JP2008115633A - Double air membrane structure - Google Patents

Double air membrane structure Download PDF

Info

Publication number
JP2008115633A
JP2008115633A JP2006301011A JP2006301011A JP2008115633A JP 2008115633 A JP2008115633 A JP 2008115633A JP 2006301011 A JP2006301011 A JP 2006301011A JP 2006301011 A JP2006301011 A JP 2006301011A JP 2008115633 A JP2008115633 A JP 2008115633A
Authority
JP
Japan
Prior art keywords
air
membrane structure
double air
membrane
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006301011A
Other languages
Japanese (ja)
Other versions
JP5034044B2 (en
Inventor
Masaya Kawabata
昌也 河端
Takao Taira
嵩雄 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2006301011A priority Critical patent/JP5034044B2/en
Publication of JP2008115633A publication Critical patent/JP2008115633A/en
Application granted granted Critical
Publication of JP5034044B2 publication Critical patent/JP5034044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tents Or Canopies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the rigidity of a double air membrane structure against short term loading such as wind pressure, and to solve the problems peculiar to the double air membrane structure such as higher maintenance/administrative expenses for a blower or the like, and rupture phenomenon of a membrane, and necessity of reinforcement. <P>SOLUTION: This double air membrane structure (1) is so constructed that a number of cores 4 are housed in a transmembrane area 5 of flexible membranes 2, 3. A suction pipe 7 communicates with the transmembrane area, and a suction means 8 sucks air in the transmembrane area. A sealing means 9 functions to keep the negative pressure of the transmembrane area. The transmembrane area is decompressed so that the core and the flexible membrane closely adhere to each other and the cores closely adhere to each other. The core is formed of an air sac obtained by enclosing gas in the flexible membrane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二重空気膜構造に関するものであり、より詳細には、可撓性膜の間に作用する空気圧を維持して形状を保持するように構成された二重空気膜構造に関するものである。   The present invention relates to a double air membrane structure, and more particularly, to a double air membrane structure configured to maintain air pressure acting between flexible membranes to maintain a shape. is there.

空気圧を利用して膜面に張力を与え、膜体の形態を安定化するとともに、風雪等の外的荷重に対する耐力を膜面の張力により確保する空気膜構造(ニューマチック構造)が知られている。空気膜構造は、空気を閉じ込める方式の相違により、一重空気膜構造及び二重空気膜構造に分類される。一重空気膜構造は、屋内空間の空気圧によって膜をドーム等の所定形状に保持する方式の膜構造であり、二重空気膜構造は、二重膜の間に空気を閉じ込め、膜間の空気圧により膜の張力を得る方式の膜構造である。   There is known an air film structure (pneumatic structure) that uses air pressure to stabilize the form of the film body by applying tension to the film surface and to ensure the resistance to external loads such as wind and snow by the tension of the film surface. Yes. The air film structure is classified into a single air film structure and a double air film structure according to a difference in a method of confining air. The single air membrane structure is a membrane structure of a system that holds the membrane in a predetermined shape such as a dome by the air pressure of the indoor space, and the double air membrane structure confines air between the double membranes, and the air pressure between the membranes It is a film structure of a system that obtains the tension of the film.

一重空気膜構造は、軽量性、柔軟性、自然光利用等の点で有利な構造である反面、大容積屋内空間の空気圧を制御し且つ維持・管理する必要性や、屋内空間の気密状態を維持するための開口部の気密構造の必要性等の点で不利がある。これに対し、上記二重空気膜構造は、二重膜の間の空間を加圧することから、屋内空間を常圧(大気圧)に設定し得る点において、一重空気膜構造に比べ有利である。   The single air film structure is advantageous in terms of lightness, flexibility, natural light utilization, etc., but it is necessary to control, maintain and manage the air pressure of large volume indoor spaces and maintain the airtight state of indoor spaces. This is disadvantageous in terms of the necessity of an airtight structure of the opening for the purpose. On the other hand, the double air membrane structure is advantageous over the single air membrane structure in that the space between the double membranes is pressurized so that the indoor space can be set at normal pressure (atmospheric pressure). .

二重空気膜構造のアーチ又はドーム構造は、例えば、1970年に開催された万国博覧会(大阪万博、EXPO'70)や、1985年に開催された国際科学技術博覧会(TSUKUBA EXPO '85)等において、展示館等の屋根構造として採用されている。このような従来の二重空気膜構造の構成は、例えば、特開平7−293046号公報、特開平10−159392号公報、特開平11−36667号公報、特開2003−82887号公報に開示されている。
特開平7−293046号公報 特開平10−159392号公報 特開平11−36667号公報 特開2003−82887号公報
For example, the arch or dome structure of the double air membrane structure is, for example, the World Exposition held in 1970 (Osaka World Expo, EXPO'70) and the International Science and Technology Exposition held in 1985 (TSUKUBA EXPO '85). Are used as roof structures for exhibition halls. The structure of such a conventional double air membrane structure is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 7-293046, 10-159392, 11-36667, and 2003-82887. ing.
JP 7-293046 A JP 10-159392 A JP-A-11-36667 JP 2003-82887 A

従来の二重空気膜構造においては、二重膜間の空間に空気を圧入し、二重膜間の領域を正圧又は陽圧に維持・管理するように構成されていることから、上下の膜を相互連結する落し糸と膜との接合部に面外方向の引張力が作用し、落し糸及び膜の接合部が損傷し易く、外皮及び隔壁の間の剥離現象の発生も指摘されている。   In the conventional double air membrane structure, air is injected into the space between the double membranes, and the region between the double membranes is maintained and managed at a positive pressure or a positive pressure. It has been pointed out that an out-of-plane tensile force acts on the joint between the fallen thread and the membrane that interconnects the membrane, the fallen thread and the membrane junction are easily damaged, and the occurrence of a peeling phenomenon between the outer skin and the partition wall is pointed out. Yes.

従来の二重空気膜構造は又、風圧等の短期荷重に対する剛性が比較的低く、このため、補強の必要性や、構造体の形態・規模等の制約が生じ易い。他方、二重空気膜構造の水平剛性を向上すべく膜間の内圧を高圧に設定すると、送風機運転コストの高額化、膜の爆裂の懸念、構成部材に作用する高い応力、高い内圧に抗する補強の必要性、補強に伴う構造の複雑化等の問題が生じる。   The conventional double air membrane structure is also relatively low in rigidity against short-term loads such as wind pressure, and therefore, there is a need for reinforcement and restrictions on the form and scale of the structure. On the other hand, if the internal pressure between the membranes is set to a high pressure in order to improve the horizontal rigidity of the double air membrane structure, the operating cost of the blower is increased, the membrane may explode, the high stress acting on the constituent members, and the high internal pressure are resisted. Problems such as the need for reinforcement and the complexity of the structure associated with the reinforcement arise.

