JP2008116236A - Method and device for measuring resistance in strong magnetic field - Google Patents

Method and device for measuring resistance in strong magnetic field Download PDF

Info

Publication number
JP2008116236A
JP2008116236A JP2006297596A JP2006297596A JP2008116236A JP 2008116236 A JP2008116236 A JP 2008116236A JP 2006297596 A JP2006297596 A JP 2006297596A JP 2006297596 A JP2006297596 A JP 2006297596A JP 2008116236 A JP2008116236 A JP 2008116236A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
signal lines
pairs
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006297596A
Other languages
Japanese (ja)
Inventor
Makoto Abe
阿部  誠
Hiroshi Matsuoka
宏 松岡
Tatsuhiko Wada
辰彦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Computer Peripherals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Computer Peripherals Co Ltd filed Critical Hitachi Computer Peripherals Co Ltd
Priority to JP2006297596A priority Critical patent/JP2008116236A/en
Publication of JP2008116236A publication Critical patent/JP2008116236A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the measurement from being affected by the induced voltage between the signal lines connecting the probe and the resistance measurement circuit by improving the resistance measurement technique in the strong magnetic field. <P>SOLUTION: The probe 2 is in contact with a work 1 of a measurement object, sends signal to a resistance measurement circuit 6, and measures the electric resistance of the work. A magnet 7 moves parallel in X-axis direction for changing the magnetic field intensity impressed on the work 1, and rotates around the X-axis by 180° for inverting the direction of the magnetic field impressed on the objective work 1. For making an A signal line 4 or a B signal line 5 generate no induced voltage, even if the magnet 7 moves in the X-axis direction, the signal lines are oppositely faced in the Z-axis direction (i.e. in the magnetic field direction) while being separated. Because of no magnetic field line passing through between the two signal lines 4 and 5, even the magnet 7 moves between the arrow marks a to c, no induced voltage is generated. Moreover, an arm 10 is constituted of a resin material, no eddy current is induced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気ヘッドの検査などに用いられる強磁場内抵抗測定に係り、簡単で安価な構成で測定誤差の発生を防止したものである。   The present invention relates to measurement of resistance in a strong magnetic field used for inspection of a magnetic head and the like, and prevents occurrence of measurement errors with a simple and inexpensive configuration.

図3は、従来例の強磁場内抵抗測定装置を描いた模式図である。
測定対象ワーク1に2本のプローブ2を接触させ、2本の信号線(A信号線4とB信号線5と)を介して抵抗測定回路6によって抵抗値を測定しながら、前記測定対象ワーク1に対して与える磁界の方向および強度を変化させるようになっている。
図示を省略するが、4本、6本、8本…すなわち複数対のプローブに複数対の信号線を介して抵抗測定回路を接続した従来例も有る。説明の便宜上、以下、1対(2本)の信号線に1対(2本)のプローブが接続された従来例について述べる。複数対の場合も、その内の1対(2本)について考察すると以下に述べる1対(2本)と同様である。
前記1対(2本)のプローブ2は基板3に装着されており、該基板3は真鍮製のアーム8で支承されている。
FIG. 3 is a schematic diagram illustrating a conventional apparatus for measuring resistance in a strong magnetic field.
The two workpieces 2 are brought into contact with the workpiece 1 to be measured and the resistance measurement circuit 6 measures the resistance value via the two signal lines (A signal line 4 and B signal line 5). The direction and intensity of the magnetic field applied to 1 are changed.
Although not shown in the drawings, there are also conventional examples in which resistance measuring circuits are connected to a plurality of pairs of probes via a plurality of pairs of signal lines. For convenience of explanation, a conventional example in which one pair (two) of probes is connected to one pair (two) of signal lines will be described below. In the case of a plurality of pairs, one pair (two) of them is the same as one pair (two) described below.
The pair of (two) probes 2 are mounted on a substrate 3, and the substrate 3 is supported by a brass arm 8.

