JP2008109393A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2008109393A
JP2008109393A JP2006290261A JP2006290261A JP2008109393A JP 2008109393 A JP2008109393 A JP 2008109393A JP 2006290261 A JP2006290261 A JP 2006290261A JP 2006290261 A JP2006290261 A JP 2006290261A JP 2008109393 A JP2008109393 A JP 2008109393A
Authority
JP
Japan
Prior art keywords
refractive index
region
high refractive
microlens
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006290261A
Other languages
Japanese (ja)
Inventor
Katsuhiko Mizuno
克彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006290261A priority Critical patent/JP2008109393A/en
Publication of JP2008109393A publication Critical patent/JP2008109393A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase a receiving light quantity in an imaging device. <P>SOLUTION: The imaging device includes an optical sensor part 205, a microlens 202 for converging light to the optical sensor part 205, and a transparent film between the microlens 202 and the optical sensor part 205. The transparent film has a region where a refractive index is higher than that of the transparent film around it. In the region, the refractive index is changed from the optical sensor part 205 to the microlens 202. For instance, the refractive index in a second high refractive index region 208 is lower than that in a first high refractive index region 207. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロレンズと光電変換手段との間に透明膜が配置された撮像素子に関する。   The present invention relates to an imaging device in which a transparent film is disposed between a microlens and a photoelectric conversion means.

近年、撮像素子は、画素数の増加により高解像度化される一方で、チップサイズを小さくすることにより低価格化されてきている。そのため、撮像素子を構成する画素の大きさは年々小さくなり、それに伴って光電変換部の面積も小さくなってきている。このため、撮像素子は、(1)光を効率良く光センサー部に集めること、及び、(2)隣の画素との干渉を低減することが性能を向上させる上で非常に重要である。   In recent years, the resolution of image pickup devices has been increased by increasing the number of pixels, while the price has been reduced by reducing the chip size. For this reason, the size of the pixels constituting the imaging element is decreasing year by year, and the area of the photoelectric conversion unit is also decreasing accordingly. For this reason, it is very important for the imaging device to improve performance that (1) the light is efficiently collected in the optical sensor unit and (2) the interference with the adjacent pixel is reduced.

従来の撮像素子においては、これらの2つの重要項目に対し、光センサー部上方に形成された透明膜において、光センサー部直上に周辺よりも屈折率の高い透明膜を形成する構造(以下「井戸型構造」という。特に、光センサー部直上の周辺よりも屈折率の高い透明膜領域を「井戸構造内部領域」という。)がある(特許文献1を参照)。   In the conventional imaging device, with respect to these two important items, a structure in which a transparent film having a refractive index higher than that of the periphery is formed immediately above the optical sensor part in the transparent film formed above the optical sensor part (hereinafter referred to as “well”). In particular, there is a transparent film region having a higher refractive index than the periphery immediately above the optical sensor portion (referred to as “well structure internal region”) (see Patent Document 1).

井戸型構造を形成することにより、本来は光センサー部に到達しない光を透明膜内井戸構造内部領域とその周辺部の屈折率の低い領域との間にある屈折率境界で反射させることができる。その結果、光センサー部に光を導くことができ、受光量や受光効率を向上させるとともに、隣の画素への干渉を低減させることができる。
特開2003−46074号公報
By forming a well-type structure, light that does not originally reach the optical sensor portion can be reflected at the refractive index boundary between the inner region of the well structure in the transparent film and the region having a lower refractive index in the periphery. . As a result, light can be guided to the optical sensor unit, and the amount of received light and the light receiving efficiency can be improved, and interference with adjacent pixels can be reduced.
JP 2003-46074 A

しかしながら、特許文献1に開示された技術では、井戸構造内部領域の屈折率が高くなることによる光の閉じ込め効果が向上する一方で、井戸構造部に入射する入射光量が減少していた。これは、井戸構造内部領域の媒質が一様であるため、井戸構造内部領域の屈折率上昇に伴って、光が井戸構造部に入射する際の界面反射率が増加したことが原因であると考えられる。すなわち、井戸構造内部領域の媒質が一様である場合、井戸型構造による光の閉じ込め効果と井戸構造部への入射光量は、トレードオフの関係になるという欠点があった。   However, in the technique disclosed in Patent Document 1, the light confinement effect due to the increase in the refractive index of the well structure internal region is improved, while the amount of incident light incident on the well structure portion is reduced. This is because the medium in the well structure inner region is uniform, and the interface reflectivity when light enters the well structure portion increases with the increase in the refractive index of the well structure inner region. Conceivable. That is, when the medium in the well structure internal region is uniform, there is a drawback that the light confinement effect by the well structure and the amount of light incident on the well structure have a trade-off relationship.