本発明は、このような課題に鑑みてなされたものであり、風圧等の短期荷重に対する二重空気膜構造の剛性を向上するとともに、送風機等の維持・管理費の高額化、膜の爆裂現象、補強の必要性等の二重空気膜構造特有の課題を解消することを目的とする。   The present invention has been made in view of such problems, and improves the rigidity of the double air membrane structure against short-term loads such as wind pressure, and increases the maintenance and management costs of the blower, etc., and the membrane explosion phenomenon It aims at solving the problems peculiar to the double air membrane structure such as necessity of reinforcement.

本発明は、上記目的を達成すべく、第1及び第2の可撓性膜の間に作用する空気圧を維持して形状を保持する二重空気膜構造において、
気密性を有する前記可撓性膜の間に形成された膜間領域に多数のコアを収容し、前記膜間領域を減圧し、前記コア及び可撓性膜を密着させるとともに、前記コア同士を互いに密着させたことを特徴とする二重空気膜構造を提供する。
In order to achieve the above object, the present invention provides a double air membrane structure that maintains the shape by maintaining the air pressure acting between the first and second flexible membranes.
A large number of cores are accommodated in an intermembrane region formed between the flexible membranes having airtightness, the intermembrane region is decompressed, and the core and the flexible membrane are brought into close contact with each other. Provided is a double air membrane structure characterized in that they are in close contact with each other.

本発明の上記構成によれば、各コアは、膜間領域の圧力と大気圧との差圧によって隣接コア及び可撓性膜と接触する。コア及び可撓性膜の接触圧は、コアの位置を保持するように作用し、コア同士の接触圧は、コア間の剪断剛性(ずれ抵抗)を高めてコア全体を一体化するように作用する。従って、本発明の二重空気膜構造によれば、互いに圧接した多数のコアと、圧力下にコアと面接触した可撓性膜とから構成される一体的な構造体が実現する。本発明者の実験により、このような構成の二重空気膜構造が、剪断力として作用する面内方向の荷重に対して高い剛性を発揮すると判明した。従って、このような二重空気膜構造を屋根構造に適用した場合、屋根構造体は、風圧等の短期荷重に対して高い剛性を発揮する。また、コア同士の圧接により得られる接触面の剪断抵抗及び接触圧力は、自重及び積雪荷重等に抗する面外剛性を二重空気膜構造に付与する。   According to the said structure of this invention, each core contacts an adjacent core and a flexible film | membrane by the differential pressure of the pressure of an intermembrane area | region, and atmospheric pressure. The contact pressure between the core and the flexible membrane acts to maintain the position of the core, and the contact pressure between the cores acts to increase the shear rigidity (displacement resistance) between the cores and integrate the entire core. To do. Therefore, according to the double air membrane structure of the present invention, an integrated structure composed of a large number of cores pressed against each other and a flexible membrane in surface contact with the cores under pressure is realized. The inventor's experiment has revealed that the double air film structure having such a configuration exhibits high rigidity with respect to an in-plane load acting as a shearing force. Therefore, when such a double air membrane structure is applied to a roof structure, the roof structure exhibits high rigidity against short-term loads such as wind pressure. Further, the shear resistance and contact pressure of the contact surface obtained by the pressure-contact between the cores give the double air membrane structure out-of-plane rigidity that resists its own weight and snow load.

また、上記構成の二重空気膜構造によれば、過大な容量又は運転負荷の送風機を用いることなく、短期荷重に対する二重空気膜構造の剛性を向上することができるので、水平剛性向上に伴う送風機等の維持・管理費の高額化を抑制することができる。   Moreover, according to the double air membrane structure of the said structure, since the rigidity of the double air membrane structure with respect to a short-term load can be improved, without using an excessive capacity | capacitance or an operating load blower, it accompanies horizontal rigidity improvement. Increases in maintenance and management costs for blowers and the like can be suppressed.

更に、上記構成の二重空気膜構造においては、膜間領域の減圧に伴う膨張力が各コアに作用する一方、隣接コア及び可撓性膜との圧接による収縮力が各コアに作用する。即ち、各コアに作用する膨張力及び収縮力は、互いに打ち消すように作用するので、コアの爆裂又はコア外皮の破損・損傷等を防止することができる。   Furthermore, in the double air membrane structure having the above-described configuration, the expansion force accompanying the pressure reduction in the intermembrane region acts on each core, while the contraction force due to the pressure contact between the adjacent core and the flexible membrane acts on each core. That is, the expansion force and the contraction force acting on each core act so as to cancel each other, so that the explosion of the core or the breakage / damage of the core skin can be prevented.

しかも、上記構成の二重空気膜構造では、落し糸や、隔壁等の補強材を膜間領域に配設することを要しないので、二重空気膜構造の構成を簡素化することができる。   In addition, in the double air membrane structure having the above-described configuration, it is not necessary to dispose a reinforcing material such as a drop thread or a partition wall in the intermembrane region, so that the configuration of the double air membrane structure can be simplified.

また、上記構成の二重空気膜構造によれば、構造体の形態は、膜間領域の脱気によって固定されるので、コアの数量、配置、形態等を任意に設定することができる。これは、二重空気膜構造の構造体形状に関する設計自由度を大幅に向上させる。加えて、上記構成の二重空気膜構造では、膜間領域の脱気により形状が固定する反面、膜間領域に給気して形状保持力を解放することができる。従って、構築後の構造体の形態調整又は形態変更等を比較的容易に行うことが可能となる。   Moreover, according to the double air membrane structure of the said structure, since the form of a structure is fixed by deaeration of an intermembrane area | region, the quantity, arrangement | positioning, form, etc. of a core can be set arbitrarily. This greatly improves the degree of design freedom regarding the structure shape of the double air membrane structure. In addition, in the double air membrane structure having the above configuration, the shape is fixed by deaeration of the intermembrane region, but the shape retention force can be released by supplying air to the intermembrane region. Therefore, it is possible to relatively easily adjust the form of the structure after construction or change the form.

本発明によれば、風圧等の短期荷重に対する二重空気膜構造の剛性を向上するとともに、送風機等の維持・管理費の高額化、膜の爆裂現象、補強の必要性等の二重空気膜構造特有の課題を解消することができる。   According to the present invention, the double air membrane structure improves the rigidity of the double air membrane structure against short-term loads such as wind pressure, increases the maintenance and management costs of the blower and the like, the membrane explosion phenomenon, the necessity of reinforcement, etc. Problems unique to the structure can be solved.