本図には2個のマグネットを描いてあるが、マグネットの設置個数は1個であって、矢印a−c方向に往復させるように案内・駆動手段(図示省略)を備えている。
符号7Aを付して示したのは前進位置のマグネット、符号7Bは後退位置のマグネットである。マグネットに付記した符号N,Sは磁極と極性とを表しており、仮想線で付記したのは導磁ヨークを表している。実際のヨークは環状であるが、図を簡潔にするためコの字形に描いてある。
Although two magnets are depicted in this figure, the number of magnets installed is one, and guide / drive means (not shown) is provided so as to reciprocate in the directions of arrows ac.
Reference numeral 7A indicates a magnet at the forward position, and reference numeral 7B indicates a magnet at the reverse position. Reference numerals N and S added to the magnet represent magnetic poles and polarities, and those added with phantom lines represent a magnetic yoke. The actual yoke is annular, but is drawn in a U shape for the sake of simplicity.

説明の便宜上、磁界に平行なZ軸を想定し、磁界方向をZ′とし、その反対方向をZとする。
前記2本の信号線の方向はZ軸に直交している、この方向をX軸とする。
次に、測定対象ワーク1に与える磁界の強度と方向とを変化させる状態について、本図3を参照しつつ説明する。
For convenience of explanation, a Z-axis parallel to the magnetic field is assumed, the magnetic field direction is Z ′, and the opposite direction is Z.
The direction of the two signal lines is orthogonal to the Z axis, and this direction is taken as the X axis.
Next, a state in which the intensity and direction of the magnetic field applied to the workpiece 1 to be measured will be described with reference to FIG.

第1工程
マグネットを前進位置7Aにする。これにより、測定対象ワーク1に与えられるZ′方向の磁界強度は最大値+1.5(T)になる。
第2工程
前進位置のマグネット7Aを、矢印a方向に後退位置7Bまで平行移動させる。これにより、測定対象ワーク1に与えられる磁界強度は最小値0(T)まで減少する。
第3工程
後退位置のマグネット7Bを円弧矢印bのように、X軸周りに180度回転させる。この工程においては測定対象ワーク1に与えられる磁界強度は別段変化しない(磁界強度0であるから)。
第4工程
後退位置のマグネット7Bを、矢印cのように前進位置7Aまで平行移動させる。これにより、測定対象ワーク1に与えられる磁界強度は、反対方向の最大値−1.5(T)まで増加する。
第5工程
第2工程と同様に操作(矢印a移動)して、磁界強度を0(T)まで弱め、
第6工程
第3工程と類似の操作(円弧矢印d回転)して磁極方向を反転させ、
第7工程
後退位置のマグネット7Bを、矢印cのように前進位置7Aまで平行移動(矢印c)させる。これにより、測定対象ワーク1に与えられる磁界強度は、正の最大値+1.5(T)まで増加する。
The first step magnet is set to the forward position 7A. As a result, the magnetic field strength in the Z ′ direction given to the workpiece 1 to be measured becomes the maximum value +1.5 (T).
The magnet 7A in the second process advance position is translated in the direction of arrow a to the retreat position 7B. Thereby, the magnetic field intensity given to the workpiece 1 to be measured decreases to the minimum value 0 (T).
The magnet 7B in the third process retreat position is rotated 180 degrees around the X axis as indicated by an arc arrow b. In this step, the magnetic field strength applied to the workpiece 1 to be measured does not change any more (because the magnetic field strength is 0).
Fourth Step The magnet 7B in the reverse position is translated to the forward position 7A as indicated by an arrow c. Thereby, the magnetic field intensity given to the workpiece 1 to be measured increases to the maximum value −1.5 (T) in the opposite direction.
5th step Operate in the same way as the 2nd step (arrow a movement), weaken the magnetic field strength to 0 (T),
The sixth step, similar to the third step (rotating the arc d), reverses the magnetic pole direction,
Seventh Step The magnet 7B in the reverse position is translated (arrow c) to the forward position 7A as indicated by the arrow c. Thereby, the magnetic field strength given to the workpiece 1 to be measured increases to a positive maximum value +1.5 (T).