本発明は、上記の問題点に鑑みてなされたものであり、撮像素子における受光量を増加させることを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to increase the amount of received light in an image sensor.

本発明の好適な実施の形態は、光電変換手段と、前記光電変換手段に光を集光するマイクロレンズと、前記マイクロレンズと前記光電変換手段との間に透明膜を有する撮像素子に係り、前記透明膜は、その周囲よりも屈折率が高い領域を有し、前記領域は、前記光電変換手段から前記マイクロレンズに向かって、その屈折率が変化していることを特徴とする。   A preferred embodiment of the present invention relates to a photoelectric conversion means, a microlens for condensing light on the photoelectric conversion means, and an imaging device having a transparent film between the microlens and the photoelectric conversion means, The transparent film has a region having a higher refractive index than the periphery thereof, and the refractive index of the region changes from the photoelectric conversion means toward the microlens.

本発明によれば、撮像素子における受光量を増加させることができる。   According to the present invention, the amount of received light in the image sensor can be increased.

以下、本発明の好適な実施の形態に係る撮像素子について、添付図面を参照して詳細に説明する。本実施形態は、井戸型構造が形成された撮像素子に注目したものである。透明膜内の井戸構造における光の閉じ込め効果及び井戸構造部への入射光量は、井戸構造内部領域を構成する高屈折率領域の屈折率と、界面に入射する光の入射角とに大きく影響される。本実施形態においては、この2つの現象に主に注目している。   Hereinafter, an image sensor according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. This embodiment pays attention to the image pick-up element in which the well type structure was formed. The light confinement effect in the well structure in the transparent film and the amount of light incident on the well structure are greatly affected by the refractive index of the high refractive index region constituting the well structure internal region and the incident angle of light incident on the interface. The In the present embodiment, attention is mainly focused on these two phenomena.

一般に、異なる媒質の境界部における光の反射率は、それらの媒質間の屈折率差が大きい程大きく、境界部への入射光の入射角が大きいほど大きい。従って、井戸構造が一様な媒質により形成されている場合、光の閉じ込め効果を高めるために屈折率を高くすると、広角入射時に井戸構造部への入射光量が減少すると考えられる。その一方で、一様に媒質の屈折率を下げると、井戸型構造による光の閉じ込め効果が低減してしまう。   In general, the reflectance of light at the boundary between different media increases as the refractive index difference between the media increases, and increases as the incident angle of incident light on the boundary increases. Therefore, when the well structure is formed of a uniform medium, it is considered that if the refractive index is increased in order to enhance the light confinement effect, the amount of light incident on the well structure portion is reduced during wide-angle incidence. On the other hand, if the refractive index of the medium is lowered uniformly, the light confinement effect due to the well structure is reduced.

そこで、本実施形態では、井戸型構造内において屈折率分布を形成することにより、これらのトレードオフを解決する。例えば、井戸構造内の上方領域では屈折率の小さい領域を形成し、受光領域に近づくにつれて屈折率の大きい領域を形成する。このような構成をとることにより、井戸構造部への入射時の入射光量を増加させ、かつ、光の閉じ込め効果を保持することができる。以下の実施形態では、上記屈折率分布が段階的に変化するように形成されているが、これに限定されず、上記屈折率分布が連続的に変化するように形成されてもよい。   Therefore, in the present embodiment, these trade-offs are solved by forming a refractive index profile in the well structure. For example, a region having a small refractive index is formed in the upper region in the well structure, and a region having a large refractive index is formed as the light receiving region is approached. By adopting such a configuration, it is possible to increase the amount of incident light when entering the well structure and to maintain the light confinement effect. In the following embodiments, the refractive index distribution is formed so as to change stepwise. However, the present invention is not limited to this, and the refractive index distribution may be formed so as to change continuously.

図1は、本発明の好適な実施の形態に係る基板に対して2次元状に複数形成された一般的な光電変換部の上面図である。図2は、図1の中心画素におけるA―A’矢視断面図である。   FIG. 1 is a top view of a general photoelectric conversion unit formed in a two-dimensional manner on a substrate according to a preferred embodiment of the present invention. FIG. 2 is a cross-sectional view taken along the line A-A ′ in the central pixel of FIG. 1.

