JP2008117800A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2008117800A
JP2008117800A JP2006296886A JP2006296886A JP2008117800A JP 2008117800 A JP2008117800 A JP 2008117800A JP 2006296886 A JP2006296886 A JP 2006296886A JP 2006296886 A JP2006296886 A JP 2006296886A JP 2008117800 A JP2008117800 A JP 2008117800A
Authority
JP
Japan
Prior art keywords
mounting surface
dielectric layer
substrate
electrostatic chuck
ceramic dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296886A
Other languages
Japanese (ja)
Inventor
Satoshi Shimonishi
聡 下西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006296886A priority Critical patent/JP2008117800A/en
Publication of JP2008117800A publication Critical patent/JP2008117800A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck capable of increasing cooling efficiency in a substrate and preventing residual attraction force in the removal of the substrate from remaining easily. <P>SOLUTION: The electrostatic chuck has a ceramic dielectric layer 3 having a placement surface for holding a substrate 2 to be held on a surface, and a holding electrode 4 provided opposing the placement surface of the ceramic dielectric layer 3. The placement surface of the ceramic dielectric layer 3 has irregularities according to surface roughness. The average interval of the irregularities is not more than the thickness of the substrate 2 to be held. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、静電チャックに関するものである。   The present invention relates to an electrostatic chuck.

従来、エッチング、CVD、スパッタリング等の半導体製造方法において、ウェハを保
持するための治具として静電チャックが使用されている。
Conventionally, in semiconductor manufacturing methods such as etching, CVD, and sputtering, an electrostatic chuck is used as a jig for holding a wafer.

一般に、静電チャックは、ウェハ等の被保持基板の載置面を有する、セラミックからな
る誘電体層と、載置面と対向する位置に設けられた静電電極とから構成され、被保持基板
を載置面に載せることにより、被保持基板と静電電極との静電力によって、被保持基板を
吸着保持することができる。
In general, an electrostatic chuck is composed of a dielectric layer made of ceramic having a mounting surface of a substrate to be held such as a wafer, and an electrostatic electrode provided at a position facing the mounting surface. Is placed on the mounting surface, the held substrate can be sucked and held by the electrostatic force between the held substrate and the electrostatic electrode.

従来の静電チャックは、静電チャックの載置面に所望の表面粗さをもたせることにより
、被保持基板の面内温度の均一性や静電チャックから被保持基板を離脱させるときの離脱
応答性をよくすることが報告されている。例えば、静電チャックの載置面の中央部の表面
粗さを0.7〜1.2μm、周辺部の表面粗さを0.7μm以下にすることにより、被保
持基板の面内温度の均一性がよくなることが報告されている(例えば、特許文献1参照。
)。
Conventional electrostatic chucks have a desired surface roughness on the mounting surface of the electrostatic chuck, thereby making the in-plane temperature uniformity of the substrate to be held and the release response when releasing the substrate to be held from the electrostatic chuck. It has been reported to improve sex. For example, by setting the surface roughness of the central portion of the mounting surface of the electrostatic chuck to 0.7 to 1.2 μm and the surface roughness of the peripheral portion to 0.7 μm or less, the in-plane temperature of the substrate to be held is uniform. (See, for example, Patent Document 1).
).

しかしながら、静電チャックの載置面の表面粗さを小さくしすぎると、面内で均一な吸
着力が得られるものの、被保持基板の着脱時に残留吸着力が残り、静電チャックから被保
持基板を外す際に剥がれにくいという問題点がある。
However, if the surface roughness of the mounting surface of the electrostatic chuck is made too small, a uniform attracting force can be obtained within the surface, but the residual attracting force remains when the held substrate is attached and detached, and the electrostatic chuck is held by the held substrate. There is a problem that it is difficult to peel off when removing.

また、静電チャックの載置面の最外周の表面粗さを0.3μm以下、載置面に形成され
た溝の凸部の幅を1〜20mmとすることにより、載置面上にある被保持基板の異物の付
着を低減することができることが報告されている(例えば、特許文献2参照。)。
Further, the outermost surface roughness of the mounting surface of the electrostatic chuck is 0.3 μm or less, and the width of the convex portion of the groove formed on the mounting surface is set to 1 to 20 mm. It has been reported that adhesion of foreign matter on the substrate to be held can be reduced (see, for example, Patent Document 2).

しかしながら、このように溝の凸部の幅を大きくとってしまうと、被保持基板の接触部
と非接触部との熱伝導率の違いが顕著になるため、基板の冷却効率が下がり、被保持基板
の面内温度の不均一性が発生するという問題点が生じる。
特開2002−261157号公報 特開平9−213777号公報
However, if the width of the convex portion of the groove is increased in this way, the difference in thermal conductivity between the contact portion and the non-contact portion of the substrate to be held becomes remarkable, so that the cooling efficiency of the substrate is lowered and the substrate to be held is reduced. There arises a problem that in-plane temperature non-uniformity of the substrate occurs.
JP 2002-261157 A JP-A-9-213777

本発明は、基板の冷却効率を上げることができると共に、基板を取り外す際の残留吸着
力を残りにくくすることができる静電チャックを提供することを目的とする。
An object of the present invention is to provide an electrostatic chuck that can increase the cooling efficiency of a substrate and can make it difficult to retain a residual adsorption force when the substrate is removed.

