JP2008108509A - Battery mounting apparatus and temperature regulation system - Google Patents

Battery mounting apparatus and temperature regulation system Download PDF

Info

Publication number
JP2008108509A
JP2008108509A JP2006288903A JP2006288903A JP2008108509A JP 2008108509 A JP2008108509 A JP 2008108509A JP 2006288903 A JP2006288903 A JP 2006288903A JP 2006288903 A JP2006288903 A JP 2006288903A JP 2008108509 A JP2008108509 A JP 2008108509A
Authority
JP
Japan
Prior art keywords
battery
temperature
thermoelectric conversion
unit
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006288903A
Other languages
Japanese (ja)
Inventor
Norihiro Ookubo
典浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006288903A priority Critical patent/JP2008108509A/en
Publication of JP2008108509A publication Critical patent/JP2008108509A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To adjust a temperature of a secondary battery by a simple configuration. <P>SOLUTION: A heat-electricity conversion element 20 converts the heat of a radiator 13 to electricity. A BMU50 acquires a temperature T of a battery unit 14. An electricity-heat conversion element 30 heats the battery unit 14 by utilizing the electricity generated by the heat-electricity conversion element 20 when the temperature T of the battery unit 14 is lower than a lower limit temperature T1. The heat of the battery unit 14 is cooled by utilizing the electricity generated by the heat-electricity conversion element 20 when the temperature T of the battery unit 14 is higher than an upper limit temperature T2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電池搭載装置、及び、電池の温度を調整する温度調整システムに関する。   The present invention relates to a battery mounting device and a temperature adjustment system that adjusts the temperature of the battery.

電池の放電特性は電池の温度に依存し、低温下では放電できる容量が減少して十分の放電特性が得られず、反対に高温下では自己放電が増加して残容量の減少や充電性能の低下が起こる。このような放電特性の低下を防止するために、従来、二次電池を冷却、加熱する温度調整システムが存在する。   The discharge characteristics of a battery depend on the temperature of the battery. At low temperatures, the capacity that can be discharged decreases and sufficient discharge characteristics cannot be obtained.On the other hand, at high temperatures, self-discharge increases and the remaining capacity decreases and the charge performance decreases. A drop occurs. In order to prevent such deterioration of the discharge characteristics, there has conventionally been a temperature adjustment system that cools and heats the secondary battery.

例えば、特許文献1には、電池ユニットに吸気口を設け、電池温度と外気温度との温度差に基づいて、吸気弁の開閉を制御し、外気を取り込み、電池を冷却するだけでなく、電池ユニットにエアーコンプレッサ用の冷媒管を延長し、外気のみの温度調節と冷媒による温度調整とを切り替える温度調整システムが開示されている。   For example, in Patent Document 1, an air inlet is provided in a battery unit, the opening and closing of an intake valve is controlled based on a temperature difference between the battery temperature and the outside air temperature, outside air is taken in, and the battery is cooled. A temperature adjustment system is disclosed in which a refrigerant pipe for an air compressor is extended to a unit to switch between temperature adjustment of only the outside air and temperature adjustment using a refrigerant.

また、特許文献2には、電池(バッテリ)を敷設するバッテリトレイの中央に燃焼式ヒータ部を設け、インバータやモータなどの補機類が発生する熱を燃焼式ヒータ部に送給し、電池を保温する開示されている。
特開2006−54150号公報 特開平6−231807号公報
Further, in Patent Document 2, a combustion heater unit is provided in the center of a battery tray on which a battery (battery) is laid, and heat generated by auxiliary devices such as an inverter and a motor is supplied to the combustion heater unit, so that the battery It is disclosed to keep warm.
JP 2006-54150 A JP-A-6-231807

特許文献1記載の発明は、電池を冷却するものであり、電池を加温する機能を備えない。また、この発明では、循環ユニット、吸気弁、排気弁、冷媒管などの装置が必要になり、装置の重量が嵩み、さらには冷却のために余分な電力消費が発生するという問題がある。   The invention described in Patent Document 1 cools a battery and does not have a function of heating the battery. In addition, the present invention requires a device such as a circulation unit, an intake valve, an exhaust valve, a refrigerant pipe, etc., which increases the weight of the device and further causes extra power consumption for cooling.

また、特許文献2記載の発明は、インバータやモータなどの補機類が発生する熱を送給管を用いて燃焼式ヒータ部に送給して電池を加温するが、電池を加温するための配管が必要であり、装置の複雑化を招いてしまう。   The invention described in Patent Document 2 heats the battery by supplying heat generated by auxiliary equipment such as an inverter and a motor to the combustion heater unit using a supply pipe, but warms the battery. Piping is necessary, and the apparatus becomes complicated.

