JP2008117798A - Organic thin-film element and tandem type photoelectric conversion element - Google Patents

Organic thin-film element and tandem type photoelectric conversion element Download PDF

Info

Publication number
JP2008117798A
JP2008117798A JP2006296846A JP2006296846A JP2008117798A JP 2008117798 A JP2008117798 A JP 2008117798A JP 2006296846 A JP2006296846 A JP 2006296846A JP 2006296846 A JP2006296846 A JP 2006296846A JP 2008117798 A JP2008117798 A JP 2008117798A
Authority
JP
Japan
Prior art keywords
organic thin
thin film
compound
organic
connection layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006296846A
Other languages
Japanese (ja)
Other versions
JP4985929B2 (en
Inventor
Masatoshi Horii
正俊 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2006296846A priority Critical patent/JP4985929B2/en
Publication of JP2008117798A publication Critical patent/JP2008117798A/en
Application granted granted Critical
Publication of JP4985929B2 publication Critical patent/JP4985929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve current/voltage characteristics in an organic thin-film element. <P>SOLUTION: In the organic thin-film element, a plurality of functional elements having at least one organic thin film layer are laminated. The organic thin-film element uses a conductive organic compound, wherein at least one cyano group is coordinated to an electron transporting organic material as a connection layer for mutually connecting the functional elements. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄膜素子に関し、特に有機薄膜層を有する機能性素子部を複数積層した有機薄膜素子およびタンデム型光電変換素子に関する。   The present invention relates to a thin film element, and more particularly to an organic thin film element and a tandem photoelectric conversion element in which a plurality of functional element portions each having an organic thin film layer are stacked.

有機薄膜デバイスは太陽電池、LED、TFT、半導体センサなど多くの分野で開発されている。   Organic thin film devices have been developed in many fields such as solar cells, LEDs, TFTs, and semiconductor sensors.

有機太陽電池を例にとると、有機太陽電池は製造工程におけるエネルギーコストが低く、大面積化に適した製造プロセスとして印刷技術を応用するなど、シリコンデバイスにない特徴を持っており、1970年代後半から研究されている。   Taking organic solar cells as an example, organic solar cells have characteristics not found in silicon devices, such as low energy costs in the manufacturing process and application of printing technology as a manufacturing process suitable for large area. Has been studied since.

効率性能を向上させる手段の一つとして、素子を積層するタンデム構造が報告されている。タンデム型素子とは、複数のヘテロ接合の半導体を間に接続層を挟んで積み重ねて1つの素子を形成した構造体である。タンデム型素子は単層型素子(シングル素子;ヘテロ接合の半導体が1つだけの素子)に比べて、接続層のロスなどがない場合には開放端電圧が2倍(2層の場合)となる。   As one means for improving the efficiency performance, a tandem structure in which elements are stacked has been reported. A tandem element is a structure in which a plurality of heterojunction semiconductors are stacked with a connection layer therebetween to form one element. The tandem type device has a double open-circuit voltage (in the case of two layers) when there is no loss of the connection layer compared to a single layer type device (single device; an element having only one heterojunction semiconductor). Become.

S.R.Forrestらは、「Appl.Phys.Lett.80,1667(2002)」において、内部電極に金属クラスターを使用して、フロントセルとバックセルの膜厚を薄くして光吸収のバランスを取り、フロントセルとバックセルで発生する光電流をほぼ同じにすることで変換効率を単層型素子に比べて向上させることに成功した例を報告している。   S. R. Forrest et al., In “Appl. Phys. Lett. 80, 1667 (2002)”, a metal cluster is used as an internal electrode to reduce the film thickness of the front cell and the back cell to balance light absorption. We have reported an example of successful conversion efficiency improvement compared to a single-layer device by making the photocurrent generated in the cell and the back cell substantially the same.

また、発光素子である有機LEDにおいても、タンデム型による高輝度、長寿命デバイスが報告されている。特開2003−272860号公報には、発光素子間を接続する層をCGL層と呼び、導電体のITO(インジウムスズオキサイド)や絶縁体のV(五酸化バナジウム):αNPD、4F−TCNQ(テトラシアノキノジメタン):αNPDなどの組み合わせで電荷移動錯体を形成した層を使用したデバイスが提案されている。タンデム構造にすることで、シングル素子と同じ電流で、積層した素子分の輝度が得られるため、電流当たりの輝度効率(cd/A)が上昇する。また、シングル素子と同じ輝度で発光させる場合には、シングル素子より少ない電流ですむため、寿命が長くなるメリットがある。 In addition, tandem-type high brightness and long-life devices have been reported for organic LEDs that are light-emitting elements. In Japanese Patent Application Laid-Open No. 2003-272860, a layer connecting light emitting elements is called a CGL layer, and a conductor ITO (indium tin oxide) or an insulator V 2 O 5 (vanadium pentoxide): αNPD, 4F- A device using a layer in which a charge transfer complex is formed by a combination of TCNQ (tetracyanoquinodimethane): αNPD or the like has been proposed. With the tandem structure, the luminance equivalent to the stacked elements can be obtained with the same current as that of the single element, so that the luminance efficiency (cd / A) per current increases. Further, in the case of emitting light with the same brightness as that of a single element, less current is required than that of a single element, so there is an advantage that the life is extended.

特開2003−272860号公報JP 2003-272860 A A.Yakimov and S.R.Forrest,Appl.Phys.Lett.80,1667(2002)A. Yakimov and S.M. R. Forrest, Appl. Phys. Lett. 80, 1667 (2002)

有機太陽電池は上記のような研究が進み改良されてきたが、現在利用されているシリコン系(単結晶シリコン、多結晶シリコン、アモルファスシリコン)デバイスに比べ、エネルギー変換効率が低いという問題点があり、実用化には至っていない。効率改善のためのタンデム型有機太陽電池においても、接続層に導電性金属を使用するとその透過率が低いため、入射光側から離れた素子ほど光吸収が少なくなり発電量が低下する。Forrestらが報告した、接続層に金属クラスターを使う方法では、透過率の問題は改善されるが、膜厚の制御が他の構造の素子に比べて困難である。   Organic solar cells have been improved as a result of the above research, but there is a problem that the energy conversion efficiency is lower than that of currently used silicon (single crystal silicon, polycrystalline silicon, amorphous silicon) devices. It has not been put into practical use. Even in a tandem organic solar cell for improving efficiency, when a conductive metal is used for the connection layer, the transmittance is low, so that light absorption is reduced as the element is farther from the incident light side, and the power generation amount is reduced. The method using metal clusters in the connection layer reported by Forrest et al. Improves the transmittance problem, but it is difficult to control the film thickness as compared to other structures.