図2において、入射光201は、マイクロレンズ202により屈折され、カラーフィルタ203を通して光電変換手段としての光センサー部205に入射する。光センサー部205は、半導体基板206内部に形成され、入射光201を感知して電荷を発生する。また、マイクロレンズ202と光センサー部205との間には透明膜が配置されている。透明膜は、屈折率の低い低屈折率領域204と、低屈折率領域204よりも屈折率の高い第1の高屈折率領域207及び第2の高屈折率領域208を含む高屈折率領域と、で構成されている。低屈折率領域204の屈折率は、例えば、約1.45である。第1の高屈折率領域207は、第2の高屈折率領域208よりも屈折率が高く、例えば、第1の高屈折率領域207の屈折率は約1.9であり、第2の高屈折率領域208の屈折率は約1.75である。   In FIG. 2, incident light 201 is refracted by the microlens 202 and enters the optical sensor unit 205 as a photoelectric conversion unit through the color filter 203. The optical sensor unit 205 is formed inside the semiconductor substrate 206, and senses incident light 201 to generate electric charges. A transparent film is disposed between the microlens 202 and the optical sensor unit 205. The transparent film includes a low refractive index region 204 having a low refractive index, a high refractive index region including a first high refractive index region 207 and a second high refractive index region 208 having a refractive index higher than that of the low refractive index region 204. , Is composed of. The refractive index of the low refractive index region 204 is, for example, about 1.45. The first high refractive index region 207 has a refractive index higher than that of the second high refractive index region 208. For example, the refractive index of the first high refractive index region 207 is about 1.9, and the second high refractive index region 207 The refractive index of the refractive index region 208 is about 1.75.

図2では、井戸構造内部領域における高屈折率領域を、例えば2段階とし、第1の高屈折率領域の厚さと第2の高屈折率領域の厚さとの比を1:1とした場合を表している。本実施形態では、下部領域を第1の高屈折率領域、上部領域を第2の高屈折率領域と呼んでいる。後述する3段階の場合には、最下部領域を第1の高屈折率領域、中央領域を第2の高屈折率領域、最上部領域を第3の高屈折率領域と呼んでいる。   In FIG. 2, the high refractive index region in the well structure inner region is, for example, two stages, and the ratio between the thickness of the first high refractive index region and the thickness of the second high refractive index region is 1: 1. Represents. In the present embodiment, the lower region is called a first high refractive index region, and the upper region is called a second high refractive index region. In the case of three stages described later, the lowermost region is called a first high refractive index region, the central region is called a second high refractive index region, and the uppermost region is called a third high refractive index region.

ここで、マイクロレンズ202は、各画素の上方に構成されたレンズであり、その幅は単位画素程度であり、各光センサー部に効率的に光を導く働きがある。   Here, the microlens 202 is a lens configured above each pixel, has a width of about a unit pixel, and has a function of efficiently guiding light to each photosensor unit.

また、屈折率の低い透明膜としては、例えば、SiOを用いることができ、透明膜内における高屈折率領域としては、例えば、SiNを用いることができる。 For example, SiO 2 can be used as the transparent film having a low refractive index, and SiN can be used as the high refractive index region in the transparent film.

また、光センサー部205としては、例えば、Si基板にn型のドーパントをイオン注入することによって形成された、n領域を用いることができる。 In addition, as the optical sensor unit 205, for example, an n region formed by ion implantation of an n-type dopant into a Si substrate can be used.

また、本実施形態において、連続的かつ段階的に井戸構造内の屈折率を変化させたものとは、対象とする画素位置毎に井戸構造内の屈折率の分布が決定されるようなものをいう。   In the present embodiment, the refractive index in the well structure is changed continuously and step by step so that the refractive index distribution in the well structure is determined for each target pixel position. Say.

なお、上述した実施の形態は、本発明の実現手段としての一例であり、本発明が適用される撮像素子及び単位画素を構成する要素、条件、領域数、構成要素の材料等は、適宜修正、変更、追加等されうる。従って、本発明は上述の実施の形態のみに限定されない。   The above-described embodiment is an example as means for realizing the present invention, and the elements, conditions, the number of regions, the material of the constituent elements, etc. constituting the imaging device and unit pixel to which the present invention is applied are appropriately modified. , Changes, additions, etc. Therefore, the present invention is not limited only to the above-described embodiment.

以下、本発明を実施例に基づき説明するが、本発明はこれらの実施例に限定されず、本発明の概念に含まれるものであれば、その構成や製法は適宜変更等されうる。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples, As long as it is contained in the concept of this invention, the structure and manufacturing method can be changed suitably.

(実施例1)
本実施例は、井戸構造内部領域において屈折率の値を変化させた構造をもつ撮像素子のシミュレーションを行ったものである。図2に示すように、本実施例では、井戸構造内部領域における高屈折率領域が、光センサー部205からマイクロレンズ202に向かって、その厚さの比が1:1となるように2つに分けられている。
(Example 1)
In this example, an image sensor having a structure in which the refractive index value is changed in the well structure inner region is simulated. As shown in FIG. 2, in this embodiment, two high refractive index regions in the well structure inner region are provided so that the thickness ratio becomes 1: 1 from the optical sensor unit 205 toward the microlens 202. It is divided into.