本発明は、かかる課題に鑑みてなされたものであり、その目的とするところは、簡単な構成で電池の温度調整を行なう電池搭載装置、及び、電池の温度調整システムを提供することにある。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a battery mounting apparatus and a battery temperature adjustment system that perform battery temperature adjustment with a simple configuration.

前記課題を解決するための発明は、電池が搭載された、発熱部を有する電池搭載装置であって、前記発熱部で発生する熱により電力を生成する熱電変換部と、前記熱電変換部が生成した電力により前記電池の加熱又は冷却を行う電熱変換部と、を備えることを特徴とする電池搭載装置である。   The invention for solving the above-described problems is a battery-mounted device having a heat generating portion on which a battery is mounted, and a thermoelectric conversion portion that generates electric power by heat generated in the heat generating portion, and the thermoelectric conversion portion generates And an electrothermal converter that heats or cools the battery with the generated electric power.

また、前記課題を解決するための発明は、発熱部を備える装置に搭載された電池の温度を調整するシステムであって、前記発熱部で発生する熱により電力を生成する熱電変換部と、前記熱電変換部が生成した電力により前記電池の加熱又は冷却を行う電熱変換部と、を備えることを特徴とする電池の温度調整システムである。   The invention for solving the above-mentioned problem is a system for adjusting the temperature of a battery mounted on a device including a heat generating unit, wherein the thermoelectric conversion unit generates power by the heat generated in the heat generating unit, and And a thermoelectric conversion unit that heats or cools the battery with electric power generated by the thermoelectric conversion unit.

本発明によれば、簡単な構成で電池の温度調整を行なうことができる。   According to the present invention, the temperature of the battery can be adjusted with a simple configuration.

===全体構成===
以下、図面を参照しつつ本発明の一実施の形態について説明する。
図1は、電気自動車1の要部構成を示すブロック図である。電気自動車1は、タイヤ10を駆動するモータ11、モータ11を駆動するインバータ12、インバータ12及び充電器15を冷却する冷却液を放熱させるラジエータ13、電池を格納する電池ユニット14、電池の充電を行なう充電器15、ラジエータ13の熱を電気に変換する熱電変換素子20、熱電変換素子20が生成した電気を利用して電池ユニット14を加熱又は冷却する電熱変換素子30、熱電変換素子20が生成した電気の経路を切り替えるスイッチユニット40、電池の温度調節を行なうBMU(Battery Management Unit)50を備える。
=== Overall structure ===
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a main configuration of the electric vehicle 1. The electric vehicle 1 includes a motor 11 that drives the tire 10, an inverter 12 that drives the motor 11, a radiator 13 that dissipates the coolant that cools the inverter 12 and the charger 15, a battery unit 14 that stores the battery, and charging the battery. The charger 15 to be performed, the thermoelectric conversion element 20 that converts heat of the radiator 13 into electricity, the electrothermal conversion element 30 that heats or cools the battery unit 14 using the electricity generated by the thermoelectric conversion element 20, and the thermoelectric conversion element 20 are generated A switch unit 40 for switching the electrical path, and a BMU (Battery Management Unit) 50 for adjusting the temperature of the battery.

図2は、スイッチユニット40の内部構成を示すブロック図である。スイッチユニット40は、図2に示すように、ダイオード45、46からなる倍電圧整流回路41、コンデンサ42、経路変換スイッチ43、昇圧回路44、及び、極性反転回路60を備える。   FIG. 2 is a block diagram showing an internal configuration of the switch unit 40. As shown in FIG. 2, the switch unit 40 includes a voltage doubler rectifier circuit 41 including diodes 45 and 46, a capacitor 42, a path conversion switch 43, a booster circuit 44, and a polarity inversion circuit 60.

熱電変換素子20は、例えば、2種類の異なる金属または半導体を接合したものであり、その接合部に温度差が生じた場合にゼーベック効果により起電力を発生させるものである。   The thermoelectric conversion element 20 is formed by, for example, joining two different types of metals or semiconductors, and generates an electromotive force by the Seebeck effect when a temperature difference occurs at the joint.