タンデム型有機LEDとしてITOや、V:αNPD、4F−TCNQ:αNPDなどの電荷移動錯体を用いる場合、スパッタダメージ、透過率の低さ、Vや4F−TCNQが劇物指定物質であることなどから、新たな素子の開発が求められている。 When ITO or a charge transfer complex such as V 2 O 5 : αNPD or 4F-TCNQ: αNPD is used as a tandem organic LED, sputter damage, low transmittance, V 2 O 5 or 4F-TCNQ are specified as deleterious substances Development of a new element is required because it is a substance.

本発明の目的は、性能を向上させた有機薄膜素子およびそれを用いた有機半導体素子を提供することである。   An object of the present invention is to provide an organic thin film element with improved performance and an organic semiconductor element using the same.

本発明の一観点によれば、一対の電極と、前記一対の電極間に形成され、少なくとも1層の有機薄膜層を有する複数の機能性素子部と、前記複数の機能性素子部との間に形成され、少なくとも1つのシアノ基を配位した電子輸送性有機化合物を用いた接続層とを有する有機薄膜素子が提供される。   According to one aspect of the present invention, between a pair of electrodes, a plurality of functional element units formed between the pair of electrodes and having at least one organic thin film layer, and the plurality of functional element units. And an organic thin film element having a connection layer using an electron transporting organic compound coordinated with at least one cyano group.

本発明の他の観点によれば、透明電極と、対向電極と、前記透明電極および対向電極との間に形成され、少なくとも1層の有機薄膜層を有する複数の単位セルと、前記単位セルの相互間に形成され、少なくとも1つのシアノ基を配位した電子輸送性有機化合物を用いた接続層とを有するタンデム型光電変換素子が提供される。   According to another aspect of the present invention, a plurality of unit cells formed between a transparent electrode, a counter electrode, the transparent electrode and the counter electrode, and having at least one organic thin film layer; There is provided a tandem photoelectric conversion element having a connection layer using an electron transporting organic compound formed between them and coordinated with at least one cyano group.

・接続層の透過率が改善される。
・薄膜の膜厚制御が行いやすくなる。
・スパッタダメージを回避できる。
・劇物指定物質の使用を回避できる。
・接続層に接する電子輸送層との親和性が向上し、接合の電子障壁が低くなる。
・結果として有機薄膜素子としての性能が向上する。
-The transmittance of the connection layer is improved.
・ It becomes easier to control the film thickness.
・ Spatter damage can be avoided.
・ Use of deleterious substances can be avoided.
-The affinity with the electron transport layer in contact with the connection layer is improved, and the electron barrier of the junction is lowered.
-As a result, the performance as an organic thin film element improves.

発明者らは、タンデム型有機薄膜素子において、積層した各素子間を接続する接続層に少なくとも1つのシアノ基(CN)を配位した有機化合物を用いることを発案した。有機材料を使うことで、金属透過率の問題や薄膜の膜厚制御の問題、スパッタダメージの問題、劇物指定物質の使用問題などの改善を図るためである。   The inventors have invented the use of an organic compound in which at least one cyano group (CN) is coordinated in a connection layer connecting the stacked elements in a tandem organic thin film element. This is because the use of an organic material improves the problem of metal transmittance, the problem of thin film thickness control, the problem of sputter damage, the use of a deleterious substance designated substance, and the like.

発明者らは、接続層に有機化合物A(後述する)を用いた、太陽電池として利用可能なタンデム型光電変換素子のサンプルSAを作製し、その特性を調べた。   The inventors prepared a sample SA of a tandem photoelectric conversion element that can be used as a solar cell, using an organic compound A (described later) for the connection layer, and investigated its characteristics.

図1に、サンプルSAの構造を表した概略断面図を示す。ITOからなる透明電極2および対向電極6、両電極間に形成された、2つの単位セル(機能性素子部)3、5、および単位セル間に形成された接続層4から構成される。以下、透明電極2側に形成された単位セルをフロントセル3、対向電極6側に形成された単位セルをバックセル5と呼称する。図示のサンプルSAは次のように作製した。   FIG. 1 is a schematic sectional view showing the structure of the sample SA. The transparent electrode 2 and the counter electrode 6 made of ITO are composed of two unit cells (functional element portions) 3 and 5 formed between the two electrodes, and a connection layer 4 formed between the unit cells. Hereinafter, the unit cell formed on the transparent electrode 2 side is referred to as a front cell 3, and the unit cell formed on the counter electrode 6 side is referred to as a back cell 5. The illustrated sample SA was produced as follows.

基板1として、ITO電極2が付いたガラス板を用いた。ITO電極2はガラス板上にスパッタ成膜した後、フォトリソグラフィーでパターニングした。   A glass plate with an ITO electrode 2 was used as the substrate 1. The ITO electrode 2 was formed by sputtering on a glass plate and then patterned by photolithography.

パターニングされた基板1を中性洗剤中で10分間超音波洗浄した。その後、純水中で10分間超音波洗浄を3回行って純粋のリンスを施した。続いて、脱水・脱脂のためアセトンを用いた超音波洗浄、イソプロピルアルコール(IPA)の超音波洗浄を10分間行った。   The patterned substrate 1 was subjected to ultrasonic cleaning in a neutral detergent for 10 minutes. Then, ultrasonic rinse was performed 3 times for 10 minutes in pure water to give a pure rinse. Subsequently, ultrasonic cleaning using acetone and ultrasonic cleaning of isopropyl alcohol (IPA) were performed for 10 minutes for dehydration and degreasing.

IPAの蒸気槽に20分間基板を置いた後、有機槽と電極槽が接続された真空チャンバに基板1を導入し、容器内の圧力を1×10−5Pa程度まで真空排気した。その後、有機層パターンを形成するため、ステンレス(SUS430)製蒸着マスク越しに有機物を蒸着した。各材料の蒸着レートは水晶振動子とULVAC製CRTM−9000にてモニターし、1〜2Å/sを保った。 After placing the substrate in the IPA vapor tank for 20 minutes, the substrate 1 was introduced into a vacuum chamber in which the organic tank and the electrode tank were connected, and the pressure in the container was evacuated to about 1 × 10 −5 Pa. Then, in order to form an organic layer pattern, the organic substance was vapor-deposited through the vapor deposition mask made from stainless steel (SUS430). The vapor deposition rate of each material was monitored with a quartz resonator and ULVAC CRTM-9000, and maintained at 1-2 Å / s.

