JP2008110678A - Deceleration method using fluid resistance of flying object, and high-speed moving body having the function - Google Patents

Deceleration method using fluid resistance of flying object, and high-speed moving body having the function Download PDF

Info

Publication number
JP2008110678A
JP2008110678A JP2006295190A JP2006295190A JP2008110678A JP 2008110678 A JP2008110678 A JP 2008110678A JP 2006295190 A JP2006295190 A JP 2006295190A JP 2006295190 A JP2006295190 A JP 2006295190A JP 2008110678 A JP2008110678 A JP 2008110678A
Authority
JP
Japan
Prior art keywords
shroud
fluid
high speed
moving body
streamlined shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006295190A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Fukiba
活佳 吹場
Hiroaki Kobayashi
弘明 小林
Motoyuki Hongo
素行 本郷
Tetsuya Sato
哲也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2006295190A priority Critical patent/JP2008110678A/en
Publication of JP2008110678A publication Critical patent/JP2008110678A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deceleration method which is applicable to a flying object having a conical nose cone on its fore end and flying at high speed, or a moving object navigating in water, and utilizing the fluid resistance operable by a compact and lightweight driving mechanism. <P>SOLUTION: In the deceleration method of a high-speed moving body, the fluid resistance is increased by moving a shroud (a cylindrical member) at the position of surrounding a cylindrical structure having a conical streamline shape on its fore end and moving in a fluid at high speed to the position of surrounding a streamline shape in the substantially cylindrical structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は航空機、ロケットなどの飛翔体全般、地上を高速で移動する車両、および水中を高速で航行する移動体に関する。   The present invention relates to a flying object such as an aircraft or a rocket, a vehicle that moves at high speed on the ground, and a moving object that navigates underwater at high speed.

高速で飛行する飛翔体を急減速する手段として、逆噴射などの燃料を用いた方法や、パラシュートや飛行機に採用されているスポイラーなど、流体抵抗の増大を利用する方法がある。このうち逆噴射などの燃料を用いた方法では、減速のために余分な燃料を携帯しなければならず、重量が飛翔体の性能に大きく影響する航空分野では大きなデメリットとなる。また、パラシュートを用いた方法では、パラシュートの射出機構やパラシュートと飛翔体を連結するためのワイヤなどが必要となりこれも重量増加の要因となる。またパラシュートは構造的に弱いという弱点があり、特に飛翔体の速度が超音速の場合パラシュートを使用するのは難しい。一方、旅客機の主翼などに装備されている、翼の一部分を気流に対し、90°に近い角度に立てることにより空気抵抗を増大させるスポイラーと呼ばれる装置では、増大する抵抗をすべて駆動機構で支えることになり、駆動機構の大型化を招き重量を増加させるという問題点がある。   As means for rapidly decelerating a flying object flying at high speed, there are a method using a fuel such as reverse injection and a method using an increase in fluid resistance such as a parachute or a spoiler employed in an airplane. Among them, the method using fuel such as reverse injection has to carry extra fuel for deceleration, which is a great disadvantage in the aviation field where weight greatly affects the performance of the flying object. Further, in the method using a parachute, a parachute injection mechanism, a wire for connecting the parachute and the flying object, and the like are required, which also causes an increase in weight. Also, the parachute has a weak point that it is structurally weak, and it is difficult to use the parachute especially when the speed of the flying object is supersonic. On the other hand, in a device called a spoiler, which is equipped on the main wing of a passenger aircraft and raises the air resistance by setting a part of the wing at an angle close to 90 ° with respect to the airflow, all the increased resistance is supported by the drive mechanism. Therefore, there is a problem that the drive mechanism is enlarged and the weight is increased.