本発明の好ましい実施形態によれば、上記二重空気膜構造は、膜間領域と連通する吸引管と、吸引管を介して膜間領域の空気を吸引する吸引ファン又はブロワ等の吸引手段と、膜間領域の負圧を維持するための封止手段とを有する。封止手段は、例えば、吸引管に介装された逆止弁又は逆流防止弁、或いは、膜間領域の吸引口を閉塞する弁又は密閉栓等からなる。   According to a preferred embodiment of the present invention, the double air membrane structure includes a suction pipe that communicates with the intermembrane area, and a suction means such as a suction fan or a blower that sucks air in the intermembrane area via the suction pipe. And a sealing means for maintaining a negative pressure in the intermembrane region. The sealing means includes, for example, a check valve or a backflow prevention valve interposed in the suction pipe, or a valve or a sealing plug that closes the suction port in the intermembrane region.

所望により、透明又は半透明の素材からなる可撓性膜を使用し、コアの材質、形態、サイズ、色彩、模様等を適宜選択することにより、多種多様な視覚的バリエーションの構造体を実現することができる。   If desired, a flexible membrane made of a transparent or translucent material is used, and a structure with a wide variety of visual variations is realized by appropriately selecting the material, form, size, color, pattern, etc. of the core. be able to.

好ましくは、上記コアは、流体、流動物質又は粘性物質を可撓性外皮内に封入した球体からなり、外力に対する変形能を有する。更に好ましくは、上記コアは、気密な可撓性膜の中空密閉体の中に空気、不活性ガス(ヘリウム等)等の気体を封入した気嚢からなる。気嚢は、外力に対する変形能を有し、膜間領域の減圧時に互いに密着し、隣接する気嚢と面接触するように概ね多面体に変形する。可撓性膜の皮膜には、膜間領域の減圧による膨張力が作用するとともに、隣接気嚢及び膜との圧接による収縮力が作用する。気嚢の皮膜に作用する膨張力は、気嚢の皮膜に作用する収縮力によって少なくとも部分的に打ち消される。従って、気嚢の爆裂又は気嚢皮膜の破損・損傷は、気嚢に作用する収縮力によって抑制される。   Preferably, the core is formed of a sphere in which a fluid, a fluid substance, or a viscous substance is enclosed in a flexible skin, and has a deformability with respect to an external force. More preferably, the core is composed of an air sac in which a gas such as air or an inert gas (helium or the like) is enclosed in a hermetic hollow sealed body of a flexible membrane. The air sac has a deformability with respect to an external force, is in close contact with each other when the intermembrane region is decompressed, and is generally deformed into a polyhedron so as to be in surface contact with the adjacent air sac. In the film of the flexible membrane, an expansion force due to the reduced pressure in the intermembrane region acts, and a contraction force due to the pressure contact with the adjacent air sac and the membrane acts. The expansion force acting on the air sac membrane is at least partially counteracted by the contractile force acting on the air sac membrane. Therefore, the explosion of the air sac or the breakage / damage of the air sac film is suppressed by the contractile force acting on the air sac.

気嚢は、外力や、衝撃に対して変形し且つ内圧変動し、外力又は衝撃を吸収し又は緩衝する。従って、本発明の二重空気膜構造を外力吸収手段又は衝撃緩衝手段として使用することができる。また、気体を封入した気嚢は、高い断熱性能を発揮するので、本発明の二重空気膜構造を断熱手段として使用することができる。   The air sac is deformed and fluctuates in response to an external force or impact, and absorbs or buffers the external force or impact. Therefore, the double air membrane structure of the present invention can be used as an external force absorbing means or an impact buffering means. Moreover, since the air sac encapsulating gas exhibits high heat insulation performance, the double air membrane structure of the present invention can be used as heat insulation means.

本発明の二重空気膜構造は、アーチ又はドーム等の屋根構造体や、構築物の壁体に好ましく適用し得るが、このような二重空気膜構造の性質を利用し、車両用ボディ又はバンパー等の車体部分、遊戯施設の構造体、部品又は部材、各種のイベント用品、美術造形作品等に本発明の二重空気膜構造を適用しても良い。   The double air membrane structure of the present invention can be preferably applied to a roof structure such as an arch or a dome, or a wall of a structure. However, by utilizing the properties of such a double air membrane structure, a vehicle body or a bumper is used. The double air membrane structure of the present invention may be applied to a body part such as a body, a structure of a play facility, a part or member, various event supplies, a fine art work, and the like.

上記コア内には、ゲル状物質、粒状物質、粘性物質等を封入しても良い。このような物質を封入したコアは、外力に対する変形能に関し、空気等を封入した気嚢とは異なる物性を発揮する。   A gel material, a granular material, a viscous material, or the like may be enclosed in the core. A core encapsulating such a substance exhibits physical properties different from those of an air sac enclosing air or the like with respect to deformability against external force.

変形例として、発泡樹脂成形体、熱硬化性樹脂又は光硬化性樹脂等の樹脂硬化体、或いは、金属又はセラミックス等の剛体によりコアを形成して良い。このような比較的高剛性のコアを膜間領域に収容した場合においても、可撓性膜の素材、減圧時の吸引圧力等を適切に設計することにより、コア同士の圧接状態を維持し、二重空気膜構造の一体性を維持することができる。   As a modification, the core may be formed of a foamed resin molded body, a resin cured body such as a thermosetting resin or a photocurable resin, or a rigid body such as a metal or ceramic. Even when such a relatively high-rigidity core is accommodated in the intermembrane region, by appropriately designing the material of the flexible membrane, the suction pressure during decompression, etc., the pressure contact state between the cores is maintained, The integrity of the double air membrane structure can be maintained.

以下、添付図面を参照して、本発明の好適な実施例について詳細に説明する。
図1〜図3は、本発明に係る二重空気膜構造の基本構成を示す平面図及び断面図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1 to 3 are a plan view and a sectional view showing a basic configuration of a double air membrane structure according to the present invention.

図1に示す如く、二重空気膜構造1は、上下の可撓性膜2、3と、膜2、3の間の膜間領域5に挿入された多数の気嚢4とから構成される。可撓性膜2、3は、例えば、ポリエステル樹脂又はフッ素樹脂等の樹脂フィルムからなり、平面視同一形状を有する。可撓性膜2、3の外縁部は、枠体6によって気密状態に拘束される。   As shown in FIG. 1, the double air membrane structure 1 is composed of upper and lower flexible membranes 2, 3 and a large number of air sac 4 inserted in an intermembrane region 5 between the membranes 2, 3. The flexible films 2 and 3 are made of, for example, a resin film such as polyester resin or fluororesin, and have the same shape in plan view. The outer edge portions of the flexible films 2 and 3 are restrained in an airtight state by the frame body 6.