次の要領で有機層を形成した。まず、フロントセル3を作製した。まず、銅フタロシアニン(CuPc)層を20nm蒸着してホール輸送層3aを形成した。次にCuPc:フラーレン(C60)を各々1Å/sの蒸着レートで共蒸着し膜厚10nmの活性層3bを得た。3番目にC60を30nm蒸着して電子輸送層3cを形成した。さらにその上にバソクプロインを10nm蒸着してホールブロック層3dを形成し、フロントセル3を作製した。   An organic layer was formed as follows. First, the front cell 3 was produced. First, a copper phthalocyanine (CuPc) layer was deposited to a thickness of 20 nm to form a hole transport layer 3a. Next, CuPc: fullerene (C60) was co-deposited at a deposition rate of 1 Å / s to obtain an active layer 3b having a thickness of 10 nm. Third, C60 was deposited by 30 nm to form the electron transport layer 3c. Furthermore, bathocuproine was vapor-deposited by 10 nm thereon to form a hole blocking layer 3d, and a front cell 3 was produced.

続いて、化合物Aを用いた接続層4をフロントセル3上に10nm蒸着した。   Subsequently, the connection layer 4 using the compound A was deposited on the front cell 3 by 10 nm.

図2に、化合物Aの化学構造式を示す。図2に示すように、化合物Aは、アルミキノリノール錯体にCNを配位した、「aluminum tris(3、6・dicyano−8−quinolinolate)」=「トリス(3、6−ジシアノ−8−キノリノラト)アルミニウム」である。   FIG. 2 shows the chemical structural formula of Compound A. As shown in FIG. 2, Compound A has “aluminum tris (3, 6 dicyano-8-quinolinolate)” = “Tris (3,6-dicyano-8-quinolinolato) in which CN is coordinated to an aluminum quinolinol complex. Aluminum ".

接続層の上に、フロントセルの3層3a、3b、3c、3dと同じ材料、膜厚の層5a、5b、5c、5dをこの順に積層してバックセル5を作製した。   On the connection layer, layers 5a, 5b, 5c, and 5d having the same material and film thickness as the three layers 3a, 3b, 3c, and 3d of the front cell were laminated in this order to produce the back cell 5.

その後、真空を保持したまま電極槽に移動し、電極パターンの蒸着マスクを使用し、バックセルの上にアルミニウムを抵抗加熱で100nm蒸着させて陰極としての電極6を形成した。   Then, it moved to the electrode tank, maintaining the vacuum, and using the vapor deposition mask of the electrode pattern, 100 nm of aluminum was vapor-deposited by resistance heating on the back cell, and the electrode 6 as a cathode was formed.

電極6形成まで終了した基板1を大気に触れることなく窒素ガス雰囲気のグローブボックス内へ導入し、凹部を有するステンレス板による封止を行った。ステンレス板は脱脂のためIPA、アセトンでそれぞれ10分の超音波洗浄を行った後、UVオゾン洗浄を30分間実施してからグローブボックス内へ導入した。   The substrate 1 that had been formed up to the formation of the electrode 6 was introduced into a glove box in a nitrogen gas atmosphere without being exposed to the atmosphere, and sealed with a stainless steel plate having a recess. The stainless steel plate was subjected to ultrasonic cleaning with IPA and acetone for 10 minutes for degreasing, respectively, and then UV ozone cleaning was performed for 30 minutes before introduction into the glove box.

ステンレス板の凹部に、ゲッター剤としてゴアテックス社製Desiccantを貼り付け、周囲に長瀬ケムテックス社製エポキシ樹脂でシール描きした。   As a getter agent, a Desicant manufactured by Gore-Tex was attached to the concave portion of the stainless steel plate, and a seal was drawn with an epoxy resin manufactured by Nagase Chemtex.

上記積層構造(電極2、フロントセル3、接続層4、バックセル5、電極6)を有する基板1とシール材付きステンレス板とを密着させ(積層構造を内側にしてステンレス板凹部内に収容)、シール部のみUVランプにて180秒間UV照射を行い、シール樹脂を硬化した。   The substrate 1 having the above laminated structure (electrode 2, front cell 3, connection layer 4, back cell 5, electrode 6) and a stainless steel plate with a sealing material are brought into close contact (with the laminated structure inside and accommodated in a stainless steel plate recess). Only the seal portion was irradiated with UV for 180 seconds with a UV lamp to cure the seal resin.

こうして、接続層4に化合物Aを用いたタンデム型光電変換素子のサンプルSAを作製した。   Thus, a sample SA of a tandem photoelectric conversion element using the compound A for the connection layer 4 was produced.

このサンプルSAに、26.6mW/cmのエネルギーを持つ可視光領域の高圧放電灯からの光をガラス基板側から照射し、電流−電圧特性を測定した。 The sample SA was irradiated with light from a high-pressure discharge lamp in the visible light region having an energy of 26.6 mW / cm 2 from the glass substrate side, and current-voltage characteristics were measured.

比較例として、上記構造のタンデム型光電変換素子の接続層を銀薄膜(0.5nm)に変えた素子サンプルSBを作製した。また、セルがフロントセルのみであり、そのフロントセル上にアルミニウムAlの陰極100nmを蒸着したシングル素子のサンプルSCも作製した。これらのサンプルに、26.6mW/cmのエネルギーを持つ可視光領域の高圧放電灯からの光をガラス基板側から照射し、電流−電圧特性を測定した。得られた電流−電圧特性からエネルギー変換効率を算出した。 As a comparative example, an element sample SB in which the connection layer of the tandem photoelectric conversion element having the above structure was changed to a silver thin film (0.5 nm) was produced. In addition, a single element sample SC in which the cell was only a front cell and an aluminum Al cathode of 100 nm was deposited on the front cell was also produced. These samples were irradiated with light from a high-pressure discharge lamp in the visible light region having an energy of 26.6 mW / cm 2 from the glass substrate side, and current-voltage characteristics were measured. The energy conversion efficiency was calculated from the obtained current-voltage characteristics.