本発明の一態様の半導体装置は、表面に被保持基板を保持するための載置面を有するセ
ラミック誘電体層と、前記セラミック誘電体層の前記載置面と対向するように設けられた
保持電極と、を備え、前記載置面は、表面粗さに応じた凹凸を有し、前記凹凸の平均間隔
は、前記被保持基板の厚さ以下であることを特徴としている。
A semiconductor device of one embodiment of the present invention includes a ceramic dielectric layer having a mounting surface for holding a substrate to be held on a surface, and a holding provided so as to face the mounting surface of the ceramic dielectric layer. The mounting surface has irregularities according to surface roughness, and an average interval between the irregularities is equal to or less than a thickness of the substrate to be held.

本発明によれば、基板の冷却効率を上げることができると共に、基板を取り外す際の残
留吸着力を残りにくくすることができる。
According to the present invention, the cooling efficiency of the substrate can be increased, and the residual adsorption force when removing the substrate can be made difficult to remain.

以下、本発明の実施例について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例1に係る静電チャックの構造を示す断面図である。   1 is a cross-sectional view showing the structure of an electrostatic chuck according to Embodiment 1 of the present invention.

図1に示すように、静電チャック1は、表面に被保持基板である半導体基板2を保持す
るための載置面を有するセラミック誘電体層3と、セラミック誘電体層3の載置面と対向
するように設けられた保持電極4と、セラミック誘電体層3と接着剤5を介して接続され
るRF電極6とを備えている。
As shown in FIG. 1, the electrostatic chuck 1 includes a ceramic dielectric layer 3 having a mounting surface for holding a semiconductor substrate 2 as a substrate to be held on the surface, and a mounting surface of the ceramic dielectric layer 3. A holding electrode 4 provided so as to face each other, and an RF electrode 6 connected to the ceramic dielectric layer 3 via an adhesive 5 are provided.

セラミック誘電体層3は、円盤状をしたセラミック基板からなり、例えば、高絶縁性を
有するアルミナ、窒化アルミニウム、窒化珪素などのセラミックスにより構成されている
The ceramic dielectric layer 3 is made of a disk-shaped ceramic substrate, and is made of, for example, ceramics such as alumina, aluminum nitride, and silicon nitride having high insulating properties.

保持電極4は、例えば、タングステンなどの導電体材料からなり、本実施例では、セラ
ミック誘電体層3の内部に埋設されている。また、保持電極4は、直流電源回路7に接続
される。保持電極4に直流電圧を印加させることにより、半導体基板2と保持電極4の間
に静電力が生じ、セラミック誘電体層3の載置面で半導体基板2が吸着される。
The holding electrode 4 is made of a conductive material such as tungsten, and is embedded in the ceramic dielectric layer 3 in this embodiment. The holding electrode 4 is connected to the DC power supply circuit 7. By applying a DC voltage to the holding electrode 4, an electrostatic force is generated between the semiconductor substrate 2 and the holding electrode 4, and the semiconductor substrate 2 is adsorbed on the mounting surface of the ceramic dielectric layer 3.

RF電極6は、高周波電源回路8に接続され、RF電極6に高周波電圧を印加すること
により、半導体基板2と図外の対向電極との間に活性なラジカルが発生し、半導体基板2
表面のシリコン酸化膜等がエッチングされる。
The RF electrode 6 is connected to the high frequency power supply circuit 8, and by applying a high frequency voltage to the RF electrode 6, active radicals are generated between the semiconductor substrate 2 and the counter electrode outside the figure, and the semiconductor substrate 2
The silicon oxide film on the surface is etched.

さらに、静電チャック1の円盤状の中央部には、例えば、Heなどのガスを供給するた
めの貫通孔9が設けられている。この貫通孔9は、RF電極6、保持電極4、セラミック
誘電体層3を貫通し、セラミック誘電体層3の載置面にガスを供給することができる。こ
のように、セラミック誘電体層3の載置面にガスを供給することにより、半導体基板2と
セラミック誘電体層3との隙間の熱伝導効率を向上させている。但し、セラミック誘電体
と半導体基板が直接接触している場合と比較すると、ガスを介した場合の方が熱伝導率が
低下するために冷却効率は劣る。また、セラミック誘電体層と半導体基板との隙間が大き
いほど冷却効率は低下する。これらは、セラミック誘電体層の熱伝導率と比較してガスの
熱伝導率が遙かに低いことに依るものである。なお、場合によっては、セラミック誘電体
層3の載置面から半導体基板2を着脱することを容易にする役割も担っている。
Further, a through hole 9 for supplying a gas such as He is provided in the disc-shaped central portion of the electrostatic chuck 1. The through hole 9 can pass through the RF electrode 6, the holding electrode 4, and the ceramic dielectric layer 3, and supply gas to the mounting surface of the ceramic dielectric layer 3. Thus, by supplying gas to the mounting surface of the ceramic dielectric layer 3, the heat conduction efficiency of the gap between the semiconductor substrate 2 and the ceramic dielectric layer 3 is improved. However, compared with the case where the ceramic dielectric and the semiconductor substrate are in direct contact, the cooling efficiency is inferior when the gas is passed because the thermal conductivity is lowered. In addition, the cooling efficiency decreases as the gap between the ceramic dielectric layer and the semiconductor substrate increases. These are due to the fact that the thermal conductivity of the gas is much lower than that of the ceramic dielectric layer. In some cases, the semiconductor substrate 2 is also easily attached and detached from the mounting surface of the ceramic dielectric layer 3.