以下、シミュレーションを行ったときの計算条件を示す。入射光波長を0.55μm、光センサー部の深さを5.0μmとし、光センサー部205に到達した光は受光されたものとして、その受光量の計算を行った。   The calculation conditions when the simulation is performed are shown below. The incident light wavelength was set to 0.55 μm, the depth of the optical sensor unit was set to 5.0 μm, and the amount of received light was calculated assuming that the light reaching the optical sensor unit 205 was received.

図3は、本実施例の中心画素における第1の高屈折率領域207及び第2の高屈折率領域208の屈折率を変えた場合における入射光201の入射角に対する受光量の関係を示す図である。横軸は、撮像素子に対する入射光201の入射角であり、縦軸は、そのときの受光量を表している。グラフ内において、数字が1つだけ示されているグラフ線は、第1の高屈折率領域207と第2の高屈折率領域208の屈折率が同じ、すなわち一様な屈折率をもつ撮像素子を示す。グラフ内において数字が2つ示されているグラフ線は、左の数字が第2の高屈折率領域208の屈折率、右の数字が第1の高屈折率領域207の屈折率を表す。   FIG. 3 is a diagram illustrating the relationship between the amount of received light and the incident angle of the incident light 201 when the refractive indexes of the first high refractive index region 207 and the second high refractive index region 208 in the central pixel of the present embodiment are changed. It is. The horizontal axis represents the incident angle of the incident light 201 with respect to the image sensor, and the vertical axis represents the amount of light received at that time. The graph line in which only one number is shown in the graph indicates that the first high refractive index region 207 and the second high refractive index region 208 have the same refractive index, that is, an imaging element having a uniform refractive index. Indicates. In the graph line in which two numbers are shown in the graph, the left number represents the refractive index of the second high refractive index region 208, and the right number represents the refractive index of the first high refractive index region 207.

本実施例においては、井戸構造内部領域に光センサー部205からマイクロレンズ202に向かって、各高屈折率領域の厚さの比が1:1となるように形成する。そして、それらの高屈折率領域で光センサー部205からマイクロレンズ202に向かって屈折率を変化させている。これによって、図3に示すように、入射光201の入射角が0〜13°の間で受光量が向上していることが分かる。また、広角入射時においては、2つの高屈折率領域207、208をもつ撮像素子が一様な屈折率を持つ撮像素子とほぼ同様な性能を保持していることが分かる。   In this embodiment, the well structure is formed in the inner region of the well structure so that the ratio of the thicknesses of the high refractive index regions is 1: 1 from the optical sensor unit 205 toward the microlens 202. The refractive index is changed from the optical sensor unit 205 toward the microlens 202 in these high refractive index regions. Accordingly, as shown in FIG. 3, it can be seen that the amount of received light is improved when the incident angle of the incident light 201 is between 0 and 13 °. In addition, at the time of wide-angle incidence, it can be seen that the image pickup device having the two high refractive index regions 207 and 208 has substantially the same performance as the image pickup device having a uniform refractive index.

図4は、本実施例において、第1の高屈折率領域207及び第2の高屈折率領域208の屈折率を変化させたときのシミュレーション結果の一覧表を示す図である。一覧表内において、二重丸は、井戸構造内部領域が一様な屈折率を持つ撮像素子と比較して、2つの高屈折率領域207、208をもつ撮像素子の受光量が特に大きく改善したものを示している。この結果から、各高屈折率領域間の屈折率差を約0.15以下にすることにより、一様な屈折率を持つ撮像素子と比較して、2つの高屈折率領域207、208をもつ撮像素子の受光量を大きく改善させることができることが分かる。   FIG. 4 is a diagram showing a list of simulation results when the refractive indexes of the first high refractive index region 207 and the second high refractive index region 208 are changed in this embodiment. In the list, the double circle indicates that the light receiving amount of the image sensor having two high refractive index regions 207 and 208 is particularly greatly improved as compared with the image sensor in which the well structure inner region has a uniform refractive index. Shows things. From this result, by setting the difference in refractive index between the high refractive index regions to about 0.15 or less, it has two high refractive index regions 207 and 208 as compared with an imaging element having a uniform refractive index. It can be seen that the amount of light received by the image sensor can be greatly improved.

(実施例2)
本実施例は、井戸構造内部領域において屈折率の値を変化させた構造をもつ撮像素子のシミュレーションを行ったものである。図5に示すように、本実施例では、井戸構造内部領域における高屈折率領域501〜503が、光センサー部205からマイクロレンズ202に向かって、各高屈折率領域の厚さの比が2:1:1となるように3つに分けられている。なお、シミュレーションの計算条件は、実施例1と同様である。
(Example 2)
In this example, an image sensor having a structure in which the refractive index value is changed in the well structure inner region is simulated. As shown in FIG. 5, in this embodiment, the high refractive index regions 501 to 503 in the well structure inner region have a thickness ratio of 2 from the optical sensor unit 205 toward the microlens 202. It is divided into three so as to be 1: 1. The simulation calculation conditions are the same as those in the first embodiment.