図3Aに、サンプルSA、SB、SCから得られた電流−電圧特性を示し、図3Bに諸特性を示す。図3Bに示すように、化合物Aを用いたタンデム素子サンプルSAは、シングル素子サンプルSCの短絡電流と同等であり、開放電圧が約1.7倍であるため、フロントセルとバックセルが接続層を介して障壁が少なく接続できていることが分かる。接続層にAg薄膜を用いた場合は特性が他に比べて劣っている。銀薄膜の厚さを1nm、10nmと変えてみたが特性は改善されなかった。   FIG. 3A shows current-voltage characteristics obtained from samples SA, SB, and SC, and FIG. 3B shows various characteristics. As shown in FIG. 3B, the tandem element sample SA using the compound A is equivalent to the short-circuit current of the single element sample SC and the open circuit voltage is about 1.7 times, so that the front cell and the back cell are connected layers. It can be seen that there are few barriers through the connection. When an Ag thin film is used for the connection layer, the characteristics are inferior to those of others. Although the thickness of the silver thin film was changed to 1 nm and 10 nm, the characteristics were not improved.

今回の比較サンプルSBのように、バソクプロインと銅フタロシアニンを用いた構成では銀薄膜が機能しないことが分かり、接続層4に銀を用いることが必ずしも全ての材料に対して適切ではないことが分かる。   It can be seen that the silver thin film does not function in the configuration using bathocuproine and copper phthalocyanine as in this comparative sample SB, and it is understood that the use of silver for the connection layer 4 is not necessarily appropriate for all materials.

続いて発明者らは、上記サンプルと同様の工程で、接続層に後述する化合物Bを用いたサンプルSDを作成した。フロントセル3としてCuPc10nm、次にCuPcとC60の1:1の混合層を10nm、C60を10nm、バソクプロインを10nm蒸着した。接続層としてシアノ基を付与したヘキサアゾトリフェニレン誘導体である化合物Bを10nm蒸着した。   Subsequently, the inventors created a sample SD using the compound B described later in the connection layer in the same process as the above sample. As the front cell 3, CuPc was deposited at 10 nm, and then a 1: 1 mixed layer of CuPc and C60 was deposited at 10 nm, C60 at 10 nm, and bathocuproine at 10 nm. Compound B, which is a hexaazotriphenylene derivative provided with a cyano group, was deposited as a connection layer by 10 nm.

図4に、化合物Bの化学構造式を示す。図示のように、化合物Bは、ヘキサアゾトリフェニレンにCNを配位した、ヘキサニトリルヘキサアゾトリフェニレンである。   FIG. 4 shows the chemical structural formula of Compound B. As shown, compound B is hexanitrile hexaazotriphenylene in which CN is coordinated to hexaazotriphenylene.

続いてバックセル5を形成した。バックセルにはCuPcを10nm、CuPcとC60の1:1の混合層を10nm、C60を30nm、バソクプロインを10nm蒸着した。陰極6にはAlを抵抗加熱で蒸着した。封止工程もサンプルSAと同様に実施し、タンデム型光電変換素子サンプルSDを作製した。   Subsequently, the back cell 5 was formed. The back cell was deposited with 10 nm of CuPc, 10 nm of a 1: 1 mixed layer of CuPc and C60, 30 nm of C60, and 10 nm of bathocuproine. Al was deposited on the cathode 6 by resistance heating. The sealing step was performed in the same manner as the sample SA, and a tandem photoelectric conversion element sample SD was produced.

比較例として、セルがサンプルSDと同様のフロントセルのみであり、そのフロントセル上にアルミニウムAlの陰極100nmを蒸着したシングル素子のサンプルSEを作成した。   As a comparative example, a single element sample SE in which the cell was only a front cell similar to the sample SD and an aluminum Al cathode of 100 nm was deposited on the front cell was prepared.

図5Aに、サンプルSD、SEから得られた電流−電圧特性を示し、図5Bに諸特性を示す。図5Bに示すように、化合物Aを用いたタンデム素子サンプルSDは、接続層に化合物Aを用いたサンプルSAと同様に、シングル素子サンプルSEの短絡電流と同等であり、開放電圧が約2.3倍(素子ごとのばらつきが大きいため、測定上理論値である2倍以上の場合もあるが、従来技術に比べ接続障壁が少ないという効果は主張できると考えられる)であるため、フロントセルとバックセルが接続層を介して障壁が少なく接続できていることが分かる。   FIG. 5A shows current-voltage characteristics obtained from samples SD and SE, and FIG. 5B shows various characteristics. As shown in FIG. 5B, the tandem element sample SD using the compound A is equivalent to the short-circuit current of the single element sample SE and has an open circuit voltage of about 2 as in the sample SA using the compound A for the connection layer. Because it is 3 times (there is a large variation in each element, there are cases where it is more than twice the theoretical value in measurement, but the effect that the connection barrier is smaller compared to the prior art can be asserted) It can be seen that the back cell can be connected through the connection layer with few barriers.

接続層に化合物Aもしくは化合物Bを用いたことで諸特性が改善した理由は次のように考えられる。接続層に使用できる有機物は、電子導電性の高い有機物に電子吸引基であるシアノ基(CN)を持つ構造である。電子伝導性の高い有機物は電子受容性があり、電子輸送性材料として知られている。この材料に電子吸引機能のあるシアノ基を置換することで、ホールを生成する機能を持たせることが可能である。そのため接続層の役割である電子とホールを生成し、それ自体は配線と同じ機能を持つことが可能となる。さらに接続層が電子輸送材料を基本骨格としているため、接続層に接するn型有機半導体または電子輸送層との親和性が高く、障壁の少ない接合が可能となると考えられる。   The reason why various characteristics are improved by using Compound A or Compound B in the connection layer is considered as follows. The organic substance that can be used for the connection layer has a structure having a cyano group (CN) that is an electron-withdrawing group in an organic substance having high electron conductivity. Organic substances having high electron conductivity have electron accepting properties and are known as electron transporting materials. By substituting this material with a cyano group having an electron withdrawing function, it is possible to have a function of generating holes. For this reason, electrons and holes, which are the role of the connection layer, are generated and can themselves have the same function as the wiring. Furthermore, since the connection layer has an electron transport material as a basic skeleton, it is considered that the connection layer has a high affinity with the n-type organic semiconductor or the electron transport layer in contact with the connection layer, and can be bonded with few barriers.

上記の考察により、接続層に用いることで特性が向上する他の有機化合物として、当業者に電子輸送性を有する材料と認められている化合物(主に芳香族化合物)の誘導体であって、CNを少なくとも1つ配位した化合物を適用できると考えられる。   Based on the above consideration, as another organic compound whose characteristics are improved by using it for the connection layer, a derivative of a compound (mainly an aromatic compound) recognized by those skilled in the art as an electron transporting material, It is considered that a compound in which at least one of these is coordinated can be applied.