非特許文献1はNASAにおいて宇宙機の減速用に考案されている、柔構造体を用いた流体抵抗利用の減速手段を紹介した文献である。非特許文献2には現在旅客機などで着陸時の減速に使用されているスポイラーに関する説明がある。特許文献1と2は空気抵抗を利用したブレーキの国内特許であり、特許文献1は航空機から発射される誘導飛翔体に関するもので、飛行中の航空機から分離され、この航空機の後方に向けて飛翔する誘導飛翔体において、航空機に搭載中の空気抵抗を減らすことと、その飛翔速度が機体後方から受ける時間を短くし、更に、その飛翔速度が機体後方から前方に変化する間、常に安定な飛翔を実現することを課題としたものである。この技術は前記飛翔体において、航空機搭載時は推進装置のノズルを覆って空気抵抗を小さくし、航空機から分離した後はエアーブレーキの役割を担う後方ドームと、この胴体の後方に設けられた安定翼の翼端に取付られ、気流によって回転する風車と、この風車により飛翔速度が後方から受けたことを感知して、急減速及び飛翔体の重心の前方に機軸に対して垂直に揚力を発生させるように展開するエアーブレーキ板を備えるようにしたものである。   Non-Patent Document 1 is a document that introduces a reduction means using fluid resistance using a flexible structure, which has been devised for NASA speed reduction at NASA. Non-Patent Document 2 describes a spoiler that is currently used for deceleration when landing on a passenger aircraft or the like. Patent Documents 1 and 2 are domestic patents on brakes that use air resistance. Patent Document 1 relates to a guided vehicle that is launched from an aircraft, and is separated from the flying aircraft and flies toward the rear of the aircraft. Reduces the air resistance while the aircraft is mounted on the aircraft, shortens the time it takes for the flight speed to be received from the rear of the aircraft, and also ensures stable flight while the flight speed changes from the rear of the aircraft to the front. It is a problem to realize. In this flying body, when the aircraft is mounted, the nozzle of the propulsion device is covered to reduce the air resistance, and after separation from the aircraft, the rear dome that plays the role of an air brake, and the stability provided behind this fuselage A windmill attached to the tip of the wing and rotating by the air current, and detecting that the flight speed was received from the rear by this windmill, suddenly decelerates and generates lift perpendicular to the axle in front of the center of gravity of the flying object An air brake plate that expands in such a manner is provided.

特許文献2は車両用の空力ブレーキの可動力を低減するアイデアであるが、高速で走行する車両を減速するための車両用空力ブレーキを提供することを目的としたものである。前後の断面形状を対称形にした流線状の空力板3の前後方向の中心に横断して設けた回転軸、車両の両脇から突設され回転軸両端を支持する支柱、空力板を回転軸まわりに回動させる駆動装置、および空力板の走行風に対する迎角を任意に設定できる制御装置とからなるもので、これにより、ブレーキ作動状態にする駆動力が小さくなり、油圧に代り気圧による作動が可能となり、車両の増加を低減できる。また、突発的な荷重増加に対しては、制御装置により空力板の迎角を小さくすることにより、空力板および車体に過大なブレーキが掛ることがなく、車両の衝撃緩和、および走行状態のトラブルを未然に防止できるというものである。
これらの機構はエアーブレーキ板や空力ブレーキを作動状態にする場合に反作用として掛かる流体圧力のため大きな駆動力を必要とすると共に作動中の負荷が大きく掛かることになる。そのため、大がかりな駆動機構、支持機構とならざるを得ず機体の重量が大きなものとなってしまう問題がある。
特開2000−199700号公報 「誘導飛翔体」平成12年7月18日公開 特開平8−72716号公報「車両用空力ブレーキ」 平成8年3月19日公開 Richardson, E. H., Munk, M. M., James, B. F: Review of NASA In-Space Propulsion Technology Progra Inflatable Decelerator Investments, AIAA-2005-1603, 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Munich, Germany, May 23-26, 2005 Mccormick, B. W: Aerodynamics Aeronautics and Flight Mechanics, Second Edition, John Wiley and Son 1995, pp.522-524.
Patent Document 2 is an idea to reduce the moving force of an aerodynamic brake for a vehicle, but an object is to provide a vehicle aerodynamic brake for decelerating a vehicle traveling at high speed. A rotating shaft provided across the center in the front-rear direction of a streamlined aerodynamic plate 3 with a cross-sectional shape of the front and rear being symmetrical, a column projecting from both sides of the vehicle and supporting both ends of the rotating shaft, and rotating the aerodynamic plate It consists of a drive device that rotates around the axis, and a control device that can arbitrarily set the angle of attack of the aerodynamic plate with respect to the running wind. Operation becomes possible, and the increase in vehicles can be reduced. Also, for sudden load increases, the angle of attack of the aerodynamic plate is reduced by the control device, so that excessive braking is not applied to the aerodynamic plate and the vehicle body. Can be prevented in advance.
These mechanisms require a large driving force and a large load during operation due to fluid pressure applied as a reaction when the air brake plate or aerodynamic brake is activated. For this reason, there is a problem that the weight of the airframe becomes large because it must be a large drive mechanism and support mechanism.
JP 2000-199700 A “Guided flying object” released on July 18, 2000 Japanese Laid-Open Patent Publication No. 8-72716 "Aerodynamic Brake for Vehicle" Published on March 19, 1996 Richardson, EH, Munk, MM, James, B. F: Review of NASA In-Space Propulsion Technology Progra Inflatable Decelerator Investments, AIAA-2005-1603, 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, Munich, Germany, May 23- 26, 2005 Mccormick, B. W: Aerodynamics Aeronautics and Flight Mechanics, Second Edition, John Wiley and Son 1995, pp.522-524.