図6は、本実施例の中心画素における第1〜第3の高屈折率領域501〜503の屈折率を変えた場合における光の入射角に対する受光量の関係を示す図である。横軸は、撮像素子に対する入射光201の入射角であり、縦軸は、そのときの受光量を表している。グラフ内において、数字が1つだけ示されているグラフ線は、第1〜第3の高屈折率領域501〜503の屈折率が同じ、すなわち一様な屈折率をもつ撮像素子を示す。グラフ内において数字が3つ示されているグラフ線は、左の数字が第3の高屈折率領域503の屈折率、真ん中の数字が第2の高屈折率領域502の屈折率、右の数字が第1の高屈折率領域501の屈折率を表す。   FIG. 6 is a diagram showing the relationship of the amount of received light with respect to the incident angle of light when the refractive indexes of the first to third high refractive index regions 501 to 503 in the central pixel of this embodiment are changed. The horizontal axis represents the incident angle of the incident light 201 with respect to the image sensor, and the vertical axis represents the amount of light received at that time. In the graph, a graph line in which only one number is shown indicates an imaging element in which the first to third high refractive index regions 501 to 503 have the same refractive index, that is, have a uniform refractive index. In the graph line in which three numbers are shown in the graph, the left number is the refractive index of the third high refractive index region 503, the middle number is the refractive index of the second high refractive index region 502, and the right number Represents the refractive index of the first high refractive index region 501.

本実施例においては、井戸構造内部領域に光センサー部205からマイクロレンズ202に向かって、各高屈折率領域の厚さの比が2:1:1となるように形成する。そして、それらの高屈折率領域で光センサー部205からマイクロレンズ202に向かって屈折率を変化させている。これによって、図6に示すように、入射光201の入射角が0〜13°の間で受光量が向上していることが分かる。また、広角入射時においては、3つの高屈折率領域501〜503をもつ撮像素子が一様な屈折率を持つ撮像素子とほぼ同様な性能を保持していることが分かる。   In the present embodiment, the high refractive index regions are formed in the well structure internal region from the optical sensor unit 205 toward the microlens 202 so that the ratio of the thicknesses of the high refractive index regions is 2: 1: 1. The refractive index is changed from the optical sensor unit 205 toward the microlens 202 in these high refractive index regions. As a result, as shown in FIG. 6, it can be seen that the amount of received light is improved when the incident angle of the incident light 201 is between 0 and 13 °. In addition, at the time of wide-angle incidence, it can be seen that the image sensor having the three high refractive index regions 501 to 503 maintains substantially the same performance as the image sensor having a uniform refractive index.

図7は、本実施例において、第1の高屈折率領域501の屈折率を1.9に固定し、第2の高屈折率領域502及び第3の高屈折率領域503の屈折率を変化させたときのシミュレーション結果の一覧表を示す。一覧表内において、二重丸は、井戸構造内部領域が一様な屈折率を持つ撮像素子と比較して、3つの高屈折率領域501〜503をもつ撮像素子の受光量が特に大きく改善したものを示している。この結果から、各高屈折率領域間の屈折率差を約0.1以下にすることにより、一様な屈折率を持つ撮像素子と比較して、3つの高屈折率領域501〜503をもつ撮像素子の受光量を大きく改善させることができることが分かる。   FIG. 7 shows that, in this embodiment, the refractive index of the first high refractive index region 501 is fixed at 1.9, and the refractive indexes of the second high refractive index region 502 and the third high refractive index region 503 are changed. A list of simulation results is shown. In the list, the double circle indicates that the amount of light received by the image pickup device having three high refractive index regions 501 to 503 is greatly improved as compared with the image pickup device in which the well structure inner region has a uniform refractive index. Shows things. From this result, by setting the difference in refractive index between the high refractive index regions to about 0.1 or less, it has three high refractive index regions 501 to 503 as compared with an imaging element having a uniform refractive index. It can be seen that the amount of light received by the image sensor can be greatly improved.

(実施例3)
本実施例は、井戸構造内部領域において屈折率の値を変化させた構造をもつ撮像素子のシミュレーションを行ったものである。図8に示すように、本実施例では、井戸構造内部領域における高屈折率領域801、802が、光センサー部205からマイクロレンズ202に向かって、その厚さの比が3:1となるように2つに分けられている。なお、シミュレーションの計算条件は、実施例1と同様である。
(Example 3)
In this example, an image sensor having a structure in which the refractive index value is changed in the well structure inner region is simulated. As shown in FIG. 8, in this embodiment, the high refractive index regions 801 and 802 in the well structure inner region have a thickness ratio of 3: 1 from the optical sensor unit 205 toward the microlens 202. It is divided into two. The simulation calculation conditions are the same as those in the first embodiment.