図6A、図6Bに、アルミキノリノール錯体で化合物AとCNの配位を変えた化合物A2、A3の化学構造式を示す。上記の考察により、アルミキノリノール錯体において、化合物AとCNの配位を変えた化合物A2、A3でもタンデム素子の諸特性が向上するであろう。   6A and 6B show chemical structural formulas of compounds A2 and A3 in which the coordination between compounds A and CN is changed with an aluminum quinolinol complex. From the above consideration, in the aluminum quinolinol complex, the properties of the tandem element will be improved even with the compounds A2 and A3 in which the coordination between the compounds A and CN is changed.

さらに、キノリノール金属錯体において、キノリン環の2〜7位にCNを少なくとも1つ配位した、化合物A、A2、A3以外の他の誘導体であってもほぼ同様の性質が得られ、接続層に使用できると考えられる。   Furthermore, in the quinolinol metal complex, substantially the same properties are obtained even with other derivatives other than compounds A, A2, and A3 in which at least one CN is coordinated to the 2-7 position of the quinoline ring, and the connection layer has It can be used.

図7に、接続層に使用できると考えられるキノリノール金属錯体の誘導体(化合物A0とする。化合物A0には化合物A、A2、A3を含む)の化学構造式を示す。図中Mは金属で、Al以外にZn、Ga、Liを配位しても良い。図中R1〜R6には水素HもしくはCNが配位され、少なくとも1つはCNである。nは配位する金属に応じて変わり、Alの場合は3である。   FIG. 7 shows a chemical structural formula of a quinolinol metal complex derivative (referred to as compound A0. Compound A0 includes compounds A, A2, and A3) that can be used for the connection layer. In the figure, M is a metal, and Zn, Ga, and Li may be coordinated in addition to Al. In the figure, hydrogen H or CN is coordinated to R1 to R6, and at least one is CN. n varies depending on the coordinated metal and is 3 in the case of Al.

キノリノール金属錯体の誘導体と同様に、化合物Bが属するヘキサアゾトリフェニレン誘導体についても、少なくとも1つのCNを配位したヘキサアゾトリフェニレン誘導体であれば接続層に用いることができるであろう。   Similar to the quinolinol metal complex derivative, the hexaazotriphenylene derivative to which the compound B belongs can be used in the connection layer as long as it is a hexaazotriphenylene derivative coordinated with at least one CN.

図8に、接続層に使用できると考えられるヘキサアゾトリフェニレン誘導体(化合物B0とする。化合物B0には化合物Bを含む)の化学構造式を示す。図中R1〜R6にはH、アルキル基、フェニル基、ナフチル基、CNのいずれかが配位され、少なくとも1つはCNが配位されている。   FIG. 8 shows a chemical structural formula of a hexaazotriphenylene derivative (referred to as compound B0. Compound B0 includes compound B) that can be used for the connection layer. In the figure, any one of H, an alkyl group, a phenyl group, a naphthyl group, and CN is coordinated with R1 to R6, and at least one is coordinated with CN.

その他、当業者に電子輸送性を有する材料と認められているフェナントロリン、トリアジン、オキサジアゾールに少なくとも1つのCNを配位した誘導体についても、接続層に使用できると考えられる。   In addition, it is considered that a derivative in which at least one CN is coordinated to phenanthroline, triazine, or oxadiazole recognized as a material having an electron transport property by those skilled in the art can be used for the connection layer.

図9に、接続層に使用できると考えられるフェナントロリン誘導体(化合物C0)の化学構造式を示す。図中R1〜R8には、H、アルキル基、フェニル基、ナフチル基、シアノ基(CN)のいずれかが配位され、少なくとも1つはCNが配位されている。   FIG. 9 shows a chemical structural formula of a phenanthroline derivative (compound C0) that can be used for the connection layer. In the drawing, any one of H, an alkyl group, a phenyl group, a naphthyl group, and a cyano group (CN) is coordinated with R1 to R8, and at least one is coordinated with CN.

例えば、R1とR8にCNが配位した、「1、10−Phenanthoroline−2、9−dinitride」、R1、R3、R6およびR8にCNが配位した、「1、10−Phenanthoroline−2、4、7、9−tetranitride」、R1、R2、R7およびR8にCNが配位した、「1、10−Phenanthoroline−2、3、8、9−tetranitride」、R1とR8にCNが配位し、R3とR6にフェニル基が配位した、「1、10−Phenanthoroline−2、9−dinitride−4、7−diphenyl」等の化合物が挙げられる(いずれの化合物も、他の配位位置には、Hが置換)。   For example, CN is coordinated to R1 and R8, “1,10-Phenanthroline-2, 9-dinitride”, CN is coordinated to R1, R3, R6, and R8, “1,10-Phenanthhroline-2, 4 , 7, 9-tetranitride ", CN is coordinated to R1, R2, R7 and R8, CN is coordinated to" 1, 10-Phenanthroline-2, 3, 8, 9-tetranitride ", R1 and R8, Examples include compounds such as "1, 10-phenanthroleline-2, 9-dinitride-4, 7-diphenyl" in which a phenyl group is coordinated to R3 and R6 (all compounds have other coordination positions, H is substituted).

図10に、接続層に使用できると考えられるトリアジン誘導体(化合物D0)の化学構造式を示す。図中の3つのピリミジン環の4、5、6位の位置にCNを少なくとも1つ配位した構成であれば接続層に使用できると考えられる。図中R1〜R9には、H、アルキル基、フェニル基、ナフチル基、CNのいずれかが配位され、少なくとも1つはCNが配位されている。例えば、R2、R5およびR8にCNが配位した化合物(R1、R3、R4、R6、R7およびR9にはHが配位)や、R1、R3、R4、R6、R7およびR9にCNが配位した化合物(R2、R5およびR8にはHが配位)が考えられる。   FIG. 10 shows a chemical structural formula of a triazine derivative (compound D0) that can be used for the connection layer. Any structure in which at least one CN is coordinated to positions 4, 5, and 6 of the three pyrimidine rings in the figure can be used for the connection layer. In the drawing, any one of H, an alkyl group, a phenyl group, a naphthyl group, and CN is coordinated with R1 to R9, and at least one is coordinated with CN. For example, a compound in which CN is coordinated to R2, R5 and R8 (H is coordinated to R1, R3, R4, R6, R7 and R9), or CN is coordinated to R1, R3, R4, R6, R7 and R9. Compounds that are coordinated (H is coordinated to R2, R5, and R8).