図1〜図3には、可撓性膜2、3の両側の縁部分を拘束する枠体6の部分のみが図示されているが、枠体6は、可撓性膜2、3の全周に亘って延在する。気嚢4は、可撓性を有する気密性外皮の中に空気を充填した球形バルーン(風船)からなり、互いに独立した状態で膜間領域5に収容される。気嚢4の外皮は、樹脂フィルム又は樹脂シート、例えば、ポリエステル樹脂又はフッ素樹脂等の樹脂フィルムからなる。   1 to 3 show only the portion of the frame body 6 that restrains the edge portions on both sides of the flexible membranes 2 and 3, but the frame body 6 is the whole of the flexible membranes 2 and 3. It extends over the circumference. The air sac 4 is composed of a spherical balloon (balloon) filled with air in an airtight outer skin having flexibility, and is accommodated in the intermembrane region 5 in an independent state. The outer skin of the air sac 4 is made of a resin film or a resin sheet, for example, a resin film such as a polyester resin or a fluororesin.

膜間領域5の初期圧力は、周囲雰囲気と実質的に同じ圧力(本例では、大気圧)である。膜間領域5の空気を吸引するための吸引管7が、膜間領域5に挿入される。吸引管7の吸引口7aは、膜間領域5に開口する。吸引管7は、膜外に延び、吸引ファン8の吸引口に接続される。吸引ファン8は、膜間領域5の空気を大気に排気する強制排気ファンからなり、吸引ファン8の電動機(図示せず)は、駆動電源(図示せず)に接続される。吸引ファン8から膜間領域5への空気の逆流を阻止する逆止弁又は逆流防止用制御弁9が、吸引管7に介装される。   The initial pressure in the intermembrane region 5 is substantially the same pressure as the surrounding atmosphere (in this example, atmospheric pressure). A suction tube 7 for sucking air in the intermembrane region 5 is inserted into the intermembrane region 5. The suction port 7 a of the suction pipe 7 opens into the intermembrane region 5. The suction pipe 7 extends outside the membrane and is connected to the suction port of the suction fan 8. The suction fan 8 is a forced exhaust fan that exhausts the air in the intermembrane region 5 to the atmosphere. An electric motor (not shown) of the suction fan 8 is connected to a drive power source (not shown). A check valve or a control valve 9 for preventing backflow that prevents backflow of air from the suction fan 8 to the intermembrane region 5 is interposed in the suction pipe 7.

吸引ファン8を作動させると、吸引ファン8の排気吸引圧力が吸引管7を介して膜間領域5に作用する。膜間領域5の空気は、吸引管7を介して吸引ファン8に吸引され、大気に放出される。膜間領域5は減圧し、上下の膜2、3は互いに接近する。同時に、気嚢4同士が互いに接近し、気嚢4間の隙間が縮小する。膜間領域5の減圧に伴って、膜2、3は気嚢4に密着し始め、気嚢4同士は互いに点接触して一体化し始める。このような減圧時の状態が図2に示されている。所望により、膜間領域5を減圧する際に気嚢4を強制的に移動させても良い。   When the suction fan 8 is operated, the exhaust suction pressure of the suction fan 8 acts on the intermembrane region 5 via the suction pipe 7. The air in the intermembrane region 5 is sucked into the suction fan 8 through the suction pipe 7 and released to the atmosphere. The intermembrane region 5 is depressurized, and the upper and lower membranes 2 and 3 approach each other. At the same time, the air sac 4 approaches each other, and the gap between the air sac 4 is reduced. As the intermembrane region 5 is depressurized, the membranes 2 and 3 start to come into close contact with the air sac 4, and the air sac 4 starts to come into point contact with each other and become integrated. Such a state at the time of decompression is shown in FIG. If desired, the air sac 4 may be forcibly moved when the intermembrane region 5 is decompressed.

吸引ファン8の作動を継続すると、膜間領域5は更に減圧し、膜間領域5の圧力は、吸引ファン8の排気能力に相応した圧力において安定する。膜間領域5の減圧時には、膜間領域5の減圧と関連した膨張力が各気嚢4に作用する。同時に、隣接する気嚢4及び膜2、3に各気嚢4が押圧される際に生じる反作用として、収縮力が各気嚢4に作用する。減圧時に気嚢4の皮膜に作用する膨張力は、気嚢4の皮膜に作用する収縮力によって少なくとも部分的に打ち消される。従って、減圧時の膨張力に起因する気嚢4の爆裂又は気嚢皮膜の破損・損傷は、気嚢4に作用する収縮力によって抑制され又は緩和される。   When the operation of the suction fan 8 is continued, the intermembrane region 5 is further depressurized, and the pressure in the intermembrane region 5 is stabilized at a pressure corresponding to the exhaust capability of the suction fan 8. At the time of depressurization of the intermembrane region 5, the expansion force related to the depressurization of the intermembrane region 5 acts on each air sac 4. At the same time, contraction force acts on each air sac 4 as a reaction that occurs when each air sac 4 is pressed against the adjacent air sac 4 and the membranes 2 and 3. The expansion force acting on the film of the air sac 4 at the time of decompression is at least partially canceled by the contraction force acting on the film of the air sac 4. Therefore, the explosion of the air sac 4 or the damage / damage of the air sac film due to the expansion force at the time of decompression is suppressed or alleviated by the contraction force acting on the air sac 4.

膜間領域4を実質的に完全に脱気した状態が図3に示されている。気嚢4は、隣接する気嚢4及び膜2、3に面接触し、概ね多面体に変形する。各気嚢4は、膜間領域5の圧力と大気圧との間の差圧拡大に伴って圧密化される。この結果、気嚢4間の接触圧力は増大し、気嚢4及び膜2、3の接触圧力は増大する。膜2、3と気嚢4との接触圧力は、気嚢4の位置を保持するように作用し、気嚢4同士の接触圧力は、気嚢4間の剪断剛性(ずれ抵抗)を高めて多数の気嚢4を固結し、一体化する。かくして、可撓性膜2、3と、脱気状態の膜間領域5に配置した多数の気嚢4とから構成される一体的な二重空気膜構造1が形成される。   A state in which the intermembrane region 4 is substantially completely deaerated is shown in FIG. The air sac 4 is in surface contact with the adjacent air sac 4 and the membranes 2 and 3 and is generally deformed into a polyhedron. Each air sac 4 is consolidated as the differential pressure between the pressure in the intermembrane region 5 and the atmospheric pressure increases. As a result, the contact pressure between the air sac 4 increases, and the contact pressure between the air sac 4 and the membranes 2 and 3 increases. The contact pressure between the membranes 2 and 3 and the air sac 4 acts so as to maintain the position of the air sac 4, and the contact pressure between the air sac 4 increases the shear rigidity (displacement resistance) between the air sac 4 to increase the number of air sac 4. Are consolidated and integrated. Thus, an integral double air membrane structure 1 composed of the flexible membranes 2 and 3 and a large number of air sac 4 disposed in the degassed intermembrane region 5 is formed.