図9は、本実施例の中心画素における第1の高屈折率領域801及び第2の高屈折率領域802の屈折率を変えた場合における入射光201の入射角に対する受光量の関係を示す図である。横軸は、撮像素子に対する入射光201の入射角であり、縦軸は、そのときの受光量を表している。グラフ内において、数字が1つだけ示されているグラフ線は、2つの高屈折率領域801、802の屈折率が同じ、すなわち一様な屈折率をもつ撮像素子を示す。グラフ内において数字が2つ示されているグラフ線は、左の数字が第2の高屈折率領域802の屈折率、右の数字が第1の高屈折率領域801の屈折率を表す。   FIG. 9 is a diagram showing the relationship between the incident angle of the incident light 201 and the amount of received light when the refractive indexes of the first high refractive index region 801 and the second high refractive index region 802 in the central pixel of this embodiment are changed. It is. The horizontal axis represents the incident angle of the incident light 201 with respect to the image sensor, and the vertical axis represents the amount of light received at that time. In the graph, a graph line in which only one number is shown indicates an imaging element in which the refractive indexes of the two high refractive index regions 801 and 802 are the same, that is, have a uniform refractive index. In the graph line in which two numbers are shown in the graph, the left number represents the refractive index of the second high refractive index region 802, and the right number represents the refractive index of the first high refractive index region 801.

本実施例においては、井戸構造内部領域に光センサー部205からマイクロレンズ202に向かって、各高屈折率領域の厚さの比が3:1となるように形成する。そして、それらの高屈折率領域で光センサー部205からマイクロレンズ202に向かって屈折率を変化させている。これによって、図9に示すように、入射光201の入射角が0〜13°の間で受光量が向上していることが分かる。また、広角入射時においては、2つの高屈折率領域801、802をもつ撮像素子が一様な屈折率を持つ撮像素子とほぼ同様な性能を保持していることが分かる。   In this embodiment, the high refractive index regions are formed in the well structure inner region from the optical sensor unit 205 toward the microlens 202 so that the ratio of the thicknesses of the high refractive index regions is 3: 1. The refractive index is changed from the optical sensor unit 205 toward the microlens 202 in these high refractive index regions. Accordingly, as shown in FIG. 9, it can be seen that the amount of received light is improved when the incident angle of the incident light 201 is between 0 and 13 °. In addition, at the time of wide-angle incidence, it can be seen that the image pickup device having the two high refractive index regions 801 and 802 maintains substantially the same performance as the image pickup device having a uniform refractive index.

(比較例)
比較例は、井戸構造内部領域において屈折率が一様な構造をもつ従来の撮像素子のシミュレーションを行ったものである。図10に示すように、本比較例では、井戸構造内部領域における高屈折率領域1001が、光センサー部205からマイクロレンズ202に向かって一様となっている。なお、シミュレーションの計算条件は、実施例1と同様である。
(Comparative example)
The comparative example is a simulation of a conventional imaging device having a structure with a uniform refractive index in the well structure internal region. As shown in FIG. 10, in this comparative example, the high refractive index region 1001 in the well structure internal region is uniform from the optical sensor unit 205 toward the microlens 202. The simulation calculation conditions are the same as those in the first embodiment.

図11は、本比較例の中心画素における高屈折率領域1001の屈折率を変えた場合における入射光201の入射角に対する受光量の関係を示す図である。横軸は、撮像素子に対する入射光201の入射角であり、縦軸は、そのときの受光量を表している。グラフ内における数字は、高屈折率領域1001の屈折率を表す。   FIG. 11 is a diagram illustrating the relationship between the incident angle of the incident light 201 and the amount of received light when the refractive index of the high refractive index region 1001 in the central pixel of this comparative example is changed. The horizontal axis represents the incident angle of the incident light 201 with respect to the image sensor, and the vertical axis represents the amount of light received at that time. The numbers in the graph represent the refractive index of the high refractive index region 1001.

本比較例においては、井戸構造内部領域において光センサー部205からマイクロレンズ202に向かって高屈折率領域1001の屈折率が一様となっている。これによって、図11に示すように、入射光201の入射角が0〜13°の間で実施例1〜3と比較して受光量が低下していることが分かる。特に、高屈折率領域1001の屈折率が低いほど、受光量の低下が顕著に表れ、実施例1〜3と比較して受光量が低下する入射光201の入射角が広がっていることが分かる。   In this comparative example, the refractive index of the high refractive index region 1001 is uniform from the photosensor portion 205 toward the microlens 202 in the well structure internal region. Accordingly, as shown in FIG. 11, it can be seen that the amount of received light is reduced as compared with the first to third embodiments when the incident angle of the incident light 201 is between 0 and 13 °. In particular, it can be seen that as the refractive index of the high refractive index region 1001 is lower, the amount of received light decreases more significantly, and the incident angle of the incident light 201 at which the amount of received light decreases compared to Examples 1 to 3 is increased. .