図11に、接続層に使用できると考えられるオキサジアゾール誘導体(化合物E0)の化学構造式を示す。図中R1からR8には、H、アルキル基、フェニル基、ナフチル基、CNのいずれかが配位され、少なくとも1つはCNが配位される。例えば、R2およびR4にCNが配位され、R1、R3、R5〜R8にHが配位した化合物などが挙げられる。   FIG. 11 shows a chemical structural formula of an oxadiazole derivative (compound E0) that can be used for the connection layer. In the figure, any one of H, an alkyl group, a phenyl group, a naphthyl group, and CN is coordinated to R1 to R8, and at least one is coordinated with CN. Examples thereof include compounds in which CN is coordinated to R2 and R4, and H is coordinated to R1, R3, and R5 to R8.

上記においては、タンデム型有機太陽電池の構成を示したが、本件の実施形態は上記に限られるものではない。上記単位セル(機能性素子部)は3つ以上でも良く、単位セルの構成も所望の特性に応じて適宜設計されるものである。また、各単位セルの構成が異なるものであっても良い。例えば、上記タンデム型有機太陽電池において、可視光を吸収するフロントセルと赤外光を吸収するバックセルとの組み合わせなど、異なる吸収波長域を有する単位セルを積層することができる。   In the above, the configuration of the tandem organic solar cell has been shown, but the embodiment of the present invention is not limited to the above. The unit cell (functional element part) may be three or more, and the configuration of the unit cell is appropriately designed according to desired characteristics. Further, the configuration of each unit cell may be different. For example, in the tandem organic solar cell, unit cells having different absorption wavelength ranges such as a combination of a front cell that absorbs visible light and a back cell that absorbs infrared light can be stacked.

さらに、機能性素子部を少なくとも発光層を含み、適宜、電子輸送層、電子注入層、正孔輸送層、正孔注入層、正孔阻止層等を適宜含むように構成した場合には、タンデム型有機LEDが構成される。例えば、透明電極の形成された透明基板上に、青色発光素子部、接続層、黄色発光素子部、対向電極を形成することにより、タンデム型白色有機LEDを構成することができる。また、青色発光素子部は、α−NPDからなる正孔輸送層、4、4’−Bis(2、2−diphenyl−ethen−1−yl)diphenylからなる青色発光層、Tris(8−hydroxyquinolinate)Aluminum(以下、Alq8)からなる電子輸送層で構成することができ、黄色発光素子部は、α−NPDからなる正孔輸送層、5、6、11、12−tetraphenylnaphthaceneをドープしたAlq8からなる黄色発光層、Alq8からなる電子輸送層で構成することができる。   Further, when the functional element portion includes at least a light emitting layer and appropriately includes an electron transport layer, an electron injection layer, a hole transport layer, a hole injection layer, a hole blocking layer, and the like, Type organic LED is constructed. For example, a tandem white organic LED can be formed by forming a blue light emitting element part, a connection layer, a yellow light emitting element part, and a counter electrode on a transparent substrate on which a transparent electrode is formed. The blue light-emitting element part is a hole transport layer made of α-NPD, a blue light-emitting layer made of 4, 4′-Bis (2, 2-diphenyl-ethen-1-yl) diphenyl, Tris (8-hydroxyquinolineate). It can be composed of an electron transport layer made of aluminum (hereinafter referred to as Alq8), and the yellow light emitting element part is a yellow transport layer made of α-NPD, a yellow light made of Alq8 doped with 5, 6, 11, 12-tetraphenylnaphthacene. The light-emitting layer can be composed of an electron transport layer made of Alq8.

従って、有機化合物を主体とする薄膜層からなる機能性素子部を、上記同様の接続層を介して複数積層することにより、本発明の有機薄膜素子を構成することができる。   Therefore, the organic thin film element of the present invention can be configured by laminating a plurality of functional element portions each composed of a thin film layer mainly composed of an organic compound via the same connection layer.

図12に、これらの化合物X(化合物A0、B0、C0、D0、E0。ここではこれらをまとめて化合物Xとする)を接続層に用いた基本的な有機薄膜素子Yの概略断面図を示す。図示のように、上部に電極8を有する基板7上に、有機化合物を主体とした機能性素子部(上記実施例におけるサンプル素子の単位セルに相当)OC1〜OCnが積層され、更にその上に電極9が形成されている。各機能性素子部の構造は、有機薄膜素子Yの所望の機能および特性に応じて構成される。接続層Jは、機能性素子部間に形成され、化合物Xのうち少なくとも1つが用いられる。   FIG. 12 shows a schematic cross-sectional view of a basic organic thin film element Y using these compounds X (compounds A0, B0, C0, D0, E0, which are collectively referred to as compound X here) as a connection layer. . As shown in the figure, a functional element portion (corresponding to a unit cell of a sample element in the above embodiment) OC1 to OCn mainly composed of an organic compound is laminated on a substrate 7 having an electrode 8 on the upper part, and further on it. An electrode 9 is formed. The structure of each functional element portion is configured according to the desired function and characteristics of the organic thin film element Y. The connection layer J is formed between the functional element portions, and at least one of the compounds X is used.

図13に、有機薄膜素子Yの適用例を示す。図12に示した有機薄膜素子Yは、図13に示したように、外部回路であるブラックボックスBBに接続することで、有機半導体素子として多様な製品に適用することができる。例えば、ブラックボックスBBが負荷回路とすると、有機薄膜素子Yに光を供給すれば太陽電池として用いることができるし、ブラックボックスBBが電源回路であれば有機LEDとして用いることができる。これらの他にも、有機TFT、有機薄膜センサおよびそれらの応用製品に用いることができるであろう。   FIG. 13 shows an application example of the organic thin film element Y. As shown in FIG. 13, the organic thin film element Y shown in FIG. 12 can be applied to various products as an organic semiconductor element by being connected to a black box BB which is an external circuit. For example, if the black box BB is a load circuit, it can be used as a solar cell if light is supplied to the organic thin film element Y, and can be used as an organic LED if the black box BB is a power supply circuit. Besides these, it could be used for organic TFTs, organic thin film sensors and their application products.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