次に、図2に本発明の実施例1に係る静電チャックのセラミック誘電体層の載置面の(
a)表面粗さRaと半導体基板2の中央部からの距離との関係、及び(b)凹凸の間隔S
mと半導体基板2の中央部からの距離との関係を示す。
Next, FIG. 2 shows the mounting surface of the ceramic dielectric layer of the electrostatic chuck according to Example 1 of the present invention.
a) Relationship between the surface roughness Ra and the distance from the central portion of the semiconductor substrate 2, and (b) the unevenness S
The relationship between m and the distance from the center part of the semiconductor substrate 2 is shown.

以上より構成される静電チャック1のセラミック誘電体層3の載置面は、所定の表面粗
さに応じた凹凸を有し、セラミック誘電体層3の載置面内で表面粗さを変化させている。
具体的には、図2(a)に示すように、セラミック誘電体層3の載置面の内、中央部で表
面粗さが大きく、例えば、中央部の平均粗さRa=600μmとし、外周部にいくにした
がって段階的に表面粗さを小さくしていき、外周部が表面粗さ最小となる。例えば、本実
施例では、外周部の平均粗さRa=150μmとしている。
The mounting surface of the ceramic dielectric layer 3 of the electrostatic chuck 1 configured as described above has irregularities corresponding to a predetermined surface roughness, and the surface roughness changes within the mounting surface of the ceramic dielectric layer 3. I am letting.
Specifically, as shown in FIG. 2A, the surface roughness of the ceramic dielectric layer 3 is large at the central portion, for example, the average roughness Ra = 600 μm at the central portion, The surface roughness is gradually reduced as it goes to the portion, and the outer peripheral portion has the smallest surface roughness. For example, in this embodiment, the average roughness Ra of the outer peripheral portion is set to 150 μm.

ここで、平均粗さRaとは、凹凸の粗さ曲線の平均線からの絶対値偏差の平均値を表し
ている。また、平均粗さRaは、0.2μm程度まで小さくすることも可能である。
Here, the average roughness Ra represents an average value of absolute value deviations from the average line of the roughness curve of the unevenness. Further, the average roughness Ra can be reduced to about 0.2 μm.

このように、セラミック誘電体層3の載置面の表面粗さを面内で変化させることにより
、半導体基板2中央部と半導体基板2外周部との基板温度のバラつきを抑えることができ
る。具体的に説明すると、半導体基板2中央部では、半導体基板2とセラミック誘電体層
3との接触面積が小さくなるため、冷却効率が低下して、基板温度を比較的高めに保つこ
とが可能である。また、半導体基板2外周部では、半導体基板2とセラミック誘電体層3
との接触面積を大きく保てるため、中央部と比べて高い冷却効率が得られる。その結果、
半導体基板2表面と側面側の両方からプラズマの入熱があり、入熱量の大きい半導体基板
2外周部での温度上昇を抑えることができるので、半導体基板2中央部と半導体基板2外
周部との基板温度のバラつきを抑えることができる。
In this way, by varying the surface roughness of the mounting surface of the ceramic dielectric layer 3 in the plane, it is possible to suppress variations in the substrate temperature between the central portion of the semiconductor substrate 2 and the outer peripheral portion of the semiconductor substrate 2. More specifically, since the contact area between the semiconductor substrate 2 and the ceramic dielectric layer 3 is small in the central portion of the semiconductor substrate 2, the cooling efficiency is lowered and the substrate temperature can be kept relatively high. is there. Further, at the outer periphery of the semiconductor substrate 2, the semiconductor substrate 2 and the ceramic dielectric layer 3 are provided.
Therefore, a high cooling efficiency can be obtained as compared with the central portion. as a result,
Since there is plasma heat input from both the front surface and the side surface of the semiconductor substrate 2 and the temperature rise at the outer periphery of the semiconductor substrate 2 having a large heat input can be suppressed, the central portion of the semiconductor substrate 2 and the outer periphery of the semiconductor substrate 2 can be suppressed. Variations in substrate temperature can be suppressed.