本発明の課題は、先端に円錐形状のノーズコーンを持ち高速で飛行する飛翔体、もしくは水中を航行する移動体に適応可能なものであって、従来の手法に比べ小型、軽量な駆動機構により作動可能な流体抵抗を利用した減速方法を提案することにある。   The problem of the present invention is that it can be applied to a flying object having a cone-shaped nose cone at the tip or a high-speed flying object, or a moving object that navigates underwater. The object is to propose a deceleration method using operable fluid resistance.

本発明の高速移動体の減速方法は、先端に円錐形状の流線型形状を持った流体中を高速移動する概ね円筒形状の構造体において、通常は該構造体を囲むような位置にあるシュラウド(円筒状部材)を作動時には前記流線型形状を囲む位置に移動させて流体抵抗を上昇させるようにした。
本発明の高速移動体は、先端に円錐形状の流線型形状を持った流体中を高速移動する概ね円筒形状の構造体であって、該構造体外周面を囲む内径を備えたシュラウドと、該シュラウドを前記構造体外周面を囲む位置と前記流線型形状を囲む位置間を摺動させる駆動機構を備え、シュラウドを前記駆動機構により流線型形状を囲む位置に摺動させて流体抵抗を上昇させることにより流体抵抗を上昇させて減速させる機能を備えるものとした。
また、本発明の無重力実験手法は、無重力実験機である構造体を高層気球を用いて上空に運搬するステップと、上空において前記構造体を高層気球から切り離すステップと、自然落下中に無重力実験を実施するステップと、低空域に達したときシュラウドを移動させて請求項1に記載の減速方法を実施するステップと、十分に減速したときにパラシュートを開き回収するステップとを踏むものとした。
The method of decelerating a high-speed moving body according to the present invention is a generally cylindrical structure that moves at high speed in a fluid having a conical streamlined shape at the tip, and is usually a shroud (cylindrical cylinder) located at a position surrounding the structure. The fluid member is moved to a position surrounding the streamlined shape during operation to increase the fluid resistance.
The high-speed moving body of the present invention is a generally cylindrical structure that moves at high speed in a fluid having a conical streamlined shape at the tip, a shroud having an inner diameter surrounding the outer peripheral surface of the structure, and the shroud And a drive mechanism that slides between the position surrounding the outer peripheral surface of the structure and the position surrounding the streamlined shape, and the fluid resistance is increased by sliding the shroud to the position surrounding the streamlined shape by the drive mechanism. A function of increasing the resistance and decelerating the resistance is provided.
The weightless experiment method of the present invention includes a step of transporting a structure, which is a weightless experiment machine, to the sky using a high-rise balloon, a step of separating the structure from the high-rise balloon in the sky, and a weightless experiment during natural fall. The step of performing, the step of moving the shroud when the low airspace is reached and executing the deceleration method according to claim 1 and the step of opening and collecting the parachute when fully decelerated are taken.

