JP2008115303A - Resin material for polishing tool and its manufacturing method - Google Patents

Resin material for polishing tool and its manufacturing method Download PDF

Info

Publication number
JP2008115303A
JP2008115303A JP2006300941A JP2006300941A JP2008115303A JP 2008115303 A JP2008115303 A JP 2008115303A JP 2006300941 A JP2006300941 A JP 2006300941A JP 2006300941 A JP2006300941 A JP 2006300941A JP 2008115303 A JP2008115303 A JP 2008115303A
Authority
JP
Japan
Prior art keywords
resin
diamond
hydrogen
particles
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006300941A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishizuka
博 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006300941A priority Critical patent/JP2008115303A/en
Publication of JP2008115303A publication Critical patent/JP2008115303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing material which has fine diamond particles of a submicrometer class size dispersed and held in a resinous bond material or matrix material in the state of the primary particles without causing cohesion. <P>SOLUTION: The fine diamond-dispersed resin material, in which particle size-regulated diamond particles are singly coated in the non-cohesion state with a resin layer, is obtained by the manufacturing method comprising the following steps: (1) hydrophilizing fine diamond powders having a D<SB>50</SB>average particle size of ≤1,000 nm by bonding a hydrophilic functional group to them or making it adsorbed on them; (2) heating the hydrophilized diamond particles at the hydrogen termination temperature in a hydrogen atmosphere to make the surfaces of the diamond particles hydrogen-terminated; (3) combining the hydrogen-terminated diamond particles, a resin and an organic medium to prepare slurry having the diamond particles dispersed therein; and (4) separating/removing the organic medium to recover the diamond-containing resin in the form of powders or flakes. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、研磨工具用樹脂材料及びその製造方法、特に精密分級されたサブミクロン級の粒度を持つダイヤモンド微細粒子を一次粒子状態(非凝集状態)で個々に樹脂層で被覆した粉体乃至微細ダイヤモンド粒子を効果的に分散させた樹脂材、並びにかかる樹脂材を利用した研磨工具の製造方法に関する。   The present invention relates to a polishing tool resin material and a method for producing the same, and in particular, finely divided diamond fine particles having a submicron grade particle size, which are individually coated with a resin layer in a primary particle state (non-aggregated state). The present invention relates to a resin material in which diamond particles are effectively dispersed, and a method for manufacturing an abrasive tool using the resin material.

精密加工の急速な進歩に伴い、ダイヤモンド砥粒を用いた研磨加工の分野でも、オングストロームレベルの仕上げ面精度を目指して、より細かな砥粒を用いる傾向が顕著になり、サブミクロン級の、特に500nm以下のダイヤモンド粒子が広範に使用されるに至っている。   Along with the rapid advancement of precision processing, in the field of polishing using diamond abrasive grains, the tendency to use finer abrasive grains has become prominent with the aim of achieving a finishing surface accuracy of angstrom level. Diamond particles of 500 nm or less have been widely used.

一般に化学的に安定な物質と考えられているダイヤモンドであっても、粒度の減少に従って表面の性質が強く現れ、サブミクロン領域になると、乾燥状態では通常、複数個が凝集一体化した凝集粒子となっていることが認められている。従って、そのままの状態で研磨工具に固定して使用すると、見かけ上粗大粒子として挙動するので、加工面にスクラッチ傷をつける恐れがある。   Even diamond, which is generally considered as a chemically stable substance, shows strong surface properties as the particle size decreases. It is recognized that Therefore, if it is used as it is with being fixed to the polishing tool, it apparently behaves as coarse particles, which may cause scratches on the processed surface.

従ってこのサブミクロン領域のダイヤモンドを用いる研磨加工では、砥粒を孤立粒子の状態で油性又は水性の媒質(液体)中に分散させた遊離砥粒のスラリーとして実用に供されている。スラリー中のダイヤモンド砥粒は研磨盤や研磨布の上に保持され、加工に寄与するが、保持される率が一般に低く、加工に寄与しないまま流出してしまう砥粒の割合が無視できないレベルにある。   Therefore, in this polishing process using diamond in the submicron region, it is put to practical use as a slurry of free abrasive grains in which abrasive grains are dispersed in an oily or aqueous medium (liquid) in the form of isolated particles. The diamond abrasive grains in the slurry are held on a polishing disk or polishing cloth and contribute to processing, but the retention rate is generally low, and the proportion of abrasive grains that flow out without contributing to processing is at a level that can not be ignored. is there.

サブミクロン級のダイヤモンド粉末は水系のスラリーとして用いられる場合が多く、この用途のために、ダイヤモンド粒子表面を酸化処理により積極的に親水性化することは公知である。
特許第2691884号公報
Submicron-grade diamond powder is often used as a water-based slurry, and it is well known that for this purpose, the surface of diamond particles is actively made hydrophilic by oxidation treatment.
Japanese Patent No.2691884

油性媒質を用いるスラリー用としての乾燥粉における凝集防止策として、本発明者らのうちの一人は先に、ダイヤモンド粒子表面に存在するダングリングボンド(未結合の結合手)に水素原子を結合させて安定化させることが有効であることを知見した。この知見に基づき、ダイヤモンド粒子表面の活性点を水素終端することにより、凝集しにくいサブミクロンダイヤモンド粉が得られている。
特開2001-329252号公報
As a measure for preventing aggregation in a dry powder for a slurry using an oily medium, one of the present inventors previously bonded a hydrogen atom to a dangling bond (unbonded bond) existing on the diamond particle surface. It was found that it is effective to stabilize. Based on this finding, submicron diamond powder which hardly aggregates is obtained by hydrogen-termination of active sites on the surface of diamond particles.
JP 2001-329252 A

さらに本発明者等の知見によれば、上記ダイヤモンドへの水素終端処理効果は、水素雰囲気中での加熱において500℃付近から認められる。即ち、まず赤外吸収分析において3000〜3600cm-1付近で観察される、OH伸縮に帰属する吸収ピーク高さが小さくなり、代わって表面親水性ダイヤモンドでは認められなかった、2800〜3000cm-1付近で観察されるCH伸縮に帰属する吸収ピークが現れる。この吸収ピークは600℃の加熱で顕著になり、800℃の加熱処理ではOH伸縮に帰属する吸収ピークは一般に認められないので、水素終端処理がほぼ完結したと考えられる。この間にC−O結合箇所からの酸素の脱離によって生じたダングリングボンドに水素が結合して安定化する反応も進行することが認められる。 Furthermore, according to the knowledge of the present inventors, the effect of hydrogen termination treatment on the diamond is recognized from around 500 ° C. when heated in a hydrogen atmosphere. That is, the absorption peak height attributed to OH stretching, which was observed in the vicinity of 3000 to 3600 cm −1 in the infrared absorption analysis, was reduced, and instead was not recognized in the surface hydrophilic diamond, but near 2800 to 3000 cm −1. An absorption peak attributed to the CH stretching observed in FIG. This absorption peak becomes prominent when heated at 600 ° C., and an absorption peak attributed to OH stretching is generally not observed in the heat treatment at 800 ° C., so it is considered that the hydrogen termination treatment is almost completed. During this time, it is recognized that a reaction in which hydrogen is bonded to and stabilized by dangling bonds generated by desorption of oxygen from the C—O bond site is also advanced.

800℃を超えて加熱を続けても、ダイヤモンド表面からCOガスの脱離が認められることから、ダイヤモンド表面に強固に結合している酸素があると推定される。従って水素中における800℃以上の温度での加熱処理は、ダイヤモンド表面における結合酸素の除去に有効である。但し1000℃を超える加熱処理では、ダイヤモンド粉末粒子表面の構造が崩れ、非ダイヤモンド炭素に覆われた構造となり、水素終端効果が鮮明でなくなる傾向がある。   Even if the heating is continued at a temperature exceeding 800 ° C., desorption of CO gas from the diamond surface is observed, so that it is presumed that there is oxygen firmly bonded to the diamond surface. Therefore, heat treatment at a temperature of 800 ° C. or higher in hydrogen is effective for removing bound oxygen from the diamond surface. However, when the heat treatment exceeds 1000 ° C., the structure of the diamond powder particle surface collapses and becomes a structure covered with non-diamond carbon, and the hydrogen termination effect tends to be unclear.