従来の二重空気膜構造においては、その形状を保持するために、上下の膜を連結する落とし糸が膜間領域に配設され、落とし糸には、引張力が作用するのに対し、本発明の二重空気膜構造1においては、大気圧と膜間領域5の圧力との差圧が上下の膜2、3に作用し、二重空気膜構造1の形状は、この差圧によって保持される。   In the conventional double air membrane structure, in order to maintain the shape, a drop thread connecting the upper and lower membranes is disposed in the intermembrane region, and a tensile force acts on the drop yarn. In the double air membrane structure 1 of the invention, the differential pressure between the atmospheric pressure and the pressure in the intermembrane region 5 acts on the upper and lower membranes 2 and 3, and the shape of the double air membrane structure 1 is maintained by this differential pressure. Is done.

図4及び図5は、二重空気膜構造1の剪断変形実験に使用した供試体の構成を示す正面図及び断面図であり、図6は、剪断変形実験の実験結果を示す線図である。   4 and 5 are a front view and a cross-sectional view showing the configuration of the specimen used in the shear deformation experiment of the double air membrane structure 1, and FIG. 6 is a diagram showing the experimental result of the shear deformation experiment. .

図4(A)及び図4(B)には、比較例として、正方形の枠体56を可撓性樹脂フィルムの気密袋50内に収容した供試体が示されている。枠体56は、4体の帯状木板を正方形枠に組付けた木枠からなり、枠体56の連接部(角部)は、実質的な剪断剛性を発揮しないピン接合形式の接合構造によって接合されている。   4A and 4B show a specimen in which a square frame 56 is accommodated in an airtight bag 50 of a flexible resin film as a comparative example. The frame body 56 is made of a wooden frame in which four belt-like wooden boards are assembled to a square frame, and the connecting portion (corner portion) of the frame body 56 is joined by a pin-joint-type joining structure that does not exhibit substantial shear rigidity. Has been.

図4(C)及び図4(D)に示す供試体51は、正方形の枠体56内に気嚢54を上下左右に整列配置(直交配列)し、枠体56及び気嚢54を可撓性樹脂フィルムの気密袋50内に収容した構成を有する。図5(A)及び図5(B)に示す供試体51’は、正方形の枠体56内に気嚢54を千鳥配列し、枠体56及び気嚢54を可撓性樹脂フィルムの気密袋50内に収容した構成を有する。気密袋50の正面部分は、前述の可撓性膜2に相当し、気密袋50の背面部分は、前述の可撓性膜3に相当する。   A specimen 51 shown in FIGS. 4C and 4D has an air sac 54 arranged in a square frame 56 vertically and horizontally (orthogonal arrangement), and the frame 56 and the air sac 54 are made of a flexible resin. It has the structure accommodated in the airtight bag 50 of a film. A specimen 51 ′ shown in FIGS. 5 (A) and 5 (B) has a staggered arrangement of air sac 54 in a square frame 56, and the frame 56 and air sac 54 are placed in an airtight bag 50 of a flexible resin film. It has the structure accommodated in. The front portion of the airtight bag 50 corresponds to the above-described flexible membrane 2, and the back portion of the airtight bag 50 corresponds to the above-described flexible membrane 3.

吸引ファン58に接続した吸引管57が、膜間領域55に挿入され、吸引管57の吸引口57aが、膜間領域55に開口する。吸引管57には、逆止弁又は逆流防止用制御弁59が介装される。吸引ファン58の作動により、膜間領域55は減圧される。   A suction tube 57 connected to the suction fan 58 is inserted into the intermembrane region 55, and a suction port 57 a of the suction tube 57 opens into the intermembrane region 55. A check valve or a control valve 59 for preventing backflow is interposed in the suction pipe 57. By the operation of the suction fan 58, the intermembrane region 55 is depressurized.

剪断変形実験において、枠体56の寸法は、幅W=450mm(内法寸法)、全高H=450mm(内法寸法)、奥行D=90mmに設定され、気嚢4の初期直径Rは、90mmに設定された。吸引ファン58が作動され、吸引ファン58の最大排気能力の下で膜間領域55が減圧された。   In the shear deformation experiment, the dimensions of the frame 56 are set such that the width W = 450 mm (internal dimension), the total height H = 450 mm (internal dimension), the depth D = 90 mm, and the initial diameter R of the air sac 4 is 90 mm. Was set. The suction fan 58 was activated, and the intermembrane region 55 was depressurized under the maximum exhaust capacity of the suction fan 58.

比較例に係る供試体(図4(A)及び図4(B))の膜間領域55を減圧した状態が、図4(G)に示されている。気密袋50は、膜間領域55において互いに密着した。気嚢54を千鳥配列した供試体51を減圧した状態が、図4(E)及び図4(F)に示され、気嚢54を直交配列した供試体51’を減圧した状態が、図5(C)及び図5(D)に示されている。気密袋50の正面部分及び背面部分は、気嚢4に面接触し、気嚢4は、隣接する気嚢4と圧接状態に密着し、概ね多面体に変形した。   FIG. 4G shows a state where the intermembrane region 55 of the specimen according to the comparative example (FIGS. 4A and 4B) is decompressed. The airtight bags 50 are in close contact with each other in the intermembrane region 55. 4 (E) and FIG. 4 (F) show a state in which the specimens 51 in which the air sac 54 are arranged in a staggered manner are shown in FIG. 4 (E) and FIG. 4 (F). ) And FIG. 5 (D). The front portion and the rear portion of the airtight bag 50 were in surface contact with the air sac 4, and the air sac 4 was in close contact with the adjacent air sac 4 and deformed into a polyhedron.