本発明の高速移動体の減速方法は、通常は該構造体を囲むような位置にあるシュラウドを作動時には前記流線型形状を囲む位置に移動させて流体抵抗を上昇させるものであり、シュラウドの移動に際してはシュラウドの面が流れ方向と平行な関係にあるため、厚みを極力小さくすれば流体圧の抵抗を受けることがほとんどなくその駆動には大きな力を必要としない。また、本減速方法を実施する本発明装置は、流体抵抗を上昇させる反作用としてシュラウド本体に掛かる力は円筒外向き方向の力のみ(流体の粘性を無視した場合)となるため、応力集中はなくシュラウド自体の構造上最も対抗力が発揮される引張り強さで吸収できる。従って、可動機構に必要な動力はきわめて小さなものとなり、シュラウドの厚さも厚くする必要がない。その結果、簡便かつ軽量な機構で高速移動体の減速が可能となる。また航行中に移動体に作用する流体抗力を任意に調整することが可能なため、急旋回などの飛行航路変更の際に利用することができる。本機構は流れが亜音速の場合に限らず超音速の場合にも有効である。また円錐のように軸対称の物体のみならず翼型のような2次元形状にも応用可能であるが、軸対称物体の場合シュラウドを外方向の力に強い円筒形状にすることができるため構造強度的にも有利となる。
さらに、本発明の減速方法を無重力実験手法に適用すると、大気圧の掛かる低空域において効果的な減速が実現でき、パラシュートという簡便な手段で実験機を安全確実に回収することが可能となる。
In the method for decelerating a high-speed moving body of the present invention, a fluid shroud is raised by moving a shroud that normally surrounds the structure to a position surrounding the streamlined shape during operation. Since the surface of the shroud is parallel to the flow direction, if the thickness is reduced as much as possible, the resistance of the fluid pressure is hardly received, and a large force is not required for driving. In addition, the device of the present invention that implements the deceleration method has no stress concentration because the force applied to the shroud main body is only the force in the outward direction of the cylinder (when the viscosity of the fluid is ignored) as a reaction to increase the fluid resistance. The shroud itself can be absorbed with a tensile strength that provides the most resistance to the structure. Accordingly, the power required for the movable mechanism is extremely small, and it is not necessary to increase the thickness of the shroud. As a result, the high-speed moving body can be decelerated with a simple and lightweight mechanism. Further, since the fluid drag acting on the moving body during navigation can be arbitrarily adjusted, it can be used when changing the flight route such as a sudden turn. This mechanism is effective not only when the flow is subsonic, but also when the flow is supersonic. It can be applied not only to an axially symmetric object such as a cone but also to a two-dimensional shape such as an airfoil. However, in the case of an axially symmetric object, the shroud can be formed into a cylindrical shape that is resistant to external forces. This is also advantageous in terms of strength.
Furthermore, when the deceleration method of the present invention is applied to a weightless experiment method, effective deceleration can be realized in a low air region where atmospheric pressure is applied, and the experimental machine can be safely and reliably recovered by a simple means called a parachute.

