rotate at the same rotational speed of −N 5 min −1 . If there is no connection between the two PMSMs, the PMSMs (a) and (b) have different rotation speeds of -N 3 min -1 and -N 4 min -1 due to differences in fan characteristics, etc. However, when electrically connected, the braking current flows, so the electric braking torque works, and the rotational speed of -N 5 min -1 between -N 3 min -1 and -N 4 min -1 Will rotate in synchronization.
Therefore, the generated voltage and frequency of the PMSM at that time (PMSM acts as a generator) are detected from the power supply base, and the inverter device applies the three-phase voltage and frequency of the reverse rotating magnetic field corresponding to the voltage V 5 to determine a predetermined value. The current can be made to synchronize with the power source, and then the two phases of the power source can be switched to produce a rotating magnetic field in the positive direction, thereby shifting to a state of 0 min −1 .

以上のプロセスにおいて、逆回転している状態からのセンサーレスのPMSMの始動が可能になる。これはPMSMが1台のみでなく、多数台のPMSMでも可能となることが大きな特徴である。   In the above process, the sensorless PMSM can be started from the reverse rotation state. This is a great feature that it is possible not only with one PMSM but also with many PMSMs.

この逆回転時における同期化現象は0min-1時からの始動時の同期化現象とほぼ類似している。図4に示すように、時計方向に正回転方向をとると、逆回転方向は反時計方向となり、PMSM2台の場合は前述のように同期して−N5min-1で廻る逆回転磁界を作っているので、固定子巻線に誘起する周波数f5
5=PN5/120(Hz) (Pは極数)
となり、
ω5=2πf5
であるから、巻線端子より検出した周波数から求めた角速度ω5に対して、インバータ装置より印加する電源としては逆回転磁界で角速度ω5±(0〜ω1)の範囲であれば同期化が可能であることが判る。ω1は同期化許容角速度である。実際にはω5±Δω1(Δω1<ω1)の角速度を印加し、より同期化を容易且つ確実にすることが重要である。印加電圧は当然1)で述べた同期化に必要な電流を流すことができる電圧となる。図5のベクトルを参照。
The synchronization phenomenon at the time of reverse rotation is almost similar to the synchronization phenomenon at the time of starting from 0 min -1 . As shown in FIG. 4, when the forward rotation direction is clockwise, the reverse rotation direction is counterclockwise. In the case of two PMSMs, a counter-rotating magnetic field that rotates at -N 5 min -1 synchronously as described above is applied. since making the frequency f 5 induced in the stator windings f 5 = PN 5/120 ( Hz) (P is the number of poles)
And
ω 5 = 2πf 5
Therefore, with respect to the angular velocity ω 5 obtained from the frequency detected from the winding terminal, the power supply applied from the inverter device is synchronized within the range of angular velocity ω 5 ± (0 to ω 1 ) in the reverse rotating magnetic field. It turns out that is possible. ω 1 is the synchronization allowable angular velocity. In practice, it is important to apply an angular velocity of ω 5 ± Δω 1 (Δω 11 ) to make synchronization easier and more reliable. Naturally, the applied voltage is a voltage that allows the current necessary for the synchronization described in 1) to flow. See vector in FIG.

図4の(b)は同期化時のインバータ装置の出力の逆回転磁界を発生する電流の向きを示すものである。したがって同期化後は直ちに図4の(c)のようにV,W相を入れ替えることにより正方向回転磁界に変更して回転速度を−N5min-1より0min-1まで戻すのである。多数台のPMSMでも容易且つ確実に上記のプロセスを行うことができるものとなる。0min-1からの始動は1)で述べた同期始動方法を適用するのである。 FIG. 4B shows the direction of the current that generates the reverse rotating magnetic field of the output of the inverter device at the time of synchronization. Thus synchronization after is immediately return V as in FIG. 4 (c), the by interchanging W phase the rotational speed by changing the forward rotation field until 0min -1 from -N 5 min -1. The above process can be performed easily and reliably even with a large number of PMSMs. For starting from 0 min −1 , the synchronous starting method described in 1) is applied.