磁界を印加して電気抵抗を測定する技術に関しては、特許文献1に示した特開2001−311750号公報に記載されたシート抵抗測定方法が公知であるが、この発明方法は磁力線を印加して渦電流を発生させ、渦電流損失を計測して抵抗値を算出するものであり、本発明とは異なる分野の技術である。
特開2001−311750号公報
Regarding a technique for measuring electric resistance by applying a magnetic field, a sheet resistance measuring method described in Japanese Patent Laid-Open No. 2001-31750 shown in Patent Document 1 is known. An eddy current is generated, eddy current loss is measured to calculate a resistance value, and this is a technique in a field different from the present invention.
JP 2001-31750 A

前述の抵抗値測定操作における第2工程、第4工程、第5工程及び第7工程、すなわちマグネットをX軸方向に平行移動させる際、次のような不具合を生じる。
イ.2本の信号線(4,5)、及びプローブ2によって形成されるループの中を磁力線が移動するので、微小な誘導電圧を生じる。電圧値は極微小であるが、強磁場内抵抗測定
は極度に高精度を要するので、この誘導電圧による誤差を無視できない。
ロ.導電性の材料で構成されているアーム8の中を磁力線が移動するので、誘導渦電流を生じて該アーム8が動かされる。
アーム8が動くとプローブ2が動かされ、測定対象ワーク1に対して摺動するので測定誤差を生じる。
In the second step, the fourth step, the fifth step, and the seventh step in the resistance value measuring operation described above, that is, when the magnet is translated in the X-axis direction, the following problems occur.
I. Since the magnetic lines of force move in the loop formed by the two signal lines (4, 5) and the probe 2, a minute induced voltage is generated. Although the voltage value is extremely small, the measurement of resistance in the strong magnetic field requires extremely high accuracy, and thus the error due to the induced voltage cannot be ignored.
B. Since the magnetic lines of force move in the arm 8 made of a conductive material, an induced eddy current is generated to move the arm 8.
When the arm 8 moves, the probe 2 is moved and slides with respect to the workpiece 1 to be measured, so that a measurement error occurs.

本発明は以上に述べた事情に鑑みて為されたものであって、その目的は、
マグネットを信号線と平行に移動させても該信号線に誘導電圧を生ぜず、かつアームに渦電流を生じる虞れの無い強磁場内抵抗測定技術を提供することである。
The present invention has been made in view of the circumstances described above, and its purpose is as follows.
It is an object of the present invention to provide a technique for measuring resistance in a strong magnetic field that does not generate an induced voltage in a signal line even when a magnet is moved in parallel with the signal line, and does not cause an eddy current in an arm.

前記の目的を達成するために創作した本発明の基本的な原理を略述すると次のごとくである。
イ.信号線に誘導電圧を生じさせないためには、該信号線によって形成されるループの中に磁力線が通らないようにする。すなわち、信号線によって形成されるループを、磁力線と平行な面内に位置せしめる。
ロ.アーム内に渦電流が生じないようにするため、該アームを電気絶縁性の材料で構成する。
The basic principle of the present invention created in order to achieve the above object is briefly described as follows.
I. In order to prevent an induced voltage from being generated in the signal line, a magnetic field line is prevented from passing through a loop formed by the signal line. That is, the loop formed by the signal lines is positioned in a plane parallel to the magnetic field lines.
B. In order to prevent an eddy current from being generated in the arm, the arm is made of an electrically insulating material.

請求項1の発明に係る強磁場内抵抗測定方法は、
1対または複数対の平行な信号線の先端に接続されたプローブを測定対象ワークに接触導通させて抵抗値を測定しつつ、上記測定対象ワークをマグネットの磁界内に位置せしめ、
上記マグネットを前記信号線と平行に移動させて測定対象ワークに印加される磁界強度を変化させたり、該マグネットを回転させて測定対象ワークに印加される磁界方向を反転させたりする強磁場内抵抗測定方法において、
前記1対または複数対の平行な信号線の長手方向をX軸とし、前記マグネットの磁極が対向している方向をZ軸として、
前記1対または複数対の信号線をZ軸方向に対向離間させて配列することにより、該1対または複数対の信号線によって形成されるループの中を磁力線が通過しないようにすることを特徴とする。
The method for measuring resistance in a strong magnetic field according to the invention of claim 1 comprises:
While making the probe connected to the tip of one or more pairs of parallel signal wires contact and conduct to the workpiece to be measured and measuring the resistance value, the workpiece to be measured is positioned in the magnetic field of the magnet,
Strong magnetic field resistance that moves the magnet parallel to the signal line to change the magnetic field strength applied to the workpiece to be measured, or rotates the magnet to reverse the direction of the magnetic field applied to the workpiece to be measured. In the measurement method,
The longitudinal direction of the one or more pairs of parallel signal lines is the X axis, and the direction in which the magnetic poles of the magnet are facing is the Z axis,
The magnetic field lines are prevented from passing through a loop formed by the one or more pairs of signal lines by arranging the one or more pairs of signal lines so as to face each other in the Z-axis direction. And