次に、静電チャック1のセラミック誘電体層3の載置面は、面内で凹凸の平均間隔を変
化させている。具体的には、凹凸の平均間隔は、被保持基板の厚さ以下である。例えば、
半導体基板2の厚さが775μmである場合、セラミック誘電体層3の載置面の凹凸の間
隔は775μm以下である。そして、図2(b)に示すように、セラミック誘電体層3の
載置面の内、中央部の凹凸の間隔Smが大きく、例えば、凹凸の間隔Sm=775μmと
し、外周部にいくにしたがって段階的に表面粗さを小さくしていき、例えば、外周部では
、凹凸の間隔Sm=150μmとしている。
Next, the mounting surface of the ceramic dielectric layer 3 of the electrostatic chuck 1 changes the average interval of the unevenness within the surface. Specifically, the average interval between the irregularities is equal to or less than the thickness of the substrate to be held. For example,
When the thickness of the semiconductor substrate 2 is 775 μm, the interval between the irregularities on the mounting surface of the ceramic dielectric layer 3 is 775 μm or less. Then, as shown in FIG. 2B, the unevenness interval Sm in the central portion of the mounting surface of the ceramic dielectric layer 3 is large. For example, the unevenness interval Sm = 775 μm, and as it goes to the outer peripheral portion. The surface roughness is gradually reduced. For example, in the outer peripheral portion, the unevenness interval Sm = 150 μm.

ここで、凹凸の平均間隔Smとは、凹凸の粗さ曲線が平均線と交差する交点から求めた
山谷(周期)の間隔の平均値を表している。
Here, the average interval Sm of unevenness represents an average value of intervals between peaks and valleys (cycles) obtained from the intersection where the roughness curve of the unevenness intersects the average line.

このように、セラミック誘電体層3の載置面の凹凸の間隔を面内で変化させることによ
り、半導体基板2中央部との基板温度のバラつきを抑えることができる。具体的に説明す
ると、半導体基板2中央部では、半導体基板2とセラミック誘電体層3との接触面積が小
さくなるため、冷却効率が低下して、基板温度を比較的高めに保つことが可能である。ま
た、半導体基板2外周部では、半導体基板2との接触面積を大きく保てるため、中央部と
比べて高い冷却効率が得られる。その結果、半導体基板2表面と側面側の両方からプラズ
マの入熱があり、入熱量の大きい半導体基板2外周部での温度上昇を抑えることができ、
半導体基板2中央部との基板温度のバラつきを抑えることができる。
In this way, by changing the interval of the unevenness of the mounting surface of the ceramic dielectric layer 3 within the surface, it is possible to suppress the variation in the substrate temperature with the central portion of the semiconductor substrate 2. More specifically, since the contact area between the semiconductor substrate 2 and the ceramic dielectric layer 3 is small in the central portion of the semiconductor substrate 2, the cooling efficiency is lowered and the substrate temperature can be kept relatively high. is there. Further, since the contact area with the semiconductor substrate 2 can be kept large at the outer peripheral portion of the semiconductor substrate 2, higher cooling efficiency can be obtained compared to the central portion. As a result, there is heat input of plasma from both the surface and the side of the semiconductor substrate 2, and it is possible to suppress the temperature rise at the outer periphery of the semiconductor substrate 2 where the heat input is large,
Variations in the substrate temperature with the central portion of the semiconductor substrate 2 can be suppressed.

ここで、凹凸の平均間隔Smは、基板の厚さ以下であることが望ましい。その理由は、
例えば、非処理基板の表面に対して、RIE、成膜等を施すが、そのとき重要であるのが
、基板表面での温度である。そのため、基板表面の温度が凹凸の有無によって、影響を受
けないためには、表面からの距離に応じて、凹凸の密度が均一に見えることが必要であり
、基板の厚さと同等以下の凹凸の平均間隔を作ることが望ましい。例えば、直径300m
mの半導体基板2の場合、その半導体基板2の厚さは、775μmであるので、静電チャ
ック1の凹凸の平均間隔Smは775μm以下であることが望ましい。
Here, it is desirable that the average interval Sm of the unevenness is equal to or less than the thickness of the substrate. The reason is,
For example, RIE, film formation, or the like is performed on the surface of a non-processed substrate. At that time, the temperature at the substrate surface is important. Therefore, in order for the temperature of the substrate surface to be unaffected by the presence or absence of unevenness, it is necessary that the unevenness density appear to be uniform according to the distance from the surface. It is desirable to create an average interval. For example, diameter 300m
In the case of the m semiconductor substrate 2, the thickness of the semiconductor substrate 2 is 775 μm, and therefore the average interval Sm of the unevenness of the electrostatic chuck 1 is desirably 775 μm or less.

この場合、例えば、静電チャック1の吸着方式として、クーロン力による吸着とジョン
ソン・ラーベック力による吸着の2種類に大別されるが、本発明の実施例1に係る静電チャ
ック1では、凹凸の平均間隔Smを大きくとっているため、クーロン力を用いた吸着だけ
でなく、ジョンソン・ラーベック力による吸着も可能となり、両方が混在した状態で吸着
が可能となる。
In this case, for example, the chucking method of the electrostatic chuck 1 is roughly classified into two types, that is, the chucking by the Coulomb force and the chucking by the Johnson-Rahbek force. Since the average interval Sm is large, not only the adsorption using the Coulomb force but also the adsorption using the Johnson-Rahbek force is possible, and the adsorption can be performed in a state where both are mixed.