図1に、本発明に係る円筒状構造体の減速方法を実現する基本構造を示す。1は円筒体1aの先端部にノーズコーン1bが形成された高速移動体であり、2はシュラウドであって、前記高速移動体1を部分的に囲むように配置されている。通常航行時には図1の上に示すように、シュラウド2は高速移動体1の円筒体1aの外周面を覆うような位置に設置されており、この形態ではノーズコーン1bの先端から発生する流れを妨げることのない位置にシュラウド2があるのでシュラウド2の存在が流体に及ぼす影響はほとんどない。減速時には図1の下に示すように、シュラウド2を流れに逆らいノーズコーン1bの先端方向ヘスライドさせシュラウド2をノーズコーン1bの周囲に位置させる。この移動に際して流体から受ける力はシュラウド2が円筒形状であるため、流れに当接する面積が厚み分の端面となって抵抗が極めて少なくて済む。このことはシュラウド2を駆動させる機構が大がかりなものでなくて良いことを意味し、この点が従来技術から見て軽量化につながる本発明の一つの大きな技術的意義である。この形態を採ったときは、ノーズコーン1bの先端から発生する流れはシュラウド2の内周面に当たり円筒体1aに沿って流れることができず、ノーズコーン1b外周面とそれを囲っているシュラウド2の内周面間で逆流させられ対流を生じることになる。この現象はノーズコーン1b部分の流体抵抗が急上昇し流れ後方への力を発生させるものとなる。その際、重要な点はその反作用がシュラウド2の内周面に掛かることにあり、円筒体において機械的強度が一番高い引張り強さで外側に広がろうとする力に耐えることができる。ということはシュラウドを無闇に頑丈な構造にする必要がないということであり、薄い厚み構造で済むことを意味する。これが従来技術から見て軽量化につながる本発明のもう一つの大きな技術的意義である。   FIG. 1 shows a basic structure for realizing a method for decelerating a cylindrical structure according to the present invention. Reference numeral 1 denotes a high-speed moving body in which a nose cone 1b is formed at the tip of the cylindrical body 1a. Reference numeral 2 denotes a shroud, which is disposed so as to partially surround the high-speed moving body 1. During normal navigation, as shown in the upper part of FIG. 1, the shroud 2 is installed at a position covering the outer peripheral surface of the cylindrical body 1a of the high-speed moving body 1. In this embodiment, the flow generated from the tip of the nose cone 1b is generated. Since the shroud 2 is located at a position where it is not obstructed, the presence of the shroud 2 has little influence on the fluid. At the time of deceleration, as shown in the lower part of FIG. 1, the shroud 2 is slid toward the tip of the nose cone 1b against the flow, and the shroud 2 is positioned around the nose cone 1b. The force received from the fluid during this movement is that the shroud 2 has a cylindrical shape, so that the area in contact with the flow becomes an end face corresponding to the thickness, and resistance can be extremely small. This means that the mechanism for driving the shroud 2 does not have to be large, and this point is one of the great technical significance of the present invention that leads to weight reduction from the viewpoint of the prior art. When this form is adopted, the flow generated from the tip of the nose cone 1b hits the inner peripheral surface of the shroud 2 and cannot flow along the cylindrical body 1a, but the outer surface of the nose cone 1b and the shroud 2 surrounding it. Convection is caused by the reverse flow between the inner peripheral surfaces of each other. This phenomenon causes the fluid resistance of the nose cone 1b to rise rapidly and generate a backward force. At that time, the important point is that the reaction is applied to the inner peripheral surface of the shroud 2, and it is possible to withstand the force of spreading the outside with the highest tensile strength in the cylindrical body. This means that it is not necessary to make the shroud into a solid structure without darkness, which means that a thin structure is sufficient. This is another major technical significance of the present invention that leads to weight reduction from the viewpoint of the prior art.