請求項2の発明に係る強磁場内抵抗測定方法は、前記請求項1の発明方法の構成要件に加えて、
電気絶縁性の非磁性体からなるアームを用いて前記1対または複数対の信号線を支承することにより、マグネットの移動に伴って信号線支承部材内の誘導渦電流発生を防止することを特徴とする。
The strong magnetic field resistance measurement method according to the invention of claim 2 includes, in addition to the constituent features of the invention method of claim 1,
By supporting the one or more pairs of signal lines using an arm made of an electrically insulating non-magnetic material, it is possible to prevent the generation of induced eddy currents in the signal line supporting member as the magnet moves. And

請求項3の発明に係る強磁場内抵抗測定装置の構成は、
1対または複数対の平行な信号線の先端に接続されたプローブと、
上記プローブの接触を受ける位置に在る測定対象ワークに対してZ軸方向の磁場を印加するマグネットと、
上記マグネットを前記信号線と平行なX軸方向に移動させる手段と、
該マグネットの磁界方向を反転させる手段とを有する強磁場内抵抗測定装置において、
前記X軸方向の1対または複数対の信号線が、Z軸方向に対向離間して配設されていることを特徴とする。
The configuration of the strong magnetic field resistance measurement apparatus according to the invention of claim 3 is:
A probe connected to the tip of one or more pairs of parallel signal lines;
A magnet that applies a magnetic field in the Z-axis direction to a workpiece to be measured at a position to receive contact of the probe;
Means for moving the magnet in the X-axis direction parallel to the signal line;
In a strong magnetic field resistance measurement device having means for reversing the magnetic field direction of the magnet,
One or a plurality of pairs of signal lines in the X-axis direction are arranged to be opposed to and separated from each other in the Z-axis direction.

請求項4の発明に係る強磁場内抵抗測定装置の構成は、前記請求項3の発明の構成要件に加えて、
前記1対または複数対の信号線が、基板の導通パターンによって形成されていることを特徴とする。
The configuration of the strong magnetic field resistance measurement device according to the invention of claim 4 is in addition to the configuration requirements of the invention of claim 3,
The one or more pairs of signal lines are formed by a conductive pattern of a substrate.

請求項5の発明に係る強磁場内抵抗測定装置の構成は、前記請求項4の発明の構成要件に加えて、
前記1対または複数対の信号線を形成された基板が、電気絶縁性の非磁性体からなるアームによって支承されていることを特徴とする。
The configuration of the strong magnetic field resistance measurement device according to the invention of claim 5 is in addition to the configuration requirements of the invention of claim 4,
The substrate on which the one or more pairs of signal lines are formed is supported by an arm made of an electrically insulating nonmagnetic material.

請求項1の発明方法を適用すると、1対または複数対の信号線が磁界方向に対向するため、該1対または複数対の信号線で形成されるループの中に磁力線が通らない。
従って、マグネットを移動させて測定対象ワークに与えられる磁界を変化させても、ループを形成している信号線に誘導電圧を生じない
誘導による悪影響を防止し得たため、従来例に比して数倍の速度で高精度測定を行ない得るようになった。
When the inventive method of claim 1 is applied, one or more pairs of signal lines oppose each other in the direction of the magnetic field, so that magnetic lines of force do not pass through the loop formed by the one or more pairs of signal lines.
Therefore, even if the magnetic field applied to the workpiece to be measured is changed by moving the magnet, an induced voltage is not generated in the signal line forming the loop. High precision measurement can be performed at double speed.

請求項2の発明方法を、前記請求項1の発明方法に併せて適用すると、
信号線を支承するアームを電気絶縁性の材料で構成するので、該アーム内を磁力線が移動しても、渦電流が誘導されない。従って、アームが電磁力で動かされることが無く、該アームに支承されているプローブが静止状態を保持し、電気抵抗値の高精度測定を妨げられる虞れが無い。
When the inventive method of claim 2 is applied together with the inventive method of claim 1,
Since the arm for supporting the signal line is made of an electrically insulating material, no eddy current is induced even if the magnetic lines move in the arm. Therefore, the arm is not moved by electromagnetic force, the probe supported on the arm is kept stationary, and there is no possibility that high-precision measurement of the electric resistance value is hindered.