水素終端ダイヤモンドは有機化合物からなる油性の分散媒質(有機性媒質)中に分散しやすいことから、微細ダイヤモンド粒子は、水素終端処理を施すことにより有機性媒質に対して溶解度を持つ樹脂材料中への均一分散が可能になる。本発明者らによる実験において、平均粒径50nmのサブミクロンダイヤモンドは、メタノール中で0.03%、プロパノール中で0.34%、アセトン中で0.41%までは、分散後6時間は溶剤中で懸濁状態を保つとの結果が得られた。即ちダイヤモンド表面がこれらの溶剤に濡れた状態になっていると理解される。また超音波分散直後では上記以上のダイヤモンドを擬懸濁状態で存在させることが可能である。   Since hydrogen-terminated diamond is easy to disperse in an oil-based dispersion medium (organic medium) made of an organic compound, fine diamond particles are transformed into a resin material that has solubility in an organic medium by applying hydrogen termination treatment. Can be uniformly dispersed. In an experiment by the present inventors, submicron diamond having an average particle diameter of 50 nm is suspended in a solvent for 6 hours after dispersion up to 0.03% in methanol, 0.34% in propanol, and 0.41% in acetone. The result of keeping was obtained. That is, it is understood that the diamond surface is wet with these solvents. Further, immediately after ultrasonic dispersion, the above diamond can be present in a pseudo-suspended state.

従って本発明の主な目的の一つはサブミクロン級の微細なダイヤモンド粒子が凝集せずに、即ち一次粒子の状態で樹脂質のボンド材乃至マトリックス材中に分散して保持されている、研磨材を提供することにある。別の目的は、かかる研磨材を効率的に製造できる方法を提供することにある。更に別の目的は、かかる材料を用いた研磨工具の製造法を提供することにある。   Accordingly, one of the main objects of the present invention is polishing in which fine diamond particles of submicron grade are not aggregated, that is, are dispersed and held in a resinous bond material or matrix material in the form of primary particles. To provide materials. Another object is to provide a method capable of efficiently producing such an abrasive. Yet another object is to provide a method of manufacturing an abrasive tool using such materials.

本発明は、一つの側面において、D50値平均粒径が1000nm以下、特に500nm以下のダイヤモンド粉体を構成するダイヤモンド粒子が、非凝集状態で個々に樹脂層で被覆されていることを特徴とする、粉体乃至フレーク状の樹脂被覆微細ダイヤモンド粉体に関する。ここで用語「被覆」は、被覆されるダイヤモンド粒子と被覆材としての樹脂の相対的な容積によらず、個々のダイヤモンド粒子が、隣接する他の粒子と、樹脂により隔離されている状態を含むものとする。 The present invention, in one aspect, is characterized in that diamond particles constituting diamond powder having a D 50 value average particle diameter of 1000 nm or less, particularly 500 nm or less, are individually coated with a resin layer in a non-aggregated state. The present invention relates to a powder or flaky resin-coated fine diamond powder. Here, the term “coating” includes a state in which individual diamond particles are separated from other adjacent particles by the resin regardless of the relative volume of the diamond particles to be coated and the resin as the coating material. Shall be.

上記微細ダイヤモンド分散樹脂材は、次の各段階を含有し、かつ本発明の別の側面を構成する方法によって効果的に製造される。
(1) D50値平均粒径が1000nm以下、特に500nm以下の微細ダイヤモンド粉体に親水性官能基を結合乃至吸着させることにより親水性化する段階、
(2) 上記親水性化ダイヤモンド粒子を水素雰囲気中にて水素終端温度で加熱し、ダイヤモンド粒子表面を水素終端する段階、
(3) 前記の水素終端したダイヤモンド粒子、樹脂、及び有機媒質を組み合わせ、ダイヤモンド粒子が分散した懸濁液を作製する段階、
(4) 有機媒質を分離・除去して、ダイヤモンド含有樹脂を粉末ないしフレーク状で回収する段階。
The fine diamond-dispersed resin material is produced effectively by a method comprising the following steps and constituting another aspect of the present invention.
(1) a step of making hydrophilic by bonding or adsorbing hydrophilic functional groups to fine diamond powder having a D 50 value average particle diameter of 1000 nm or less, particularly 500 nm or less,
(2) heating the hydrophilized diamond particles in a hydrogen atmosphere at a hydrogen termination temperature to hydrogenate the diamond particle surface;
(3) combining the hydrogen-terminated diamond particles, a resin, and an organic medium to produce a suspension in which diamond particles are dispersed;
(4) A step of separating and removing the organic medium and recovering the diamond-containing resin in the form of powder or flakes.

このように本発明によって、従来スラリーとしてしか利用できなかった微細なダイヤモンド粒子を、樹脂中に一次粒子として保持した構成で精密研磨加工に利用することが可能となる。   As described above, according to the present invention, it is possible to use fine diamond particles, which can be used only as a slurry in the past, for precision polishing in a configuration in which the fine particles are held as primary particles in a resin.

本発明においては、砥粒を遊離砥粒のスラリーとしてではなく、工具中に保持された固定砥粒として使用することにより、砥粒の有効利用による生産性の向上、加工コストの低減に加えて、廃棄物の減量による環境保全への負荷の軽減も可能になる。   In the present invention, the abrasive grains are used not as a slurry of loose abrasive grains, but as fixed abrasive grains held in a tool, thereby improving productivity by effectively using abrasive grains and reducing processing costs. In addition, it is possible to reduce the burden on environmental conservation by reducing the amount of waste.

本発明の方法は微細なダイヤモンド粒子に適用可能であり、D50平均値が1000nm(1μm)以下の精密整粒されたダイヤモンド粉体(粒子集合体)に適用して、効果的に一次粒子分散体を作製することが可能である。 The method of the present invention can be applied to fine diamond particles, and can be applied to finely sized diamond powder (particle aggregate) whose D 50 average value is 1000 nm (1 μm) or less to effectively disperse primary particles. It is possible to make a body.

本発明において、樹脂材中に分散される微細ダイヤモンド粉体の粒度は、D50値平均粒径において1000nm以下、特に500nm以下、更に好ましくは200nm以下のものが適する。粉体とは粒子の集合体を言う。粉体を構成する各粒子のサイズ(粒度)はD50値として表される平均値の両側に、分級精度により異なる分布幅を有し、これは典型的にはD50値に対するD10値及びD90値の比で特徴付けられる。本発明においては精密分級により高度に整粒された微細ダイヤモンド粉体を使用し、精密加工研磨のために、特にこれらのパラメータD10/D50及びD90/D50の比がそれぞれ1/2以上及び2以下のものが好適である。 In the present invention, the fine diamond powder dispersed in the resin material has a D 50 value average particle diameter of 1000 nm or less, particularly 500 nm or less, more preferably 200 nm or less. Powder refers to an aggregate of particles. The size (particle size) of each particle constituting the powder has a distribution range that varies depending on the classification accuracy on both sides of the average value expressed as the D 50 value, which is typically a D 10 value relative to the D 50 value and Characterized by the ratio of D 90 values. In the present invention, fine diamond powder finely sized by precision classification is used, and the ratio of these parameters D 10 / D 50 and D 90 / D 50 is particularly ½ for precision processing polishing. Those above and below 2 are preferred.

また個々の粒子の粒径について2000nm(2μm)以下のものが利用できる。これより大きい粒子は従来技術による乾式、湿式混合法によりマトリックス材料と混合することが可能であり、かつ通常の手法では有機性媒質中で懸濁状態を維持するのが困難であることから、本発明の処理対象から除外される。一方下限としては現時点で入手可能な最小サイズの3nmまで用いることができる。   In addition, individual particles having a particle size of 2000 nm (2 μm) or less can be used. Larger particles can be mixed with the matrix material by dry and wet mixing methods according to the prior art, and it is difficult to maintain a suspended state in an organic medium by ordinary methods. Excluded from the subject of the invention. On the other hand, the lower limit can be up to 3 nm, the smallest size available at present.

本発明においては、樹脂材中に分散される微細ダイヤモンドは水素終端処理により親油性乃至疎水性を付与した後、特定の有機化合物からなる分散媒乃至溶媒と組み合わされる。「組み合わせ」とは、異なる複数の物質をお互いの近く乃至周囲に存在させる操作のことで、特に第一の液体中に固体粒子や組成の異なる第二の液体を添加したりする操作を言う。この操作には後述の各種の手法が利用可能である。   In the present invention, fine diamond dispersed in a resin material is given lipophilicity or hydrophobicity by hydrogen termination treatment, and then combined with a dispersion medium or solvent made of a specific organic compound. “Combination” refers to an operation in which a plurality of different substances are present near or around each other, and particularly an operation in which solid particles or a second liquid having a different composition is added to the first liquid. For this operation, various methods described later can be used.