図1は、サンプルSAの構造を示した概略断面図である。FIG. 1 is a schematic cross-sectional view showing the structure of a sample SA. 図2は、化合物Aの化学構造式である。FIG. 2 is a chemical structural formula of Compound A. 図3Aは、サンプルSA、SB、SCから得られた電流−電圧特性であり、図3Bはそれらの諸特性表である。FIG. 3A shows current-voltage characteristics obtained from samples SA, SB, and SC, and FIG. 3B is a table of these characteristics. 図4は、化合物Bの化学構造式である。FIG. 4 is a chemical structural formula of Compound B. 図5Aは、サンプルSD、SEから得られた電流−電圧特性であり、図5Bはそれらの諸特性である。FIG. 5A shows current-voltage characteristics obtained from the samples SD and SE, and FIG. 5B shows these characteristics. 図6A、図6Bは、アルミキノリノール錯体の誘導体であり、化合物AとCNの配位を変えた化合物A2、A3の化学構造式である。6A and 6B are chemical structural formulas of the compounds A2 and A3, which are derivatives of an aluminum quinolinol complex and in which the coordination between the compounds A and CN is changed. 図7は、接続層に使用できると考えられるキノリノール金属錯体の誘導体の化学構造式である。FIG. 7 is a chemical structural formula of a derivative of a quinolinol metal complex that can be used for a connection layer. 図8は、接続層に使用できると考えられるヘキサアゾトリフェニレン誘導体の化学構造式である。FIG. 8 is a chemical structural formula of a hexaazotriphenylene derivative that can be used for the connection layer. 図9は、接続層に使用できると考えられるフェナントロリン誘導体の化学構造式である。FIG. 9 is a chemical structural formula of a phenanthroline derivative that can be used for the connection layer. 図10は、接続層に使用できると考えられるトリアジン誘導体の化学構造式である。FIG. 10 is a chemical structural formula of a triazine derivative that can be used for the connection layer. 図11は、接続層に使用できると考えられるオキサジアゾール誘導体の化学構造式である。FIG. 11 is a chemical structural formula of an oxadiazole derivative that can be used for the connection layer. 図12は、接続層に化合物Xのうち少なくとも1つを用いた有機薄膜素子の概略断面図である。FIG. 12 is a schematic cross-sectional view of an organic thin film element using at least one of compounds X as a connection layer. 図13は、図12で示した有機薄膜素子を用いた有機半導体装置の適用例を示した概略図である。FIG. 13 is a schematic view showing an application example of the organic semiconductor device using the organic thin film element shown in FIG.

符号の説明Explanation of symbols

1、7 基板
2、6 電極
3 フロントセル
3a、5a ホール輸送層
3b、5b 活性層
3c、5c 電子輸送層
3d、5d ホールブロック層
4 接続層
5 バックセル
8、9 電極
BB ブラックボックス
OC1、OC2、OCn 機能性素子部
Y 有機薄膜素子
1, 7 Substrate 2, 6 Electrode 3 Front cell 3a, 5a Hole transport layer 3b, 5b Active layer 3c, 5c Electron transport layer 3d, 5d Hole block layer 4 Connection layer 5 Back cell 8, 9 Electrode BB Black box OC1, OC2 , OCn Functional element Y Organic thin film element

Claims (5)

一対の電極と、
前記一対の電極間に形成され、少なくとも1層の有機薄膜層を有する複数の機能性素子部と、
前記複数の機能性素子部との間に形成され、少なくとも1つのシアノ基を配位した電子輸送性有機化合物を用いた接続層と
を有する有機薄膜素子。
A pair of electrodes;
A plurality of functional element portions formed between the pair of electrodes and having at least one organic thin film layer;
An organic thin film element having a connection layer using an electron transporting organic compound formed between the plurality of functional element parts and coordinated with at least one cyano group.
前記電子輸送性有機化合物は、芳香族化合物または有機金属化合物である請求項1記載の有機薄膜素子。   2. The organic thin film element according to claim 1, wherein the electron transporting organic compound is an aromatic compound or an organometallic compound. 前記芳香族化合物として、ヘキサアザトリフェニレン、フェナントロリン、トリアジン、オキサジアゾールのうち少なくとも1つを用いた請求項2記載の有機薄膜素子。   The organic thin film element according to claim 2, wherein at least one of hexaazatriphenylene, phenanthroline, triazine, and oxadiazole is used as the aromatic compound. 前記有機金属化合物として、アルミキノリノール錯体を用いた請求項2記載の有機薄膜素子。   The organic thin film element according to claim 2, wherein an aluminum quinolinol complex is used as the organometallic compound. 透明電極と、
対向電極と、
前記透明電極および対向電極との間に形成され、少なくとも1層の有機薄膜層を有する複数の単位セルと、
前記単位セルの相互間に形成され、少なくとも1つのシアノ基を配位した電子輸送性有機化合物を用いた接続層と
を有するタンデム型光電変換素子。
A transparent electrode;
A counter electrode;
A plurality of unit cells formed between the transparent electrode and the counter electrode and having at least one organic thin film layer;
A tandem photoelectric conversion element having a connection layer using an electron-transporting organic compound formed between the unit cells and coordinated with at least one cyano group.
JP2006296846A 2006-10-31 2006-10-31 Organic thin film device and tandem photoelectric conversion device Expired - Fee Related JP4985929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296846A JP4985929B2 (en) 2006-10-31 2006-10-31 Organic thin film device and tandem photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296846A JP4985929B2 (en) 2006-10-31 2006-10-31 Organic thin film device and tandem photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2008117798A true JP2008117798A (en) 2008-05-22
JP4985929B2 JP4985929B2 (en) 2012-07-25