請求項3に係る強磁場内抵抗測定装置を適用すると、1対または複数対の信号線がZ軸方向すなわち磁界方向に対向して配設されているので、該1対または複数対の信号線で形成されるループの中に磁力線が通らない。従って、磁力線が移動しても信号線に誘導電圧が発生せず、高精度の抵抗値測定が可能になる。
誘導による悪影響を防止し得たため、従来例に比して数倍の速度で測定を行ない得るようになった。
When the apparatus for measuring resistance in a strong magnetic field according to claim 3 is applied, one or more pairs of signal lines are arranged facing the Z-axis direction, that is, the magnetic field direction. Magnetic field lines do not pass through the loop formed by Therefore, even if the magnetic lines of force move, no induced voltage is generated in the signal line, and the resistance value can be measured with high accuracy.
Since adverse effects due to induction could be prevented, measurement could be performed at a speed several times that of the conventional example.

請求項4に係る強磁場内抵抗測定装置を、前記請求項3の発明に併せて適用すると、
1対または複数対の信号線が基板の導通パターンで構成されているので、該1対または複数対の信号線が低コストで高精度に構成され、しかも相互の位置関係が確実に保持される。
その上、基板の厚さ寸法を小さく構成することによってマグネットの磁極間隔を縮小することができる。磁極間隔の縮によって導磁抵抗が減少して強い印加磁界を得ることができる。
When the strong magnetic field resistance measurement device according to claim 4 is applied together with the invention of claim 3,
Since one or more pairs of signal lines are configured by a conductive pattern on the substrate, the one or more pairs of signal lines are configured with high accuracy at low cost, and the mutual positional relationship is reliably maintained. .
In addition, the magnetic pole spacing of the magnet can be reduced by reducing the thickness of the substrate. Due to the reduction of the magnetic pole spacing, the magnetic resistance is reduced and a strong applied magnetic field can be obtained.

請求項5に係る強磁場内抵抗測定装置を、前記請求項4の発明に併せて適用すると、
基板を支承しているアームが非磁性体で構成されているので、磁力線がアームに対して移動しても該アーム内に渦電流が誘導されない。
従って、アームが電磁力で動かされる虞れが無い。アームが動かされないので、これによって支承されているプローブが安定して保持され、高精度で電気抵抗を測定することが可能になる。
When the strong magnetic field resistance measurement device according to claim 5 is applied together with the invention of claim 4,
Since the arm supporting the substrate is made of a non-magnetic material, no eddy current is induced in the arm even if the magnetic field lines move relative to the arm.
Therefore, there is no possibility that the arm is moved by electromagnetic force. Since the arm is not moved, the supported probe is stably held, and the electric resistance can be measured with high accuracy.

図1は本発明に係る強磁場内抵抗測定装置の実施形態を示す模式図に部分拡大断面図を付記した図である。
本図は,本発明を簡明に表すため、1対(2本)のプローブと1対(2本)の信号線とを描いてあるが、これらの部材の複数対(偶数本)が配置されている場合も、原理的には1対(2本)の場合と同様である。
符号7を付して示したのはマグネットである。図示を省略するが前掲の図3(従来例)におけると同様に、X軸方向(矢印a−c)に往復平行移動させる手段、及び、X軸周りに180度回転させる手段を備えている。
測定対象ワーク1、プローブ2、及び抵抗測定回路6は前掲の図3(従来例)におけると同様ないし類似の部材である。
FIG. 1 is a schematic diagram showing an embodiment of the apparatus for measuring resistance in a strong magnetic field according to the present invention, with a partially enlarged sectional view appended thereto.
In this figure, in order to express the present invention simply, a pair (two) of probes and a pair (two) of signal lines are drawn, but a plurality of pairs (even numbers) of these members are arranged. In principle, this is the same as the case of one pair (two).
Reference numeral 7 denotes a magnet. Although not shown, as in the above-mentioned FIG. 3 (conventional example), there are provided means for reciprocally translating in the X-axis direction (arrows a-c) and means for rotating 180 degrees around the X-axis.
The workpiece 1 to be measured, the probe 2 and the resistance measurement circuit 6 are the same or similar members as in FIG. 3 (conventional example) described above.