脱気後の供試体51、51’は、図4(E)及び図5(C)に矢印P(圧縮荷重)で示すように対角線方向に圧縮され、枠体56及び供試体51、51’の変形(対角線方向の変位量)が計測された。比較例に係る供試体においても又、図4(A)に矢印P(圧縮荷重)で示すように対角線方向の圧縮荷重Pが枠体56に加えられ、枠体56の変形(対角線方向の変位量)が計測された。変位量の測定結果が図6に示されている。   The specimens 51 and 51 ′ after deaeration are compressed in a diagonal direction as shown by an arrow P (compression load) in FIGS. 4E and 5C, and the frame body 56 and the specimens 51 and 51 ′. The deformation (the amount of displacement in the diagonal direction) was measured. Also in the specimen according to the comparative example, as shown by an arrow P (compression load) in FIG. 4A, the diagonal compression load P is applied to the frame 56, and the deformation of the frame 56 (displacement in the diagonal direction). Amount) was measured. The measurement result of the displacement is shown in FIG.

図6に示す如く、気嚢4を内蔵しない比較例の供試体(図4(G))は、圧縮荷重P=50Nで破壊した。しかしながら、直交配列の気嚢54を内蔵した供試体51は、圧縮荷重Pの増大につれて変位量を増大させるものの、圧縮荷重P=100Nを超える圧縮荷重Pで破壊し、千鳥配列の気嚢54を内蔵した供試体51’は、圧縮荷重Pの増大につれて変位量を増大させるものの、圧縮荷重P=200Nを超える圧縮荷重Pで破壊した。   As shown in FIG. 6, the test sample of the comparative example (FIG. 4 (G)) that does not contain the air sac 4 was broken at a compressive load P = 50N. However, although the specimen 51 with the orthogonally arranged air sac 54 increases the amount of displacement as the compressive load P increases, the specimen 51 is destroyed by the compressive load P exceeding the compressive load P = 100 N, and the staggered air sac 54 is embedded. Although the specimen 51 ′ increased in displacement as the compressive load P increased, the specimen 51 ′ was broken at the compressive load P exceeding 200N.

このような剪断変形実験の結果、気嚢54を内蔵した脱気後の供試体51、51’は、気嚢54を内蔵しない比較例の供試体(図4(G))に比べて遥かに高い剪断剛性を発揮することが判明した。即ち、可撓性膜2、3と、脱気状態の膜間領域5に配置した多数の気嚢4とから構成される前述の二重空気膜構造1は、面内方向の荷重に耐える高い剪断剛性を発揮することが確認された。   As a result of such shear deformation experiment, the deaerated specimens 51 and 51 ′ containing the air sac 54 are sheared much higher than the comparative specimen (FIG. 4G) without the air sac 54. It was found to exhibit rigidity. That is, the above-described double air membrane structure 1 composed of the flexible membranes 2 and 3 and a large number of air sac 4 arranged in the degassed intermembrane region 5 has a high shear which can withstand a load in the in-plane direction. It was confirmed to exhibit rigidity.

また、上記実験結果は、気嚢54の配置の相違によって剪断剛性が相違し、千鳥配列の気嚢4を内蔵した二重空気膜構造1が、直交配列の気嚢4を内蔵した二重空気膜構造1に比べて高い剪断剛性を発揮することを示している。   Further, the experimental results show that the shear rigidity is different depending on the disposition of the air sac 54, and the double air membrane structure 1 including the air sac 4 in the zigzag arrangement has the double air film structure 1 including the air sac 4 in the orthogonal arrangement. It shows that it exhibits high shear rigidity compared to.

図7は、気嚢4を可撓性膜2、3の間に収容した脱気状態の二重空気膜構造1の形態を示す写真である。気嚢4は、千鳥配置に配列され、可撓性膜2、3は、気嚢4に密着し、気嚢4同士は、互いに面接触し、概ね多面体に変形している。   FIG. 7 is a photograph showing the form of the deaerated double air membrane structure 1 in which the air sac 4 is accommodated between the flexible membranes 2 and 3. The air sac 4 is arranged in a staggered arrangement, the flexible membranes 2 and 3 are in close contact with the air sac 4, and the air sac 4 are in surface contact with each other and generally deformed into a polyhedron.

図8は、本発明の二重空気膜構造を適用したドーム状の屋根構造体を示す概略断面図であり、図9は、図8に示す屋根構造体の部分拡大断面図である。   FIG. 8 is a schematic sectional view showing a dome-like roof structure to which the double air membrane structure of the present invention is applied, and FIG. 9 is a partially enlarged sectional view of the roof structure shown in FIG.

図8及び図9に示す二重空気膜構造のドーム10は、前述の枠体6に相応する環状基部16上に架設される。可撓性膜12、13の外縁部は、枠体6によって気密状態に拘束される。空気を封入した樹脂製球形バルーンからなる多数の気嚢14が、可撓性膜12、13の間に収容される。可撓性膜12、13の膜間領域の空気を吸引するための吸引管17が、膜間領域に開口し、吸引ファン18の吸引圧力が膜間領域に作用する。逆止弁又は逆流防止用制御弁19が、吸引管17に介装される。吸引ファン18の作動により、膜間領域は真空状態に近い状態に減圧する。弁19は、膜間領域に形成された負圧又は陰圧を維持するように機能する。   The dome 10 having a double air film structure shown in FIGS. 8 and 9 is constructed on an annular base 16 corresponding to the frame 6 described above. The outer edge portions of the flexible films 12 and 13 are restrained in an airtight state by the frame body 6. A large number of air sac 14 made of a resin spherical balloon enclosing air is accommodated between the flexible membranes 12 and 13. A suction tube 17 for sucking air in the intermembrane region of the flexible membranes 12 and 13 opens in the intermembrane region, and the suction pressure of the suction fan 18 acts on the intermembrane region. A check valve or a control valve 19 for preventing backflow is interposed in the suction pipe 17. By the operation of the suction fan 18, the intermembrane region is decompressed to a state close to a vacuum state. The valve 19 functions to maintain a negative pressure or a negative pressure formed in the intermembrane region.

図10は、二重空気膜構造によって形成されたアーチ状屋根構造体の概略斜視図であり、図11は、図10に示す屋根構造体の屋根面部分拡大展開図である。   FIG. 10 is a schematic perspective view of an arched roof structure formed by a double air membrane structure, and FIG. 11 is an enlarged exploded view of a roof surface part of the roof structure shown in FIG.