以上より構成される本発明の実施例1に係る静電チャックは、セラミック誘電体層の載
置面の表面粗さ及び凹凸の平均間隔を面内で変化させることにより、入熱量の大きい半導
体基板外周部での冷却効率を高めて温度上昇を抑えることができ、半導体基板中央部との
基板温度のバラつきを抑えることができる。
The electrostatic chuck according to Example 1 of the present invention configured as described above is a semiconductor substrate having a large amount of heat input by changing the surface roughness of the mounting surface of the ceramic dielectric layer and the average interval of the irregularities in the plane. The cooling efficiency at the outer peripheral portion can be increased to suppress the temperature rise, and the variation in the substrate temperature with the central portion of the semiconductor substrate can be suppressed.

また、静電チャックのセラミック誘電体層の載置面の表面粗さを従来に比べて、大きく
とっているので、従来、被保持基板の着脱時に残留吸着力が残り、静電チャックから被保
持基板を外す際に剥がれにくかった問題点を解消でき、着脱時でも被保持基板を剥がしや
すくすることができる。
In addition, since the surface roughness of the mounting surface of the ceramic dielectric layer of the electrostatic chuck is made larger than before, the residual attracting force remains when the substrate to be held is attached / detached, and it is held from the electrostatic chuck. The problem that it was difficult to peel off when removing the substrate can be solved, and the held substrate can be easily peeled off even when the substrate is attached or detached.

ここで、実施例1では、セラミック誘電体層の載置面の表面粗さと凹凸の平均間隔の両
方が混在した実施例を示したが、それに限定されるわけではなく、表面粗さ若しくは凹凸
の平均間隔どちらか一方をセラミック誘電体層の載置面の面内で変化させてもかまわない
Here, in Example 1, an example in which both the surface roughness of the mounting surface of the ceramic dielectric layer and the average interval of the irregularities is mixed is not limited thereto, but the surface roughness or irregularities Either one of the average intervals may be changed in the plane of the ceramic dielectric layer mounting surface.

図3に本発明の実施例2に係る静電チャックのセラミック誘電体層の載置面の(a)反
応生成物の滞在時間と半導体基板の中央部からの距離との関係、及び(b)凹凸の間隔S
mと半導体基板の中央部からの距離との関係を示す。尚、本発明の実施例2に係る静電チ
ャックの構成は、実施例1に示した図1の構成と同一であるので、図面及び説明は省略する
FIG. 3 shows (a) the relationship between the residence time of the reaction product and the distance from the central portion of the semiconductor substrate on the mounting surface of the ceramic dielectric layer of the electrostatic chuck according to Example 2 of the present invention, and (b). Unevenness S
The relationship between m and the distance from the center part of a semiconductor substrate is shown. The configuration of the electrostatic chuck according to the second embodiment of the present invention is the same as that shown in FIG.

本発明の実施例2と実施例1との違いは、図3に示すように、セラミック誘電体層3の
載置面の近傍における反応生成物の密度に応じて、セラミック誘電体層3の載置面の凹凸
の間隔Smを面内で変化させていることである。ここで、反応生成物の密度とは、半導体
基板表面での反応によって気体となった反応生成物が生じるが、この反応生成物が反応容
器内から排気されるまでの間には反応容器内の気体の流れの影響を受けるため、半導体基
板表面近傍での反応生成物の密度が場所によって差を生じるものである。
The difference between the second embodiment and the first embodiment of the present invention is that the ceramic dielectric layer 3 is mounted according to the density of the reaction product in the vicinity of the mounting surface of the ceramic dielectric layer 3 as shown in FIG. That is, the interval Sm between the unevenness of the mounting surface is changed in the plane. Here, the density of the reaction product is a reaction product that has become a gas due to the reaction on the surface of the semiconductor substrate, but until the reaction product is exhausted from the reaction vessel, Because of the influence of the gas flow, the density of the reaction product near the surface of the semiconductor substrate varies depending on the location.

具体的に説明すると、例えば、図3(a)に示すように、セラミック誘電体層3の載置
面での反応生成物の密度は、外周部と中心部との間の箇所で反応生成物の密度が高くなる
場合がある。この場合、反応生成物の密度の高い、外周部と中心部との間の箇所では、外
周部と中央部に比べて、反応生成物の再堆積が生じやすい。また、外周部及び中央部では
、密度が低いため、反応生成物の再堆積が生じにくくなり、セラミック誘電体層3の載置
面の面内で均一な再堆積が得られない。
Specifically, for example, as shown in FIG. 3 (a), the density of the reaction product on the mounting surface of the ceramic dielectric layer 3 is the reaction product at a location between the outer peripheral portion and the central portion. The density of may increase. In this case, redeposition of the reaction product is more likely to occur in the portion between the outer peripheral portion and the central portion where the density of the reaction product is high than in the outer peripheral portion and the central portion. Further, since the density is low at the outer peripheral portion and the central portion, it is difficult for redeposition of the reaction product to occur, and uniform redeposition cannot be obtained within the surface of the mounting surface of the ceramic dielectric layer 3.