Family

ID=39503535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296846A Expired - Fee Related JP4985929B2 (en) 2006-10-31 2006-10-31 Organic thin film device and tandem photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4985929B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152577A (en) * 2007-11-29 2009-07-09 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacturing method thereof
WO2010134432A1 (en) * 2009-05-22 2010-11-25 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element
WO2013102985A1 (en) * 2012-01-06 2013-07-11 出光興産株式会社 Organic photoelectric conversion element and organic thin-film solar battery module
US20130207082A1 (en) * 2012-02-14 2013-08-15 Samsung Display Co., Ltd. Organic light-emitting device having improved efficiency characteristics and organic light-emitting display apparatus including the same
CN103280446A (en) * 2008-10-21 2013-09-04 应用材料公司 Non-volatile memory having silicon nitride charge trap layer
JP2014139947A (en) * 2008-09-16 2014-07-31 Global Oled Technology Llc High-color-temperature tandem white oled
JP2016154232A (en) * 2012-07-20 2016-08-25 旭化成株式会社 Solar cell and method of manufacturing solar cell
KR20190013110A (en) * 2017-07-31 2019-02-11 이화여자대학교 산학협력단 Optoelectronic device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145146A (en) * 1992-11-06 1994-05-24 Chisso Corp Oxinate derivative
JPH11260428A (en) * 1998-03-11 1999-09-24 Toshiba Corp Photochemical cell
JP2002094085A (en) * 2000-09-13 2002-03-29 Kyocera Corp Organic solar cell
JP2003264085A (en) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd Organic semiconductor element, organic electroluminescence element and organic solar cell
JP2004335143A (en) * 2003-04-30 2004-11-25 Canon Inc Light emitting element
WO2004112161A2 (en) * 2003-06-12 2004-12-23 Konarka Technologies, Inc. Tandem solar cell with a shared organic electrode
JP2005255890A (en) * 2004-03-12 2005-09-22 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element and organic electroluminescent element using the same
JP2006049396A (en) * 2004-07-30 2006-02-16 Sanyo Electric Co Ltd Organic electroluminescent element and organic electroluminescent display
WO2006017530A1 (en) * 2004-08-05 2006-02-16 The Trustees Of Princeton University Stacked organic photosensitive devices
JP2006210845A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Organic electroluminescent element and organic electroluminescent display
JP2006294895A (en) * 2005-04-12 2006-10-26 Sony Corp Organic electro-luminescence element
JP2008010189A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Photoelectric conversion element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145146A (en) * 1992-11-06 1994-05-24 Chisso Corp Oxinate derivative
JPH11260428A (en) * 1998-03-11 1999-09-24 Toshiba Corp Photochemical cell
JP2002094085A (en) * 2000-09-13 2002-03-29 Kyocera Corp Organic solar cell
JP2003264085A (en) * 2001-12-05 2003-09-19 Semiconductor Energy Lab Co Ltd Organic semiconductor element, organic electroluminescence element and organic solar cell
JP2004335143A (en) * 2003-04-30 2004-11-25 Canon Inc Light emitting element
WO2004112161A2 (en) * 2003-06-12 2004-12-23 Konarka Technologies, Inc. Tandem solar cell with a shared organic electrode
JP2005255890A (en) * 2004-03-12 2005-09-22 Toyo Ink Mfg Co Ltd Material for organic electroluminescent element and organic electroluminescent element using the same
JP2006049396A (en) * 2004-07-30 2006-02-16 Sanyo Electric Co Ltd Organic electroluminescent element and organic electroluminescent display
WO2006017530A1 (en) * 2004-08-05 2006-02-16 The Trustees Of Princeton University Stacked organic photosensitive devices
JP2006210845A (en) * 2005-01-31 2006-08-10 Sanyo Electric Co Ltd Organic electroluminescent element and organic electroluminescent display
JP2006294895A (en) * 2005-04-12 2006-10-26 Sony Corp Organic electro-luminescence element
JP2008010189A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Photoelectric conversion element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152577A (en) * 2007-11-29 2009-07-09 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacturing method thereof
JP2014139947A (en) * 2008-09-16 2014-07-31 Global Oled Technology Llc High-color-temperature tandem white oled
CN103280446A (en) * 2008-10-21 2013-09-04 应用材料公司 Non-volatile memory having silicon nitride charge trap layer
WO2010134432A1 (en) * 2009-05-22 2010-11-25 コニカミノルタホールディングス株式会社 Organic photoelectric conversion element
JP5488595B2 (en) * 2009-05-22 2014-05-14 コニカミノルタ株式会社 Organic photoelectric conversion element
WO2013102985A1 (en) * 2012-01-06 2013-07-11 出光興産株式会社 Organic photoelectric conversion element and organic thin-film solar battery module
US20130207082A1 (en) * 2012-02-14 2013-08-15 Samsung Display Co., Ltd. Organic light-emitting device having improved efficiency characteristics and organic light-emitting display apparatus including the same
JP2016154232A (en) * 2012-07-20 2016-08-25 旭化成株式会社 Solar cell and method of manufacturing solar cell
JP2017204648A (en) * 2012-07-20 2017-11-16 旭化成株式会社 Solar cell and method of manufacturing solar cell
US10535788B2 (en) 2012-07-20 2020-01-14 Asahi Kasei Kabushiki Kaisha Semiconductor film and semiconductor element
US10944018B2 (en) 2012-07-20 2021-03-09 Asahi Kasei Kabushiki Kaisha Semiconductor film and semiconductor element
KR20190013110A (en) * 2017-07-31 2019-02-11 이화여자대학교 산학협력단 Optoelectronic device
KR102046602B1 (en) * 2017-07-31 2019-11-19 이화여자대학교 산학협력단 Optoelectronic device

Also Published As

Publication number Publication date
JP4985929B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
TWI402981B (en) Organic double-heterostructure photovoltaic cells having reciprocal-carrier exciton blocking layer
AU2010241522B2 (en) Stacked organic photosensitive devices
CA2575776C (en) Stacked organic photosensitive devices
JP5313422B2 (en) Organic photosensitive optoelectronic devices with exciton blocking layers
JP4985929B2 (en) Organic thin film device and tandem photoelectric conversion device
US9431621B2 (en) Metal oxide charge transport material doped with organic molecules
TWI528607B (en) Inverted organic photosensitive devices
US10978654B2 (en) Exciton management in organic photovoltaic multi-donor energy cascades
JP2015523741A (en) Organic optoelectronic device having electrode buffer layer and manufacturing method thereof
JP5881116B2 (en) Organic photoelectric conversion element and organic thin film solar cell
Zhuang et al. Improvement of both efficiency and working lifetime in organic photovoltaic devices by using bathophenanthroline/tin (IV) phthalocyanine dichloride as bilayer exciton blocking layers
US20150207088A1 (en) Multijunction organic photovoltaics incorporating solution and vacuum deposited active layers
EP2923389B1 (en) Hybrid planar-mixed heterojunction for organic photovoltaics
US11094902B2 (en) High efficiency small molecule tandem photovoltaic devices
Osasa et al. Determination of photo-active region in organic thin film solar cells with an organic heterojunction
AU2011202560B2 (en) Stacked organic photosensitive devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

R150 Certificate of patent or registration of utility model

Ref document number: 4985929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees