JP2008107177A - Hub unit for driving wheel with state quantity measuring device - Google Patents

Hub unit for driving wheel with state quantity measuring device Download PDF

Info

Publication number
JP2008107177A
JP2008107177A JP2006289484A JP2006289484A JP2008107177A JP 2008107177 A JP2008107177 A JP 2008107177A JP 2006289484 A JP2006289484 A JP 2006289484A JP 2006289484 A JP2006289484 A JP 2006289484A JP 2008107177 A JP2008107177 A JP 2008107177A
Authority
JP
Japan
Prior art keywords
encoder
hub unit
state quantity
measuring device
quantity measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006289484A
Other languages
Japanese (ja)
Inventor
Takeshi Takizawa
岳史 滝澤
Hiromitsu Asai
拡光 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006289484A priority Critical patent/JP2008107177A/en
Publication of JP2008107177A publication Critical patent/JP2008107177A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concrete structure of a hub unit for a driving wheel with a state quantity measuring device aiming at the fourth generation hub unit, which is a structure capable of measuring accurately the state quantity. <P>SOLUTION: A core bar 33 to which an encoder 27a is attached and fixed is fitted and fixed on the second cylindrical surface part 25 existing in a space sealed by a seal ring 15 on a middle part outer circumferential surface of a driving shaft member 11. A pair of sensors 28a, 28b are supported inside a cover 16 constituting the seal ring 15, and each detection part of both sensors 28a, 28b is faced close to the outer circumferential surface of the encoder 27a which is a surface to be detected. An aperture 36 is provided between the encoder 27a and the second step surface 26 of the driving shaft member 11. The problem can be solved by adopting this constitution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明に係る状態量測定装置付駆動輪用ハブユニットは、自動車の駆動輪(FF車の前輪、FR車及びRR車の後輪、4WD車の全車輪)を懸架装置に対して回転自在に支持すると共に、この駆動輪に作用する荷重を測定し、車両の安定運行を確保する為に利用する。   The hub unit for a drive wheel with a state quantity measuring device according to the present invention can rotate a drive wheel of an automobile (front wheel of FF vehicle, rear wheel of FR vehicle and RR vehicle, all wheels of 4WD vehicle) with respect to a suspension device. The load acting on the drive wheel is measured and used to ensure stable operation of the vehicle.

自動車の車輪を懸架装置に対して回転自在に支持するのに、車輪支持用ハブユニットを使用する。又、アンチロックブレーキシステム(ABS)或はトラクションコントロールシステム(TCS)を制御する為には、車輪の回転速度を検出する必要がある。この為、上記車輪支持用ハブユニットに回転速度検出装置を組み込んで成る、回転速度検出装置付車輪支持用ハブユニットにより、上記車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する事が、近年広く行なわれる様になっている。   A wheel-supporting hub unit is used to rotatably support a vehicle wheel with respect to a suspension device. In order to control the anti-lock brake system (ABS) or the traction control system (TCS), it is necessary to detect the rotational speed of the wheel. For this reason, the wheel support hub unit with a rotation speed detection device, in which a rotation speed detection device is incorporated in the wheel support hub unit, supports the wheel rotatably with respect to the suspension device, and the rotation of the wheel. In recent years, the detection of speed has been widely performed.

一方、上記車輪支持用ハブユニットのうち、駆動輪を支持する為の駆動輪用ハブユニットは、変速機からの回転力を伝達する部材である、等速ジョイント用外輪を結合した状態で使用する。そこで、近年、小型・軽量化と取り扱い性の向上とを図るべく、上記駆動輪用ハブユニットに上記等速ジョイント用外輪をユニット化した、所謂第四世代ハブユニットと呼ばれる駆動輪用ハブユニットが考えられている。図6〜8は、この様な第四世代ハブユニットと呼ばれる駆動輪用ハブユニットに回転速度検出装置を組み込んで成る、回転速度検出装置付駆動輪用ハブユニットの従来構造の1例として、特許文献1に記載されたものを示している。   On the other hand, among the wheel support hub units, the drive wheel hub unit for supporting the drive wheels is used in a state where the outer ring for constant velocity joint, which is a member for transmitting the rotational force from the transmission, is coupled. . Therefore, in recent years, a so-called fourth-generation hub unit called a fourth-generation hub unit, in which the outer ring for the constant velocity joint is unitized with the above-mentioned hub unit for the drive wheel, has been developed in order to reduce the size and weight and improve the handleability. It is considered. 6 to 8 show, as an example of a conventional structure of a drive wheel hub unit with a rotational speed detection device, in which a rotational speed detection device is incorporated in such a drive wheel hub unit called a fourth generation hub unit. The thing described in the literature 1 is shown.

この従来構造の1例を構成する、第四世代ハブユニットと呼ばれる駆動輪用ハブユニット1は、外輪2と、内側部材3と、複数個の転動体4、4とを備える。このうちの外輪2は、内周面に第一、第二の外輪軌道5a、5bを、外周面に懸架装置に結合固定する為の結合フランジ6を、それぞれ有する。又、上記内側部材3は、外周面の外端寄り部分(軸方向に関して「外」とは、自動車への組み付け状態で車両の幅方向外側を言い、図11を除く各図の左側。反対に、自動車への組み付け状態で車両の幅方向中央側となる、図11を除く各図の右側を、軸方向に関して「内」と言う。本明細書及び特許請求の範囲の全体で同じ。)に車輪を支持固定する為の取付フランジ7を、同じく中間部に第一、第二の内輪軌道8a、8bを、内端部に等速ジョイント用外輪9を、それぞれ有する。   A drive wheel hub unit 1 called a fourth generation hub unit, which constitutes an example of this conventional structure, includes an outer ring 2, an inner member 3, and a plurality of rolling elements 4 and 4. Of these, the outer ring 2 has first and second outer ring raceways 5a and 5b on the inner circumferential surface and a coupling flange 6 on the outer circumferential surface for coupling and fixing to a suspension device. Further, the inner member 3 is a portion near the outer end of the outer peripheral surface ("outside in the axial direction" means the outer side in the width direction of the vehicle in the assembled state to the automobile, and the left side of each figure except FIG. The right side of each figure except for FIG. 11, which is the center side in the width direction of the vehicle in the assembled state in the automobile, is referred to as “inside” with respect to the axial direction, and is the same throughout the present specification and claims. The mounting flange 7 for supporting and fixing the wheel is similarly provided with first and second inner ring raceways 8a and 8b at the intermediate part and a constant velocity joint outer ring 9 at the inner end part.

この様な内側部材3は、外周面に上記取付フランジ7及び上記第一の内輪軌道8を有する中空のハブ10と、外周面に上記第二の内輪軌道8bを、内端部に上記等速ジョイント用外輪9を、それぞれ有する駆動軸部材11とを、互いに結合固定して成る。これらハブ10と駆動軸部材11とを互いに結合固定する為に、図示の例では、この駆動軸部材11の外端部に設けた中空の軸部12に上記ハブ10をがたつきなく外嵌した状態で、この軸部12の外半部を治具で拡径する事により、この軸部12の外半部外周面を、上記ハブ10の内周面に形成した凹凸面部(螺旋状凹凸部、綾目ローレット部等)13に食い込ませている。尚、この様なハブと駆動軸部材との結合構造に就いては、図示の構造以外にも、従来から各種の構造が知られている(例えば、上記特許文献1参照)。   Such an inner member 3 includes a hollow hub 10 having the mounting flange 7 and the first inner ring raceway 8 on the outer peripheral surface, the second inner ring raceway 8b on the outer peripheral surface, and the constant velocity on the inner end. A drive shaft member 11 having the joint outer ring 9 is coupled and fixed to each other. In order to couple and fix the hub 10 and the drive shaft member 11 to each other, in the example shown in the drawing, the hub 10 is fitted on the hollow shaft portion 12 provided at the outer end portion of the drive shaft member 11 without rattling. In this state, the outer half portion of the shaft portion 12 is expanded with a jig, whereby the outer surface of the outer half portion of the shaft portion 12 is formed on the uneven surface portion (spiral unevenness) formed on the inner peripheral surface of the hub 10. Part, Ayame knurl part, etc.) 13. As for the coupling structure between the hub and the drive shaft member, various structures are conventionally known in addition to the illustrated structure (for example, see Patent Document 1).

又、上記第一、第二の各外輪軌道5a、5bと上記第一、第二の各内輪軌道8a、8bとの間に上記各転動体4、4を、それぞれ複数個ずつ、転動自在に設けている。これら各転動体4、4には、互いに逆向きの(図示の場合には背面組み合わせ型の)接触角と共に、予圧を付与している。尚、図示の例では、上記各転動体4、4として玉を使用しているが、重量の嵩む自動車用の駆動輪用ハブユニットの場合には、円すいころを使用する場合もある。又、上記外輪2の内周面と上記内側部材3の外周面との間に設けられた、上記各転動体4、4を設置した空間の両端開口は、それぞれが密封装置であるシール環14、15により密封している。   Further, a plurality of each of the rolling elements 4, 4 can freely roll between the first and second outer ring raceways 5a, 5b and the first and second inner ring raceways 8a, 8b. Provided. A preload is applied to each of the rolling elements 4 and 4 together with contact angles that are opposite to each other (in the illustrated case, a rear combination type). In the example shown in the figure, balls are used as the rolling elements 4 and 4. However, in the case of a driving wheel hub unit for automobiles which is heavy in weight, a tapered roller may be used. Further, both end openings of the space where the rolling elements 4 and 4 are provided between the inner peripheral surface of the outer ring 2 and the outer peripheral surface of the inner member 3 are sealed rings 14 each being a sealing device. , 15.

これら両シール環14、15のうち、上記空間の内端開口を密封するシール環15は、カバー16とシール材17とから成る。このうちのカバー16は、SPCC等の鋼板にプレス加工を施す事により、断面クランク形で全体を円環状に構成している。即ち、上記カバー16は、大径円筒部18と、この大径円筒部18の軸方向内端縁から径方向内方に直角に折れ曲がった大径円輪部19と、この大径円輪部19の径方向内端縁から軸方向内方に直角に折れ曲がった小径円筒部20と、この小径円筒部20の軸方向内端縁から径方向内方に直角に折れ曲がった小径円輪部21とを備える。この様なカバー16は、上記大径円筒部18を上記外輪2の内端部に締り嵌めで外嵌すると共に、上記大径円輪部19を上記外輪2の内端面に当接させた状態で、この外輪2に支持固定している。又、上記シール材17は、ゴムにより全体を円環状に構成すると共に、その基部を上記小径円輪部21の内周縁部に、全周に亙り固定している。そして、この状態で、上記シール材17を構成する複数本のシールリップ22a、22b、22cの先端縁を、それぞれ上記駆動軸部材11の内端寄り部外周面に形成した円筒面部23及び段差面24に全周に亙り摺接させている。これにより、上記複数個の転動体4、4を設置した空間の内端開口を密封している。   Of these seal rings 14, 15, the seal ring 15 that seals the inner end opening of the space includes a cover 16 and a seal material 17. Of these, the cover 16 is formed in an annular shape with a crank-shaped cross section by pressing a steel plate such as SPCC. That is, the cover 16 includes a large-diameter cylindrical portion 18, a large-diameter annular portion 19 bent at a right angle inward in the radial direction from the axial inner end edge of the large-diameter cylindrical portion 18, and the large-diameter annular portion. A small-diameter cylindrical portion 20 bent at a right angle inward in the axial direction from the radially inner end edge of 19, and a small-diameter ring portion 21 bent at a right angle inward in the radial direction from the axial inner end edge of the small-diameter cylindrical portion 20; Is provided. In such a cover 16, the large-diameter cylindrical portion 18 is externally fitted to the inner end portion of the outer ring 2 by an interference fit, and the large-diameter circular ring portion 19 is in contact with the inner end surface of the outer ring 2. Therefore, the outer ring 2 is supported and fixed. Further, the sealing material 17 is formed in an annular shape by rubber, and its base is fixed to the inner peripheral edge of the small-diameter annular portion 21 over the entire circumference. Then, in this state, the cylindrical surface portion 23 and the step surface formed by forming the leading edges of the plurality of seal lips 22a, 22b and 22c constituting the seal material 17 on the outer peripheral surface of the drive shaft member 11 near the inner end, respectively. 24 is in sliding contact with the entire circumference. Thereby, the inner end opening of the space in which the plurality of rolling elements 4 and 4 are installed is sealed.

又、上記駆動軸部材11の中間部外周面のうち、上記第二の内輪軌道8bと上記円筒面部23との間部分に、この円筒面部23よりも径寸法が小さい、第二の円筒面部25を設けている。更に、これら円筒面部23と第二の円筒面部25との間部分に、第二の段差面26を設けている。そして、この第二の段差面26に、ゴム磁石製で円筒状のエンコーダ27を外嵌固定している。又、この状態で、このエンコーダ27の内端縁を上記第二の段差面26に突き当てる事により、このエンコーダ27の軸方向の位置決めを図っている。被検出面である、このエンコーダ27の外周面には、図8に示す様に、S極とN極とを円周方向に関して交互に且つ等間隔で配置している。これらS極とN極との境界は、それぞれ上記エンコーダ27の軸方向に対して平行である。   Further, in the outer peripheral surface of the intermediate portion of the drive shaft member 11, a portion between the second inner ring raceway 8 b and the cylindrical surface portion 23 has a second cylindrical surface portion 25 having a smaller diameter than the cylindrical surface portion 23. Is provided. Further, a second step surface 26 is provided between the cylindrical surface portion 23 and the second cylindrical surface portion 25. A cylindrical encoder 27 made of a rubber magnet is fitted and fixed to the second step surface 26. In this state, the encoder 27 is positioned in the axial direction by abutting the inner edge of the encoder 27 against the second step surface 26. On the outer peripheral surface of the encoder 27, which is the detection surface, as shown in FIG. 8, S poles and N poles are alternately arranged at equal intervals in the circumferential direction. The boundaries between these S poles and N poles are parallel to the axial direction of the encoder 27, respectively.

又、上記カバー16の一部に、センサ28を支持固定している。具体的には、このカバー16を構成する小径円筒部20に形成した通孔29を通じて、このカバー16の内側に上記センサ28の先端部(図6〜7の下端部)を挿入した状態で、このセンサ28を上記カバー16に支持固定している。そして、この状態で、検出部である、上記センサ28の先端部を、被検出面である、上記エンコーダ27の外周面に近接対向させている。尚、このセンサ28の検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。   A sensor 28 is supported and fixed to a part of the cover 16. Specifically, with the tip of the sensor 28 (the lower end in FIGS. 6 to 7) inserted inside the cover 16 through the through hole 29 formed in the small diameter cylindrical portion 20 constituting the cover 16, The sensor 28 is supported and fixed to the cover 16. In this state, the tip of the sensor 28, which is a detection unit, is placed in close proximity to the outer peripheral surface of the encoder 27, which is a detection surface. Note that a magnetic sensing element such as a Hall IC, a Hall element, an MR element, or a GMR element is incorporated in the detection portion of the sensor 28.

上述の様に構成する回転速度検出装置付駆動輪用ハブユニットの使用時、前記内側部材3に支持固定した車輪と共に、上記エンコーダ27が回転すると、上記センサ28の検出部の近傍を、このエンコーダ27の外周面に設けたS極とN極とが交互に通過する。この結果、上記センサ28の検出部を貫く磁束の向きが交互に変化し、これに伴って、このセンサ28の出力が周期的に変化する。この様にしてセンサ28の出力が変化する周波数は、上記車輪の回転速度に比例する。従って、このセンサ28の出力信号に基づき、この車輪の回転速度を求められる。又、上述の様に構成する回転速度検出装置付駆動輪用ハブユニットの場合には、上記エンコーダ27及びセンサ28を、上記外輪2と上記駆動軸部材11との間部分に存在する、径方向外方に開口する凹み部分の内側に配置している。この為、上記エンコーダ27及びセンサ28を備えた、回転速度検出装置付駆動輪用ハブユニットを小型に構成できる。   When the drive wheel hub unit with a rotational speed detection device configured as described above is used, when the encoder 27 rotates together with the wheel supported and fixed to the inner member 3, the vicinity of the detection portion of the sensor 28 is placed near the encoder. S poles and N poles provided on the outer peripheral surface of 27 pass alternately. As a result, the direction of the magnetic flux penetrating the detection unit of the sensor 28 is alternately changed, and the output of the sensor 28 is periodically changed accordingly. The frequency at which the output of the sensor 28 changes in this way is proportional to the rotational speed of the wheel. Therefore, based on the output signal of the sensor 28, the rotational speed of the wheel can be obtained. Further, in the case of the drive wheel hub unit with the rotational speed detection device configured as described above, the encoder 27 and the sensor 28 are disposed in the radial direction between the outer ring 2 and the drive shaft member 11. It arrange | positions inside the recessed part opened outside. For this reason, the hub unit for a drive wheel with a rotational speed detection device including the encoder 27 and the sensor 28 can be configured in a small size.

ところで、前述したABSやTCS、更には、例えば非特許文献1に記載されている様な、電子制御式ビークルスタビリティコントロールシステム(ESC)等の各種車両用走行安定化装置を、より高度に制御する為には、上述した車輪の回転速度の他、この車輪を介して車輪支持用ハブユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。この様な事情に鑑みて、特許文献2〜3には、特殊なエンコーダを使用して、車輪支持用ハブユニットに加わる荷重の大きさを測定する発明が記載されている。   By the way, the above-mentioned ABS, TCS, and various vehicle travel stabilization devices such as an electronically controlled vehicle stability control system (ESC) as described in Non-Patent Document 1, for example, are more highly controlled. In order to do this, it may be preferable to know the magnitude of the load (for example, one or both of the radial load and the axial load) applied to the wheel supporting hub unit via the wheel in addition to the rotational speed of the wheel described above. is there. In view of such circumstances, Patent Documents 2 to 3 describe inventions that measure the magnitude of the load applied to the wheel supporting hub unit using a special encoder.

図9〜11は、上記荷重を測定可能な、状態量測定装置付車輪支持用ハブユニットの従来構造の第1例として、上記特許文献2に記載されたものを示している。この従来構造の第1例を構成する、車輪支持用ハブユニット30は、所謂第三世代ハブユニットと呼ばれるもので、使用時に懸架装置に結合固定された状態で回転しない外輪2の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ10aを、複数個の転動体4、4を介して回転自在に支持している。これら各転動体4、4には、互いに逆向きの(図示の場合には背面組み合わせ型の)接触角と共に、予圧を付与している。尚、図示の第三世代ハブユニットは従動輪(FF車の後輪、FR車及びRR車の前輪)用である為、使用時にも上記ハブ10aに等速ジョイント用外輪を結合する事はない。これに対して、駆動輪用の第三世代ハブユニットの場合には、使用時に、ハブに等速ジョイント用外輪を結合する。但し、前述した第四世代ハブユニットの場合と異なり、この等速ジョイント用外輪は、ハブユニットとは別個の部品として取り扱われる。何れにしても、本例の場合には、上記ハブ10aの中間部にエンコーダ27aを外嵌固定すると共に、上記外輪2の軸方向中間部で複列に配置された上記各転動体4、4の間部分に1対のセンサ28a、28bを、それぞれの検出部を、被検出面である上記エンコーダ27aの外周面に近接対向させた状態で設けている。   9 to 11 show what is described in Patent Document 2 as a first example of a conventional structure of a wheel support hub unit with a state quantity measuring device capable of measuring the load. The wheel support hub unit 30 constituting the first example of this conventional structure is a so-called third generation hub unit, and is used on the inner diameter side of the outer ring 2 that does not rotate in a state of being coupled and fixed to a suspension device during use. A hub 10a that rotates together with the wheel in a state where the wheel is supported and fixed during use is rotatably supported via a plurality of rolling elements 4 and 4. A preload is applied to each of the rolling elements 4 and 4 together with contact angles that are opposite to each other (in the illustrated case, a rear combination type). The third-generation hub unit shown in the figure is for a driven wheel (rear wheel of FF vehicle, front wheel of FR vehicle and RR vehicle), and therefore, the outer ring for constant velocity joint is not coupled to the hub 10a even during use. . On the other hand, in the case of a third generation hub unit for driving wheels, an outer ring for constant velocity joint is coupled to the hub during use. However, unlike the above-described fourth generation hub unit, the constant velocity joint outer ring is handled as a separate part from the hub unit. In any case, in the case of this example, the encoder 27a is externally fitted and fixed to the intermediate portion of the hub 10a, and the rolling elements 4, 4 are arranged in a double row at the axial intermediate portion of the outer ring 2. A pair of sensors 28a and 28b are provided in the intermediate portion in a state where the respective detection portions are closely opposed to the outer peripheral surface of the encoder 27a which is the detection surface.

又、本例の場合、上記エンコーダ27aとして、永久磁石製のものを使用している。被検出面である、このエンコーダ27aの外周面には、S極に着磁した部分とN極に着磁した部分とを、円周方向に関して交互に且つ等間隔で配置している。そして、この外周面の軸方向片半部(図10の左半部、図11の上半部)を、上記S極と上記N極との境界の位相が上記外周面の軸方向に対して所定方向に所定角度で漸次変化する、第一特性変化部31としている。これに対し、上記外周面の軸方向他半部(図10の右半部、図11の下半部)を、上記S極と上記N極との境界の位相が上記外周面の軸方向に対して上記所定方向と逆方向に上記所定角度と同じ角度で漸次変化する、第二特性変化部32としている。従って、上記S極と上記N極とは、軸方向中央部が円周方向に関して最も突出した(又は凹んだ)、「V」字形(又は「く」字形)となっている。尚、検出精度は劣るが、上記両特性変化部31、32のうちの何れか一方の特性変化部の境界のみを軸方向に対し傾斜させ、他方の特性変化部の境界を軸方向と平行にする事もできる。   In this example, a permanent magnet is used as the encoder 27a. On the outer peripheral surface of the encoder 27a, which is the detection surface, portions magnetized in the S pole and portions magnetized in the N pole are arranged alternately at equal intervals in the circumferential direction. And the axial half of this outer peripheral surface (left half of FIG. 10, upper half of FIG. 11) is the phase of the boundary between the S pole and the N pole with respect to the axial direction of the outer peripheral surface. The first characteristic changing unit 31 gradually changes at a predetermined angle in a predetermined direction. In contrast, the other half of the outer peripheral surface in the axial direction (the right half of FIG. 10 and the lower half of FIG. 11) has a phase at the boundary between the S pole and the N pole in the axial direction of the outer peripheral surface. On the other hand, the second characteristic changing unit 32 gradually changes in the opposite direction to the predetermined direction at the same angle as the predetermined angle. Therefore, the S pole and the N pole have a "V" shape (or "<" shape) in which the central portion in the axial direction protrudes most (or is recessed) in the circumferential direction. Although the detection accuracy is inferior, only the boundary of one of the characteristic change parts 31 and 32 is inclined with respect to the axial direction, and the boundary of the other characteristic change part is parallel to the axial direction. You can also do it.

又、上記1対のセンサ28a、28bのうち、一方のセンサ28aの検出部を上記第一特性変化部31に、他方のセンサ28bの検出部を上記第二特性変化部32に、それぞれ近接対向させている。これら両センサ28a、28bの検出部が上記両特性変化部31、32に対向する位置は、上記エンコーダ27aの円周方向に関して同じ位置としている。又、上記外輪2と上記ハブ10aとの間にアキシアル荷重が作用しない状態で、上記S極と上記N極との軸方向中央部で円周方向に関して最も突出した部分(これらS極とN極との境界の傾斜方向が変化する部分)が、上記両センサ28a、28bの検出部同士の間の丁度中央位置に存在する様に、各部材の設置位置を規制している。尚、本例の場合も、上記各センサ28a、28bの検出部には、前述した様な磁気検知素子を組み込んでいる。   Of the pair of sensors 28a and 28b, the detection part of one sensor 28a is close to the first characteristic change part 31, and the detection part of the other sensor 28b is close to the second characteristic change part 32. I am letting. The positions where the detection units of both the sensors 28a and 28b face both the characteristic change units 31 and 32 are the same with respect to the circumferential direction of the encoder 27a. Further, in the state where an axial load is not applied between the outer ring 2 and the hub 10a, the most projecting portion in the circumferential direction at the axial center of the S pole and the N pole (the S pole and the N pole). The portion where the inclination direction of the boundary changes) is located at the center position between the detection portions of the sensors 28a and 28b. In the case of this example as well, the magnetic detection elements as described above are incorporated in the detection portions of the sensors 28a and 28b.

上述の様に構成する本例の場合、上記外輪2と上記ハブ10aとの間にアキシアル荷重が作用すると、上記両センサ28a、28bの出力信号が変化する位相がずれる。即ち、上記外輪2と上記ハブ10aとの間にアキシアル荷重が作用しておらず、これら外輪2とハブ10aとが相対変位していない、中立状態では、上記両センサ28a、28bの検出部は、図11の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ28a、28bの出力信号の位相は、同図の(C)に示す様に一致する。これに対し、上記エンコーダ27aを固定したハブ10aに、図11の(A)で下向きのアキシアル荷重が作用{上記外輪2と上記ハブ10aとがアキシアル方向(軸方向)に相対変位}した場合には、上記両センサ28a、28bの検出部は、図11の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ28a、28bの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ27aを固定したハブ10aに、図11の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ28a、28bの検出部は、図11の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ28a、28bの出力信号の位相は、同図の(D)に示す様にずれる。   In the case of this example configured as described above, when an axial load is applied between the outer ring 2 and the hub 10a, the phase at which the output signals of the sensors 28a and 28b change is shifted. That is, in the neutral state in which no axial load is applied between the outer ring 2 and the hub 10a, and the outer ring 2 and the hub 10a are not relatively displaced, the detection portions of the sensors 28a and 28b are 11 is opposed to the solid lines a and b in FIG. 11A, that is, the portion shifted from the most protruding portion by the same amount in the axial direction. Therefore, the phases of the output signals of the sensors 28a and 28b coincide as shown in FIG. On the other hand, when the downward axial load acts in FIG. 11A on the hub 10a to which the encoder 27a is fixed (the outer ring 2 and the hub 10a are relatively displaced in the axial direction (axial direction)). The detectors of both the sensors 28a and 28b are opposed to the portions where the deviations in the axial direction from the broken lines b and b in FIG. In this state, the phases of the output signals of the sensors 28a and 28b are shifted as shown in FIG. Further, when the upward axial load in FIG. 11A is applied to the hub 10a to which the encoder 27a is fixed, the detecting portions of both the sensors 28a and 28b are connected to the chain line hub of FIG. , C, that is, the deviation in the axial direction from the most projecting portion opposes different portions in the opposite direction. In this state, the phases of the output signals of the sensors 28a and 28b are shifted as shown in FIG.

上述の様に、本例の場合には、上記両センサ28a、28bの出力信号の位相が、上記外輪2と上記ハブ10aとの間に加わるアキシアル荷重の作用方向(これら外輪2とハブ10aとのアキシアル方向の相対変位の方向)に応じた向きにずれる。又、このアキシアル荷重(相対変位)により上記両センサ28a、28bの出力信号の位相がずれる程度は、このアキシアル荷重(相対変位)が大きくなる程大きくなる。従って、上記両センサ28a、28bの出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪2と上記ハブ10aとのアキシアル方向の相対変位の向き及び大きさ、並びに、これら外輪2とハブ10aとの間に作用しているアキシアル荷重の作用方向及び大きさを求められる。尚、上記両センサ28a、28bの出力信号の位相差に基づいて上記アキシアル方向の相対変位及び荷重を算出する処理は、図示しない演算器により行なう。この為、この演算器には、予め理論計算や実験により調べておいた上記位相差と上記アキシアル方向の相対変位及び荷重との関係を、計算式やマップ等の型式で組み込んでおく。   As described above, in the case of this example, the phase of the output signals of the sensors 28a and 28b depends on the direction of the axial load applied between the outer ring 2 and the hub 10a (the outer ring 2 and the hub 10a In the direction of the relative displacement in the axial direction). Further, the degree to which the phase of the output signals of the sensors 28a and 28b is shifted due to this axial load (relative displacement) increases as the axial load (relative displacement) increases. Accordingly, the direction of relative displacement in the axial direction between the outer ring 2 and the hub 10a based on the presence / absence of the phase shift of the output signals of the sensors 28a, 28b and the direction and magnitude of the shift, if any. The magnitude and the direction and magnitude of the axial load acting between the outer ring 2 and the hub 10a can be obtained. The processing for calculating the relative displacement and the load in the axial direction based on the phase difference between the output signals of the sensors 28a and 28b is performed by a calculator (not shown). For this reason, in this computing unit, the relationship between the phase difference, which has been examined in advance by theoretical calculation or experiment, and the relative displacement and load in the axial direction is incorporated in a model such as a calculation formula or a map.

尚、上述した先発明の構造の1例の場合には、それぞれの検出部を第一、第二の特性変化部に対向させた1対のセンサから成るセンサ組を1組だけ設けている。これに対し、特願2006−143097、特願2006−214197には、それぞれが1対のセンサから成るセンサ組を複数組設ける事で、多方向の変位或は外力を求められる構造が開示されている。   In the case of the above-described example of the structure of the prior invention, only one sensor set including a pair of sensors is provided in which each detection unit is opposed to the first and second characteristic change units. On the other hand, Japanese Patent Application Nos. 2006-143097 and 2006-214197 disclose structures in which a plurality of sensor sets each consisting of a pair of sensors are provided so that multidirectional displacement or external force can be obtained. Yes.

次に、図12〜13は、状態量測定装置付車輪支持用ハブユニットの従来構造の第2例として、前記特許文献3に記載されたものを示している。本例の場合、車輪支持用ハブユニット30を構成するハブ10aの中間部にエンコーダ27bを外嵌固定すると共に、外輪2の軸方向中間部で複列に配置された上記各転動体4、4の間部分に1個のセンサ28を、その検出部を、被検出面である上記エンコーダ27bの外周面に近接対向させた状態で設けている。   Next, FIGS. 12 to 13 show what is described in Patent Document 3 as a second example of a conventional structure of a wheel supporting hub unit with a state quantity measuring device. In the case of this example, the encoder 27b is fitted and fixed to an intermediate portion of the hub 10a constituting the wheel supporting hub unit 30, and the rolling elements 4, 4 are arranged in a double row at the axial intermediate portion of the outer ring 2. One sensor 28 is provided in the intermediate portion in a state in which the detection portion is close to and opposed to the outer peripheral surface of the encoder 27b which is a detection surface.

本例の場合も、上記エンコーダ27bとして、永久磁石製のものを使用している。被検出面である、このエンコーダ27bの外周面には、S極とN極とを、円周方向に関して交互に且つ等間隔で配置している。そして、図13に示す様に、上記S極と上記N極との境界を、上記外周面の軸方向に対し所定角度だけ傾斜した直線形状とすると共に、円周方向に隣り合う各境界同士で、軸方向に対する傾斜方向を互いに逆にしている。これにより、径方向から見た、上記S極及び上記N極の形状をそれぞれ台形として、これらS極及びN極の円周方向に関する幅寸法を、それぞれ軸方向に関して漸次変化させている。そして、この様なエンコーダ27bの外周面に、上記1個のセンサ28の検出部を近接対向させている。この様に構成する本例の場合、アキシアル荷重に基づいて上記外輪2と上記ハブ10aとが軸方向に相対変位すると、上記センサ28の出力信号のデューティ比(高電位継続時間/1周期)が変化する。従って、このデューティ比に基づいて、上記相対変位の向き及び大きさ、更には上記アキシアル荷重の作用方向及び大きさを求められる。   Also in this example, the encoder 27b is made of a permanent magnet. S poles and N poles are alternately arranged at equal intervals in the circumferential direction on the outer peripheral surface of the encoder 27b, which is the detected surface. And as shown in FIG. 13, while making the boundary of the said S pole and the said N pole into the linear shape inclined only the predetermined angle with respect to the axial direction of the said outer peripheral surface, between each boundary adjacent to the circumferential direction The inclination directions with respect to the axial direction are opposite to each other. Thereby, the shape of the S pole and the N pole as seen from the radial direction is a trapezoid, and the width dimension of the S pole and the N pole in the circumferential direction is gradually changed with respect to the axial direction. And the detection part of the said one sensor 28 is made to oppose and adjoin to the outer peripheral surface of such an encoder 27b. In the case of this example configured as described above, when the outer ring 2 and the hub 10a are relatively displaced in the axial direction based on the axial load, the duty ratio (high potential duration / one cycle) of the output signal of the sensor 28 is set. Change. Therefore, based on this duty ratio, the direction and magnitude of the relative displacement, and further the direction and magnitude of the axial load can be obtained.

尚、上述した従来構造の第1〜2例では、エンコーダの被検出面を円筒面とし、この被検出面にセンサの検出部を径方向に対向させる構成を採用している。これに対し、エンコーダの被検出面を円輪面とし、この被検出面にセンサの検出部を軸方向に対向させる構成を採用すれば、外輪とハブとの径方向の相対変位、並びに、これら外輪とハブとの間に作用するラジアル荷重を求める事ができる。   In the first and second examples of the conventional structure described above, a configuration is adopted in which the detection surface of the encoder is a cylindrical surface, and the detection portion of the sensor is opposed to the detection surface in the radial direction. On the other hand, if the detection surface of the encoder is an annular surface and the sensor detection unit is opposed to the detection surface in the axial direction, the relative displacement in the radial direction between the outer ring and the hub, and these The radial load acting between the outer ring and the hub can be obtained.

ところで、上述した従来構造の第1〜2例が記載された特許文献2〜3等に示される様に、従来は、第三世代ハブユニットを対象とした状態量測定装置付車輪支持用ハブユニットの具体的な構造は知られていたが、第四世代ハブユニットを対象とした状態量測定装置付車輪支持用ハブユニットの具体的な構造は知られていなかった。この為、この第四世代ハブユニットを対象とした状態量測定装置付駆動輪用ハブユニットの具体的な構造を実現する事が望まれる。この場合、特に、第四世代ハブユニットに対する、状態量測定装置を構成するエンコーダ及びセンサの設置位置を工夫する事により、状態量の測定精度を十分に良好にできる構造を実現する事が望まれる。   By the way, as shown in Patent Documents 2 to 3 and the like in which the first and second examples of the conventional structure described above are described, conventionally, a wheel support hub unit with a state quantity measuring device intended for a third generation hub unit. The specific structure of the wheel support hub unit with a state quantity measuring device for the fourth generation hub unit was not known. For this reason, it is desired to realize a specific structure of the drive wheel hub unit with a state quantity measuring device for the fourth generation hub unit. In this case, in particular, it is desired to realize a structure that can sufficiently improve the measurement accuracy of the state quantity by devising the installation position of the encoder and the sensor that constitute the state quantity measurement device for the fourth generation hub unit. .

特開2005−140146号公報JP-A-2005-140146 特開2006−133045号公報JP 2006-133045 A 特開2006−113017号公報JP 2006-1113017 A 青山元男著、「レッドバッジスーパー図解シリーズ/クルマの最新メカがわかる本」、p.138−139、p.146−149、株式会社三推社/株式会社講談社、平成13年12月20日Motoo Aoyama, “Red Badge Super Illustrated Series / A book that shows the latest mechanics of cars”, p. 138-139, p. 146-149, Sangensha Co., Ltd./Kodansha Co., Ltd., December 20, 2001

本発明は、上述の様な事情に鑑み、第四世代ハブユニットを対象とした状態量測定装置付駆動輪用ハブユニットの具体的な構造であって、且つ、状態量の測定精度を良好にできる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is a specific structure of a drive wheel hub unit with a state quantity measuring device for a fourth generation hub unit, and has good state quantity measurement accuracy. It was invented to realize a possible structure.

本発明の請求項1に記載した状態量測定装置付駆動輪用ハブユニットは、駆動輪用ハブユニットと、状態量測定装置とを備える。
このうちの駆動輪用ハブユニットは、所謂第四世代ハブユニットと呼ばれるもので、内周面に第一、第二の外輪軌道を有し、使用時に懸架装置に結合された状態で回転しない外輪と、外周面の軸方向外端寄り部分に車輪を支持する為の取付フランジを、同じく中間部に第一、第二の内輪軌道を、軸方向内端部に等速ジョイント用外輪を、それぞれ有し、使用時に回転する内側部材と、上記第一、第二の各外輪軌道と上記第一、第二の各内輪軌道との間にそれぞれ複数個ずつ転動自在に設けられた転動体と、上記外輪の内周面と上記内側部材の外周面との間でこれら各転動体を設置した空間の両端開口を密封する1対の密封装置とを備える。そして、このうちの内側部材は、外周面に上記取付フランジ及び上記第一の内輪軌道を有するハブと、外周面に上記第二の内輪軌道を、軸方向内端部に上記等速ジョイント用外輪を、それぞれ有する駆動軸部材とを、互いに結合固定して成る。
又、上記状態量測定装置は、エンコーダと、センサ装置と、演算器とを備える。
このうちのエンコーダは、上記内側部材の一部に支持固定されると共に、この内側部材と同心の被検出面を有する。そして、この被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相若しくはピッチを、少なくともこの被検出面の幅方向一部分で、この幅方向に関して連続的に変化させている。
又、上記センサ装置は、使用時にも回転しない部分に支持されると共に、少なくとも1個のセンサを備える。そして、この少なくとも1個のセンサは、その検出部を上記被検出面のうちで、上記特性変化の位相若しくはピッチが幅方向に関して連続的に変化する部分に対向させており、且つ、この被検出面の特性変化に対応して出力信号を変化させる。
又、上記演算器は、上記センサの出力信号に関する情報(1対のセンサの出力信号同士の間に存在する位相差、1個のセンサの出力信号のデューティ比等)に基づいて、上記外輪と上記内側部材との間の状態量(これら外輪と内側部材との間の相対変位、これら外輪と内側部材との間に作用する外力)を算出する機能を有する。
特に、本発明の状態量測定装置付駆動輪用ハブユニットの場合には、上記エンコーダ及び上記センサを、上記両密封装置により密封された空間内に配置している。
The drive wheel hub unit with a state quantity measuring device according to claim 1 of the present invention includes a drive wheel hub unit and a state quantity measuring device.
Of these, the drive wheel hub unit is a so-called fourth generation hub unit, which has first and second outer ring raceways on the inner peripheral surface, and is an outer ring that does not rotate in a state of being coupled to a suspension device during use. And a mounting flange for supporting the wheel on the outer peripheral surface near the outer end in the axial direction, the first and second inner ring raceways in the middle part, and the outer ring for the constant velocity joint in the inner end part in the axial direction, respectively. An inner member that rotates during use, and a plurality of rolling elements provided in a freely rotatable manner between each of the first and second outer ring raceways and the first and second inner ring raceways. And a pair of sealing devices for sealing the opening at both ends of the space where the rolling elements are installed between the inner peripheral surface of the outer ring and the outer peripheral surface of the inner member. The inner member includes a hub having the mounting flange and the first inner ring raceway on the outer peripheral surface, the second inner ring raceway on the outer peripheral surface, and the outer ring for the constant velocity joint on the inner end in the axial direction. The drive shaft members respectively having the above are fixedly coupled to each other.
The state quantity measuring device includes an encoder, a sensor device, and a calculator.
Among these, the encoder is supported and fixed to a part of the inner member and has a detection surface concentric with the inner member. The characteristics of the surface to be detected are alternately changed in the circumferential direction, and the phase or pitch at which the characteristics of the surface to be detected change in the circumferential direction is set to the width at least in a part of the width of the surface to be detected. The direction is continuously changed.
The sensor device is supported by a portion that does not rotate during use, and includes at least one sensor. The at least one sensor has its detection portion opposed to a portion of the detected surface where the phase or pitch of the characteristic change continuously changes in the width direction. The output signal is changed in response to changes in the surface characteristics.
Further, the computing unit is configured to output the outer ring and the outer ring based on information related to the output signals of the sensors (phase difference existing between the output signals of a pair of sensors, duty ratio of the output signal of one sensor, etc.). It has a function of calculating a state quantity between the inner member (relative displacement between the outer ring and the inner member, an external force acting between the outer ring and the inner member).
Particularly, in the case of the drive wheel hub unit with the state quantity measuring device of the present invention, the encoder and the sensor are arranged in a space sealed by the both sealing devices.

上述の様な請求項1に記載した発明を実施する場合に、好ましくは、請求項2に記載した様に、上記1対の密封装置のうち、軸方向内側の密封装置として、基端部を外輪の軸方向内端部に嵌合固定した環状のカバーと、その基端部をこのカバーの先端部に全周に亙り固定すると共に、その先端縁を駆動軸部材の表面に全周に亙り摺接させたシール材とから成るものを使用する。そして、上記エンコーダを、上記駆動軸部材の中間部外周面のうち第二の内輪軌道と上記シール材を摺接させた部分との間部分に支持固定する。これと共に、上記センサ装置を、上記カバーを介して上記外輪に支持固定する。   When carrying out the invention described in claim 1 as described above, preferably, as described in claim 2, of the pair of sealing devices, the proximal end portion is used as a sealing device inside in the axial direction. An annular cover that is fitted and fixed to the inner end of the outer ring in the axial direction, and its base end is fixed to the front end of the cover over the entire circumference, and the tip edge is extended over the entire surface of the drive shaft member. Use a material that consists of a sealing material in sliding contact. The encoder is supported and fixed to a portion between the second inner ring raceway and the portion where the seal material is slidably contacted on the outer peripheral surface of the intermediate portion of the drive shaft member. At the same time, the sensor device is supported and fixed to the outer ring through the cover.

又、上述の請求項2に記載した発明を実施する場合には、例えば請求項3に記載した様に、上記エンコーダを永久磁石(ゴム磁石、プラスチック磁石、焼結磁石)製とすると共に、このエンコーダの被検出面の特性を円周方向に関して交互に変化させるべく、この被検出面にS極とN極とを円周方向に関して交互に配置する。
又、この様な請求項3に記載した発明を実施する場合に、好ましくは、請求項4に記載した様に、エンコーダを、磁性材製で円環状の芯金の全周に添着固定すると共に、この芯金を内側部材の一部に嵌合固定する事により、この内側部材に対して上記エンコーダを支持固定する。
又、この様な請求項4に記載した発明を実施する場合には、例えば請求項5に記載した様に、接着剤を使用して上記芯金の全周に上記エンコーダを添着固定する。
又は、請求項6に記載した様に、上記芯金をインサート部品として上記エンコーダをインサート成形する事により、この芯金の全周にこのエンコーダを添着固定する。
When carrying out the invention described in claim 2, the encoder is made of a permanent magnet (rubber magnet, plastic magnet, sintered magnet) as described in claim 3, for example. In order to alternately change the characteristics of the detected surface of the encoder in the circumferential direction, S poles and N poles are alternately arranged in the circumferential direction on the detected surface.
In carrying out the invention described in claim 3, preferably, the encoder is fixedly attached to the entire circumference of an annular cored bar made of a magnetic material, as described in claim 4. The encoder is supported and fixed to the inner member by fitting and fixing the metal core to a part of the inner member.
When the invention described in claim 4 is carried out, as described in claim 5, for example, the encoder is attached and fixed to the entire circumference of the core metal using an adhesive.
Alternatively, as described in claim 6, the encoder is attached and fixed to the entire circumference of the core bar by insert molding the core bar as an insert part.

又、上述の請求項4〜6に記載した発明を実施する場合には、例えば請求項7に記載した様に、上記芯金の表面のうち、上記エンコーダを添着固定した部分から外れた部分に、軸方向内側の密封装置を構成するシール材の一部を摺接させる。
又、上述の請求項3〜7に記載した発明を実施する場合に、好ましくは、請求項8に記載した様に、上記エンコーダの被検出面の幅方向端縁部と、上記内側部材又は上記芯金との間に、この被検出面の幅方向に関する隙間(好ましくは、上記エンコーダの厚さ寸法と同程度以上の幅寸法を有する隙間)を設ける。
又、上述の請求項3〜8に記載した発明を実施する場合に、好ましくは、請求項9に記載した様に、上記エンコーダの被検出面の幅方向端部に、S極及びN極が配置されていない無着磁領域を設ける。
Further, when carrying out the invention described in claims 4 to 6 described above, for example, as described in claim 7, a portion of the surface of the core metal that is out of a portion where the encoder is attached and fixed. Then, a part of the sealing material constituting the axially inner sealing device is brought into sliding contact.
In carrying out the invention described in the third to seventh aspects, preferably, as described in the eighth aspect, the edge in the width direction of the detection surface of the encoder and the inner member or the A gap in the width direction of the surface to be detected (preferably a gap having a width dimension equal to or larger than the thickness dimension of the encoder) is provided between the cored bar.
Further, when carrying out the invention described in claims 3 to 8 above, preferably, as described in claim 9, the S pole and the N pole are provided at the end in the width direction of the detected surface of the encoder. A non-magnetized region that is not arranged is provided.

上述の様に構成する本発明の状態量測定装置付駆動輪用ハブユニットによれば、第四世代ハブユニットを対象とした状態量測定装置付駆動輪用ハブユニットの具体的な構造を実現できる。又、本発明の場合には、状態量測定装置を構成するエンコーダ及びセンサを、1対の密封装置により密封された空間内に配置している為、これらエンコーダ及びセンサに塵芥や泥水等の異物が付着する事を防止できる。従って、状態量の測定精度を良好にできる。
又、請求項2に記載した構成を採用すれば、上記エンコーダ及びセンサを、外輪と駆動軸部材との間に存在する、凹み部分の内側に配置できる。この為、上記エンコーダ及びセンサを備えた駆動輪用ハブユニットを小型に構成できる。
According to the drive wheel hub unit with a state quantity measuring device of the present invention configured as described above, a specific structure of the drive wheel hub unit with a state quantity measuring device for a fourth generation hub unit can be realized. . In the case of the present invention, since the encoder and sensor constituting the state quantity measuring device are arranged in a space sealed by a pair of sealing devices, foreign matter such as dust or muddy water is placed on the encoder and sensor. Can be prevented from adhering. Therefore, the state quantity measurement accuracy can be improved.
Moreover, if the structure described in Claim 2 is employ | adopted, the said encoder and sensor can be arrange | positioned inside the recessed part which exists between an outer ring | wheel and a drive shaft member. For this reason, the hub unit for drive wheels provided with the said encoder and sensor can be comprised small.

又、請求項3に記載した様にエンコーダを永久磁石製とする場合に、請求項4に記載した構成を採用すれば、このエンコーダ自身を内側部材に圧入嵌合する場合に生じる様な不都合{例えば、圧入に伴ってエンコーダの内部に発生する応力が過大になって、このエンコーダが破損すると言った不都合や、使用時の温度上昇により上記内側部材が熱膨張した際に、ゴム磁石製又はプラスチック磁石製のエンコーダがクリープ(樹脂に作用する応力を一定に保った場合に、その樹脂の変形量が時間と共に増大する現象)を起こし、その後の温度低下により上記内側部材が熱収縮した際に、この内側部材の外周面と上記エンコーダの内周面との間に隙間が生じて、このエンコーダの組付け位置がずれる(状態量の測定誤差が生じる)と言った不都合}が生じる事を防止できる。即ち、請求項4に記載した構成を採用すれば、エンコーダ自身ではなく、このエンコーダを添着固定した芯金を内側部材に圧入嵌合できる為、圧入に伴うこのエンコーダの内部発生応力を十分に小さくできる。従って、このエンコーダがこの内部発生応力によって破損する事を有効に防止できる。又、このエンコーダは、上記芯金の全周に添着固定しており、使用時に上記内側部材が熱膨張と熱収縮とを繰り返しても、上記エンコーダと上記芯金との間に隙間が生じる事はない為、このエンコーダの組付け位置がずれる事を防止できる。更に、請求項4に記載した構成を採用すれば、磁性材製の芯金の存在に基づき、上記エンコーダの着磁強度の向上やこの着磁強度の均一化を図れる。   Further, when the encoder is made of a permanent magnet as described in claim 3, if the configuration described in claim 4 is adopted, such an inconvenience occurs when the encoder itself is press-fitted into the inner member { For example, when the inner member thermally expands due to inconvenience that the encoder generates excessive stress due to press-fitting and this encoder is damaged, or due to temperature rise during use, it is made of rubber magnet or plastic When the magnet encoder causes creep (a phenomenon in which the amount of deformation of the resin increases with time when the stress acting on the resin is kept constant), and the inner member thermally contracts due to a subsequent temperature drop, The inconvenience that a gap is generated between the outer peripheral surface of the inner member and the inner peripheral surface of the encoder, and the assembly position of the encoder is deviated (measurement error of state quantity occurs). It is possible to prevent that occurs. In other words, if the configuration described in claim 4 is adopted, the internal metal stress caused by press-fitting can be made sufficiently small because the core metal attached and fixed to the encoder can be press-fitted into the inner member instead of the encoder itself. it can. Therefore, the encoder can be effectively prevented from being damaged by the internally generated stress. In addition, this encoder is fixedly attached to the entire circumference of the core bar, and even if the inner member repeats thermal expansion and thermal contraction during use, a gap is generated between the encoder and the core bar. Therefore, the encoder mounting position can be prevented from shifting. Furthermore, if the structure described in claim 4 is adopted, the magnetizing strength of the encoder can be improved and the magnetizing strength can be made uniform based on the presence of the core bar made of a magnetic material.

又、請求項3〜7に記載した様にエンコーダを永久磁石製とする場合に、請求項8〜9に記載した構成を採用すれば、エンコーダの被検出面から出入りする磁束が磁性材製の内側部材又は芯金に流れ、状態量の測定を正確に行なえなくなる、と言った不都合が生じる事を有効に防止できる。即ち、上記エンコーダの被検出面の幅方向端縁部を、上記内側部材又は上記芯金の一部に存在する段差面に突き当てると、この被検出面の幅方向端部から出入りする磁束が、上記段差面の周辺部分に向けて多く流れる様になる。この理由は、上記内側部材及び芯金の透磁率が、空気の透磁率に比べて桁違いに大きい為であり、上記磁束がこれら内側部材及び芯金の内部を通過しようとする傾向が強くなる為である。何れにしても、上述の様な原因で磁束の流れ方向が歪むと、上記被検出面に近接対向する部分(各センサの検出部を配置する部分)の磁束密度が、この被検出面の幅方向両側で著しく異なった大きさになり、結果として、状態量の測定を正確に行なえなくなる可能性がある。   Further, when the encoder is made of a permanent magnet as described in claims 3 to 7, if the configuration described in claims 8 to 9 is adopted, the magnetic flux entering and exiting the detected surface of the encoder is made of a magnetic material. It is possible to effectively prevent the inconvenience that the state quantity cannot be accurately measured by flowing into the inner member or the cored bar. That is, when the edge in the width direction of the detected surface of the encoder is abutted against a stepped surface existing on a part of the inner member or the core metal, the magnetic flux entering and exiting from the end in the width direction of the detected surface is A large amount of fluid flows toward the periphery of the step surface. The reason is that the magnetic permeability of the inner member and the cored bar is much larger than that of air, and the magnetic flux tends to pass through the inner member and the cored bar. Because of that. In any case, when the flow direction of the magnetic flux is distorted due to the above-described causes, the magnetic flux density of the portion that is close to and faces the detection surface (the portion where the detection portion of each sensor is arranged) is the width of the detection surface. The size may be significantly different on both sides of the direction, and as a result, the state quantity may not be accurately measured.

これに対し、請求項8に記載した構成を採用すれば、上記被検出面の幅方向端縁部と上記内側部材又は上記芯金との間に、この被検出面の幅方向に関する隙間を設けている為、この被検出面から出入りする磁束が内側部材又は芯金に流れて、磁束の流れ方向が歪む事を有効に防止できる。又、請求項9に記載した構成を採用すれば、エンコーダの被検出面の幅方向端部に無着磁領域を設けている為、このエンコーダの幅方向端縁部を上記内側部材又は上記芯金の一部に突き当てない場合には勿論、仮に突き当てた場合でも、上記被検出面(着磁領域)から出入りする磁束が上記内側部材又は上記芯金に流れて、磁束の流れ方向が歪む事を有効に防止できる。従って、請求項8〜9に記載した構成を採用すれば、エンコーダの被検出面(着磁領域)に近接対向する部分(各センサの検出部を配置する部分)の磁束密度が、この被検出面の幅方向両側で著しく異なった大きさになる事を有効に防止できる。この結果、状態量の測定を正確に行なえなくなると言った不都合が生じる事を有効に防止できる。又、請求項8に記載した構成、即ち、エンコーダの幅方向端縁部を内側部材の一部に突き当てない構成を採用すれば、このエンコーダをこの内側部材に圧入する際に、このエンコーダが上記段差面と圧入治具との間で圧縮されない為、この圧入の際にエンコーダが破損すると言った不都合が生じる事を防止できる。   On the other hand, if the structure described in claim 8 is adopted, a gap in the width direction of the detected surface is provided between the edge in the width direction of the detected surface and the inner member or the cored bar. Therefore, it is possible to effectively prevent the magnetic flux entering and exiting from the detected surface from flowing into the inner member or the cored bar and distorting the flow direction of the magnetic flux. Further, if the configuration described in claim 9 is adopted, since the non-magnetized region is provided at the end in the width direction of the detected surface of the encoder, the end edge in the width direction of the encoder is connected to the inner member or the core. Of course, when not hitting a part of the gold, even if it hits, the magnetic flux entering and exiting from the detected surface (magnetized region) flows to the inner member or the core metal, and the flow direction of the magnetic flux changes. Distortion can be effectively prevented. Therefore, if the configuration described in claims 8 to 9 is employed, the magnetic flux density of the portion (the portion where the detection portion of each sensor is arranged) that is close to and faces the detection surface (magnetization region) of the encoder is detected. It is possible to effectively prevent the size from becoming significantly different on both sides in the width direction of the surface. As a result, it is possible to effectively prevent the inconvenience that the state quantity cannot be measured accurately. In addition, if the configuration described in claim 8, that is, the configuration in which the edge in the width direction of the encoder is not abutted against a part of the inner member, when the encoder is press-fitted into the inner member, the encoder Since the compression is not performed between the step surface and the press-fitting jig, it is possible to prevent the inconvenience that the encoder is damaged during the press-fitting.

[実施の形態の第1例]
図1〜2は、請求項1、2、3、4、6、9に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、第四世代ハブユニットである、前述の図6〜7に示した駆動輪用ハブユニット1に、状態量測定装置を構成するエンコーダ27c及び1対のセンサ28a、28bを組み付けて、第四世代ハブユニットを対象とした状態量測定装置付駆動輪用ハブユニットの具体的な構造を実現すると共に、状態量(外輪2と内側部材3との間のアキシアル方向の相対変位、これら外輪2と内側部材3との間に作用するアキシアル荷重)の測定精度を良好にできる構造を実現する点にある。上記駆動輪用ハブユニット1の全体構造に就いては、前述の図6〜7に示した通りであり、且つ、上記エンコーダ27c及び上記両センサ28a、28bを含んで構成する状態量測定装置の基本構造、及び、この状態量測定装置による状態量の測定原理は、前述の図9〜11に示した従来構造の第1例の場合とほぼ同様である。この為、同等部分には同一符号を付して、重複する図示並びに説明を省略若しくは簡略にし、以下、本例の特徴部分、並びに、上記従来構造と異なる部分を中心に説明する。
[First example of embodiment]
FIGS. 1 and 2 show a first example of an embodiment of the present invention corresponding to claims 1, 2, 3, 4, 6 and 9. The feature of this example is that the drive wheel hub unit 1 shown in FIGS. 6 to 7 described above, which is a fourth generation hub unit, includes an encoder 27c and a pair of sensors 28a and 28b constituting a state quantity measuring device. To realize a specific structure of the drive wheel hub unit with the state quantity measuring device for the fourth generation hub unit, and the state quantity (relative in the axial direction between the outer ring 2 and the inner member 3). This is to realize a structure capable of improving the measurement accuracy of the displacement and the axial load acting between the outer ring 2 and the inner member 3. The overall structure of the drive wheel hub unit 1 is the same as that shown in FIGS. 6 to 7 described above, and is a state quantity measuring device that includes the encoder 27c and the sensors 28a and 28b. The basic structure and the principle of state quantity measurement by this state quantity measuring device are substantially the same as in the case of the first example of the conventional structure shown in FIGS. For this reason, equivalent parts are denoted by the same reference numerals, and overlapping illustrations and explanations are omitted or simplified. Hereinafter, the characteristic parts of this example and parts different from the conventional structure will be mainly described.

本例の場合、上記駆動輪用ハブユニット1を構成する、鋼製の駆動軸部材11の中間部外周面に設けた第二の円筒面部25に、プラスチック磁石製の上記エンコーダ27cを、軟鋼板(磁性材)製で円筒状の芯金33を介して外嵌固定している。即ち、本例の場合には、この芯金33の外周面に上記エンコーダ27cの内周面を、全周に亙り接着固定している。そして、この状態で、この芯金33を、上記第二の円筒面部25に圧入(締り嵌めで外嵌)している。又、この状態で、これら芯金33及びエンコーダ27cの内端縁を、上記第二の円筒面部25の内端縁に存在する第二の段差面26に突き当てる事により、軸方向の位置決めを図っている。又、本例の場合には、図2に示す様に、被検出面である、上記エンコーダ27cの外周面のうち、軸方向内端部に、S極とN極とを配置していない、無着磁領域34を設けている。これと共に、本例の場合、上記エンコーダ27cの外周面のうち、この無着磁領域34を除いた部分の幅方向中央部に、第一、第二両特性変化部31、32同士の境界を配置している。又、上記外輪2の内端部に外嵌固定した、シール環15を構成するカバー16の内側に、合成樹脂製のセンサホルダ35を支持固定すると共に、このセンサホルダ35に上記1対のセンサ28a、28bを包埋支持している。そして、これら両センサ28a、28bの検出部を、上記第一、第二両特性変化部31、32に近接対向させている。   In the case of this example, the encoder 27c made of a plastic magnet is attached to the second cylindrical surface portion 25 provided on the outer peripheral surface of the intermediate portion of the steel drive shaft member 11 constituting the drive wheel hub unit 1, and the mild steel plate. It is made of (magnetic material) and is fitted and fixed via a cylindrical cored bar 33. That is, in the case of this example, the inner peripheral surface of the encoder 27c is adhered and fixed to the outer peripheral surface of the core bar 33 over the entire periphery. In this state, the core bar 33 is press-fitted into the second cylindrical surface portion 25 (externally fitted with an interference fit). Further, in this state, the inner end edges of the core metal 33 and the encoder 27c are abutted against the second step surface 26 existing at the inner end edge of the second cylindrical surface portion 25, thereby positioning in the axial direction. I am trying. In the case of this example, as shown in FIG. 2, the S pole and the N pole are not arranged at the inner end in the axial direction on the outer peripheral surface of the encoder 27c, which is the detected surface. A non-magnetized region 34 is provided. At the same time, in the case of the present example, the boundary between the first and second characteristic changing portions 31 and 32 is formed in the central portion in the width direction of the outer peripheral surface of the encoder 27c excluding the non-magnetized region 34. It is arranged. A sensor holder 35 made of synthetic resin is supported and fixed inside a cover 16 constituting the seal ring 15 that is externally fitted and fixed to the inner end of the outer ring 2, and the pair of sensors is attached to the sensor holder 35. 28a and 28b are embedded and supported. And the detection part of both these sensors 28a and 28b is made to adjoin and oppose the said both 1st and 2nd characteristic change parts 31 and 32. FIG.

上述の様に構成する本例の状態量測定装置付駆動輪用ハブユニットによれば、第四世代ハブユニットを対象とした状態量測定装置付駆動輪用ハブユニットの具体的な構造を実現できる。又、本例の場合には、状態量測定装置を構成するエンコーダ27c及び1対のセンサ28a、28bを、1対のシール環14、15(シール環14に就いては、図6参照)により密封された空間内に配置している為、これらエンコーダ27c及び両センサ28a、28bに、塵芥や泥水等の異物が付着する事を防止できる。従って、状態量の測定精度を良好にできる。又、本例の場合には、上記エンコーダ27c及び両センサ28a、28bを、上記外輪2と上記駆動軸部材11との間部分に存在する、径方向外方に開口する凹み部分の内側に配置している。この為、上記エンコーダ27c及び両センサ28a、28bを備えた、状態量測定装置付駆動輪用ハブユニットを小型に構成できる。   According to the drive wheel hub unit with a state quantity measuring device of the present example configured as described above, a specific structure of the drive wheel hub unit with a state quantity measuring device for the fourth generation hub unit can be realized. . In the case of this example, the encoder 27c and the pair of sensors 28a and 28b constituting the state quantity measuring device are provided by a pair of seal rings 14 and 15 (see FIG. 6 for the seal ring 14). Since it is arranged in a sealed space, it is possible to prevent foreign matters such as dust and muddy water from adhering to the encoder 27c and the sensors 28a and 28b. Therefore, the state quantity measurement accuracy can be improved. In the case of this example, the encoder 27c and the sensors 28a and 28b are arranged inside a recessed portion that is present in the portion between the outer ring 2 and the drive shaft member 11 and opens radially outward. is doing. For this reason, the drive wheel hub unit with a state quantity measuring device, which includes the encoder 27c and the sensors 28a and 28b, can be made compact.

又、本例の場合、上記駆動軸部材11の中間部外周面に設けた第二の円筒面部25に、上記エンコーダ27c自身ではなく、このエンコーダ27cを接着固定した芯金33を圧入嵌合する構成を採用している。この為、この圧入に伴って上記エンコーダ27cの内部で発生する応力を、十分に小さくできる。従って、このエンコーダ27cがこの応力によって破損する事を有効に防止できる。又、このエンコーダ27cは、上記芯金33の外周面の全周に接着固定している為、使用時に上記駆動軸部材11が熱膨張と熱収縮とを繰り返しても、上記エンコーダ27cと上記芯金33との間に隙間が生じる事はない。従って、このエンコーダ27cの組付け位置がずれる事を防止できる。   Further, in the case of this example, not the encoder 27c itself but the core metal 33 to which the encoder 27c is bonded and fixed is press-fitted into the second cylindrical surface portion 25 provided on the outer peripheral surface of the intermediate portion of the drive shaft member 11. The configuration is adopted. For this reason, the stress generated inside the encoder 27c due to the press-fitting can be sufficiently reduced. Therefore, it is possible to effectively prevent the encoder 27c from being damaged by this stress. Further, since the encoder 27c is adhesively fixed to the entire circumference of the outer peripheral surface of the core bar 33, the encoder 27c and the core can be used even if the drive shaft member 11 repeats thermal expansion and contraction during use. There is no gap between the gold 33. Therefore, the assembly position of the encoder 27c can be prevented from shifting.

又、本例の場合には、上記エンコーダ27cの内端縁を、上記駆動軸部材11の中間部外周面に設けた第二の段差面26に突き当てている。但し、上記エンコーダ27cの外周面の軸方向内端部に無着磁領域34を設ける事により、この外周面の外端部乃至中間部に存在する第一、第二両特性変化部31、32と、上記第二の段差面26との間に、間隔をあけている。この為、これら第一、第二両特性変化部31、32のうち、上記第二の段差面26側の第二の特性変化部32から出入りする磁束が、この第二の段差面26の周辺部分に向けて流れる事を有効に防止できる。従って、上記第一、第二両特性変化部31、32に近接対向する部分(1対のセンサ28a、28bの検出部を配置する部分)の磁束密度が、上記両特性変化部31、32同士の間で著しく異なった大きさになる事を有効に防止できる。この結果、状態量の測定を正確に行なえなくなると言った不都合が生じる事を有効に防止できる。   In the case of this example, the inner end edge of the encoder 27 c is abutted against the second step surface 26 provided on the outer peripheral surface of the intermediate portion of the drive shaft member 11. However, by providing a non-magnetized region 34 at the inner end in the axial direction of the outer peripheral surface of the encoder 27c, both the first and second characteristic changing portions 31, 32 existing at the outer end or intermediate portion of the outer peripheral surface. And a gap between the second step surface 26 and the second step surface 26. For this reason, the magnetic flux entering and exiting from the second characteristic change portion 32 on the second step surface 26 side out of the first and second characteristic change portions 31 and 32 is around the second step surface 26. It can prevent effectively flowing toward the part. Therefore, the magnetic flux density of the portion (a portion where the detection portions of the pair of sensors 28a and 28b are arranged) close to and opposed to the first and second characteristic changing portions 31 and 32 is the same as the both characteristic changing portions 31 and 32. It is possible to effectively prevent the size from being significantly different between the two. As a result, it is possible to effectively prevent the inconvenience that the state quantity cannot be measured accurately.

尚、上述した実施の形態の第1例では、上述したエンコーダ27cの代わりに、図3に示す様な被検出面を有するエンコーダ27d、即ち、第二特性変化部32の幅寸法を、第一特性変化部31の幅寸法よりも大きくしたエンコーダ27dを使用する事もできる。この様なエンコーダ27dを使用すれば、上記第二特性変化部32の内端部(鎖線αよりも右側の領域)で上述した様な原因で磁束の流れ方向が変化しても、検出領域である外端部乃至中間部(鎖線αよりも左側の領域)で上述した様な原因で磁束の流れ方向が変化しない様にできる。従って、この場合も、上記検出領域に近接対向する部分(1対のセンサ28a、28bの検出部を配置する部分)の磁束密度が、軸方向の両側で著しく異なった大きさになる事を有効に防止できる。   In the first example of the above-described embodiment, instead of the encoder 27c described above, the width of the encoder 27d having the detected surface as shown in FIG. An encoder 27d that is larger than the width dimension of the characteristic changing unit 31 can also be used. If such an encoder 27d is used, even if the flow direction of the magnetic flux changes due to the above-described cause at the inner end portion (region on the right side of the chain line α) of the second characteristic changing portion 32, the detection region can It is possible to prevent the flow direction of the magnetic flux from changing at a certain outer end portion to intermediate portion (region on the left side of the chain line α) due to the reasons described above. Therefore, in this case as well, it is effective that the magnetic flux density of the portion close to and opposite to the detection region (the portion where the detection portions of the pair of sensors 28a and 28b are arranged) becomes significantly different on both sides in the axial direction. Can be prevented.

[実施の形態の第2例]
次に、図4は、請求項1、2、3、4、6、8に対応する、本発明の実施の形態の第2例を示している。本例の場合には、エンコーダ27aとして、前述の図9〜11に示した、被検出面である外周面に無着磁領域を有しないエンコーダ27aを使用している。その代わりに、本例の場合、このエンコーダ27a及び芯金33の内端縁と、駆動輪部材11の中間部外周面に存在する第二の段差面26との間に、上記エンコーダ27aの厚さ寸法と同程度の幅寸法(図4の左右方向寸法)を有する、隙間36を設けている。これにより、被検出面である、上記エンコーダ27aの外周面と、上記第二の段差面26との間に、上記隙間36の幅寸法分の間隔をあけている。この為、本例の場合も、上記エンコーダ27aの外周面から出入りする磁束が上記第二の段差面26の周辺部分に流れて、磁束の流れ方向が変化する事を有効に防止できる。従って、上記エンコーダ27aの外周面に近接対向する部分(1対のセンサ28a、28bの検出部を配置する部分)の磁束密度が、軸方向の両側で著しく異なった大きさになる事を有効に防止できる。この結果、状態量の測定を正確に行なえなくなる、と言った不都合が生じる事を有効に防止できる。その他の部分の構成及び作用は、上述した実施の形態の第1例の場合と同様である。
[Second Example of Embodiment]
Next, FIG. 4 shows a second example of an embodiment of the present invention corresponding to claims 1, 2, 3, 4, 6, and 8. In the case of this example, the encoder 27a shown in the above-described FIGS. 9 to 11 is used as the encoder 27a. The encoder 27a does not have a non-magnetized region on the outer peripheral surface that is the detection surface. Instead, in the case of this example, the thickness of the encoder 27a is between the inner end edges of the encoder 27a and the cored bar 33 and the second step surface 26 present on the outer peripheral surface of the intermediate portion of the drive wheel member 11. A gap 36 having a width dimension (dimension in the left-right direction in FIG. 4) comparable to the dimension is provided. As a result, a gap corresponding to the width of the gap 36 is provided between the outer peripheral surface of the encoder 27a, which is the detected surface, and the second stepped surface 26. For this reason, also in the case of this example, it is possible to effectively prevent the magnetic flux entering and exiting from the outer peripheral surface of the encoder 27a from flowing to the peripheral portion of the second step surface 26 and changing the flow direction of the magnetic flux. Therefore, it is effective that the magnetic flux density of the portion (the portion where the detection portions of the pair of sensors 28a and 28b are disposed) close to and opposed to the outer peripheral surface of the encoder 27a become significantly different on both sides in the axial direction. Can be prevented. As a result, it is possible to effectively prevent the inconvenience that the state quantity cannot be measured accurately. The configuration and operation of the other parts are the same as in the case of the first example of the embodiment described above.

[実施の形態の第3例]
次に、図5は、請求項1、2、3、4、6、7、8に対応する、本発明の実施の形態の第3例を示している。本例の場合も、エンコーダ27aとして、前述の図9〜11に示した、被検出面である外周面に無着磁領域を有しないエンコーダ27aを使用している。又、このエンコーダ27aを添着固定する芯金33aとして、断面クランク形で全体を円環状に構成したものを使用している。この芯金33aは、大径円筒部37と、小径円筒部38と、これら両円筒部37、38を連結する円輪部39とを備える。そして、このうちの小径円筒部38の外周面に、上記エンコーダ27aの内周面を全周に亙り接着固定している。又、この状態で、このエンコーダ27aの内端縁と上記円輪部39との間に、このエンコーダ27aの厚さ寸法と同程度の幅寸法(図5の左右方向寸法)を有する、隙間36を設けている。又、この様にエンコーダ27aを支持固定した芯金33aは、上記大径円筒部37を、駆動軸部材11の中間部外周面に設けた円筒面部23に圧入する事により、この駆動軸部材11に支持固定している。又、この状態で、上記円輪部39を、上記円筒面部23の外端部に存在する第二の段差面26に突き当てる事により、軸方向の位置決めを図っている。又、この状態で、上記大径円筒部37の外周面に、シール環15を構成するシール材17に形成した3本のシールリップ22a、22b、22cのうちの2本のシールリップ22a、22bの先端縁を、全周に亙り摺接させている。
[Third example of embodiment]
Next, FIG. 5 shows a third example of the embodiment of the invention corresponding to claims 1, 2, 3, 4, 6, 7, and 8. Also in this example, the encoder 27a shown in FIGS. 9 to 11 is used as the encoder 27a. The encoder 27a does not have a non-magnetized region on the outer peripheral surface that is the detection surface. In addition, as the core metal 33a for attaching and fixing the encoder 27a, a core having a cross-sectional crank shape and an annular shape as a whole is used. The core bar 33 a includes a large-diameter cylindrical portion 37, a small-diameter cylindrical portion 38, and an annular portion 39 that connects both the cylindrical portions 37, 38. The inner peripheral surface of the encoder 27a is bonded and fixed to the outer peripheral surface of the small diameter cylindrical portion 38 over the entire periphery. Further, in this state, the gap 36 between the inner edge of the encoder 27a and the annular ring portion 39 has a width dimension (dimension in the left-right direction in FIG. 5) comparable to the thickness dimension of the encoder 27a. Is provided. In addition, the metal core 33 a that supports and fixes the encoder 27 a in this way press-fits the large-diameter cylindrical portion 37 into the cylindrical surface portion 23 provided on the outer peripheral surface of the intermediate portion of the drive shaft member 11, thereby driving the drive shaft member 11. It is fixed to support. Further, in this state, the annular ring portion 39 is abutted against the second step surface 26 present at the outer end portion of the cylindrical surface portion 23 to achieve axial positioning. In this state, the two seal lips 22a, 22b of the three seal lips 22a, 22b, 22c formed on the seal material 17 constituting the seal ring 15 are formed on the outer peripheral surface of the large-diameter cylindrical portion 37. The tip edge of the is slid over the entire circumference.