本実施の形態では、熱電変換素子20は、ラジエータ13に取り付けられている。ラジエータ13には、インバータ12及び充電器15を冷却することにより温度が上昇した冷却液が冷却配管16を介して流れる。ラジエータ13は、冷却液を放熱する。熱電変換素子20は、高温のラジエータ13と周囲の温度差によりラジエータ13が発する熱を電気に変換する。なお、熱電変換素子20は、ラジエータ13以外の発熱体、例えば、モータ11、インバータ12、充電器15の何れか1つ、若しくは、複数に取り付けてもよい。複数の発熱体に熱電変換素子20を取り付ける場合には、熱電変換素子20を並列に接続する。熱電変換素子20の出力端子は、倍電圧整流回路41の入力端子に接続されている。   In the present embodiment, the thermoelectric conversion element 20 is attached to the radiator 13. The coolant whose temperature has been increased by cooling the inverter 12 and the charger 15 flows to the radiator 13 through the cooling pipe 16. The radiator 13 radiates the coolant. The thermoelectric conversion element 20 converts heat generated by the radiator 13 into electricity due to a temperature difference between the high-temperature radiator 13 and the surroundings. Note that the thermoelectric conversion element 20 may be attached to a heating element other than the radiator 13, for example, any one or more of the motor 11, the inverter 12, and the charger 15. When attaching the thermoelectric conversion elements 20 to a plurality of heating elements, the thermoelectric conversion elements 20 are connected in parallel. The output terminal of the thermoelectric conversion element 20 is connected to the input terminal of the voltage doubler rectifier circuit 41.

倍電圧整流回路41は、熱電変換素子20が生成した電力の電圧を倍電圧整流すると共に、熱電変換素子20への逆電圧が印加されるのを防止する。コンデンサ42は、熱電変換素子20から出力され倍電圧整流回路41で整流された電気に含まれるノイズを除去する。   The voltage doubler rectifier circuit 41 double voltage rectifies the voltage of the electric power generated by the thermoelectric conversion element 20 and prevents a reverse voltage from being applied to the thermoelectric conversion element 20. The capacitor 42 removes noise contained in electricity output from the thermoelectric conversion element 20 and rectified by the voltage doubler rectifier circuit 41.

経路変換スイッチ43は、BMU50の制御に従い、熱電変換素子20が生成した電気の出力先を、昇圧回路44、又は、極性反転回路60の何れかに切り替える。昇圧回路44は、熱電変換素子20が生成した電気の電圧を昇圧させて電池ユニット14、又は、インバータ12に供給する。   The path conversion switch 43 switches the output destination of electricity generated by the thermoelectric conversion element 20 to either the booster circuit 44 or the polarity inversion circuit 60 according to the control of the BMU 50. The booster circuit 44 boosts the electric voltage generated by the thermoelectric conversion element 20 and supplies the boosted voltage to the battery unit 14 or the inverter 12.

極性反転回路60は、図3に示すように、熱電変換素子20の各極に接続されたa端子、b端子と、電熱変換素子30の一方の極に接続されたA端子、及び他方の極に接続された2つのB1端子,B2端子と、a端子、b端子とA端子、B1端子、B2端子との接続状態を切り替えるスイッチ61、62とを備える。   As shown in FIG. 3, the polarity inversion circuit 60 includes an a terminal and a b terminal connected to each pole of the thermoelectric conversion element 20, an A terminal connected to one pole of the electrothermal conversion element 30, and the other pole. And two switches B1 and B2, and switches 61 and 62 for switching the connection state between the a terminal, the b terminal and the A terminal, the B1 terminal, and the B2 terminal.

スイッチ61、62を図面上方向に切り替えた場合、a端子とB1端子が接続され、b端子とA端子が接続される。また、スイッチ61、62を図面下方向に切り替えた場合、a端子とA端子が接続され、b端子とB2端子が接続される。極性反転回路60は、このようにして、電熱変換素子30にかかる電圧の極性を反転させる。   When the switches 61 and 62 are switched in the upward direction in the drawing, the a terminal and the B1 terminal are connected, and the b terminal and the A terminal are connected. When the switches 61 and 62 are switched downward in the drawing, the a terminal and the A terminal are connected, and the b terminal and the B2 terminal are connected. In this way, the polarity inversion circuit 60 inverts the polarity of the voltage applied to the electrothermal conversion element 30.

電熱変換素子30は、例えば、2種類の異なる金属または半導体を接合されており、電流が流れたときにペルチェ効果により電流の極性に応じて、発熱又は吸熱するペルチェ素子である。極性反転回路60により、電熱変換素子30にかかる電圧の極性を切り替えることで、電熱変換素子30の吸熱と発熱とを切り替えることができる。   The electrothermal conversion element 30 is, for example, a Peltier element in which two kinds of different metals or semiconductors are bonded and generates heat or absorbs heat according to the polarity of the current due to the Peltier effect when a current flows. By switching the polarity of the voltage applied to the electrothermal conversion element 30 by the polarity inversion circuit 60, the heat absorption and heat generation of the electrothermal conversion element 30 can be switched.

なお、本実施の形態では、極性反転回路60がa端子とA端子、b端子とB2端子を接続したときに電熱変換素子30が発熱し、a端子とB1端子、b端子とA端子を接続したときに電熱変換素子30が吸熱するものとする。   In this embodiment, when the polarity inversion circuit 60 connects the a terminal and the A terminal, and the b terminal and the B2 terminal, the electrothermal conversion element 30 generates heat, and the a terminal and the B1 terminal, and the b terminal and the A terminal are connected. In this case, the electrothermal conversion element 30 absorbs heat.