水素終端処理は、ダイヤモンド表面の炭素原子の結合手のうち、隣の炭素原子との結合に供されていない、未結合手に水素原子を付加する操作であり、この処理によってダイヤモンド粒子に親油性(疎水性)が付与される。   Hydrogen termination treatment is an operation of adding hydrogen atoms to unbonded hands that have not been used for bonding with the adjacent carbon atoms among the bonds of carbon atoms on the diamond surface. This treatment makes the diamond particles lipophilic. (Hydrophobic) is imparted.

上記の水素終端処理は、被処理ダイヤモンドを、予め親水化しておくことによって、効率を向上させることができる。本発明においては、親水化したダイヤモンドを被処理材として用いる。必須ではないが、特に水素終端処理に先立ち、公知の技術に基づいて親水性の官能基乃至原子団をダイヤモンド粒子表面に結合乃至吸着させることにより表面の炭素原子にC=OやC−OH結合を付与することは、極めて有効である。
特許第2691884号公報
The above hydrogen termination treatment can improve the efficiency by previously hydrophilizing the diamond to be treated. In the present invention, hydrophilized diamond is used as the material to be treated. Although not essential, in particular, prior to hydrogen termination treatment, a hydrophilic functional group or atomic group is bonded to or adsorbed on the surface of diamond particles based on a known technique, so that C═O or C—OH bond is formed on the surface carbon atom. It is extremely effective to provide
Japanese Patent No.2691884

水素終端処理は、上記のように予め親水性化したダイヤモンド粒子を水素雰囲気中にて500〜1000℃の水素終端温度温度、特に好ましくは600〜800℃で加熱することによって達成できる。   The hydrogen termination treatment can be achieved by heating the diamond particles that have been previously hydrophilized as described above in a hydrogen atmosphere at a hydrogen termination temperature of 500 to 1000 ° C., particularly preferably at 600 to 800 ° C.

水素終端したダイヤモンド粒子は、樹脂、及び有機溶剤と組み合わせて均一化し、ダイヤモンド粒子が分散した懸濁液を調製する。これには次のような様々な手法が用い得る。例えば、ダイヤモンド粒子を分散懸濁する媒質(分散媒)、及びマトリックス構成樹脂、即ち研磨工具等の用途においてダイヤモンド粒子を分散含有するための保持材構成成分を溶解する媒質(溶媒) として、それぞれ同種類、または相互に溶解度を持つ(相溶性の)異種の有機化合物を使用し、これらの中に溶液又は分散乃至懸濁液とした後に、両液の混合を行うことは効果的である。   Hydrogen-terminated diamond particles are homogenized in combination with a resin and an organic solvent to prepare a suspension in which diamond particles are dispersed. The following various methods can be used for this. For example, a medium for dispersing and suspending diamond particles (dispersion medium) and a medium (solvent) for dissolving a matrix constituent resin, i.e., a holding material component for dispersing and containing diamond particles in applications such as a polishing tool, respectively It is effective to use different types of organic compounds having different or mutually soluble (compatible) properties, and after mixing them into solutions or dispersions or suspensions, mixing the two solutions.

或は、水素終端ダイヤモンド粒子を有機媒質中に分散懸濁した後に、マトリックス構成樹脂を固体・粉末又は流動状態で添加して溶解し、全体の混合を行い均一化することができる。   Alternatively, after hydrogen-terminated diamond particles are dispersed and suspended in an organic medium, the matrix-constituting resin can be added and dissolved in a solid / powder or fluid state, and the whole can be mixed and homogenized.

或はマトリックス構成樹脂を有機媒質中に溶解し、混合、均一化した後、この溶液中に水素終端ダイヤモンド粒子を添加、またはこの溶液を水素終端したダイヤモンド粒子の集合体の間隙へ浸透させることも有効である。   Alternatively, after the matrix-constituting resin is dissolved in an organic medium, mixed and homogenized, hydrogen-terminated diamond particles are added to the solution, or the solution is allowed to penetrate into the gaps between the hydrogen-terminated diamond particles. It is valid.

マトリックス構成樹脂と組み合わされ、媒質中に分散・懸濁された微細ダイヤモンド粉体は均一に混合した後、例えば、常圧又は減圧下で加熱して分散媒質及び溶媒を蒸発・除去することにより、微細ダイヤモンド粒子を分散状態で保持した樹脂を粉体またはフレーク状で回収することができる。   The fine diamond powder combined with the matrix-constituting resin and dispersed and suspended in the medium is uniformly mixed, and then heated under normal pressure or reduced pressure to evaporate and remove the dispersion medium and solvent, for example, Resin holding fine diamond particles in a dispersed state can be recovered in the form of powder or flakes.

なお懸濁限界を超えてダイヤモンド粒子を懸濁状態で含有する分散媒質の場合、乾燥方法としてスプレードライを含む混合品の瞬間乾燥方式を用いることにより、樹脂とダイヤモンドとが密に混じり合った成型原料粉が得られる。   In the case of a dispersion medium that contains diamond particles in a suspended state exceeding the suspension limit, the resin and diamond are intimately mixed by using the instantaneous drying method of the mixed product including spray drying as the drying method. Raw material powder is obtained.

研磨工具としての使用において、マトリックスを構成しダイヤモンド粒子を固定する樹脂材料としては、熱可塑性樹脂も用いることができるが、使用の際に研磨熱によって軟化するトラブルを避ける見地からは、熱硬化性樹脂がより好ましい。このような樹脂の種類として、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、ウレタン樹脂、アルキド樹脂、不飽和ポリエステルなどを挙げることができる。   For use as a polishing tool, a thermoplastic resin can be used as the resin material that forms the matrix and fixes the diamond particles. However, from the standpoint of avoiding the trouble of softening due to polishing heat during use, it is thermosetting. A resin is more preferable. Examples of such resins include phenol resin, epoxy resin, melamine resin, urea resin, urethane resin, alkyd resin, unsaturated polyester, and the like.

本発明で用いる有機媒質(即ち分散媒乃至溶媒)としては、上記の樹脂原料や前駆体を溶解し、かつ水素終端ダイヤモンドへの親和性が高く、さらに樹脂材料の性質が大きく変化しない比較的低い温度範囲で蒸留によって分離可能な物質、特に120℃以下の沸点を有するものが好ましい。このような有機媒質としては、アルコール類、ケトン類、鎖式炭化水素、環式炭化水素、酢酸エステルなど広い範囲から選択することができる。また、ラッカーシンナー、ウレタンシンナー、エポキシシンナー、アクリルシンナー、メラミンシンナーと称されている、シンナー類も利用可能である。   As an organic medium (that is, a dispersion medium or a solvent) used in the present invention, the above-mentioned resin raw materials and precursors are dissolved, the affinity for hydrogen-terminated diamond is high, and the properties of the resin material are not significantly changed. Substances which can be separated by distillation in the temperature range, in particular those having a boiling point of 120 ° C. or less are preferred. Such an organic medium can be selected from a wide range such as alcohols, ketones, chain hydrocarbons, cyclic hydrocarbons, and acetates. Further, thinners called lacquer thinner, urethane thinner, epoxy thinner, acrylic thinner, and melamine thinner can also be used.

これらの有機媒質は蒸留によって回収し、繰り返し使用に供しうることから、ダイヤモンドの分散能(懸濁限界)の低い媒質も利用できる。また減圧蒸留の手段を用いれば、樹脂材料の変質を生じない温度範囲での分散媒及び溶媒の回収が可能であるから、この意味において、低沸点という条件は有機媒質に対する必須要件ではない。   Since these organic media can be recovered by distillation and used repeatedly, media with low dispersibility (suspension limit) of diamond can also be used. In addition, since the dispersion medium and the solvent can be recovered in a temperature range that does not cause alteration of the resin material by using vacuum distillation means, in this sense, the condition of low boiling point is not an essential requirement for the organic medium.

本発明方法により処理される出発材料としてのダイヤモンド粒子は、研磨性能の観点から、静的超高圧下で合成された、即ち触媒金属の存在下で、プレスによる静的超高圧及び高温条件下で非ダイヤモンド炭素から転換、製造され、破砕及び分級工程を経た単結晶質ダイヤモンド粒子が、特に好適である。   From the viewpoint of polishing performance, diamond particles as a starting material treated by the method of the present invention were synthesized under static ultrahigh pressure, that is, in the presence of a catalytic metal, under static ultrahigh pressure and high temperature conditions by pressing. Single crystalline diamond particles converted from non-diamond carbon, manufactured and subjected to crushing and classification processes are particularly preferred.