本発明に関して実施した超音速風洞における実証試験結果について述べる。宇宙航空研究開発機構宇宙科学研究本部の0.6×0.6m超音速風洞において、円錐の直径40mm、円筒状シュラウドの直径46mmの風洞模型を使用して提案する機構の実証試験を実施した。その結果、マッハ数範囲1.5〜4.0の範囲で本機構が有効に作用することを確認することができた。
図2に本実証試験で使用した風洞模型を示す。半頂角16°の円錐形状ノーズコーンをもつ飛翔体模型の外側に、厚さ3mmの円筒状のシュラウドが配置されている。このとき飛翔体模型の直径が40mmであるため、ノーズコーン部分の長さは約70mmとなる。図中左側が通常航行時の形態、右側が本機構を作動させた場合の形態を示しており、この図ではシュラウド2を前方に40mm移動させている。この模型はシュラウドの流体抵抗を低く抑えるため、シュラウドの前方端面の形状を外側にテーパーが切られたものとした。このことにより、通常航行時の後退位置にあるときはノーズコーンの円錐形状の延長形態となって、流れを乱すことがない。上記の模型を前記した超音速風洞に設置して風洞実験を実施した。図3には、左側に機構を作動させない場合と、右側に作動させた場合(図2と同じく40mm伸張)の流れ場の変化をシュリーレン写真で示す。この写真は主流のマッハ数は双方とも1.5のときのものである。左側の写真から分かるようにシュラウドを機構を作動させない場合は通常のノーズコーンを持った飛翔体の場合と変わりのない衝撃波が観測できる。これに対し右側の本発明に掛かる機構を作動させた時の写真からは、円錐前方に強い弓状衝撃波が発生している様子が窺える。このような激しい気流の変化をもたらすことにより大きな流体抵抗が飛翔体の先端部に掛かるのである。図4には、主流マッハ数を1.5、2.5、4.0にした場合におけるシュラウド位置と抗力係数(Cd)の関係を示す。シュラウド位置0mmは通常運航時の後退位置にあるときを示し、10mm,25mm,40mm,55mm,70mmとシュラウドの位置を前進させてデータをとった。約70mmの長さのノーズコーンに対し、シュラウドの被り具合が10mm,25mm,40mmと進むにつれて大きく抗力係数が上昇しているが、それを越えるとさほどの上昇がないことが分かる。総合的には、シュラウドを前方に伸張することにより、模型にかかる抗力をマッハ数が1.5の場合で約3.5倍、マッハ数4.0の場合で約8倍となり、マッハ数が高いほど流体抵抗を強く受けることがわかる。
The result of the verification test in the supersonic wind tunnel conducted in the present invention will be described. In the 0.6 × 0.6m supersonic wind tunnel of the Japan Aerospace Exploration Agency's space science research headquarters, a demonstration test of the proposed mechanism was conducted using a wind tunnel model with a conical diameter of 40mm and a cylindrical shroud of 46mm. As a result, it was confirmed that the mechanism works effectively in the Mach number range of 1.5 to 4.0.
Fig. 2 shows the wind tunnel model used in this demonstration test. A cylindrical shroud having a thickness of 3 mm is arranged outside the flying object model having a conical nose cone having a half apex angle of 16 °. At this time, since the diameter of the flying object model is 40 mm, the length of the nose cone portion is about 70 mm. In the figure, the left side shows the form during normal navigation, and the right side shows the form when the mechanism is operated. In this figure, the shroud 2 is moved forward by 40 mm. In this model, in order to keep the fluid resistance of the shroud low, the shape of the front end face of the shroud was tapered outward. As a result, when the vehicle is in the retracted position during normal navigation, it becomes an extension of the cone shape of the nose cone and does not disturb the flow. The above model was installed in the supersonic wind tunnel described above, and a wind tunnel experiment was conducted. FIG. 3 shows a schlieren photograph of changes in the flow field when the mechanism is not operated on the left side and when it is operated on the right side (40 mm extension as in FIG. 2). This photo is taken when the mainstream Mach number is 1.5. As can be seen from the photo on the left, when the shroud mechanism is not operated, a shock wave that is the same as that of a flying object with a normal nose cone can be observed. On the other hand, from the photograph when the mechanism according to the present invention on the right side is operated, it can be seen that a strong arcuate shock wave is generated in front of the cone. A large fluid resistance is applied to the tip of the flying object by causing such a drastic change in the airflow. FIG. 4 shows the relationship between the shroud position and the drag coefficient (Cd) when the mainstream Mach number is 1.5, 2.5, and 4.0. The shroud position 0 mm indicates when the vehicle is in the retracted position during normal operation, and the data was taken by advancing the shroud position to 10 mm, 25 mm, 40 mm, 55 mm, and 70 mm. It can be seen that for a nose cone having a length of about 70 mm, the drag coefficient increases greatly as the shroud covering progresses to 10 mm, 25 mm, and 40 mm, but beyond that, there is no significant increase. Overall, by extending the shroud forward, the drag force applied to the model is about 3.5 times when the Mach number is 1.5 and about 8 times when the Mach number is 4.0, and the higher the Mach number, the stronger the fluid resistance. I understand that I will receive it.