BMU50は、電池ユニット14の温度制御を行なう。電池ユニット14には、例えば、セルマネージメントシステム(不図示)と呼ばれる電池ユニット14の制御システムが設けられており、温度検出信号をBMU50に供給する。   The BMU 50 controls the temperature of the battery unit 14. The battery unit 14 is provided with, for example, a control system for the battery unit 14 called a cell management system (not shown), and supplies a temperature detection signal to the BMU 50.

BMU50は、上記の温度検出信号に基づいて、電池の温度を検知し、この温度が所定の下限温度T1(例えば、20〜30度)以下であれば、経路変換スイッチ43と極性反転回路60に電池を加熱すべき旨の制御信号を出力する。この制御信号に応じて、経路変換スイッチ43は、熱電変換素子20と極性反転回路60とを接続し、極性反転回路60は、a端子とA端子、b端子とB2端子とが接続するようスイッチSW61,62を切り替える。これにより、電熱変換素子30は、熱電変換素子20から供給された電力により電池ユニット14を加熱する。   The BMU 50 detects the temperature of the battery based on the temperature detection signal. If the temperature is equal to or lower than a predetermined lower limit temperature T1 (for example, 20 to 30 degrees), the BMU 50 notifies the path conversion switch 43 and the polarity inversion circuit 60. A control signal indicating that the battery should be heated is output. In response to this control signal, the path conversion switch 43 connects the thermoelectric conversion element 20 and the polarity inversion circuit 60, and the polarity inversion circuit 60 switches the a terminal and the A terminal, and the b terminal and the B2 terminal. Switches SW 61 and 62. Thereby, the electrothermal conversion element 30 heats the battery unit 14 with the electric power supplied from the thermoelectric conversion element 20.

一方、電池ユニット14の温度が上限温度T2(例えば、50度)以上であれば、BMU50は、経路変換スイッチ43と極性反転回路60に電池を冷却すべき旨の制御信号を出力する。この制御信号に応じて、経路変換スイッチ43は、熱電変換素子20と極性反転回路60とを接続し、極性反転回路60は、a端子とB1端子、b端子とA端子が接続するようスイッチSW61,62を切り替える。電熱変換素子30は、熱電変換素子20から供給された電気を用いて電池ユニット14の熱を冷却する。   On the other hand, if the temperature of the battery unit 14 is equal to or higher than the upper limit temperature T2 (for example, 50 degrees), the BMU 50 outputs a control signal indicating that the battery should be cooled to the path conversion switch 43 and the polarity inversion circuit 60. In response to this control signal, the path conversion switch 43 connects the thermoelectric conversion element 20 and the polarity inversion circuit 60, and the polarity inversion circuit 60 switches the switch SW61 so that the a terminal and the B1 terminal and the b terminal and the A terminal are connected. , 62 are switched. The electrothermal conversion element 30 cools the heat of the battery unit 14 using the electricity supplied from the thermoelectric conversion element 20.

一方、電池ユニット14の温度が下限温度T1と上限温度T2の間であれば、BMU50は、経路変換スイッチ43に電池の温度調節を停止すべき旨の制御信号を出力する。この制御信号に応じて、経路変換スイッチ43は、熱電変換素子20と昇圧回路44とを接続する。これにより、熱電変換素子20が生成した電気を電池ユニット14の充電電力として用いることができる。   On the other hand, if the temperature of the battery unit 14 is between the lower limit temperature T1 and the upper limit temperature T2, the BMU 50 outputs a control signal to the effect of stopping the battery temperature adjustment to the path conversion switch 43. In response to this control signal, the path conversion switch 43 connects the thermoelectric conversion element 20 and the booster circuit 44. Thereby, the electricity generated by the thermoelectric conversion element 20 can be used as charging power for the battery unit 14.