本発明においては、ダイヤモンド粒子表面における活性炭素原子が水素で終端され、この処理により、フーリエ変換赤外分光光度計(FTIR)による該粉末の吸収スペクトル図形において2800〜3000cm-1付近で観察されるCH伸縮に帰属する吸収ピークの高さは、3000〜3600cm-1付近で観察されるOH伸縮に帰属する吸収ピークの高さ以上とされる。 In the present invention, activated carbon atoms on the surface of diamond particles are terminated with hydrogen, and by this treatment, the absorption spectrum of the powder by a Fourier transform infrared spectrophotometer (FTIR) is observed in the vicinity of 2800 to 3000 cm −1. The height of the absorption peak attributed to CH stretching is equal to or higher than the height of the absorption peak attributed to OH stretching observed in the vicinity of 3000 to 3600 cm −1 .

出発材料のダイヤモンド粒子としてはまた、実質的にダイヤモンド構造を示すものであれば、例えば爆薬の爆轟(デトネーション)による動的超高圧下で合成され、解砕工程を経た多結晶質凝集粒子も、合成時に生じた凝集を解き、単一粒子に近い状態で、水中に懸濁させることができるので、同様に利用可能である。この場合、処理方法としては酸化剤を用いた200℃以上の湿式処理、或いは空気または酸化性ガスを用いた300℃以上の乾式処理が有効である。   The starting diamond particles may also be polycrystalline agglomerates synthesized under dynamic ultra-high pressure by detonation of explosives and subjected to a crushing step, provided that they substantially exhibit a diamond structure. It can be used in the same manner because it can be agglomerated during synthesis and suspended in water in a state close to a single particle. In this case, a wet treatment at 200 ° C. or higher using an oxidizing agent or a dry treatment at 300 ° C. or higher using air or an oxidizing gas is effective as a treatment method.

この処理を施したダイヤモンド表面には、親水性の、カルボニル、カルボキシル、水酸基などの酸素含有官能基が吸着ないし結合の状態で存在することが、赤外吸収分析によって確かめられている。加熱の際にこれらの官能基の脱離が引き金となって生じたダングリングボンドが起点となり、隣接粒子間に生じる結合が凝集の発端になると理解されている。   It has been confirmed by infrared absorption analysis that a hydrophilic oxygen-containing functional group such as carbonyl, carboxyl, or hydroxyl group exists in an adsorbed or bonded state on the diamond surface subjected to this treatment. It is understood that dangling bonds that are triggered by the elimination of these functional groups during heating are the starting points, and the bonds that occur between adjacent particles are the origin of aggregation.

本発明の製法で出発材料として用いるダイヤモンド粒子は、有機媒質への濡れ性、研磨性能の確保の観点から、表面がSP3構造を維持していることが望ましい。 The diamond particles used as a starting material in the production method of the present invention desirably have a SP 3 structure on the surface from the viewpoint of ensuring wettability to an organic medium and polishing performance.

本発明方法においては、マトリックス樹脂中に高い分散度で微細ダイヤモンドが含有されている樹脂材が効果的に得られ、この高分散性は微細な粒径領域においても発揮される。この特徴は、研磨工具の製作過程において、従来方法ではダイヤモンド砥粒とマトリックス構成材料の樹脂との十分な混合が困難なサブミクロン領域、特にD50値平均粒径が200nm以下の粉体について、特に顕著となる。 In the method of the present invention, a resin material containing fine diamond with a high degree of dispersion in the matrix resin is effectively obtained, and this high dispersibility is exhibited even in a fine particle size region. This feature is obtained in the submicron region in which it is difficult to sufficiently mix the diamond abrasive grains and the resin of the matrix constituent material by the conventional method in the manufacturing process of the polishing tool, particularly for the powder having a D 50 value average particle diameter of 200 nm or less. Especially noticeable.

マトリックス樹脂中におけるダイヤモンド含有量は、個々の粒子の粒径が小さいことから、集中度換算値において50(12.5vol%)以下とするのが好ましく、25以下がより好ましい。一方、研磨工具製作の際に、サブミクロンダイヤモンド分散樹脂と、樹脂のみの粉末とを混合して金型に充填・成形することにより、ダイヤモンドを含有した樹脂塊が、樹脂地の中に島状に分散した構成とすることもできる。   The diamond content in the matrix resin is preferably 50 (12.5 vol%) or less, more preferably 25 or less in terms of concentration, since the particle size of individual particles is small. On the other hand, when a polishing tool is manufactured, a resin lump containing diamond is formed into islands in the resin ground by mixing submicron diamond-dispersed resin and resin-only powder and filling and molding the mold. It is also possible to have a configuration dispersed in the above.

本発明においては、表面を樹脂で被覆された個々の粒子を一次粒子(単独粒子)の状態で存在させることが重要である。樹脂被覆ダイヤモンドは、有機溶媒に濡らしたダイヤモンドを、樹脂を溶解した有機溶媒中に浸漬することにより調製することができる。   In the present invention, it is important that individual particles whose surfaces are coated with a resin are present as primary particles (single particles). The resin-coated diamond can be prepared by immersing diamond wetted with an organic solvent in an organic solvent in which the resin is dissolved.

一方、有機溶媒については、樹脂材料の添加濃度を上げて溶剤の粘度を高めることにより、ダイヤモンド粒子が懸濁状態に保持される時間を増すことが可能である。ダイヤモンド粒子及び樹脂材料を添加した有機媒質は、必要に応じて撹拌、超音波照射、ビーズミル混合、ペイントシェーカー等既知の各種方法を実施して、ダイヤモンドと樹脂との均一な混合が確保されるようにする。   On the other hand, with respect to the organic solvent, it is possible to increase the time during which the diamond particles are held in a suspended state by increasing the concentration of the resin material to increase the viscosity of the solvent. The organic medium to which the diamond particles and the resin material are added is subjected to various known methods such as stirring, ultrasonic irradiation, bead mill mixing, paint shaker, etc., as necessary, so as to ensure uniform mixing of the diamond and the resin. To.

ダイヤモンドと樹脂とが均一に混合された状態の有機溶媒からの有機溶媒を除去し乾燥すると、サブミクロンのダイヤモンド微粉が一次粒子状態で分散・固定された粉体又はフレーク状の樹脂材が得られる。   When the organic solvent is removed from the organic solvent in a state where the diamond and the resin are uniformly mixed and dried, a powder or flaky resin material in which submicron diamond fine particles are dispersed and fixed in a primary particle state is obtained. .

得られた樹脂材は、通常の樹脂成形技術を用いて工具素材に成型することができる。特にホットプレスや射出成型といった、加熱手段を併用する加圧成型方法が好ましく、実質的に気孔を含まない、微細ダイヤモンド粒子分散工具や工具素材が得られる。気孔の存在が障害にならない場合には、流し込み成型法が利用でき、また必要に応じて圧延や、ロール成型によってシート状とすることも可能である。   The obtained resin material can be molded into a tool material using a normal resin molding technique. In particular, a pressure molding method using a heating means such as hot pressing or injection molding is preferable, and a fine diamond particle-dispersed tool or tool material substantially free of pores can be obtained. When the presence of pores does not become an obstacle, a casting method can be used, and a sheet can be formed by rolling or roll forming as necessary.

砥粒としてD50値平均粒径50nmのMD50級ダイヤモンド粉体(トーメイダイヤ(株)製品)、マトリックス構成材料としてフェノール樹脂PR8000(住友ベークライト(株)製品)を用いた。MD50には表面に親水性の官能基が結合乃至吸着しているので、予備操作として水素中で700℃に保ち、ダイヤモンド粒子表面を水素で終端した。処理済みのダイヤモンド50gにメタノール500mlを加え、超音波で分散させて懸濁液とした。 MD50 grade diamond powder D 50 value average particle diameter 50nm as abrasive grains (Tomei Diamond Co. product), with phenol resin PR8000 (Sumitomo Bakelite Co. product) as a matrix constituent material. Since MD50 has hydrophilic functional groups bonded or adsorbed on its surface, it was kept at 700 ° C. in hydrogen as a preliminary operation, and the diamond particle surface was terminated with hydrogen. To 50 g of the treated diamond, 500 ml of methanol was added and dispersed with ultrasound to form a suspension.

マトリックス構成材料のフェノール樹脂PR8000は、500gを秤取し、1000mlのメタノール中に溶解して透明な褐色の液とした。   500 g of phenol resin PR8000 as a matrix constituent material was weighed and dissolved in 1000 ml of methanol to obtain a transparent brown liquid.