本実施例では定格回転速度の70%以下の回転速度時の安定化対策としての制御方法について説明する。
回転速度が定格回転速度より低下すると、特に送風ファン等の負荷の場合、その負荷トルクは回転速度の2乗に比例して低下する。したがってPMSMの必要とする電流もトルクに比例して低減してゆくこととなる。これはPMSMの内部相差角δが小さくなることを意味しており、1CXMの場合に2台以上のPMSMが1台のインバータ電源に接続されていると、電流値が大幅に低減した状態でそれぞれの送風ファン負荷の若干の特性の相違による内部相差角の差に基因する振動が発生し、安定な運転ができない現象が発生することがある。そこで同期運転中の2台以上のPMSMの電圧・周波数・電流値をインバータ装置のIGBT(Insulated Gate Bipolar Transistor)回路の出力側で検出し、インバータ装置より供給する電流の位相をPMSMの発生電圧より15°以上の進相として内部相差角δを大きくすることにより電流を増加し、2台以上のPMSMを振動・乱調・脱調等を発生させないで運転するようにしたのである。
In this embodiment, a control method will be described as a stabilization measure at a rotational speed of 70% or less of the rated rotational speed.
When the rotation speed is lower than the rated rotation speed, particularly in the case of a load such as a blower fan, the load torque decreases in proportion to the square of the rotation speed. Therefore, the current required by the PMSM is also reduced in proportion to the torque. This means that the internal phase difference angle δ of the PMSM becomes smaller. In the case of 1CXM, when two or more PMSMs are connected to one inverter power supply, the current value is greatly reduced. In some cases, vibrations caused by the difference in internal phase difference angle due to a slight difference in the fan fan load characteristics may occur, resulting in a phenomenon in which stable operation is not possible. Therefore, the voltage, frequency, and current values of two or more PMSMs in synchronous operation are detected at the output side of the IGBT (Insulated Gate Bipolar Transistor) circuit of the inverter device, and the phase of the current supplied from the inverter device is determined from the PMSM generated voltage. The current was increased by increasing the internal phase difference angle δ as a phase advance of 15 ° or more, and two or more PMSMs were operated without causing vibration, turbulence, step-out, etc.

一般に定格運転時(定格回転速度)においては、PMSMを最も効率よく運転するために直軸電流Id=0制御(モータ発生電圧と電流の位相を同相とする制御)を採用することが多い。この場合電流が最小値となるので、2台以上の並列運転の場合、上記のように回転速度を低下させて運転するときは振動あるいは乱調となる可能性が高くなるのである。これを改善するために電流の位相角を発生電圧より進めると、内部相差角δがδ+Δδと大きくなり、また電流値も大きくなるので、負荷特性の相違により生ずる両PMSM(2台の場合)の有効電流の出入りがI2R損失の増加等により低減され、振動あるいは乱調を抑制することができることとなる。進相角は15°以上、望ましくは20°以上とすることで安定した抑制効果を期待することができることとなる。 In general, during rated operation (rated rotational speed), in order to operate PMSM most efficiently, direct axis current Id = 0 control (control in which the phase of the motor-generated voltage and current is in phase) is often employed. In this case, since the current becomes the minimum value, when two or more units are operated in parallel, there is a high possibility of vibration or turbulence when operating at a reduced rotational speed as described above. In order to improve this, if the phase angle of the current is advanced from the generated voltage, the internal phase difference angle δ increases to δ + Δδ and the current value also increases, so both PMSMs (in the case of two units) caused by the difference in load characteristics Effective current input / output is reduced by an increase in I 2 R loss, etc., and vibration or turbulence can be suppressed. A stable suppression effect can be expected by setting the phase advance angle to 15 ° or more, preferably 20 ° or more.