===温度調整システムの動作===
次いで、図4に示す温度調整システムの動作を説明する。
BMU50は、電池ユニット14の温度を取得する(ステップS10)。BMU50は、電池ユニット14の温度Tが下限温度よりも低い場合(ステップS11;T<T1)、経路変換スイッチ43及び極性反転回路60に電池ユニット14を加熱すべき旨の制御信号を出力する。この制御信号に応じて、経路変換スイッチ43は、熱電変換素子20と極性反転回路60とを接続し(ステップS12)、極性反転回路60は、a端子とA端子、b端子とB2端子とを接続して電熱変換素子30にかかる極性を切り替える(ステップS13)。電熱変換素子30は、熱電変換素子20から供給された電気を用いて電池ユニット14を加熱する(ステップS14)。
=== Operation of Temperature Control System ===
Next, the operation of the temperature adjustment system shown in FIG. 4 will be described.
The BMU 50 acquires the temperature of the battery unit 14 (step S10). When the temperature T of the battery unit 14 is lower than the lower limit temperature (step S11; T <T1), the BMU 50 outputs a control signal indicating that the battery unit 14 should be heated to the path conversion switch 43 and the polarity inversion circuit 60. In response to this control signal, the path conversion switch 43 connects the thermoelectric conversion element 20 and the polarity inversion circuit 60 (step S12), and the polarity inversion circuit 60 connects the a terminal and the A terminal, and the b terminal and the B2 terminal. The polarity applied to the electrothermal transducer 30 is switched by switching (step S13). The electrothermal conversion element 30 heats the battery unit 14 using the electricity supplied from the thermoelectric conversion element 20 (step S14).

電池ユニット14の温度Tが下限温度T1と、上限温度T2の間であれば(ステップS11;T1≦T≦T2)、BMU50は、経路変換スイッチ43に電池の温度調節を停止すべき旨の制御信号を出力する。この制御信号に応じて、経路変換スイッチ43は、熱電変換素子20と昇圧回路44とを接続する(ステップS15)。昇圧回路44は、熱電変換素子20から供給された電気を昇圧し、電池ユニット14に出力する(ステップS16)。   If the temperature T of the battery unit 14 is between the lower limit temperature T1 and the upper limit temperature T2 (step S11; T1 ≦ T ≦ T2), the BMU 50 controls the path conversion switch 43 to stop the battery temperature adjustment. Output a signal. In response to this control signal, the path conversion switch 43 connects the thermoelectric conversion element 20 and the booster circuit 44 (step S15). The booster circuit 44 boosts the electricity supplied from the thermoelectric conversion element 20 and outputs it to the battery unit 14 (step S16).

電池ユニット14の温度Tが上限温度T2より高いとき(ステップS11;T2<T)、BMU50は、経路変換スイッチ43及び極性反転回路60に電池ユニット14を冷却すべき旨の制御信号を出力する。この制御信号に応じて、経路変換スイッチ43は、熱電変換素子20と極性反転回路60とを接続し(ステップS17)、極性反転回路60は、a端子とB1端子、b端子とA端子とを接続して電熱変換素子30にかかる極性を切り替える(ステップS18)。電熱変換素子30は、熱電変換素子20から供給された電気を用いて電池ユニット14の熱を冷却する(ステップS19)。   When the temperature T of the battery unit 14 is higher than the upper limit temperature T2 (step S11; T2 <T), the BMU 50 outputs a control signal indicating that the battery unit 14 should be cooled to the path conversion switch 43 and the polarity inversion circuit 60. In response to this control signal, the path conversion switch 43 connects the thermoelectric conversion element 20 and the polarity inversion circuit 60 (step S17). The polarity inversion circuit 60 connects the a terminal and the B1 terminal, and the b terminal and the A terminal. The polarity applied to the electrothermal conversion element 30 is switched (step S18). The electrothermal conversion element 30 cools the heat of the battery unit 14 using electricity supplied from the thermoelectric conversion element 20 (step S19).

以上説明したように、本実施の形態では、ラジエータ13の熱を電気に変換して、この電気を用いて電池ユニット14の加熱又は冷却を行なう。このため、本実施の形態における温度調整システムによれば、電気を用いて加熱冷却を行なうため、水や空気などの熱伝導媒体を搬送する配管スペースが不要になる。また、温度調整システムでは、熱伝導媒体を用いないため、二次電池と熱伝導媒体とが直接接触した場合の化学反応等を心配する必要もない。   As described above, in the present embodiment, the heat of the radiator 13 is converted into electricity, and the battery unit 14 is heated or cooled using this electricity. For this reason, according to the temperature adjustment system in this Embodiment, since heating and cooling are performed using electricity, the piping space which conveys heat conductive media, such as water and air, becomes unnecessary. In addition, since the heat control medium is not used in the temperature control system, there is no need to worry about a chemical reaction or the like when the secondary battery and the heat transfer medium are in direct contact.

また、温度調整システムにおける電池ユニット14の加熱冷却には、電熱変換素子30を用いる。温度調整システムは、電熱変換素子30だけで加熱と冷却を行なうため省スペースが可能である。   The electrothermal conversion element 30 is used for heating and cooling the battery unit 14 in the temperature adjustment system. Since the temperature adjustment system performs heating and cooling with only the electrothermal conversion element 30, it can save space.