上記のフェノール樹脂を溶解した第二のメタノール液に、前記の、ダイヤモンドを懸濁した第一のメタノール液を加え、攪拌しながら加熱容器中へ滴下する手法で急速蒸留し、メタノールを分離・除去した。   Add the above-mentioned first methanol solution in which diamond is suspended to the second methanol solution in which the above phenol resin is dissolved, and then rapidly distill into the heating vessel while stirring to separate and remove the methanol. did.

得られたダイヤモンド混入フェノール樹脂を乳鉢中で軽く潰すことにより、褐色のペレット乃至粉末状のサブミクロンダイヤモンド分散樹脂を得た。この樹脂中においてダイヤモンド粉末の凝集体は認められず、各粉末粒子は、表面がフェノール樹脂で被覆された状態であることをSEM観察により確認した。   The obtained diamond-containing phenol resin was lightly crushed in a mortar to obtain brown pellets or powdery submicron diamond dispersion resin. Aggregates of diamond powder were not observed in this resin, and it was confirmed by SEM observation that the surface of each powder particle was covered with a phenol resin.

次いで上記の樹脂を工具成型原料粉末として用い、ラップ砥石の製作を行った。研磨仕上げした直径150mmの炭素鋼製の円板を成型金型枠内に嵌めて水平に保って成型原料粉末80gを充填して平らに均し、その上へフェノール樹脂PR8000粉末120gを平らに充填した。   Next, a lapping grindstone was manufactured using the above resin as a tool molding raw material powder. A polished carbon steel disk with a diameter of 150 mm is fitted in the mold frame and kept horizontal, filled with 80 g of raw material powder and leveled, and then 120 g of phenolic resin PR8000 powder is filled flat. did.

この上に押板を載せて油圧プレスで30トンの荷重を加えながら、金型を200℃に加熱して成型原料粉末とフェノール樹脂PR8000粉末とを同時に硬化させ、厚さ約8mmのラップ盤素材を得た。この素材をさらに乾燥器内で200℃に12時間保持して十分に硬化させた後、シルミン製の砥石基板上に接着剤(ボンドE250:コニシ(株)製)を用いて固定し、#800のGC砥石を用いて砥石面の面出しとツルーイングとを実施した。   A press plate is placed on top of this and a load of 30 tons is applied by a hydraulic press. The mold is heated to 200 ° C to simultaneously cure the molding raw material powder and the phenolic resin PR8000 powder. Got. This material was further cured in a dryer at 200 ° C. for 12 hours, and then fixed on a grinding wheel substrate made of Silmin using an adhesive (Bond E250: manufactured by Konishi Co., Ltd.), # 800 Surface grinding and truing of the grindstone surface were carried out using a GC grindstone.

平均粒径100nmのMD100級ダイヤモンド (トーメイダイヤ(株)製品)砥粒を、エポキシ樹脂(エピフォームF-246:ソマール(株)製品)中に混合した。MD100も表面は親水性であることから、実施例1と同様に予備操作の水素中700℃加熱によって、ダイヤモンド粒子表面を水素で終端した。処理済みのダイヤモンド30gにアセトン500mlを加え、超音波で分散させ懸濁液とした。   MD100 grade diamond (Tomei Diamond Co., Ltd. product) abrasive grains having an average particle diameter of 100 nm was mixed in an epoxy resin (Epiform F-246: Somaru Co., Ltd. product). Since the surface of MD100 is also hydrophilic, the diamond particle surface was terminated with hydrogen by heating at 700 ° C. in hydrogen in a preliminary operation as in Example 1. To 30 g of the treated diamond, 500 ml of acetone was added and dispersed with ultrasonic waves to obtain a suspension.

エポキシ樹脂は、100gを秤取し、1000mlのメチルエチルケトン中に分散させて透明な溶液とした。上記のエポキシ樹脂を溶解させたメチルエチルケトンに、前記のダイヤモンド懸濁アセトンを加え、ビーズミルを用いて十分に混合し、攪拌機付きの蒸留装置により分散媒及び溶媒を蒸発・分離した。   100 g of the epoxy resin was weighed and dispersed in 1000 ml of methyl ethyl ketone to obtain a transparent solution. The above-mentioned diamond suspension acetone was added to methyl ethyl ketone in which the epoxy resin was dissolved, and the mixture was thoroughly mixed using a bead mill, and the dispersion medium and solvent were evaporated and separated using a distillation apparatus equipped with a stirrer.

得られたダイヤモンド分散エポキシ樹脂は、乳鉢中で磨り潰してから80メッシュのふるいを通し、白色粉末状のサブミクロンダイヤモンド分散樹脂を得た。この樹脂に200gのトリアジン樹脂BT2680(三菱ガス化学(株)製品)粉末を加えて乾式で十分に混合し、工具成型原料粉末とした。   The obtained diamond-dispersed epoxy resin was ground in a mortar and then passed through an 80-mesh sieve to obtain a white powdery submicron diamond-dispersed resin. To this resin, 200 g of triazine resin BT2680 (Mitsubishi Gas Chemical Co., Ltd.) powder was added and thoroughly mixed by dry process to obtain a tool molding raw material powder.

次いで実施例1と同じ手法によりラップ砥石を作製した。成型金型は実施例1と同じ直径150mmであって、原料粉末160gを平らにならして充填し、押板を載せて油圧プレスで40トンの荷重を加えながら金型を230℃に加熱して硬化させ、厚さ約6.5mmのラップ盤素材を得た。   Next, a lapping grindstone was produced by the same method as in Example 1. The mold is 150 mm in diameter, the same as in Example 1. 160 g of raw material powder is leveled and filled, and the mold is heated to 230 ° C. while applying a load of 40 tons with a hydraulic press. Then, a lapping machine material having a thickness of about 6.5 mm was obtained.

この素材をさらに乾燥器内で230℃に12時間保持して十分に硬化させた後、シルミン製の砥石基板上に接着剤(ボンドE250:コニシ(株)製)を用いて固定し、#800のGC砥石を用いて砥石面の面出しとツルーイングとを実施した。   This material was further cured in a dryer for 12 hours at 230 ° C., and then fixed on a grinding wheel substrate made of Silmine using an adhesive (Bond E250: manufactured by Konishi Co., Ltd.), # 800 Surface grinding and truing of the grindstone surface were carried out using a GC grindstone.

砥粒として一次粒子径5〜10nmと称される、比表面積300m2/gのデトネーションダイヤモンドを用いた。ダイヤモンドを保持する樹脂材料には実施例1と同じフェノール樹脂PR8000(住友ベークライト(株)製品)を用いた。 A detonation diamond having a specific surface area of 300 m 2 / g and having a primary particle diameter of 5 to 10 nm was used as the abrasive grains. The same phenol resin PR8000 (product of Sumitomo Bakelite Co., Ltd.) as in Example 1 was used as a resin material for holding diamond.

デトネーションダイヤモンドは、まず精製処理として溶融水酸化ナトリウム中における加熱処理を行い、次いで硝酸−硫酸混液中煮沸による表面酸化処理を施して表面に親水性の官能基を形成し、さらに水素中で700℃に保ち、ダイヤモンド粒子表面を水素で終端する処理を施した。処理済みのダイヤモンド5gにメチルエチルケトン200mlを加え、超音波で分散させ、懸濁液とした。   Detonation diamond is first subjected to heat treatment in molten sodium hydroxide as a purification treatment, then subjected to surface oxidation treatment by boiling in a nitric acid-sulfuric acid mixed solution to form a hydrophilic functional group on the surface, and 700 ° C. in hydrogen. The surface of the diamond particle was terminated with hydrogen. To 5 g of the treated diamond, 200 ml of methyl ethyl ketone was added and dispersed with ultrasound to form a suspension.

マトリックス材料のフェノール樹脂PR8000は、500gを秤取し、1000mlのメチルエチルケトン中に溶解し透明な褐色の溶液とした。   500 g of phenolic resin PR8000 as a matrix material was weighed and dissolved in 1000 ml of methyl ethyl ketone to obtain a transparent brown solution.

上記のフェノール樹脂を溶解したメチルエチルケトン溶液に、前記のダイヤモンド分散メチルエチルケトン懸濁液を加え、超音波照射によって十分に混合し、攪拌機付きの蒸留装置を用いてメチルエチルケトンを蒸発・分離した。   The above-mentioned diamond-dispersed methyl ethyl ketone suspension was added to the methyl ethyl ketone solution in which the phenol resin was dissolved, and the mixture was thoroughly mixed by ultrasonic irradiation, and methyl ethyl ketone was evaporated and separated using a distillation apparatus equipped with a stirrer.