図10及び図11に示す屋根構造体は、外縁部分を基部26によって気密状態に拘束された二重空気膜構造のアーチ20からなる。基部26は、左右の水平基部26aと、妻側に半円状に延在するアーチ部分26bとを一体化した剛構造を有する。空気を封入した樹脂製球形バルーンからなる多数の気嚢24が、可撓性膜22、23の間に収容される。可撓性膜22、23の膜間領域の空気を吸引するための吸引管27が、膜間領域に開口し、吸引ファン28の吸引圧力が膜間領域に作用する。逆止弁又は逆流防止用制御弁29が、吸引管27に介装される。吸引ファン28の作動により、膜間領域は真空状態に近い状態に減圧する。弁29は、膜間領域に形成された負圧又は陰圧を維持するように機能する。   The roof structure shown in FIGS. 10 and 11 includes an arch 20 having a double air film structure in which an outer edge portion is restrained in an airtight state by a base portion 26. The base portion 26 has a rigid structure in which left and right horizontal base portions 26a and an arch portion 26b extending in a semicircular shape on the wife side are integrated. A large number of air sac 24 made of a resin spherical balloon filled with air is accommodated between the flexible membranes 22 and 23. A suction tube 27 for sucking air in the intermembrane region of the flexible membranes 22 and 23 opens to the intermembrane region, and the suction pressure of the suction fan 28 acts on the intermembrane region. A check valve or a control valve 29 for preventing backflow is interposed in the suction pipe 27. By the operation of the suction fan 28, the intermembrane region is decompressed to a state close to a vacuum state. The valve 29 functions to maintain a negative pressure or a negative pressure formed in the intermembrane region.

このようなドーム10及びアーチ20においては、膜間領域の減圧の結果、気嚢14は、隣接気嚢14及び膜12、13に面接触し、概ね多面体に変形する。初期的には独立した多数の気嚢14は、膜間領域の圧力と大気圧との間の差圧拡大に伴って圧密化される。気嚢14間の接触圧力の増大と、気嚢14及び膜12、13の接触圧力の増大とにより、多数の気嚢14は互いに固結され、気嚢14及び膜12、13は一体化する。この結果、各気嚢14の間には、ドーム10又はアーチ20の自重及び積雪荷重等の鉛直荷重に耐え且つ風圧等の短期荷重に抗する高い剪断剛性(ずれ抵抗)が発生する。   In such a dome 10 and arch 20, as a result of the depressurization of the intermembrane region, the air sac 14 comes into surface contact with the adjacent air sac 14 and the membranes 12 and 13 and is generally deformed into a polyhedron. Initially, a large number of independent air sacs 14 are consolidated as the pressure difference between the pressure in the intermembrane region and the atmospheric pressure increases. Due to the increase in the contact pressure between the air sac 14 and the increase in the contact pressure between the air sac 14 and the membranes 12, 13, the many air sac 14 are consolidated together, and the air sac 14 and the membranes 12, 13 are integrated. As a result, a high shear rigidity (slip resistance) that can withstand a vertical load such as the weight of the dome 10 or the arch 20 and a snow load and resist short-term loads such as wind pressure is generated between the air bags 14.

かくして、本発明の二重空気膜構造を有するドーム10及びアーチ20は、主として、多数の気嚢14、24に密着した可撓性膜12、13、22、23の形態保持力と、互いに密着した気嚢14、24の間に働く剪断剛性(ずれ抵抗)とによって、自重及び降雪等の鉛直荷重に抗するとともに、風圧等の短期荷重に対して高い剛性を発揮する。   Thus, the dome 10 and the arch 20 having the double air membrane structure of the present invention mainly adhere to each other with the shape retention force of the flexible membranes 12, 13, 22, and 23 that are in close contact with a large number of air bags 14 and 24. The shear rigidity (displacement resistance) acting between the air bags 14 and 24 resists vertical loads such as its own weight and snowfall, and exhibits high rigidity against short-term loads such as wind pressure.

以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、上記実施例において、気密な樹脂製外皮の中に空気を封入した気嚢をコアとして使用しているが、液体、ゲル状物質、粒状物質、粘性物質等を外皮内に封入した球形セル等の密封体をコアとして使用しても良い。
また、上記実施例において、膜間領域の圧力を検出して膜間領域の圧力を制御する制御装置を吸引ファンの制御系に配設しても良い。
For example, in the above embodiment, an air sac in which air is sealed in an airtight resin outer shell is used as a core, but a spherical cell in which a liquid, a gel-like substance, a granular substance, a viscous substance or the like is enclosed in the outer skin, etc. The sealed body may be used as the core.
In the above embodiment, a controller for detecting the pressure in the intermembrane region and controlling the pressure in the intermembrane region may be provided in the control system of the suction fan.

本発明の二重空気膜構造は、アーチ又はドーム等の屋根構造体や、構築物の壁体等に好ましく適用される。   The double air membrane structure of the present invention is preferably applied to a roof structure such as an arch or dome, or a wall of a structure.

車両用ボディ又はバンパー等の車体部分、遊戯施設の構造体、部品又は部材、各種のイベント用品、美術造形作品等に本発明の二重空気膜構造を適用しても良い。   The double air membrane structure of the present invention may be applied to a vehicle body part such as a vehicle body or a bumper, a structure of a play facility, a part or member, various event supplies, a fine art work or the like.

本発明の二重空気膜構造を適用した構造体は、コアの規格化等により比較的容易に量産化し得るので、実用化に適しており、また、各種の用途に応用することができるので、その実利性は、極めて高い。   Since the structure to which the double air membrane structure of the present invention is applied can be mass-produced relatively easily by standardization of the core, etc., it is suitable for practical use and can be applied to various uses. Its practicality is extremely high.

本発明に係る二重空気膜構造の基本構成を示す平面図及び断面図であり、膜間領域を減圧する前の状態が示されている。It is the top view and sectional view showing the basic composition of the double air membrane structure concerning the present invention, and the state before depressurizing the field between membranes is shown. 図1に示す二重空気膜構造の平面図及び断面図であり、膜間領域の減圧過程が示されている。It is the top view and sectional drawing of the double air film | membrane structure shown in FIG. 1, and the pressure reduction process of the area | region between membranes is shown. 図1及び図2に示す二重空気膜構造の平面図及び断面図であり、膜間領域減圧後の状態が示されている。It is the top view and sectional drawing of the double air film | membrane structure shown in FIG.1 and FIG.2, and the state after the film | membrane area pressure reduction is shown. 二重空気膜構造の剪断変形実験に使用した気嚢直交配列の供試体の構成を示す正面図及び断面図である。It is the front view and sectional drawing which show the structure of the specimen of the air bag orthogonal arrangement | sequence used for the shear deformation experiment of the double air film | membrane structure. 二重空気膜構造の剪断変形実験に使用した気嚢千鳥配列の供試体の構成を示す正面図及び断面図である。It is the front view and sectional drawing which show the structure of the test piece of the air bag zigzag arrangement | sequence used for the shear deformation experiment of the double air film | membrane structure. 剪断変形実験の実験結果を示す線図である。It is a diagram which shows the experimental result of a shear deformation experiment. 気嚢を可撓性膜の間に収容した脱気状態の二重空気膜構造の形態を示す写真である。It is a photograph which shows the form of the double air membrane structure of the deaeration state which accommodated the air bag between the flexible membranes. 本発明の二重空気膜構造を適用したドーム状の屋根構造体を示す概略断面図である。It is a schematic sectional drawing which shows the dome-shaped roof structure to which the double air membrane structure of this invention is applied. 図8に示す屋根構造体の部分拡大断面図である。It is a partial expanded sectional view of the roof structure shown in FIG. 本発明の二重空気膜構造を適用したアーチ状屋根構造体の概略斜視図である。It is a schematic perspective view of the arched roof structure to which the double air membrane structure of the present invention is applied. 図10に示す屋根構造体の屋根面部分拡大展開図である。It is a roof surface part expansion expanded view of the roof structure shown in FIG.