本実施例では故障時などにPMSMを安全に停止する方法について説明する。
PMSMの回転速度に対応して発生する周波数の電圧・電流をインバータ装置のIGBT回路で検出するとともに、同期運転中の2台以上のPMSMのうちの1台が故障等にて同期速度から脱調し回転速度が低下した際に発生する異周波数の電流をIGBT回路で検出してインバータ装置の出力を遮断し、他方の健全なPMSMの回転を安全に停止するようにしたのである。
例えば2台のPMSMの運転時に、そのうち1台が軸受損傷などにて同期速度から脱調して停止に向かって回転速度が低下すると、PMSMはその回転速度に対応した周波数の電圧を発生し、その電流はインバータ装置のIGBT回路および別の1台に異周波数の電流として流れるので、この電流をIGBT回路の出力側で検知し、インバータ装置の出力を切ると、このセットを安全に停止させることができることとなる。なお、前記故障機の1台が早期に完全に停止すればIGBT回路から大きな電流が流れるので、OCR(Over Current Relay)回路にて停止させることもできる。
In this embodiment, a method for safely stopping PMSM in the event of a failure will be described.
The voltage / current generated at the frequency corresponding to the rotational speed of the PMSM is detected by the IGBT circuit of the inverter device, and one of the two or more PMSMs in synchronous operation is out of synchronization due to failure or the like. The current of a different frequency generated when the rotational speed is reduced is detected by the IGBT circuit, the output of the inverter device is shut off, and the rotation of the other healthy PMSM is safely stopped.
For example, when two PMSMs are operating, if one of them falls out of the synchronous speed due to bearing damage or the like and the rotational speed decreases toward the stop, PMSM generates a voltage with a frequency corresponding to the rotational speed, Since the current flows to the IGBT circuit of the inverter device and another unit as a current of a different frequency, if this current is detected at the output side of the IGBT circuit and the output of the inverter device is turned off, this set can be safely stopped. Will be able to. Note that if one of the malfunctioning machines is completely stopped early, a large current flows from the IGBT circuit, so that it can be stopped by an OCR (Over Current Relay) circuit.

本発明の制御方法は2台以上のセンサーレスのPMSMを使用する環境にて信頼性高く構成容易にてして且つコスト低減のメリットをもって広く利用することができるものである。   The control method of the present invention is reliable and easy to configure in an environment where two or more sensorless PMSMs are used, and can be widely used with the advantage of cost reduction.

1C1Mにおける始動時等価回路例Example of equivalent circuit at start-up in 1C1M 1CXMにおける回路例Circuit example in 1CXM 第2実施例の同期始動方法の原理図Principle diagram of the synchronous start method of the second embodiment 逆回転時の同期化の原理図Principle of synchronization during reverse rotation 逆回転時に印加する電圧のベクトル図Vector diagram of voltage applied during reverse rotation 同期始動方式の原理図Principle of synchronous start method

Claims (5)