本発明の好適な実施の形態に係る基板に対して2次元状に複数形成された光電変換部の上面図である。It is a top view of the photoelectric conversion part formed two-dimensionally with respect to the board | substrate which concerns on suitable embodiment of this invention. 図1の中心画素におけるA―A’矢視断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ in the center pixel of FIG. 1. 本実施例の中心画素における第1、第2の高屈折率領域の屈折率を変えた場合における光の入射角に対する受光量の関係を示す図である。It is a figure which shows the relationship of the light reception amount with respect to the incident angle of light in the case of changing the refractive index of the 1st, 2nd high refractive index area | region in the center pixel of a present Example. 実施例1において第1、第2の高屈折率領域の屈折率を変化させたときのシミュレーション結果の一覧表を示す図である。It is a figure which shows the list of the simulation result when changing the refractive index of the 1st, 2nd high refractive index area | region in Example 1. FIG. 実施例2において図1の中心画素におけるA―A’矢視断面図である。FIG. 6 is a cross-sectional view taken along the line A-A ′ at the center pixel in FIG. 1 in the second embodiment. 実施例2において中心画素における光の入射角と受光量の関係を示す図である。FIG. 10 is a diagram illustrating a relationship between an incident angle of light and a received light amount at a central pixel in the second embodiment. 実施例2において中心画素における屈折率変動に対する特性の結果の一覧表を示す図である。FIG. 10 is a diagram showing a list of results of characteristics with respect to refractive index fluctuations in a central pixel in Example 2. 実施例3において図1の中心画素におけるA―A’矢視断面図である。FIG. 9 is a cross-sectional view taken along the line A-A ′ in the center pixel of FIG. 1 in Example 3. 実施例3において中心画素における光の入射角と受光量の関係を示す図である。FIG. 10 is a diagram illustrating the relationship between the incident angle of light and the amount of received light at the central pixel in the third embodiment. 比較例において井戸型構造をもつ従来の撮像素子の断面図である。It is sectional drawing of the conventional image pick-up element which has a well type structure in a comparative example. 比較例において井戸型構造をもつ従来の撮像素子の中心画素における光の入射角と受光量の関係を示す図である。In a comparative example, it is a figure which shows the relationship between the incident angle of light and the light reception amount in the center pixel of the conventional image pick-up element which has a well-type structure.

符号の説明Explanation of symbols

205 光センサー部
202 マイクロレンズ
204、207、208 透明膜
205 Photosensor unit 202 Micro lens 204, 207, 208 Transparent film

Claims (9)

光電変換手段と、前記光電変換手段に光を集光するマイクロレンズと、前記マイクロレンズと前記光電変換手段との間に透明膜を有する撮像素子であって、
前記透明膜は、その周囲よりも屈折率が高い領域を有し、
前記領域は、前記光電変換手段から前記マイクロレンズに向かって、その屈折率が変化していることを特徴とする撮像素子。
A photoelectric conversion means; a microlens for condensing light on the photoelectric conversion means; and an imaging device having a transparent film between the microlens and the photoelectric conversion means,
The transparent film has a region having a higher refractive index than its surroundings,
The imaging device, wherein the refractive index of the region changes from the photoelectric conversion means toward the microlens.
前記領域の屈折率が、前記光電変換手段から前記マイクロレンズに向かって、段階的に低くなっていることを特徴とする請求項1に記載の撮像素子。   The imaging element according to claim 1, wherein a refractive index of the region is gradually decreased from the photoelectric conversion unit toward the microlens. 前記領域には、前記光電変換手段から前記マイクロレンズに向かって、第1の屈折率を持つ第1の領域と、前記第1の屈折率よりも屈折率が低い第2の屈折率を持つ第2の領域とがこの順序で配置されていることを特徴とする請求項2に記載の撮像素子。   The region includes a first region having a first refractive index from the photoelectric conversion means toward the microlens, and a second region having a second refractive index lower than the first refractive index. The imaging device according to claim 2, wherein the two regions are arranged in this order. 前記第1の領域の厚さと前記第2の領域の厚さとの比は、1:1であることを特徴とする請求項3に記載の撮像素子。   The image sensor according to claim 3, wherein the ratio of the thickness of the first region to the thickness of the second region is 1: 1. 前記第1の領域の厚さと前記第2の領域の厚さとの比は、3:1であることを特徴とする請求項3に記載の撮像素子。   The image sensor according to claim 3, wherein the ratio of the thickness of the first region to the thickness of the second region is 3: 1. 前記領域には、前記光電変換手段から前記マイクロレンズに向かって、第1の屈折率を持つ第1の領域と、前記第1の屈折率よりも屈折率が低い第2の屈折率を持つ第2の領域と、前記第2の屈折率よりも屈折率が低い第3の屈折率を持つ第3の領域とがこの順序で配置されていることを特徴とする請求項2に記載の撮像素子。   The region includes a first region having a first refractive index from the photoelectric conversion means toward the microlens, and a second region having a second refractive index lower than the first refractive index. 3. The image pickup device according to claim 2, wherein the second region and the third region having a third refractive index lower than the second refractive index are arranged in this order. . 前記第1の領域の厚さと前記第2の領域の厚さと前記第3の領域の厚さとの比は、2:1:1であることを特徴とする請求項6に記載の撮像素子。   The imaging device according to claim 6, wherein a ratio of the thickness of the first region, the thickness of the second region, and the thickness of the third region is 2: 1: 1. 前記領域内に配置された各領域間の屈折率の差が0.15以下であることを特徴とする請求項3乃至請求項7のいずれか1項に記載の撮像素子。   The imaging device according to any one of claims 3 to 7, wherein a difference in refractive index between the regions arranged in the region is 0.15 or less. 前記領域の屈折率が、前記光電変換手段から前記マイクロレンズに向かって、連続的に低くなっていることを特徴とする請求項1に記載の撮像素子。   The imaging element according to claim 1, wherein a refractive index of the region continuously decreases from the photoelectric conversion unit toward the microlens.
JP2006290261A 2006-10-25 2006-10-25 Imaging device Withdrawn JP2008109393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290261A JP2008109393A (en) 2006-10-25 2006-10-25 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290261A JP2008109393A (en) 2006-10-25 2006-10-25 Imaging device