そこで、図3(b)に示すように、反応生成物の再堆積が生じやすい外周部と中心部と
の間の箇所では、反応生成物の再堆積を抑制する、つまり、半導体基板温度を上げるため
に、載置面の凹凸の平均間隔を大きくする。そして、反応生成物の再堆積が生じにくい外
周部及び中央部では、反応生成物の再堆積を生じやすくする、つまり、半導体基板温度を
下げるために、凹凸の平均間隔を小さくする。これにより、セラミック誘電体層3の載置
面での反応生成物の密度の差を再堆積の確立を変化させて再堆積の量を均一にすることが
できる。
Therefore, as shown in FIG. 3B, the reaction product redeposition is suppressed, that is, the temperature of the semiconductor substrate is increased at a position between the outer peripheral portion and the central portion where reaction product redeposition tends to occur. Therefore, the average interval of the unevenness of the placement surface is increased. Then, in the outer peripheral portion and the central portion where reaction product redeposition is unlikely to occur, reaction product redeposition is likely to occur, that is, the average interval of unevenness is reduced in order to lower the semiconductor substrate temperature. Thereby, the difference of the density of the reaction product on the mounting surface of the ceramic dielectric layer 3 can be changed to change the establishment of redeposition, and the amount of redeposition can be made uniform.

以上より構成される本発明の実施例2に係る静電チャックは、セラミック誘電体層の載
置面の凹凸の平均間隔を反応生成物の密度に応じて、面内で変化させることにより、反応
生成物の密度を均一にすることができ、半導体基板への反応生成物の再堆積を面内で均一
にすることができる。つまり、歩留まりを向上させることが可能となる。
The electrostatic chuck according to the second embodiment of the present invention configured as described above can react by changing the average interval of the unevenness of the mounting surface of the ceramic dielectric layer in the plane according to the density of the reaction product. The density of the product can be made uniform, and the redeposition of the reaction product on the semiconductor substrate can be made uniform in the plane. That is, the yield can be improved.

ここで、本実施例では、セラミック誘電体層の載置面の凹凸の平均間隔を面内で変化さ
せることで説明を行ったが、実施例1と同様、平均粗さを面内で変化させてもかまわない
Here, in the present embodiment, the explanation has been made by changing the average interval of the unevenness of the mounting surface of the ceramic dielectric layer in the plane. However, as in the first embodiment, the average roughness is changed in the plane. It doesn't matter.

図4は、本発明の実施例3に係る静電チャックの凹凸の間隔Smと図1の静電チャック
の外周部aから外周部a′までの距離との関係を示す。尚、本発明の実施例3に係る静電
チャックの断面図は、実施例1に示した図1の構成と同一であるので、図面及び説明は省略
する。
FIG. 4 shows the relationship between the unevenness spacing Sm of the electrostatic chuck according to the third embodiment of the present invention and the distance from the outer peripheral portion a to the outer peripheral portion a ′ of the electrostatic chuck of FIG. The sectional view of the electrostatic chuck according to the third embodiment of the present invention is the same as that shown in FIG.

図1に示すように、本発明の上記各実施例の静電チャック1は、実施例1でも説明した
ように、セラミック誘電体層3の載置面に半導体基板2を吸着させる保持電極4を有し、
直流電源回路7から直流電圧が供給される。また、半導体基板2表面にシリコン酸化膜等
をエッチングするための高周波電圧が印加されるRF電極6を有する。RF電極6は、高
周波電源回路8に接続され、RF電極6に高周波電圧が印加される。
As shown in FIG. 1, the electrostatic chuck 1 of each of the above embodiments of the present invention has the holding electrode 4 for attracting the semiconductor substrate 2 to the mounting surface of the ceramic dielectric layer 3 as described in the first embodiment. Have
A DC voltage is supplied from the DC power supply circuit 7. In addition, the semiconductor substrate 2 has an RF electrode 6 to which a high frequency voltage for etching a silicon oxide film or the like is applied. The RF electrode 6 is connected to the high frequency power supply circuit 8 and a high frequency voltage is applied to the RF electrode 6.

このように、セラミック誘電体層3の載置面の直流電圧や高周波電圧が印加される箇所
では、冷却効率が低下するため、載置面内で基板温度がばらついてしまう。
As described above, the cooling efficiency is lowered at the place where the direct current voltage or the high frequency voltage is applied to the mounting surface of the ceramic dielectric layer 3, so that the substrate temperature varies within the mounting surface.