温度調整システムは、電池ユニット14の温度が適正範囲であるとき、熱電変換素子20が生成した電気を充電、又は、インバータ12やモータ11へ供給するため、電気を効率的に利用することができる。   When the temperature of the battery unit 14 is within an appropriate range, the temperature adjustment system charges the electricity generated by the thermoelectric conversion element 20 or supplies the electricity to the inverter 12 or the motor 11, so that electricity can be used efficiently. .

以上、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。   As mentioned above, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

例えば、本実施の形態では、発熱体としてのラジエータ13に熱電変換素子20を取り付けたが、これに限らず、発熱体としてのインバータ14や充電器15に熱電変換素子20を取り付けてもよい。また、本実施の形態では、本発明を電気自動車に適用したが、発熱体と電池とを備える電気自動車以外の装置にも本発明を適用することができる。例えば、内燃機関を動力源とする通常の自動車の場合には、高温となる内燃機関あるいは内燃機関を冷却する冷媒を放熱させるラジエータに熱電変換素子20を取り付けて、内燃機関あるいはラジエータの熱で生成された電力を電熱変換素子30に供給する。   For example, in the present embodiment, the thermoelectric conversion element 20 is attached to the radiator 13 as a heating element. However, the present invention is not limited to this, and the thermoelectric conversion element 20 may be attached to the inverter 14 or the charger 15 as a heating element. In the present embodiment, the present invention is applied to an electric vehicle. However, the present invention can also be applied to an apparatus other than an electric vehicle including a heating element and a battery. For example, in the case of a normal automobile that uses an internal combustion engine as a power source, the thermoelectric conversion element 20 is attached to a radiator that dissipates a high-temperature internal combustion engine or a refrigerant that cools the internal combustion engine, and is generated by heat of the internal combustion engine or the radiator The supplied electric power is supplied to the electrothermal conversion element 30.

電気自動車の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of an electric vehicle. スイッチユニットの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a switch unit. 極性反転回路の内部構成を示す回路図である。It is a circuit diagram which shows the internal structure of a polarity inversion circuit. 温度調整システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of a temperature control system.

符号の説明Explanation of symbols

1 電気自動車 10 タイヤ
11 モータ 12 インバータ
13 ラジエータ 14 電池ユニット
15 充電器 20 熱電変換素子
30 電熱変換素子 40 スイッチユニット
50 BMU 41 倍電圧整流回路
43 経路変換スイッチ 44 昇圧回路
60 極性反転回路 61、62 スイッチ
DESCRIPTION OF SYMBOLS 1 Electric vehicle 10 Tire 11 Motor 12 Inverter 13 Radiator 14 Battery unit 15 Charger 20 Thermoelectric conversion element 30 Electrothermal conversion element 40 Switch unit 50 BMU 41 Voltage doubler rectifier circuit 43 Path conversion switch 44 Booster circuit 60 Polarity inversion circuit 61, 62 switch

Claims (8)