符号の説明Explanation of symbols

1 二重空気膜構造
2 可撓性膜
3 可撓性膜
4 気嚢(コア)
5 膜間領域
6 枠体
7 吸引管
8 吸引ファン
9 逆止弁又は逆流防止用制御弁
10 ドーム(二重空気膜構造)
12 可撓性膜
13 可撓性膜
14 気嚢(コア)
16 基部
17 吸引管
18 吸引ファン
19 逆止弁又は逆流防止用制御弁
20 アーチ(二重空気膜構造)
22 可撓性膜
23 可撓性膜
24 気嚢(コア)
26 基部
27 吸引管
28 吸引ファン
29 逆止弁又は逆流防止用制御弁
1 Double air membrane structure 2 Flexible membrane 3 Flexible membrane 4 Air sac (core)
5 Intermembrane region 6 Frame 7 Suction pipe 8 Suction fan 9 Check valve or control valve 10 for preventing backflow Dome (double air membrane structure)
12 Flexible membrane 13 Flexible membrane 14 Air sac (core)
16 Base 17 Suction pipe 18 Suction fan 19 Check valve or control valve 20 for preventing backflow Arch (double air film structure)
22 Flexible membrane 23 Flexible membrane 24 Air sac (core)
26 Base 27 Suction tube 28 Suction fan 29 Check valve or control valve for backflow prevention

Claims (4)

第1及び第2の可撓性膜の間に作用する空気圧を維持して形状を保持する二重空気膜構造において、
気密性を有する前記可撓性膜の間に形成された膜間領域に多数のコアを収容し、前記膜間領域を減圧し、前記コア及び可撓性膜を密着させるとともに、前記コア同士を互いに密着させたことを特徴とする二重空気膜構造。
In the double air membrane structure that maintains the air pressure acting between the first and second flexible membranes and maintains the shape,
A large number of cores are accommodated in an intermembrane region formed between the flexible membranes having airtightness, the intermembrane region is decompressed, and the core and the flexible membrane are brought into close contact with each other. Double air membrane structure characterized by being in close contact with each other.
前記膜間領域と連通する吸引管と、該吸引管を介して前記膜間領域の空気を吸引する吸引手段と、前記膜間領域の負圧を維持するための封止手段とを有することを特徴とする請求項1に記載の二重空気膜構造。   A suction tube communicating with the intermembrane region, a suction means for sucking air in the intermembrane region via the suction tube, and a sealing means for maintaining a negative pressure in the intermembrane region. The double air membrane structure according to claim 1, wherein 前記コアは、流体、流動物質又は粘性物質を可撓性外皮内に封入した球体からなり、外力に対する変形能を有することを特徴とする請求項1又は2に記載の二重空気膜構造。   The double air membrane structure according to claim 1 or 2, wherein the core is formed of a sphere in which a fluid, a fluid substance, or a viscous substance is enclosed in a flexible skin, and has a deformability with respect to an external force. 前記コアは、気密な可撓性膜の中に気体を封入した気嚢からなることを特徴とする請求項1又は2に記載の二重空気膜構造。   The double air membrane structure according to claim 1 or 2, wherein the core comprises an air sac in which gas is sealed in an airtight flexible membrane.
JP2006301011A 2006-11-06 2006-11-06 Double air membrane structure Active JP5034044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301011A JP5034044B2 (en) 2006-11-06 2006-11-06 Double air membrane structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301011A JP5034044B2 (en) 2006-11-06 2006-11-06 Double air membrane structure

Publications (2)

Publication Number Publication Date
JP2008115633A true JP2008115633A (en) 2008-05-22
JP5034044B2 JP5034044B2 (en) 2012-09-26

Family

ID=39501800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301011A Active JP5034044B2 (en) 2006-11-06 2006-11-06 Double air membrane structure

Country Status (1)

Country Link
JP (1) JP5034044B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143649U (en) * 1987-03-10 1988-09-21
JP2000291881A (en) * 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd Decompressed heat insulating body and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143649U (en) * 1987-03-10 1988-09-21
JP2000291881A (en) * 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd Decompressed heat insulating body and manufacture thereof

Also Published As

Publication number Publication date
JP5034044B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
US10385886B2 (en) Soft actuators and soft actuating devices
US6463699B1 (en) Air beam construction using differential pressure chambers
US9797415B2 (en) Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators
TWI627557B (en) Frameless actuator apparatus, system, and method
JP3213675B2 (en) Fixed pad for stored items
US10744878B2 (en) Inflatable structure for battery protection
US6490960B1 (en) Muscle-emulating PC board actuator
JP5034044B2 (en) Double air membrane structure
JP5403329B2 (en) Hydrogen related facilities
CN201599174U (en) Structure of inflatable gas bag of inflatable material
US8273427B1 (en) Composite material and support structure
CN109466797A (en) A kind of space air bag release device
US20060038062A1 (en) Layered shell vacuum balloons
CN108431344A (en) Impact and noise-attenuation device and its manufacturing method and floating floor structure
US20110041475A1 (en) Elastomer structures, rocket motors including elastomer structures and methods of forming structures from layered viscoelastic materials
CN210819563U (en) High storage rate is from folding pneumatic software arm based on paper folding theory
JP2620762B2 (en) Lifesaving frame for house collapse due to earthquake
EP2380232B1 (en) Gas storage system
CN210786225U (en) A active seat of gasbag formula for virtual scene experiences
CN102074925A (en) Filling type compacting device for cable seal
WO1994015123A1 (en) Low pressure vessel
ES2860249T3 (en) Stratified support
JP2015134989A (en) Heat insulation daylighting member
CN114387885B (en) Display device
CN105988279A (en) Easily-foldable, unfoldable and inflatable soft ball screen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350