得られたダイヤモンド分散樹脂は、乳鉢中で軽く潰し、工具成型原料となる褐色粉末状のサブミクロンダイヤモンド分散樹脂とした。以上の諸工程は実施例1と同じである。   The obtained diamond-dispersed resin was lightly crushed in a mortar to obtain a submicron diamond-dispersed resin in the form of a brown powder used as a tool molding raw material. The above steps are the same as those in the first embodiment.

この成型原料粉末を用いたラップ砥石の製作には砥石直径100mm用の炭素鋼製の成型金型を用いた。成型原料粉末重量50gを平らに均して、その上へフェノール樹脂PR8000粉末50gを平らに充填した。この上へ押板を載せて油圧プレスで10トンの荷重を加えながら金型を200℃に加熱することにより、成型原料粉末とフェノール樹脂PR8000粉末とを同時に硬化させ、厚さ約10mmのラップ盤素材を得た。   For the production of the lapping grindstone using this molding raw material powder, a carbon steel mold for a grindstone diameter of 100 mm was used. A molding raw material powder weight of 50 g was flattened, and 50 g of phenol resin PR8000 powder was filled flatly thereon. A pressing plate is placed on top of this, and the mold is heated to 200 ° C while applying a load of 10 tons with a hydraulic press. The molding raw material powder and phenol resin PR8000 powder are cured simultaneously, and a lapping machine with a thickness of about 10 mm. I got the material.

この素材をさらに乾燥器内で200℃に12時間保持して十分に硬化させた後、鋼製の砥石基板上に接着剤(ボンドE250)を用いて固定し、精密仕上げ用のラップ砥石とした。   This material was further cured in a dryer at 200 ° C. for 12 hours and then sufficiently cured, and then fixed on a steel grindstone substrate using an adhesive (bond E250) to obtain a lap grindstone for precision finishing. .

IRM 0-2級ダイヤモンド微粉(D50=950nm)20gをプロパノール1000ml中に分散させて懸濁液を調製し、またフェノール樹脂PR8000を55gプロパノール200mlに溶解した溶液を調製した。両液を超音波照射によって十分に混合し、油煎110℃による蒸留で分散媒及び溶媒を分離・回収し、12vol%のサブミクロンダイヤモンド粒子を分散保持した塊状のフェノール樹脂を得た。これを粉砕して80メッシュのふるいを通過させ、研磨砥石作製用の原料粉末とした。 A suspension was prepared by dispersing 20 g of IRM 0-2 grade diamond fine powder (D 50 = 950 nm) in 1000 ml of propanol, and a solution in which phenol resin PR8000 was dissolved in 200 ml of 55 g propanol was prepared. Both liquids were sufficiently mixed by ultrasonic irradiation, and the dispersion medium and solvent were separated and recovered by distillation at an oil roast of 110 ° C. to obtain a bulky phenol resin in which 12 vol% of submicron diamond particles were dispersed and held. This was pulverized and passed through an 80-mesh sieve to obtain a raw material powder for producing a grinding wheel.

砥粒としてD50平均粒径が24nmであるトーメイダイヤ(株)製のMD20級ダイヤモンド微粉、マトリックス材料として住友ベークライト製フェノール樹脂PR8000を用いた。予備操作として、MD20を9部硫酸−1部硝酸−0.5部硝酸カリ(容量比)の中での煮沸による再度の酸化処理の後、水素中で700℃に保ち、ダイヤモンド粒子表面への水素終端処理を施した。処理済みのダイヤモンド4gにアセトン1000mlを加え、超音波で分散させて懸濁液とした。 D 50 average particle size as the abrasive grains with a is Tomei Diamond Co., Ltd. MD20 grade diamond fines, by Sumitomo Bakelite phenolic resin as a matrix material PR8000 24nm. As a preliminary operation, MD20 was reoxidized by boiling in 9 parts sulfuric acid – 1 part nitric acid – 0.5 parts potassium nitrate (volume ratio), then kept at 700 ° C in hydrogen, and terminated with hydrogen on the diamond particle surface. Treated. To 4 g of the treated diamond, 1000 ml of acetone was added and dispersed with ultrasound to form a suspension.

マトリックス材料としてフェノール樹脂PR8000(粉)を200g秤取し、上記のダイヤモンド懸濁液へ少量ずつ添加して完全に溶解した。得られた粘い褐色のダイヤモンド懸濁液を蒸留して、アセトンを分離・回収した。一方、回収されたダイヤモンド混入マトリックスは、乳鉢中で軽く潰すことにより、褐色粉末状のサブミクロンダイヤモンド分散樹脂を得た。この樹脂中においてダイヤモンド粉末の凝集体は認められず、各粉末粒子は表面がフェノール樹脂で被覆された状態であることをSEM観察により確認した。
200 g of phenol resin PR8000 (powder) was weighed as a matrix material and added to the above diamond suspension little by little to completely dissolve it. The resulting viscous brown diamond suspension was distilled to separate and collect acetone. On the other hand, the collected diamond mixed matrix was lightly crushed in a mortar to obtain a brown powdery submicron diamond dispersion resin. Agglomerates of diamond powder were not observed in this resin, and it was confirmed by SEM observation that the surface of each powder particle was covered with a phenol resin.

Claims (26)