本実施形態のプローブ2は細長い基板9の一端に設置され、樹脂製アーム10によって支承されている。
Z軸はマグネット7の磁界の方向であり、X軸は基板9の長手方向である。
上記基板9のZ−Y面による断面の拡大を本図1の右下部に鎖線楕円で囲んで示す。
この基板9の中に2本の信号線が通っている。その片方をA信号線と名付けて符号4を付し、他方をB信号線と名付けて符号5を付した。
本発明を実施する場合、前記のアームを構成する材料は樹脂に限定されない。要するに非磁性の電気絶縁性材料を用いればよい。
The probe 2 of this embodiment is installed at one end of an elongated substrate 9 and supported by a resin arm 10.
The Z axis is the direction of the magnetic field of the magnet 7, and the X axis is the longitudinal direction of the substrate 9.
An enlarged cross section of the substrate 9 taken along the ZY plane is shown in the lower right part of FIG.
Two signal lines pass through the substrate 9. One of them is designated as the A signal line and designated by reference numeral 4, and the other is designated as the B signal line and designated by reference numeral 5.
When practicing the present invention, the material constituting the arm is not limited to resin. In short, a nonmagnetic electrically insulating material may be used.

前記2本の信号線は相互に平行で、X方向に配置されており、
該2本の信号線5A,5BはZ方向に対向離間している。
マグネット7の磁力線がZ軸方向であり、2本の信号線がZ軸方向に対向しているから、該2本の信号線の間に磁力線が通らない。
上記2本の信号線はプローブ2を介してループを形成しているが、このループの中に磁力線が通っていないから、磁力線が移動しても信号線に誘導電圧を生じない。
The two signal lines are parallel to each other and arranged in the X direction,
The two signal lines 5A and 5B are opposed to each other in the Z direction.
Since the magnetic lines of force of the magnet 7 are in the Z-axis direction and the two signal lines are opposed to each other in the Z-axis direction, no magnetic lines of force pass between the two signal lines.
The two signal lines form a loop through the probe 2, but no magnetic lines pass through the loop, so that no induced voltage is generated in the signal lines even if the magnetic lines move.

Z軸方向に対向離間する2本の信号線とプローブ2との関係について、図2を参照しつつ詳しく説明する。
図2(A)は、対比のために示した従来例の模式的な平面図である。前掲の図3(従来例)と見比べて御理解いただきたい。
図2(B)は本発明の実施例における模式的な平面図であって、2本の信号線(4,5)が重なって1本に描かれている。その斜視図を図2(C)に示した。
A信号線4とB信号線5とは、プローブ2に対する接続部では左右に並んでいるが、プローブの直近で立体的に捩れ交差して、その大部分は上下(Z軸方向)に並んでいる。
The relationship between the two signal lines facing and separating in the Z-axis direction and the probe 2 will be described in detail with reference to FIG.
FIG. 2A is a schematic plan view of a conventional example shown for comparison. Compare this with Figure 3 above (conventional example).
FIG. 2B is a schematic plan view in the embodiment of the present invention, in which two signal lines (4, 5) overlap and are drawn in one. The perspective view is shown in FIG.
The A signal line 4 and the B signal line 5 are arranged side by side at the connection portion to the probe 2, but three-dimensionally twist and intersect in the immediate vicinity of the probe, and most of them are arranged vertically (Z axis direction). Yes.

単独の信号線を図2(C)のように空中に保持することは容易でないが、本実施形態においては図1に表されているように基板9の中に形成されているから、確実に保持され、外部から保護されている。
さらに、本実施形態のように信号線を基板の導通パターンとして作成すると、2本の信号線の間隔寸法を小さく構成することができる。その結果、マグネット7の磁極間隔を狭めることができる。
磁極間隔が狭いと、導磁抵抗が少ないので強力な磁界が得られ、測定対象ワーク1に対して強力な磁界を印加することができる。
Although it is not easy to hold a single signal line in the air as shown in FIG. 2C, in this embodiment, since it is formed in the substrate 9 as shown in FIG. Retained and protected from the outside.
Further, when the signal line is created as a conductive pattern of the substrate as in the present embodiment, the distance between the two signal lines can be reduced. As a result, the magnetic pole interval of the magnet 7 can be reduced.
When the magnetic pole interval is narrow, a strong magnetic field can be obtained because the magnetic resistance is small, and a strong magnetic field can be applied to the workpiece 1 to be measured.