Publications (1)

Publication Number Publication Date
JP2008109393A true JP2008109393A (en) 2008-05-08

Family

ID=39442386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290261A Withdrawn JP2008109393A (en) 2006-10-25 2006-10-25 Imaging device

Country Status (1)

Country Link
JP (1) JP2008109393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225939A (en) * 2009-03-24 2010-10-07 Toshiba Corp Solid-state imaging device and method of manufacturing the same
JP2012114882A (en) * 2010-11-29 2012-06-14 Canon Inc Solid state image sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225939A (en) * 2009-03-24 2010-10-07 Toshiba Corp Solid-state imaging device and method of manufacturing the same
US8648435B2 (en) 2009-03-24 2014-02-11 Kabushiki Kaisha Toshiba Solid-state imaging device and method for manufacturing same
JP2012114882A (en) * 2010-11-29 2012-06-14 Canon Inc Solid state image sensor
US9059059B2 (en) 2010-11-29 2015-06-16 Canon Kabushiki Kaisha Solid state image sensor having a first optical waveguide with one contiguous core and a second optical waveguide with plural cores

Similar Documents

Publication Publication Date Title
JP4796789B2 (en) CMOS image sensor and manufacturing method thereof
JP5372102B2 (en) Photoelectric conversion device and imaging system
JP4728660B2 (en) Solid-state imaging device and camera device using the same
JP5968261B2 (en) Photoelectric conversion element, photoelectric conversion device using the same, and imaging system
US9525005B2 (en) Image sensor device, CIS structure, and method for forming the same
US20080185500A1 (en) Solid-state imaging device and method thereof
JP2014225667A (en) BSI CMOS image sensor
US20140375852A1 (en) Solid-state imaging apparatus, method of manufacturing the same, camera, imaging device, and imaging apparatus
TW200913238A (en) Optical member, solid state imaging apparatus, and manufacturing method
JP2009021379A (en) Solid-state imaging apparatus and camera equipped with the same, and manufacturing method of solid-state imaging apparatus
US20050190284A1 (en) Imaging apparatus and arranging method for the same
JP2007180157A (en) Solid-state imaging element
CN105378926A (en) Solid state imaging apparatus, method for manufacturing same, and electronic device
JP2015028960A (en) Solid-state imaging device and electronic apparatus
JP5538803B2 (en) Solid-state imaging device and camera equipped with the same
US9780132B2 (en) Image sensor and electronic device including the same
US10115757B2 (en) Image sensor and electronic device having the same
JPWO2018030213A1 (en) Solid-state imaging device, pupil correction method for solid-state imaging device, imaging apparatus and information processing apparatus
JP2004079932A (en) Solid pickup element, and manufacturing method thereof
CN114556573A (en) Image sensor and imaging apparatus
CN110085610B (en) Image sensor, image processing method, and computer storage medium
JP2002280532A (en) Solid-state imaging device
TWI749896B (en) Image sensors with multipart diffractive lenses
JP2008109393A (en) Imaging device
JP2017079243A (en) Solid imaging device and camera

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105