整粒されたダイヤモンド粉体を構成するダイヤモンド粒子が、非凝集状態で個々に樹脂層で被覆されていることを特徴とする、粉体状乃至フレーク状の樹脂被覆微細ダイヤモンド材。   A powdery or flaky resin-coated fine diamond material, wherein diamond particles constituting the sized diamond powder are individually coated with a resin layer in a non-aggregated state. ダイヤモンド粉体のD50値平均粒径が1000nm以下である、請求項1に記載の樹脂被覆微細ダイヤモンド材。 D 50 value average particle size of the diamond powder is 1000nm or less, the resin-coated fine diamond material according to claim 1. ダイヤモンド粉体のD50値平均粒径が500nm以下である、請求項1又は2のいずれかに記載の樹脂被覆微細ダイヤモンド材。 The resin-coated fine diamond material according to claim 1, wherein the diamond powder has a D 50 value average particle diameter of 500 nm or less. ダイヤモンド粉体のD50値平均粒径が200nm以下である、請求項1乃至3のいずれかに記載の樹脂被覆微細ダイヤモンド材。 D 50 value average particle size of the diamond powder is 200nm or less, the resin-coated fine diamond material according to any one of claims 1 to 3. ダイヤモンド粉体のD50値平均粒径に対するD10値及びD90値の比がそれぞれ1/2以上及び2以下である、請求項1乃至4のいずれかに記載の樹脂被覆微細ダイヤモンド材。 The resin-coated fine diamond material according to any one of claims 1 to 4, wherein the ratio of the D 10 value and the D 90 value to the D 50 value average particle diameter of the diamond powder is 1/2 or more and 2 or less, respectively. ダイヤモンド粒子の一次粒径が2μm以下3nm以上である、請求項1に記載の樹脂被覆微細ダイヤモンド材。   The resin-coated fine diamond material according to claim 1, wherein the primary particle diameter of the diamond particles is 2 µm or less and 3 nm or more. ダイヤモンド粒子が、静的超高圧下で合成され破砕及び分級工程を経た単結晶質粒子である、請求項1に記載の樹脂被覆微細ダイヤモンド材。   The resin-coated fine diamond material according to claim 1, wherein the diamond particles are single crystalline particles synthesized under a static ultrahigh pressure and subjected to a crushing and classification process. ダイヤモンド粒子が、動的超高圧下で合成され解砕工程を経た多結晶質凝集粒子である、請求項1に記載の樹脂被覆微細ダイヤモンド材。   The resin-coated fine diamond material according to claim 1, wherein the diamond particles are polycrystalline aggregated particles synthesized under dynamic ultrahigh pressure and subjected to a crushing step. ダイヤモンド粒子表面の炭素原子がSP3構造を維持している、請求項1に記載の樹脂被覆微細ダイヤモンド材。 The resin-coated fine diamond material according to claim 1, wherein carbon atoms on the surface of the diamond particles maintain an SP 3 structure. 樹脂が、フェノール系樹脂、ポリイミド系樹脂、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、及びメラミン系樹脂から選ばれる1種を含有する、請求項1に記載の樹脂被覆微細ダイヤモンド材。   The resin-coated fine diamond material according to claim 1, wherein the resin contains one kind selected from a phenol resin, a polyimide resin, a urethane resin, an acrylic resin, an epoxy resin, and a melamine resin. 請求項1に記載の樹脂被覆微細ダイヤモンドを含有する、微細ダイヤモンド粒子分散樹脂成形材。   A fine diamond particle-dispersed resin molding material containing the resin-coated fine diamond according to claim 1. ダイヤモンド研磨工具製作用のマトリックス材料である、請求項11に記載の微細ダイヤモンド粒子分散樹脂成形材。   The fine diamond particle-dispersed resin molding material according to claim 11, which is a matrix material for producing a diamond polishing tool. 請求項1又は2のいずれかに記載の樹脂被覆微細ダイヤモンドを含有する、ダイヤモンド研磨工具。   A diamond polishing tool comprising the resin-coated fine diamond according to claim 1. 次の各段階を含有する、微細ダイヤモンド分散樹脂材の製造方法:
(1) D50値平均粒径が1000nm以下の微細ダイヤモンド粉体に親水性官能基を結合乃至吸着させることにより親水性化する段階、
(2) 上記親水性化ダイヤモンド粒子を水素雰囲気中にて水素終端温度で加熱し、ダイヤモンド粒子表面を水素終端する段階、
(3) 前記の水素終端したダイヤモンド粒子、樹脂、及び有機媒質を組み合わせ、ダイヤモンド粒子が分散した懸濁液を作製する段階
(4) 有機媒質を分離・除去して、ダイヤモンド含有樹脂を粉体乃至フレーク状で回収する段階。
A method for producing a fine diamond-dispersed resin material containing the following steps:
(1) A step of making hydrophilic by bonding or adsorbing a hydrophilic functional group to a fine diamond powder having a D 50 value average particle diameter of 1000 nm or less;
(2) heating the hydrophilized diamond particles in a hydrogen atmosphere at a hydrogen termination temperature to hydrogenate the diamond particle surface;
(3) A step of preparing a suspension in which diamond particles are dispersed by combining the hydrogen-terminated diamond particles, a resin, and an organic medium.
(4) A step of separating and removing the organic medium and recovering the diamond-containing resin in the form of powder or flakes.
上記段階(3)において、水素終端ダイヤモンド粒子及びマトリックス構成樹脂を、それぞれ同種または異種で相溶性の有機媒質中に分散懸濁又は溶解して分散液及び懸濁液とした後に、両液の混合を行う、請求項14に記載の方法。  In the above step (3), the hydrogen-terminated diamond particles and the matrix-constituting resin are dispersed and suspended or dissolved in the same or different compatible organic medium, respectively, to obtain a dispersion and suspension, and then the two solutions are mixed. The method of claim 14, wherein: 上記段階(3)において、水素終端したダイヤモンド粒子を有機媒質中に分散懸濁した後に、マトリックス構成樹脂を添加して溶解し、全体の混合を行う、請求項14に記載の方法。   The method according to claim 14, wherein, in the step (3), after the hydrogen-terminated diamond particles are dispersed and suspended in an organic medium, the matrix-constituting resin is added and dissolved, and the whole is mixed. 上記段階(3)において、マトリックス構成樹脂を有機媒質中に溶解混合した後に水素終端ダイヤモンド粒子の添加を行う、請求項14に記載の方法。   15. The method according to claim 14, wherein in step (3), the hydrogen-terminated diamond particles are added after the matrix-constituting resin is dissolved and mixed in an organic medium. 上記段階(3)において、マトリックス構成樹脂を有機媒質中に溶解混合した後、水素終端ダイヤモンド粒子の集合体の間隙へ浸透させる、請求項14に記載の方法。   The method according to claim 14, wherein, in the step (3), the matrix-constituting resin is dissolved and mixed in an organic medium and then permeated into the gaps between the aggregates of hydrogen-terminated diamond particles. 上記段階(2)において、ダイヤモンド粒子表面における活性炭素原子を水素で終端し、フーリエ変換赤外分光光度計(FTIR)による該粉末の吸収スペクトル図形において2800〜3000cm-1付近で観察されるCH伸縮に帰属する吸収ピークの高さを、3000〜3600cm-1付近で観察されるOH伸縮に帰属する吸収ピークの高さ以上とする、請求項14に記載の方法。 In the above step (2), the active carbon atom on the diamond particle surface is terminated with hydrogen, and the CH stretching observed in the absorption spectrum of the powder by Fourier transform infrared spectrophotometer (FTIR) is observed in the vicinity of 2800 to 3000 cm −1. The method according to claim 14, wherein the height of the absorption peak attributed to is equal to or higher than the height of the absorption peak attributed to OH stretching observed in the vicinity of 3000 to 3600 cm −1 . 上記(1)及び(2)の段階において、微細ダイヤモンド粉体を、水素終端処理に先立ち酸化処理に供する、請求項14に記載の方法。   The method according to claim 14, wherein in the steps (1) and (2), the fine diamond powder is subjected to an oxidation treatment prior to the hydrogen termination treatment. 上記段階(2)において、水素終端温度が500℃以上1000℃以下である、請求項14に記載の方法。   The method according to claim 14, wherein in the step (2), the hydrogen termination temperature is 500 ° C or higher and 1000 ° C or lower. 水素終端温度が600℃以上800℃以下である、請求項14又は21のいずれかに記載の方法。   The method according to claim 14 or 21, wherein the hydrogen termination temperature is 600 ° C or higher and 800 ° C or lower. 上記樹脂が熱硬化性樹脂である請求項14に記載の方法。   The method according to claim 14, wherein the resin is a thermosetting resin. 上記樹脂がフェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、ウレタン樹脂、アルキド樹脂、不飽和ポリエステルから選ばれる1種を含有する、請求項14に記載の方法。   The method according to claim 14, wherein the resin contains one selected from a phenol resin, an epoxy resin, a melamine resin, a urea resin, a urethane resin, an alkyd resin, and an unsaturated polyester. 上記有機媒質が、アルコール類、ケトン類、鎖式炭化水素、環式炭化水素、酢酸エステルから選ばれる1種を含有する、請求項14に記載の方法。   The method according to claim 14, wherein the organic medium contains one selected from alcohols, ketones, chain hydrocarbons, cyclic hydrocarbons, and acetates. 上記有機媒質が、ラッカーシンナー、ウレタンシンナー、エポキシシンナー、アクリルシンナー、メラミンシンナーから選ばれる1種を含有する、請求項14に記載の方法。
The method according to claim 14, wherein the organic medium contains one selected from lacquer thinner, urethane thinner, epoxy thinner, acrylic thinner, and melamine thinner.
JP2006300941A 2006-11-06 2006-11-06 Resin material for polishing tool and its manufacturing method Pending JP2008115303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300941A JP2008115303A (en) 2006-11-06 2006-11-06 Resin material for polishing tool and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300941A JP2008115303A (en) 2006-11-06 2006-11-06 Resin material for polishing tool and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008115303A true JP2008115303A (en) 2008-05-22

Family

ID=39501516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300941A Pending JP2008115303A (en) 2006-11-06 2006-11-06 Resin material for polishing tool and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008115303A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291884A (en) * 2008-06-05 2009-12-17 Sumitomo Electric Ind Ltd Polycrystalline diamond dresser
JPWO2009060613A1 (en) * 2007-11-08 2011-03-17 日本化薬株式会社 Nanodiamond organic solvent dispersion and process for producing the same
CN102658606A (en) * 2012-05-11 2012-09-12 香港雅诚国际有限公司 Manufacturing method of resin diamond wire
EP2558408A2 (en) * 2010-04-14 2013-02-20 Baker Hughes Incorporated Method of preparing polycrystalline diamond from derivatized nanodiamond
EP2558410A2 (en) * 2010-04-14 2013-02-20 Baker Hughes Incorporated Diamond particle mixture
EP2558409A2 (en) * 2010-04-14 2013-02-20 Baker Hughes Incorporated Method of making a diamond particle suspension and method of making a polycrystalline diamond article therefrom
WO2014178280A1 (en) * 2013-04-30 2014-11-06 コニカミノルタ株式会社 Diamond abrasive recovery method
WO2016072137A1 (en) * 2014-11-07 2016-05-12 株式会社ダイセル Suspension of nanodiamond aggregates and single-digit nanodiamond dispersion
WO2017002665A1 (en) * 2015-07-01 2017-01-05 株式会社神戸製鋼所 Coated particles
US9701877B2 (en) 2010-04-14 2017-07-11 Baker Hughes Incorporated Compositions of diamond particles having organic compounds attached thereto
US9962669B2 (en) 2011-09-16 2018-05-08 Baker Hughes Incorporated Cutting elements and earth-boring tools including a polycrystalline diamond material
US10005672B2 (en) 2010-04-14 2018-06-26 Baker Hughes, A Ge Company, Llc Method of forming particles comprising carbon and articles therefrom
US10066441B2 (en) 2010-04-14 2018-09-04 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136376A (en) * 1985-12-05 1987-06-19 Dainippon Printing Co Ltd Polishing tape and manufacture thereof
JPS62137326A (en) * 1985-12-11 1987-06-20 Kyushu Koatsu Concrete Kogyo Kk Installation of manhole
JPH0925110A (en) * 1995-07-10 1997-01-28 Ishizuka Kenkyusho:Kk Fine hydrophilic diamond particles and their production
JP2001329252A (en) * 2000-05-22 2001-11-27 Hiroshi Ishizuka Fine diamond abrasive particle and it production method
JP2002060733A (en) * 2000-08-17 2002-02-26 Ishizuka Kenkyusho:Kk Diamond-polishing material particle and method for producing the same
JP2002294221A (en) * 2001-04-02 2002-10-09 Mitsui Mining & Smelting Co Ltd Method for coating abrasive grain
JP2003011065A (en) * 2001-06-29 2003-01-15 Fujimi Inc Grinding wheel, manufacturing method therefor, and grinding method by use of the same
JP2003011066A (en) * 2000-07-25 2003-01-15 Ebara Corp Polishing tool and manufacturing method therefor
JP2003055649A (en) * 2001-08-22 2003-02-26 Ishizuka Kenkyusho:Kk Diamond powder coated with carbide
JP2003206476A (en) * 2002-01-10 2003-07-22 Ishizuka Kenkyusho:Kk Heat-treated diamond fine powder and method for producing the same
JP2005054025A (en) * 2003-08-01 2005-03-03 Ishizuka Kenkyusho:Kk Surface-modified minute diamond abrasive