(図1参照)本実施形態のアーム10は樹脂製である。このため、マグネット7が移動して磁力線が移動しても、アーム10の中に渦電流が誘導されない。従って、アームが電磁力によって動かされる虞れが無い。
アームが静止していると、これに支承された基板9が安定し、プローブ2が安定に保持される。このため高精度の抵抗測定が可能になる。
上述したように、誘導による悪影響を防止したので、本実施形態においては従来例に比してマグネットを数倍の速度で移動させて高精度測定を行ない得るようになり、能率向上の効果も得られた。
(See FIG. 1) The arm 10 of this embodiment is made of resin. For this reason, even if the magnet 7 moves and the lines of magnetic force move, no eddy current is induced in the arm 10. Therefore, there is no possibility that the arm is moved by electromagnetic force.
When the arm is stationary, the substrate 9 supported by the arm is stable, and the probe 2 is stably held. For this reason, highly accurate resistance measurement becomes possible.
As described above, since adverse effects due to induction are prevented, in this embodiment, it is possible to perform high-accuracy measurement by moving the magnet several times faster than the conventional example, and the effect of improving efficiency is also obtained. It was.

本発明に係る強磁界内抵抗測定装置の1実施形態を示す模式図に部分拡大断面を付記した図The figure which added the partial expanded section to the schematic diagram which shows one Embodiment of the resistance measuring apparatus in a strong magnetic field which concerns on this invention (A)は比較対照のために示した従来例の要部平面図、(B)は本発明の1実施形態における模式的な要部平面図、(C)は本発明の1実施形態における模式的な要部斜視図(A) is the principal part top view of the prior art example shown for the comparison, (B) is the typical principal part top view in 1 embodiment of this invention, (C) is the model in 1 embodiment of this invention. Perspective view 従来例の強磁界内抵抗測定装置を描いた模式的な斜視図に、作動を表す矢印を付記した図The figure which attached the arrow showing operation to the typical perspective view which drew the resistance measuring device in a strong magnetic field of the conventional example

符号の説明Explanation of symbols

1…測定対象ワーク
2…プローブ
3…基板
4…A信号線
5…B信号線
6…抵抗測定回路
7…マグネット
7A…前進位置のマグネット
7B…後退位置のマグネット
8…アーム
9…基板
10…樹脂製アーム
DESCRIPTION OF SYMBOLS 1 ... Work to be measured 2 ... Probe 3 ... Board 4 ... A signal line 5 ... B signal line 6 ... Resistance measurement circuit 7 ... Magnet 7A ... Magnet in forward position 7B ... Magnet in backward position 8 ... Arm 9 ... Board 10 ... Resin Arm

Claims (5)