三相交流電源を動力とする2台以上のセンサーレスの永久磁石同期電動機(PMSM)の同期始動方式であって、該2台以上のPMSMに単一のインバータ装置より超低周波の三相交流電流を一定時間印加して低回転にて同期始動させた後、電源の周波数を漸次高くして回転速度を上昇させ定格回転に到達するようにしたことを特徴とする2台以上の三相交流電源を動力とするセンサーレスの永久磁石電動機の同期始動方法。   A synchronous start method of two or more sensorless permanent magnet synchronous motors (PMSM) powered by a three-phase AC power source, and the two or more PMSMs have a three-phase AC that is ultra-low frequency than a single inverter device. Two or more three-phase alternating currents characterized in that after applying a current for a certain period of time and synchronously starting at low rotation, the frequency of the power supply is gradually increased to increase the rotation speed and reach the rated rotation A synchronous start method for a sensorless permanent magnet motor powered by a power source. 2台以上のPMSMの各三相巻線のうちのいずれか二相の巻線にインバータ装置から直流電流を印加して固定子磁軸を作ることにより回転子磁極を吸引し、2台以上のPMSMを同時に同期化させた後、三相交流電圧の周波数を漸次高くして定格回転に到達するようにした請求項1に記載のセンサーレスの永久磁石同期電動機の同期始動方法。   The rotor magnetic poles are attracted by applying a direct current from the inverter device to any two-phase winding of each of the three or more PMSM three-phase windings to form a stator magnetic axis, 2. The synchronous start method for a sensorless permanent magnet synchronous motor according to claim 1, wherein the PMSM is simultaneously synchronized, and then the frequency of the three-phase AC voltage is gradually increased to reach the rated rotation. 2台以上のPMSMの三相巻線間を各相ごとに接続し、当該PMSM間に電気制動電流を発生させることにより全てのPMSMを逆回転の状態にて同一の回転速度に同期化させ、該同期した回転速度におけるPMSMの発生電圧・周波数を検知して、その角速度±許容角速度の周波数の電圧・電流をインバータ装置から印加することにより電源と同期化させた後、正回転方向の回転磁界に転換することにより停止状態を挟んで定格回転に到達するようにした逆回転状態からのセンサーレスの永久磁石同期電動機の同期始動方法。   By connecting two or more PMSM three-phase windings for each phase and generating an electric braking current between the PMSMs, all PMSMs are synchronized to the same rotational speed in the reverse rotation state, The PMSM generated voltage and frequency at the synchronized rotational speed are detected, and the voltage and current of the angular speed ± permissible angular speed are applied from the inverter device to synchronize with the power source. The synchronous start method of the sensorless permanent magnet synchronous motor from the reverse rotation state that reaches the rated rotation across the stop state by switching to 同期運転中の2台以上のPMSMの回転速度を低下して負荷トルクが低減した状態で運転する際、発生する電圧・周波数および電流値をインバータ装置のIGBT(Insulated Gate Bipolar Transistor)回路の出力側で検出し、該インバータ装置より供給する電流の位相を前記PMSMの発生電圧より15°以上の進相として内部相差角δを大きくすることにより2台以上のPMSMを振動・乱調・脱調等を発生させないで運転するようにしたセンサーレスの永久磁石同期電動機の運転方法。   When operating with the load torque reduced by reducing the rotational speed of two or more PMSMs in synchronous operation, the generated voltage, frequency and current values are output on the IGBT (Insulated Gate Bipolar Transistor) circuit side of the inverter. The phase of the current supplied from the inverter device is advanced by 15 ° or more from the voltage generated by the PMSM, and the internal phase difference angle δ is increased, so that two or more PMSMs can be vibrated, turbulent or step out. A method for operating a sensorless permanent magnet synchronous motor that is operated without being generated. PMSMの回転速度に対応して発生する周波数・電圧・電流をインバータ装置のIGBT回路で検出するとともに異常を発生したPMSMから発生する異周波数の電圧・電流をIGBT回路で検出するようにして、同期運転中の2台以上のPMSMのうちの1台が故障等にて同期速度から脱調し回転速度が低下した際に発生する異常周波数の電流を該IGBT回路で検出して該インバータ装置の出力を遮断し、健全なPMSMの回転を安全に停止するようにしたセンサーレスの永久磁石同期電動機の停止方法。   The frequency, voltage and current generated corresponding to the rotation speed of the PMSM are detected by the IGBT circuit of the inverter device, and the voltage and current of the different frequency generated from the PMSM where the abnormality has occurred are detected by the IGBT circuit to synchronize. The IGBT circuit detects an abnormal frequency current that occurs when one of the two or more PMSMs in operation is out of the synchronous speed due to a failure or the like and the rotational speed decreases, and the output of the inverter device Is a sensorless permanent-magnet synchronous motor that safely shuts down PMSM rotation.
JP2006301032A 2006-11-07 2006-11-07 Control method for sensorless permanent magnet synchronous motor (PMSM) Active JP4295306B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006301032A JP4295306B2 (en) 2006-11-07 2006-11-07 Control method for sensorless permanent magnet synchronous motor (PMSM)
KR1020070039356A KR101307024B1 (en) 2006-11-07 2007-04-23 A control method for sensorless permanent magnet synchronous motor
TW096114895A TWI431924B (en) 2006-11-07 2007-04-27 A control method for sensorless permanent magnet synchronous motor (pmsm)
CN2007101272751A CN101179250B (en) 2006-11-07 2007-07-05 Control method of non-sensor permenant-magnetic synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301032A JP4295306B2 (en) 2006-11-07 2006-11-07 Control method for sensorless permanent magnet synchronous motor (PMSM)