高層気球から投下される無重力実験に本特許に係るシュラウドを装備したロケット機体を用いた例を図5に示す。本発明で提案する円筒状シュラウド2を装備した無重力実験機3は(A)に図示するようにヘリウムを充填した高層気球4により上空40km付近まで上昇させたのち、無重力実験機3を高層気球4から切り離す。無重力実験機3は無重力落下をしながら実験を行うが、この際機体の空気抵抗は極力小さい方が無重力実験時間を長く取れるという点で望ましい。従ってこのときは(B)に図示するように円筒状シュラウドをノーズコーン後方に引いた状態で試験を行う。高度40kmからの投下実験では重力による加速で実験機は超音速に達し、ノーズコーンには衝撃波が形成される。落下により高度が減少すると空気抵抗により必要とされる無重力条件が得られなくなる。以後機体は回収のための減速を行うが、このとき円筒状のシュラウド2をバネ機構やエアーシリンダーといったアクチュエータなどの機構で前方に押しだし、機体前方に強い弓状衝撃波を作り出し空気抵抗を増大させる。このとき形態が(C)に図示されている。機体が十分に減速した後パラシュートを開き機体を回収する。   FIG. 5 shows an example in which a rocket vehicle equipped with a shroud according to this patent is used in a weightless experiment dropped from a high-rise balloon. The weightless experimental machine 3 equipped with the cylindrical shroud 2 proposed in the present invention is lifted up to the vicinity of 40 km above the high-rise balloon 4 filled with helium as shown in FIG. Disconnect from. The zero-gravity experimental machine 3 performs the experiment while dropping weightlessly. At this time, it is desirable that the air resistance of the airframe is as small as possible so that the zero-gravity experimental time can be taken. Accordingly, at this time, the test is performed with the cylindrical shroud pulled behind the nose cone as shown in FIG. In a drop experiment from an altitude of 40 km, the experimental aircraft reaches supersonic speed due to acceleration by gravity, and a shock wave is formed in the nose cone. When the altitude decreases due to falling, the zero gravity condition required by air resistance cannot be obtained. Thereafter, the airframe decelerates for recovery. At this time, the cylindrical shroud 2 is pushed forward by a mechanism such as an actuator such as a spring mechanism or an air cylinder to create a strong arcuate shock wave in front of the airframe to increase the air resistance. The form at this time is shown in FIG. After the aircraft has sufficiently slowed down, open the parachute and collect the aircraft.

航空機、ロケット、無重力実験装置など、空気中を高速で飛行する飛翔体全般に適用が可能である。また、新幹線のような地上を高速走行する車両、水中を航行する移動体についても同じメカニズムによる減速が可能である。   It can be applied to all flying objects that fly in the air at high speed, such as aircraft, rockets, and zero-gravity experimental devices. The same mechanism can also be used for deceleration of vehicles such as the Shinkansen that travel at high speed on the ground and moving bodies that travel underwater.

本発明の減速方法の原理を説明する図である。It is a figure explaining the principle of the deceleration method of this invention. 本発明の実証試験用の風洞模型を示す図である。It is a figure which shows the wind tunnel model for the verification test of this invention. 風洞実験における流れ場の様子を写したシュリーレン写真である。This is a Schlieren photo showing the flow field in a wind tunnel experiment. シュラウド位置と抗力係数Cdの関係データを示すグラフである。It is a graph which shows the relationship data of a shroud position and the drag coefficient Cd. 本発明を無重力実験機に適用した実施例を説明する図である。It is a figure explaining the Example which applied this invention to the weightless experiment machine.

符号の説明Explanation of symbols

1 高速移動体 1a 円筒体
1b ノーズコーン 2 シュラウド
3 無重力実験機 4 高層気球
1 High-speed moving body 1a Cylindrical body
1b Nose cone 2 Shroud 3 Zero-gravity experimental equipment 4 High-rise balloon

Claims (4)