そこで、本発明の実施例3に係る静電チャックでは、図4に示すように、冷却効率の低
い直流電圧の供給部7及び高周波電圧供給部8で凹凸の間隔Smをそれ以外の箇所に比べ
て小さくしている。例えば、本実施例では、冷却効率の低い直流電圧の供給部7及び高周
波電圧供給部8で凹凸の平均間隔を5μmとし、それ以外の箇所では、25μmとしてい
る。このように、冷却効率の低い箇所の凹凸の平均間隔を冷却効率の高い箇所に比べて小
さくすることにより、半導体基板2との接触面積を大きく保てるため、高い冷却効率が得
られる。つまり、セラミック誘電体層3の載置面内で基板温度のバラつきを均一にするこ
とができる。
Therefore, in the electrostatic chuck according to Example 3 of the present invention, as shown in FIG. 4, the interval Sm between the concaves and convexes in the DC voltage supply unit 7 and the high-frequency voltage supply unit 8 with low cooling efficiency is compared with other portions. And making it smaller. For example, in this embodiment, the average interval of the irregularities in the DC voltage supply unit 7 and the high-frequency voltage supply unit 8 with low cooling efficiency is set to 5 μm, and is set to 25 μm in other portions. Thus, since the contact area with the semiconductor substrate 2 can be kept large by reducing the average interval of the unevenness of the portions with low cooling efficiency as compared with the portions with high cooling efficiency, high cooling efficiency can be obtained. That is, the substrate temperature can be made uniform in the mounting surface of the ceramic dielectric layer 3.

以上より構成される本発明の実施例3に係る静電チャックは、セラミック誘電体層の載
置面の表面粗さ及び凹凸の平均間隔を冷却効率の低い箇所だけ面内で変化させることによ
り、冷却効率の低い直流電圧の供給部及び高周波電圧供給部での温度上昇を抑えることが
でき、半導体基板面内の基板温度のバラつきを抑えることができる。
The electrostatic chuck according to the third embodiment of the present invention configured as described above is obtained by changing the surface roughness of the mounting surface of the ceramic dielectric layer and the average interval of the irregularities in the plane only at a location where the cooling efficiency is low, A temperature rise in the DC voltage supply unit and the high-frequency voltage supply unit with low cooling efficiency can be suppressed, and variations in the substrate temperature in the semiconductor substrate surface can be suppressed.

ここで、本実施例では、セラミック誘電体層の載置面の凹凸の平均間隔を面内で変化さ
せることで説明を行ったが、実施例1と同様、平均粗さを面内で変化させてもかまわない
。また、冷却効率の低い箇所として、直流電圧の供給部及び高周波電圧供給部を例に説明
したが、他に冷却効率の低い箇所、もしくは入熱の大きい箇所があれば、その部分で凹凸
の平均間隔を面内で変化させてもかまわない。
Here, in the present embodiment, the explanation has been made by changing the average interval of the unevenness of the mounting surface of the ceramic dielectric layer in the plane. However, as in the first embodiment, the average roughness is changed in the plane. It doesn't matter. In addition, the DC voltage supply unit and the high-frequency voltage supply unit have been described as examples of the low cooling efficiency, but if there are other low cooling efficiency or high heat input, the average of the unevenness in that part. The interval may be changed in the plane.

なお、本発明は、上述したような実施例に何ら限定されるものではなく、本発明の主旨
を逸脱しない範囲内で種々変形して実施することができる。例えば、上記各実施例では、
具体的な平均粗さ及び凹凸の平均間隔の値を設定して説明したが、それぞれの静電チャッ
クの実施に応じた平均粗さ及び凹凸の平均間隔の値を設定することができる。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiments,
Although the specific average roughness and the average interval value of the unevenness are set and described, the average roughness and the average interval value of the unevenness can be set according to the implementation of each electrostatic chuck.

本発明の実施例1に係る静電チャックの構造を示す断面図。Sectional drawing which shows the structure of the electrostatic chuck which concerns on Example 1 of this invention. 本発明の実施例1に係る静電チャックのセラミック誘電体層の載置面の(a)表面粗さRaと半導体基板の中央部からの距離との関係、及び(b)凹凸の間隔Smと半導体基板の中央部からの距離との関係。(A) the relationship between the surface roughness Ra of the mounting surface of the ceramic dielectric layer of the electrostatic chuck according to Example 1 of the present invention and the distance from the center of the semiconductor substrate, and (b) the unevenness spacing Sm Relationship with the distance from the center of the semiconductor substrate. 本発明の実施例2に係る静電チャックのセラミック誘電体層の載置面の(a)反応生成物の密度と半導体基板の中央部からの距離との関係、及び(b)凹凸の間隔Smと半導体基板の中央部からの距離との関係。(A) the relationship between the density of the reaction product on the mounting surface of the ceramic dielectric layer of the electrostatic chuck according to Example 2 of the present invention and the distance from the center of the semiconductor substrate, and (b) the unevenness spacing Sm. And the distance from the center of the semiconductor substrate. 本発明の実施例3に係る静電チャックの凹凸の間隔Smと図1の静電チャックの外周部aから外周部a′までの距離との関係。The relationship between the uneven | corrugated space | interval Sm of the electrostatic chuck which concerns on Example 3 of this invention, and the distance from the outer peripheral part a of the electrostatic chuck of FIG. 1 to outer peripheral part a '.