電池が搭載された、発熱部を有する電池搭載装置であって、
前記発熱部で発生する熱により電力を生成する熱電変換部と、
前記熱電変換部が生成した電力により前記電池の加熱又は冷却を行う電熱変換部と、
を備えることを特徴とする電池搭載装置。
A battery-mounted device having a heat generating portion on which a battery is mounted,
A thermoelectric conversion unit that generates electric power by heat generated in the heat generating unit;
An electrothermal converter that heats or cools the battery with the electric power generated by the thermoelectric converter; and
A battery-equipped device comprising:
前記電池の温度に基づいて、前記熱電変換部による前記電池の加熱と冷却を切り換える制御部を備えることを特徴とする請求項1記載の電池搭載装置。   The battery mounting apparatus according to claim 1, further comprising a control unit that switches between heating and cooling of the battery by the thermoelectric conversion unit based on the temperature of the battery. 前記熱電変換部から前記電熱変換部に供給される電力の極性を切り替える極性反転部を備え、
前記制御部は、前記極性反転部により極性を切り換えることにより、前記熱電変換部による前記電池の加熱と冷却を切り換えることを特徴とする請求項2記載の電池搭載装置。
A polarity reversing unit that switches the polarity of power supplied from the thermoelectric conversion unit to the electrothermal conversion unit,
The battery mounting device according to claim 2, wherein the control unit switches heating and cooling of the battery by the thermoelectric conversion unit by switching polarity by the polarity reversing unit.
前記制御部は、前記電池の温度が所定の下限温度以下であれば前記熱電変換部により前記電池を加熱させ、前記電池の温度が所定の上限温度以上であれば前記熱電変換部により前記電池を冷却させることを特徴とする請求項2又は請求項3記載の電池搭載装置。   The control unit causes the thermoelectric conversion unit to heat the battery if the temperature of the battery is equal to or lower than a predetermined lower limit temperature, and causes the thermoelectric conversion unit to heat the battery if the temperature of the battery is equal to or higher than a predetermined upper limit temperature. The battery mounting device according to claim 2, wherein the battery mounting device is cooled. 前記熱電変換部が生成した電力が前記電熱変換部に供給される状態と前記電池に供給される状態とを切り換える供給先切換部を備え、
前記制御部は、前記電池の温度が前記上限温度と前記下限温度の間の場合は、前記供給先切換部により前記熱電変換部が生成した電力を前記電池に供給することを特徴とする請求項4記載の電池搭載装置。
A supply destination switching unit that switches between a state in which the electric power generated by the thermoelectric conversion unit is supplied to the electrothermal conversion unit and a state of being supplied to the battery;
The said control part supplies the electric power which the said thermoelectric conversion part produced | generated by the said supply destination switching part to the said battery, when the temperature of the said battery is between the said upper limit temperature and the said minimum temperature. 4. The battery mounting device according to 4.
当該電池搭載装置は、電気自動車、又は、ハイブリッド自動車であり、
前記発熱部は、モータを制御するインバータ、前記電池の充電器、又は、インバータや充電器を冷却する冷媒を放熱させるラジエータであることを特徴とする請求項1記載の電池搭載装置。
The battery-mounted device is an electric vehicle or a hybrid vehicle,
The battery mounting device according to claim 1, wherein the heat generating unit is an inverter that controls a motor, a battery charger, or a radiator that dissipates a refrigerant that cools the inverter or the charger.
当該電池搭載装置は、内燃機関自動車であり、
前記発熱部は、内燃機関、又は、前記内燃機関を冷却する冷媒を放熱させるラジエータであることを特徴とする請求項1記載の電池搭載装置。
The battery-mounted device is an internal combustion engine automobile,
The battery mounting device according to claim 1, wherein the heat generating unit is an internal combustion engine or a radiator that radiates heat of a refrigerant that cools the internal combustion engine.
発熱部を備える装置に搭載された電池の温度を調整するシステムであって、
前記発熱部で発生する熱により電力を生成する熱電変換部と、
前記熱電変換部が生成した電力により前記電池の加熱又は冷却を行う電熱変換部と、
を備えることを特徴とする電池の温度調整システム。
A system for adjusting the temperature of a battery mounted on a device including a heating part,
A thermoelectric conversion unit that generates electric power by heat generated in the heat generating unit;
An electrothermal converter that heats or cools the battery with the electric power generated by the thermoelectric converter; and
A battery temperature control system comprising:
JP2006288903A 2006-10-24 2006-10-24 Battery mounting apparatus and temperature regulation system Pending JP2008108509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288903A JP2008108509A (en) 2006-10-24 2006-10-24 Battery mounting apparatus and temperature regulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288903A JP2008108509A (en) 2006-10-24 2006-10-24 Battery mounting apparatus and temperature regulation system

Publications (1)

Publication Number Publication Date
JP2008108509A true JP2008108509A (en) 2008-05-08

Family

ID=39441695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288903A Pending JP2008108509A (en) 2006-10-24 2006-10-24 Battery mounting apparatus and temperature regulation system

Country Status (1)