先端に円錐形状の流線型形状を持った流体中を高速移動する概ね円筒形状の構造体において、通常は該構造体を囲むような位置にあるシュラウドを作動時には前記流線型形状を囲む位置に移動させて流体抵抗を上昇させる高速移動体の減速方法。   In a generally cylindrical structure that moves at high speed in a fluid having a conical streamlined shape at the tip, a shroud that normally surrounds the structure is moved to a position that surrounds the streamlined shape during operation. A method of decelerating a high-speed moving body that increases fluid resistance. 先端に円錐形状の流線型形状を持った流体中を高速移動する概ね円筒形状の構造体において、該構造体外周面を囲む内径を備えたシュラウドと、該シュラウドを前記構造体外周面を囲む位置と前記流線型形状を囲む位置間を摺動させる駆動機構を備え、シュラウドを前記駆動機構により流線型形状を囲む位置に摺動させて流体抵抗を上昇させることにより流体抵抗を上昇させて減速させる機能を備えた高速移動体。   In a generally cylindrical structure that moves at high speed in a fluid having a conical streamlined shape at the tip, a shroud having an inner diameter surrounding the outer peripheral surface of the structure, and a position surrounding the shroud around the outer peripheral surface of the structure; Provided with a drive mechanism for sliding between positions surrounding the streamlined shape, and having a function of increasing the fluid resistance and decelerating by sliding the shroud to a position surrounding the streamlined shape with the drive mechanism. Fast moving body. 流体中を高速移動する概ね円筒形状の構造体は、高速で飛行する航空機やロケットなどの飛翔体、地上を高速移動する車両、もしくは水中を航行する移動体のいずれかである請求項2に記載の高速移動体。   The generally cylindrical structure that moves at high speed in a fluid is either a flying object such as an aircraft or a rocket flying at high speed, a vehicle that moves at high speed on the ground, or a moving object that navigates underwater. Fast moving body. 無重力実験機である構造体を高層気球を用いて上空に運搬するステップと、上空において前記構造体を高層気球から切り離すステップと、自然落下中に無重力実験を実施するステップと、低空域に達したときシュラウドを移動させて請求項1に記載の減速方法を実施するステップと、十分に減速したときにパラシュートを開き回収するステップとを踏む無重力実験手法。   A step of transporting the structure, which is a weightless experiment machine, to the sky using a high-rise balloon, a step of separating the structure from the high-rise balloon in the sky, a step of performing a weightless experiment during natural fall, and a low-air area A zero-gravity experimental technique in which the shroud is moved to implement the deceleration method according to claim 1 and the step of opening and collecting the parachute when fully decelerated.
JP2006295190A 2006-10-31 2006-10-31 Deceleration method using fluid resistance of flying object, and high-speed moving body having the function Withdrawn JP2008110678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295190A JP2008110678A (en) 2006-10-31 2006-10-31 Deceleration method using fluid resistance of flying object, and high-speed moving body having the function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295190A JP2008110678A (en) 2006-10-31 2006-10-31 Deceleration method using fluid resistance of flying object, and high-speed moving body having the function

Publications (1)

Publication Number Publication Date
JP2008110678A true JP2008110678A (en) 2008-05-15

Family

ID=39443448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295190A Withdrawn JP2008110678A (en) 2006-10-31 2006-10-31 Deceleration method using fluid resistance of flying object, and high-speed moving body having the function

Country Status (1)

Country Link
JP (1) JP2008110678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103770901A (en) * 2014-01-14 2014-05-07 李晓亮 Multi-pressure ship

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103770901A (en) * 2014-01-14 2014-05-07 李晓亮 Multi-pressure ship

Similar Documents

Publication Publication Date Title
US11912404B2 (en) Vertical takeoff and landing aircraft
US8028952B2 (en) System for shipboard launch and recovery of unmanned aerial vehicle (UAV) aircraft and method therefor
US8286909B2 (en) Boundary layer propulsion airship with related system and method
JP5841137B2 (en) Simple reusable module for launcher
JP5529163B2 (en) Reusable module for launcher
US11485477B2 (en) Flying apparatus
US6471159B1 (en) Airship shaped space craft
JP2011126517A (en) Morphing ducted fan for vertical take-off and landing vehicle
US3508724A (en) Hot air balloon deceleration and recovery system
US20160144966A1 (en) An aircraft including an engine attachment with a control surface
US8727264B1 (en) Dynamic tow maneuver orbital launch technique
CN114313324B (en) Horizontal interstage separation wind tunnel experiment combined structure of two-stage orbit entering aircraft
US20090302150A1 (en) Tubular air transport vehicle
EP2506109B1 (en) Flight path control system for aircraft
Sivan et al. An overview of reusable launch vehicle technology demonstrator
US20230406549A1 (en) Uav system and method for simulation of reduced-gravity environments
Singh et al. Simulation and analysis of pull-up manoeuvre during In-Air Capturing of a reusable launch vehicle
US10669047B2 (en) System and method for hypersonic payload separation
JP2008110678A (en) Deceleration method using fluid resistance of flying object, and high-speed moving body having the function
Sarigul-Klijn et al. Selection of a carrier aircraft and a launch method for air launching space vehicles
RU2730300C2 (en) Device for mass delivery of tourists to stratosphere and subsequent return to ground
Bălan et al. The coandă vtol-uav aeromechanical aspects
Fujiwara et al. Flight plan and flight test results of experimental SST vehicle NEXST-1
JP2016514647A (en) Device for controlling the speed of an airplane during the transition from the space flight phase to the air flight phase and its transition method
Daud et al. Design and Structural Analysis of A Quadrotor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105