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136376A (en) * 1985-12-05 1987-06-19 Dainippon Printing Co Ltd Polishing tape and manufacture thereof
JPS62137326A (en) * 1985-12-11 1987-06-20 Kyushu Koatsu Concrete Kogyo Kk Installation of manhole
JPH0925110A (en) * 1995-07-10 1997-01-28 Ishizuka Kenkyusho:Kk Fine hydrophilic diamond particles and their production
JP2001329252A (en) * 2000-05-22 2001-11-27 Hiroshi Ishizuka Fine diamond abrasive particle and it production method
JP2003011066A (en) * 2000-07-25 2003-01-15 Ebara Corp Polishing tool and manufacturing method therefor
JP2002060733A (en) * 2000-08-17 2002-02-26 Ishizuka Kenkyusho:Kk Diamond-polishing material particle and method for producing the same
JP2002294221A (en) * 2001-04-02 2002-10-09 Mitsui Mining & Smelting Co Ltd Method for coating abrasive grain
JP2003011065A (en) * 2001-06-29 2003-01-15 Fujimi Inc Grinding wheel, manufacturing method therefor, and grinding method by use of the same
JP2003055649A (en) * 2001-08-22 2003-02-26 Ishizuka Kenkyusho:Kk Diamond powder coated with carbide
JP2003206476A (en) * 2002-01-10 2003-07-22 Ishizuka Kenkyusho:Kk Heat-treated diamond fine powder and method for producing the same
JP2005054025A (en) * 2003-08-01 2005-03-03 Ishizuka Kenkyusho:Kk Surface-modified minute diamond abrasive

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364588B2 (en) * 2007-11-08 2013-12-11 日本化薬株式会社 Nanodiamond organic solvent dispersion and process for producing the same
JPWO2009060613A1 (en) * 2007-11-08 2011-03-17 日本化薬株式会社 Nanodiamond organic solvent dispersion and process for producing the same
JP2009291884A (en) * 2008-06-05 2009-12-17 Sumitomo Electric Ind Ltd Polycrystalline diamond dresser
EP2558410A4 (en) * 2010-04-14 2014-01-15 Baker Hughes Inc Diamond particle mixture
US10066441B2 (en) 2010-04-14 2018-09-04 Baker Hughes Incorporated Methods of fabricating polycrystalline diamond, and cutting elements and earth-boring tools comprising polycrystalline diamond
EP2558409A2 (en) * 2010-04-14 2013-02-20 Baker Hughes Incorporated Method of making a diamond particle suspension and method of making a polycrystalline diamond article therefrom
US9776151B2 (en) 2010-04-14 2017-10-03 Baker Hughes Incorporated Method of preparing polycrystalline diamond from derivatized nanodiamond
EP2558408A2 (en) * 2010-04-14 2013-02-20 Baker Hughes Incorporated Method of preparing polycrystalline diamond from derivatized nanodiamond
EP2558408A4 (en) * 2010-04-14 2013-12-25 Baker Hughes Inc Method of preparing polycrystalline diamond from derivatized nanodiamond
EP2558409A4 (en) * 2010-04-14 2014-01-15 Baker Hughes Inc Method of making a diamond particle suspension and method of making a polycrystalline diamond article therefrom
US10005672B2 (en) 2010-04-14 2018-06-26 Baker Hughes, A Ge Company, Llc Method of forming particles comprising carbon and articles therefrom
US9701877B2 (en) 2010-04-14 2017-07-11 Baker Hughes Incorporated Compositions of diamond particles having organic compounds attached thereto
EP2558410A2 (en) * 2010-04-14 2013-02-20 Baker Hughes Incorporated Diamond particle mixture
US9962669B2 (en) 2011-09-16 2018-05-08 Baker Hughes Incorporated Cutting elements and earth-boring tools including a polycrystalline diamond material
CN102658606A (en) * 2012-05-11 2012-09-12 香港雅诚国际有限公司 Manufacturing method of resin diamond wire
WO2013166976A1 (en) * 2012-05-11 2013-11-14 香港雅诚国际有限公司 Method for manufacturing resin diamond wire
JPWO2014178280A1 (en) * 2013-04-30 2017-02-23 コニカミノルタ株式会社 Diamond abrasive recovery method
WO2014178280A1 (en) * 2013-04-30 2014-11-06 コニカミノルタ株式会社 Diamond abrasive recovery method
US9868187B2 (en) 2013-04-30 2018-01-16 Konica Minolta, Inc. Diamond abrasive recovery method
WO2016072137A1 (en) * 2014-11-07 2016-05-12 株式会社ダイセル Suspension of nanodiamond aggregates and single-digit nanodiamond dispersion
JPWO2016072137A1 (en) * 2014-11-07 2017-08-10 株式会社ダイセル Nanodiamond aggregate suspensions and nanodiamond single-digit nanodispersions
WO2017002665A1 (en) * 2015-07-01 2017-01-05 株式会社神戸製鋼所 Coated particles
RU2697455C2 (en) * 2015-07-01 2019-08-14 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Coated particles

Similar Documents

Publication Publication Date Title
JP2008115303A (en) Resin material for polishing tool and its manufacturing method
CN109320998B (en) Method for modifying surface of submicron silicon micropowder
TWI331133B (en) Method for preparing of cerium oxide powder for chemical mechanical polishing and method for preparing of chemical mechanical polishing slurry using the same
US9920452B2 (en) Method of preparing a monocrystalline diamond abrasive grain
KR101313768B1 (en) Nano-diamond dispersion liquid and method of manufacturing the same
JP2021074708A (en) Modified nanomaterial and application thereof in antimony-containing wastewater treatment
JP2006186381A5 (en)
Peng et al. Efficiently removing Pb (II) from wastewater by graphene oxide using foam flotation
CN101668825A (en) coated abrasive products containing aggregates
WO2000012647A1 (en) Diamond abrasive particles and method for preparing the same
CN102149784A (en) Coated abrasive products containing aggregates
JP2008183640A (en) Diamond dispersed synthetic resin molding material and its manufacturing method
KR101800605B1 (en) The manufacturing method of silver powder
JP3820080B2 (en) Fine diamond abrasive particles and method for producing the same
DE2408172A1 (en) METHOD OF MANUFACTURING A GRINDING TOOL
TWI734797B (en) Conductive paste and forming method of conductive pattern
CN106316403A (en) Fine-grained cubic boron nitride blade and preparation method thereof
CN102532938B (en) Preparation method of pigment preparations containing superfine phthalocyanine pigment particles
CN105086939B (en) Monocrystalline diamond grit and preparation method thereof
JP6570382B2 (en) Polishing silica additive and method using the same
JP2008119802A (en) Tabular resin material for polishing semiconductor and manufacturing method thereof
KR101192541B1 (en) The improved control of metal catalyst settling rates, settling densities and improved performance via use of flocculants
JP2020029472A (en) Slurry composition for polishing polycrystalline YAG
CN115893461A (en) Production process of nano aluminum oxide polishing powder
JP2017048294A (en) Curable resin composition and cured resin body

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20091105

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140108