1対または複数対の平行な信号線の先端に接続されたプローブを測定対象ワークに接触導通させて抵抗値を測定しつつ、上記測定対象ワークをマグネットの磁界内に位置せしめ、
上記マグネットを前記信号線と平行に移動させて測定対象ワークに印加される磁界強度を変化させたり、該マグネットを回転させて測定対象ワークに印加される磁界方向を反転させたりする強磁場内抵抗測定方法において、
前記1対または複数対の平行な信号線の長手方向をX軸とし、前記マグネットの磁極が対向している方向をZ軸として、
上記1対または複数対の平行な信号線をZ軸方向に対向離間させて配列することにより、該1対または複数対の平行な信号線によって形成されるループの中を磁力線が通過しないようにすることを特徴とする、強磁場内抵抗測定方法。
While making the probe connected to the tip of one or more pairs of parallel signal wires contact and conduct to the workpiece to be measured and measuring the resistance value, the workpiece to be measured is positioned in the magnetic field of the magnet,
Strong magnetic field resistance that moves the magnet parallel to the signal line to change the magnetic field strength applied to the workpiece to be measured, or rotates the magnet to reverse the direction of the magnetic field applied to the workpiece to be measured. In the measurement method,
The longitudinal direction of the one or more pairs of parallel signal lines is the X axis, and the direction in which the magnetic poles of the magnet are facing is the Z axis,
By arranging the one or more pairs of parallel signal lines so as to face each other in the Z-axis direction, magnetic field lines do not pass through the loop formed by the one or more pairs of parallel signal lines. A method for measuring resistance in a strong magnetic field.
電気絶縁性の非磁性体からなるアームを用いて前記の信号線を支承することにより、
マグネットの移動に伴って信号線支承部材内の誘導渦電流発生を防止することを特徴とする、請求項1に記載した強磁場内抵抗測定方法。
By supporting the signal line using an arm made of an electrically insulating non-magnetic material,
The method for measuring resistance in a strong magnetic field according to claim 1, wherein generation of induced eddy current in the signal line support member is prevented with movement of the magnet.
1対または複数対の平行な信号線の先端に接続されたプローブと、
上記プローブの接触を受ける位置に在る測定対象ワークに対してZ軸方向の磁場を印加するマグネットと、
上記マグネットを前記信号線と平行なX軸方向に移動させる手段と、
該マグネットの磁界方向を反転させる手段とを有する強磁場内抵抗測定装置において、
前記X軸方向の1対または複数対の平行な信号線が、Z軸方向に対向離間していることを特徴とする強磁場内抵抗測定装置。
A probe connected to the tip of one or more pairs of parallel signal lines;
A magnet that applies a magnetic field in the Z-axis direction to a workpiece to be measured at a position to receive contact of the probe;
Means for moving the magnet in the X-axis direction parallel to the signal line;
In a strong magnetic field resistance measurement device having means for reversing the magnetic field direction of the magnet,
One or more pairs of parallel signal lines in the X-axis direction are opposed to and separated from each other in the Z-axis direction.
前記2本の信号線が、基板の導通パターンによって形成されていることを特徴とする、請求項3に記載した強磁場内抵抗測定装置。   4. The apparatus for measuring resistance in a strong magnetic field according to claim 3, wherein the two signal lines are formed by a conductive pattern of a substrate. 前記1対または複数対の平行な信号線を形成された基板が、電気絶縁性の非磁性体からなるアームによって支承されていることを特徴とする、請求項4に記載した強磁場内抵抗測定装置。   5. The resistance measurement in a strong magnetic field according to claim 4, wherein the substrate on which the one or more pairs of parallel signal lines are formed is supported by an arm made of an electrically insulating nonmagnetic material. apparatus.
JP2006297596A 2006-11-01 2006-11-01 Method and device for measuring resistance in strong magnetic field Withdrawn JP2008116236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006297596A JP2008116236A (en) 2006-11-01 2006-11-01 Method and device for measuring resistance in strong magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297596A JP2008116236A (en) 2006-11-01 2006-11-01 Method and device for measuring resistance in strong magnetic field

Publications (1)

Publication Number Publication Date
JP2008116236A true JP2008116236A (en) 2008-05-22

Family

ID=39502297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297596A Withdrawn JP2008116236A (en) 2006-11-01 2006-11-01 Method and device for measuring resistance in strong magnetic field

Country Status (1)

Country Link
JP (1) JP2008116236A (en)

Similar Documents

Publication Publication Date Title
JP5443718B2 (en) Linear motor system and control device
JP2015137894A (en) current detection structure
JP4832358B2 (en) Position detection device
Hsu et al. Novel flexible printed circuit windings for slotless linear motor design
JP2008116236A (en) Method and device for measuring resistance in strong magnetic field
He et al. Development of a maglev lens driving actuator for off-axis control and adjustment of the focal point in laser beam machining
WO2018056256A1 (en) Magnetic encoder magnetizing device and magnetizing method
KR20230165378A (en) Magnetic encoder, and production method therefor
JP2011024168A (en) Loop antenna and magnetic field probe
JP2015219154A (en) Dimension measuring device
JP2007127552A (en) Conductive pattern inspection device
JP2010142033A (en) Linear motor
JP2005077404A (en) Magnetic component for plurality of magnetic poles and its manufacturing method
JP5158172B2 (en) Method and mechanism for detecting relative position of a pair of members
JP2017168707A (en) Magnetization device and magnetization method of magnetic encoder
JP2011169715A (en) Position detection mechanism
JP2000071089A (en) Optical system driving device
JPH07333301A (en) Substrate inspection device
KR102533278B1 (en) Position sensing mechanism
JPWO2008139930A1 (en) Position detecting device using magnetoresistive effect element
JP2019062120A (en) Magnetization device and magnetization method of magnetic encoder
JP5510250B2 (en) Electromagnetic device
JP6824484B1 (en) Magnetic linear position detector
KR101169383B1 (en) Array type magnetic sensor substrate
TW202415925A (en) Magnetic encoder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105