符号の説明Explanation of symbols

1 静電チャック
2 半導体基板
3 セラミック誘電体層
4 保持電極
5 接着剤
6 RF電極
7 直流電源回路
8 高周波電源回路
9 貫通孔
DESCRIPTION OF SYMBOLS 1 Electrostatic chuck 2 Semiconductor substrate 3 Ceramic dielectric layer 4 Holding electrode 5 Adhesive 6 RF electrode 7 DC power supply circuit 8 High frequency power supply circuit 9 Through-hole

Claims (5)

表面に被保持基板を保持するための載置面を有するセラミック誘電体層と、
前記セラミック誘電体層の前記載置面と対向するように設けられた保持電極と、
を備え、前記載置面は、表面粗さに応じた凹凸を有し、前記凹凸の平均間隔は、前記被保
持基板の厚さ以下であることを特徴とする静電チャック。
A ceramic dielectric layer having a mounting surface for holding the substrate to be held on the surface;
A holding electrode provided to face the mounting surface of the ceramic dielectric layer;
The electrostatic chuck is characterized in that the mounting surface has irregularities according to surface roughness, and an average interval between the irregularities is equal to or less than a thickness of the substrate to be held.
前記凹凸の平均間隔は、前記載置面の中心領域から外周領域に向けて段階的に小さくなる
ことを特徴とする請求項1記載の静電チャック。
2. The electrostatic chuck according to claim 1, wherein the average interval between the unevenness decreases stepwise from a central region of the mounting surface toward an outer peripheral region.
前記載置面の凹凸の平均間隔は、775μm以下であることを特徴とする請求項1又は請
求項2記載の静電チャック。
3. The electrostatic chuck according to claim 1, wherein an average interval of the unevenness of the mounting surface is 775 μm or less.
前記載置面の表面粗さは、前記載置面の中心領域から外周領域に向けて段階的に小さくな
ることを特徴とする請求項1乃至請求項3のいずれか1項に記載の静電チャック。
4. The electrostatic according to claim 1, wherein the surface roughness of the mounting surface decreases stepwise from a central region of the mounting surface toward an outer peripheral region. 5. Chuck.
前記載置面の表面粗さは、前記載置面の中央領域から外周領域に向けて、600μmから
2μmまでの間の値で段階的に小さくなることを特徴とする請求項4記載の静電チャック
The surface roughness of the mounting surface is from 600 μm from the central region of the mounting surface to the outer peripheral region.
The electrostatic chuck according to claim 4, wherein the electrostatic chuck decreases in a stepwise manner at a value between 2 μm and 5 μm.
JP2006296886A 2006-10-31 2006-10-31 Electrostatic chuck Pending JP2008117800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296886A JP2008117800A (en) 2006-10-31 2006-10-31 Electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296886A JP2008117800A (en) 2006-10-31 2006-10-31 Electrostatic chuck

Publications (1)

Publication Number Publication Date
JP2008117800A true JP2008117800A (en) 2008-05-22

Family

ID=39503537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296886A Pending JP2008117800A (en) 2006-10-31 2006-10-31 Electrostatic chuck

Country Status (1)

Country Link
JP (1) JP2008117800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179790A (en) * 2006-12-27 2008-08-07 Mitsubishi Chemicals Corp Organic compound having crosslinking group, material for organic electroluminescence element, composition for organic electroluminescence element and organic electroluminescence element
JP2012204447A (en) * 2011-03-24 2012-10-22 Covalent Materials Corp Electrostatic chuck

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179790A (en) * 2006-12-27 2008-08-07 Mitsubishi Chemicals Corp Organic compound having crosslinking group, material for organic electroluminescence element, composition for organic electroluminescence element and organic electroluminescence element
JP2012204447A (en) * 2011-03-24 2012-10-22 Covalent Materials Corp Electrostatic chuck

Similar Documents

Publication Publication Date Title
JP5035884B2 (en) Thermal conductive sheet and substrate mounting apparatus using the same
JP6173313B2 (en) Electrostatic chuck with plasma-assisted dechuck on wafer backside
JP6633275B2 (en) Electrostatic chuck with declamping electrode and desorption method
JP5357639B2 (en) Plasma processing apparatus and plasma processing method
JP4935143B2 (en) Mounting table and vacuum processing apparatus
US7718007B2 (en) Substrate supporting member and substrate processing apparatus
JP5881419B2 (en) Electrostatic clamp and method for clamping a workpiece
JP4739039B2 (en) Electrostatic chuck device
JP5762798B2 (en) Ceiling electrode plate and substrate processing placement
JP4869610B2 (en) Substrate holding member and substrate processing apparatus
JP2008251742A (en) Substrate treating apparatus, and substrate mounting base on which focus ring is mounted
JP6552346B2 (en) Substrate processing equipment
JPH04211146A (en) Electrostatic chuck
TW201535581A (en) Plasma processing apparatus and focus ring
JP2009272646A (en) Sputtering device
JP2009530830A (en) Apparatus and method for supporting a substrate
JP2010147502A (en) Electrostatic chuck
US8982529B2 (en) Substrate mounting and demounting method
JP2009302508A (en) Substrate holding apparatus
KR20180021301A (en) Electrostatic chuck assembly and substrate treating apparatus including the assembly
TW200818311A (en) Heat conductive structure and substrate treatment apparatus
JP2007110023A (en) Substrate holding apparatus
JP4783094B2 (en) Annular parts for plasma processing, plasma processing apparatus, and outer annular member
JP2008117800A (en) Electrostatic chuck
JP4495687B2 (en) Electrostatic chuck