Publications (2)

Publication Number Publication Date
JP2008118801A true JP2008118801A (en) 2008-05-22
JP4295306B2 JP4295306B2 (en) 2009-07-15

Family

ID=39405372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301032A Active JP4295306B2 (en) 2006-11-07 2006-11-07 Control method for sensorless permanent magnet synchronous motor (PMSM)

Country Status (4)

Country Link
JP (1) JP4295306B2 (en)
KR (1) KR101307024B1 (en)
CN (1) CN101179250B (en)
TW (1) TWI431924B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355185B (en) * 2011-09-24 2013-12-25 国网电力科学研究院 Method for controlling ultralow-frequency stage of static variable-frequency startup of pumped storage aggregate
CN103684118B (en) * 2012-08-31 2016-07-06 安川电机(中国)有限公司 Multiaxial motor drive device and possess this multiaxial motor drive device fiber generate device
KR101664559B1 (en) * 2014-09-25 2016-10-10 현대자동차주식회사 Device and method for controlling cold start of fuel cell system
CN108039849B (en) * 2017-12-20 2021-06-25 常州市裕成富通电机有限公司 Induction motor driving system for electric automobile and quick starting method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870594A (en) * 1993-03-31 1996-03-12 Kasuga Denki Kk Method for restarting after voltage drop or instantaneous power failure in inverter
JP4147383B2 (en) * 2002-06-11 2008-09-10 富士電機機器制御株式会社 DC brushless motor parallel drive circuit
JP2005051975A (en) 2003-07-14 2005-02-24 Fumito Komatsu Parallel operation circuit for synchronous motor
JP4733948B2 (en) * 2004-09-14 2011-07-27 株式会社東芝 Inverter drive blower controller

Also Published As

Publication number Publication date
TW200824258A (en) 2008-06-01
KR20080041547A (en) 2008-05-13
CN101179250B (en) 2012-08-15
CN101179250A (en) 2008-05-14
KR101307024B1 (en) 2013-09-11
TWI431924B (en) 2014-03-21
JP4295306B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP3832257B2 (en) Synchronous motor start control method and control device
JP2000125584A (en) Brushless motor drive for outdoor fan of air conditioner
JP5792394B2 (en) System and method for controlling a synchronous motor
Iura et al. An estimation method of rotational direction and speed for free-running ac machines without speed and voltage sensor
JP2010011727A (en) Permanent magnet generator
US10879822B2 (en) Method for starting up a permanent-magnet synchronous machine, and permanent-magnet synchronous machine
US10778125B2 (en) Synchronous electric power distribution startup system
JP2008167643A (en) Generator and method of controlling frequency of ac generated by the same
US20190036465A1 (en) System and method for starting an electric motor
JP2013539648A (en) Power supply for equipment held by a rotating support
JP4295306B2 (en) Control method for sensorless permanent magnet synchronous motor (PMSM)
JP3731105B2 (en) Motor system, air conditioner equipped with the motor system, and motor starting method
US10439540B1 (en) Drive circuit for electric motors
JP2007282367A (en) Motor driving controller
JP2000228898A (en) Group operation control of synchronous motor and system therewith
Jiao et al. Research on excitation control methods for the two-phase brushless exciter of wound-rotor synchronous starter/generators in the starting mode
JP2000166294A (en) Group operation control method and system of synchronous motor
JP2022552104A (en) Systems and methods for detecting low speed in gas turbine generators
JP2013118782A (en) Motor control device
JP2000166295A (en) Group operation control method and system of synchronous motor
JP2012239301A (en) Motor controller
JP2008154326A (en) Operation method for preventing hunting/step-out during low speed low load operation of two or more pmsm by one inverter
JP2023121317A (en) Stop method of permanent magnet-type electric motor
CN107404262B (en) Load driving device, motor assembly and motor driving device
Toba et al. Generating apparatus for gas heat pump system using sensorless-controlled permanent magnet synchronous generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4295306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250