Country Link
JP (1) JP2008108509A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067502A (en) * 2008-09-11 2010-03-25 Mazda Motor Corp Power storage device
JP2012527734A (en) * 2009-05-18 2012-11-08 ビーエスエスティー エルエルシー Battery thermal management system
JP2015033182A (en) * 2013-08-01 2015-02-16 富士電機株式会社 Cooling system of semiconductor power converter
US9103573B2 (en) 2006-08-02 2015-08-11 Gentherm Incorporated HVAC system for a vehicle
US9590282B2 (en) 2013-10-29 2017-03-07 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US9671142B2 (en) 2011-07-11 2017-06-06 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US9863672B2 (en) 2005-04-08 2018-01-09 Gentherm Incorporated Thermoelectric-based air conditioning system
JP2018061390A (en) * 2016-10-07 2018-04-12 スズキ株式会社 Thermoelectric power generating apparatus
WO2018072829A1 (en) * 2016-10-20 2018-04-26 Robert Bosch Gmbh Energy storage devices and methods for controlling an energy storage device
US10170811B2 (en) 2013-01-14 2019-01-01 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
JP2020017509A (en) * 2018-07-25 2020-01-30 克行 廣中 Secondary battery system
US10700393B2 (en) 2014-09-12 2020-06-30 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
JP2022043973A (en) * 2020-09-04 2022-03-16 台達電子工業股▲ふん▼有限公司 Electric vehicle charging module
CN114243129A (en) * 2021-11-23 2022-03-25 华南理工大学 Battery thermal runaway suppression system and method based on semiconductor thermoelectric conversion
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863672B2 (en) 2005-04-08 2018-01-09 Gentherm Incorporated Thermoelectric-based air conditioning system
US9103573B2 (en) 2006-08-02 2015-08-11 Gentherm Incorporated HVAC system for a vehicle
JP2010067502A (en) * 2008-09-11 2010-03-25 Mazda Motor Corp Power storage device
US9666914B2 (en) 2009-05-18 2017-05-30 Gentherm Incorporated Thermoelectric-based battery thermal management system
US8974942B2 (en) 2009-05-18 2015-03-10 Gentherm Incorporated Battery thermal management system including thermoelectric assemblies in thermal communication with a battery
US11264655B2 (en) 2009-05-18 2022-03-01 Gentherm Incorporated Thermal management system including flapper valve to control fluid flow for thermoelectric device
JP2012527734A (en) * 2009-05-18 2012-11-08 ビーエスエスティー エルエルシー Battery thermal management system
US10337770B2 (en) 2011-07-11 2019-07-02 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US9671142B2 (en) 2011-07-11 2017-06-06 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10686232B2 (en) 2013-01-14 2020-06-16 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10170811B2 (en) 2013-01-14 2019-01-01 Gentherm Incorporated Thermoelectric-based thermal management of electrical devices
US10784546B2 (en) 2013-01-30 2020-09-22 Gentherm Incorporated Thermoelectric-based thermal management system
US10270141B2 (en) 2013-01-30 2019-04-23 Gentherm Incorporated Thermoelectric-based thermal management system
JP2015033182A (en) * 2013-08-01 2015-02-16 富士電機株式会社 Cooling system of semiconductor power converter
US10236547B2 (en) 2013-10-29 2019-03-19 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US9590282B2 (en) 2013-10-29 2017-03-07 Gentherm Incorporated Battery thermal management systems including heat spreaders with thermoelectric devices
US10700393B2 (en) 2014-09-12 2020-06-30 Gentherm Incorporated Graphite thermoelectric and/or resistive thermal management systems and methods
JP2018061390A (en) * 2016-10-07 2018-04-12 スズキ株式会社 Thermoelectric power generating apparatus
CN109845023A (en) * 2016-10-20 2019-06-04 罗伯特·博世有限公司 Energy storage device and method for controlling energy storage device
WO2018072829A1 (en) * 2016-10-20 2018-04-26 Robert Bosch Gmbh Energy storage devices and methods for controlling an energy storage device
JP2020017509A (en) * 2018-07-25 2020-01-30 克行 廣中 Secondary battery system
JP7202806B2 (en) 2018-07-25 2023-01-12 克行 廣中 Secondary battery system
US11993132B2 (en) 2018-11-30 2024-05-28 Gentherm Incorporated Thermoelectric conditioning system and methods
US11152557B2 (en) 2019-02-20 2021-10-19 Gentherm Incorporated Thermoelectric module with integrated printed circuit board
JP2022043973A (en) * 2020-09-04 2022-03-16 台達電子工業股▲ふん▼有限公司 Electric vehicle charging module
CN114243129A (en) * 2021-11-23 2022-03-25 华南理工大学 Battery thermal runaway suppression system and method based on semiconductor thermoelectric conversion

Similar Documents

Publication Publication Date Title
JP2008108509A (en) Battery mounting apparatus and temperature regulation system
JP4591896B2 (en) Vehicle equipped with a fuel cell power system
US20120129020A1 (en) Temperature-controlled battery system ii
US20040194489A1 (en) Thermal jacket for battery
US20150229011A1 (en) Battery System and Motor Vehicle
JP2006177265A (en) Thermoelectric power generation device
EP3477764B1 (en) Battery energy storage system with two-phase cooling
KR101526389B1 (en) Thermal management system of battery for electric vehicle
JP2020133589A (en) Battery temperature raising device for hybrid vehicle
WO2005122311A1 (en) Cooling device for fuel cell and vehicle having the same
JP2010119282A (en) Thermal management system
JP2010284045A (en) Heat supply device
JP6056486B2 (en) Vehicle power supply device
JP2010259238A (en) Regenerative power managing system
JP2008226617A (en) Power supply device
JP2003175720A (en) On-vehicle air-conditioning system
US20070272292A1 (en) Thermal-recycling system for a motor vehicle
JP2008103108A (en) Warming system of battery, and automobile using battery as power source
JP2007032534A (en) Thermal power generating apparatus
US9283850B2 (en) Semiconductor device and cooling system for semiconductor device
JP2010086843A (en) Battery temperature adjusting device
JP5369753B2 (en) Power system
WO2015094097A1 (en) Arrangement and method for regulating the temperature of an electrical energy storage in a vehicle
JP2008071879A (en) Thermoelectric conversion system
JP2005051952A (en) Generator