上述の様に構成する本例の場合、芯金33aを構成する各部位のうち、エンコーダ27aを外嵌固定した小径円筒部38ではなく、このエンコーダ27aを外嵌固定していない大径円筒部37を、駆動軸部材11の円筒面部23に圧入している。この為、この圧入時に上記エンコーダ27aが拡径する量を、上述した各実施の形態の場合に比べて、更に小さくできる。従って、この圧入時に上記エンコーダ27aの内部で発生する応力を、更に小さくできる。この結果、この応力によって上記エンコーダ27aが破損する事を、より有効に防止できる。又、本例の場合、被検出面である、上記エンコーダ27aの外周面と、上記芯金33aを構成する円輪部39との間に、上記隙間36の幅寸法分の間隔をあけている。この為、上記エンコーダ27aの外周面から出入りする磁束が上記円輪部39に流れて、磁束の流れ方向が変化する事を有効に防止できる。従って、上記エンコーダ27aの外周面に近接対向する部分(1対のセンサ28a、28bの検出部を配置する部分)の磁束密度が、軸方向の両側で著しく異なった大きさになる事を有効に防止できる。この結果、状態量の測定を正確に行なえなくなる、と言った不都合が生じる事を有効に防止できる。その他の部分の構成及び作用は、前述の図1に示した実施の形態の第1例の場合と同様である。   In the case of this example configured as described above, out of each portion constituting the cored bar 33a, not the small-diameter cylindrical portion 38 to which the encoder 27a is externally fixed, but the large-diameter cylindrical portion to which the encoder 27a is not externally fixed. 37 is press-fitted into the cylindrical surface portion 23 of the drive shaft member 11. For this reason, the amount by which the encoder 27a expands during the press-fitting can be made smaller than in the case of the above-described embodiments. Therefore, the stress generated inside the encoder 27a during the press-fitting can be further reduced. As a result, it is possible to more effectively prevent the encoder 27a from being damaged by this stress. In the case of this example, an interval corresponding to the width dimension of the gap 36 is provided between the outer peripheral surface of the encoder 27a, which is a detected surface, and the annular portion 39 constituting the cored bar 33a. . For this reason, it is possible to effectively prevent the magnetic flux flowing in and out from the outer peripheral surface of the encoder 27a from flowing into the annular portion 39 and changing the flow direction of the magnetic flux. Therefore, it is effective that the magnetic flux density of the portion (the portion where the detection portions of the pair of sensors 28a and 28b are disposed) close to and opposed to the outer peripheral surface of the encoder 27a become significantly different on both sides in the axial direction. Can be prevented. As a result, it is possible to effectively prevent the inconvenience that the state quantity cannot be measured accurately. The configuration and operation of the other parts are the same as those in the first example of the embodiment shown in FIG.

尚、上述した各実施の形態では、エンコーダ及びセンサを含んで構成する状態量測定装置として、前述の図9〜11に示した、位相差検出方式の状態量測定装置を採用した。但し、本発明を実施する場合には、前述の図12〜13に示した、デューティ比検出方式の状態量測定装置を採用する事もできる。   In each of the above-described embodiments, the phase difference detection type state quantity measuring device shown in FIGS. 9 to 11 described above is adopted as the state quantity measuring device including the encoder and the sensor. However, when the present invention is implemented, the state quantity measuring device of the duty ratio detection method shown in FIGS.

本発明の実施の形態の第1例を示す、図7と同様の図。The figure similar to FIG. 7 which shows the 1st example of embodiment of this invention. この第1例に組み込むエンコーダの被検出面の一部を径方向外方から見た図。The figure which looked at a part of to-be-detected surface of the encoder incorporated in this 1st example from the radial direction outer side. エンコーダの被検出面の別例を示す、図2と同様の図。The figure similar to FIG. 2 which shows another example of the to-be-detected surface of an encoder. 本発明の実施の形態の第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example. 回転速度検出装置付駆動輪用ハブユニットの従来構造の1例を示す断面図。Sectional drawing which shows an example of the conventional structure of the hub unit for drive wheels with a rotational speed detection apparatus. 図6のA部拡大図。The A section enlarged view of FIG. この従来構造の1例に組み込むエンコーダの被検出面の一部を径方向外方から見た図。The figure which looked at a part of to-be-detected surface of the encoder integrated in an example of this conventional structure from the radial direction outer side. 状態量測定装置付車輪支持用ハブユニットの従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of the conventional structure of the hub unit for wheel support with a state quantity measuring device. この第1例に組み込むエンコーダの被検出面の一部を径方向外方から見た図。The figure which looked at a part of to-be-detected surface of the encoder incorporated in this 1st example from the radial direction outer side. アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。The diagram which shows the output signal of the sensor which changes with the fluctuation | variation of an axial load. 状態量測定装置付車輪支持用ハブユニットの従来構造の第2例を示す断面図。Sectional drawing which shows the 2nd example of the conventional structure of the hub unit for wheel support with a state quantity measuring device. この第2例に組み込むエンコーダの被検出面の一部を径方向外方から見た図。The figure which looked at a part of to-be-detected surface of the encoder incorporated in this 2nd example from the radial direction outer side.

符号の説明Explanation of symbols

1 駆動輪用ハブユニット
2 外輪
3 内側部材
4 転動体
5a、5b 外輪軌道
6 結合フランジ
7 取付フランジ
8a、8b 内輪軌道
9 等速ジョイント用外輪
10、10a ハブ
11 駆動軸部材
12 軸部
13 凹凸面部
14 シール環
15 シール環
16 カバー
17 シール材
18 大径円筒部
19 大径円輪部
20 小径円筒部
21 小径円輪部
22a、22b、22c シールリップ
23 円筒面部
24 段差面
25 第二の円筒面部
26 第二の段差面
27、27a〜27d エンコーダ
28、28a、28b センサ
29 通孔
30 車輪支持用ハブユニット
31 第一特性変化部
32 第二特性変化部
33、33a 芯金
34 無着磁領域
35 センサホルダ
36 隙間
37 大径円筒部
38 小径円筒部
39 円輪部
DESCRIPTION OF SYMBOLS 1 Drive wheel hub unit 2 Outer ring 3 Inner member 4 Rolling element 5a, 5b Outer ring raceway 6 Coupling flange 7 Mounting flange 8a, 8b Inner ring raceway 9 Outer ring for constant velocity joint 10, 10a Hub 11 Drive shaft member 12 Shaft part 13 Uneven surface part 14 Seal ring 15 Seal ring 16 Cover 17 Seal material 18 Large diameter cylindrical portion 19 Large diameter annular portion 20 Small diameter cylindrical portion 21 Small diameter annular portion 22a, 22b, 22c Seal lip 23 Cylindrical surface portion 24 Step surface 25 Second cylindrical surface portion 26 Second step surface 27, 27a to 27d Encoder 28, 28a, 28b Sensor 29 Through hole 30 Wheel support hub unit 31 First characteristic change part 32 Second characteristic change part 33, 33a Core metal 34 Non-magnetized area 35 Sensor holder 36 Clearance 37 Large diameter cylindrical portion 38 Small diameter cylindrical portion 39 Ring portion

Claims (9)

駆動輪用ハブユニットと、状態量測定装置とを備え、
このうちの駆動輪用ハブユニットは、内周面に第一、第二の外輪軌道を有し、使用時に懸架装置に結合された状態で回転しない外輪と、外周面の軸方向外端寄り部分に車輪を支持する為の取付フランジを、同じく中間部に第一、第二の内輪軌道を、軸方向内端部に等速ジョイント用外輪を、それぞれ有し、使用時に回転する内側部材と、上記第一、第二の各外輪軌道と上記第一、第二の各内輪軌道との間にそれぞれ複数個ずつ転動自在に設けられた転動体と、上記外輪の内周面と上記内側部材の外周面との間でこれら各転動体を設置した空間の両端開口を密封する1対の密封装置とを備え、このうちの内側部材は、外周面に上記取付フランジ及び上記第一の内輪軌道を有するハブと、外周面に上記第二の内輪軌道を、軸方向内端部に上記等速ジョイント用外輪を、それぞれ有する駆動軸部材とを、互いに結合固定して成るものであり、
上記状態量測定装置は、エンコーダと、センサ装置と、演算器とを備え、
このうちのエンコーダは、上記内側部材の一部に支持固定されると共に、この内側部材と同心の被検出面を有し、この被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相若しくはピッチを、少なくともこの被検出面の幅方向一部分で、この幅方向に関して連続的に変化させたものであり、
上記センサ装置は、使用時にも回転しない部分に支持されると共に、少なくとも1個のセンサを備え、この少なくとも1個のセンサは、その検出部を上記被検出面のうちで、上記特性変化の位相若しくはピッチが幅方向に関して連続的に変化する部分に対向させており、且つ、この被検出面の特性変化に対応して出力信号を変化させるものであり、
上記演算器は、上記センサの出力信号に関する情報に基づいて、上記外輪と上記内側部材との間の状態量を算出する機能を有するものである、
状態量測定装置付駆動輪用ハブユニットであって、
上記エンコーダ及び上記センサを、上記両密封装置により密封された空間内に配置した事を特徴とする状態量測定装置付駆動輪用ハブユニット。
A drive wheel hub unit and a state quantity measuring device;
Of these, the drive wheel hub unit has first and second outer ring raceways on the inner peripheral surface, and is connected to a suspension device when in use and does not rotate, and a portion of the outer peripheral surface near the axial outer end. An inner member that has a mounting flange for supporting the wheel, a first inner ring raceway, a second inner ring raceway in the middle part, and a constant velocity joint outer ring at the inner end part in the axial direction. A plurality of rolling elements provided between the first and second outer ring raceways and the first and second inner ring raceways, respectively, and an inner peripheral surface of the outer ring and the inner member. And a pair of sealing devices for sealing both end openings of the space in which each of the rolling elements is installed between the outer peripheral surface and the inner member includes the mounting flange and the first inner ring raceway on the outer peripheral surface. The second inner ring raceway on the outer peripheral surface, and the constant velocity on the inner end in the axial direction. The Yointo outer race, and a drive shaft member having respectively, are those formed by binding fixed to each other,
The state quantity measuring device includes an encoder, a sensor device, and a calculator.
Among these, the encoder is supported and fixed to a part of the inner member, has a detected surface concentric with the inner member, and alternately changes the characteristics of the detected surface in the circumferential direction. The phase or pitch at which the characteristic of the detected surface changes in the circumferential direction is continuously changed in the width direction at least in a part of the width direction of the detected surface,
The sensor device is supported by a portion that does not rotate even when in use, and includes at least one sensor, and the at least one sensor has a phase of the characteristic change in the detection surface of the detection unit. Alternatively, the pitch is opposed to a portion where the pitch continuously changes in the width direction, and the output signal is changed in response to the change in the characteristics of the detected surface.
The computing unit has a function of calculating a state quantity between the outer ring and the inner member based on information on the output signal of the sensor.
A drive wheel hub unit with a state quantity measuring device,
A drive wheel hub unit with a state quantity measuring device, wherein the encoder and the sensor are arranged in a space sealed by the both sealing devices.
1対の密封装置のうち、軸方向内側の密封装置は、基端部を外輪の軸方向内端部に嵌合固定した環状のカバーと、その基端部をこのカバーの先端部に全周に亙り固定すると共にその先端縁を駆動軸部材の表面に全周に亙り摺接させたシール材とから成り、エンコーダは、上記駆動軸部材の中間部外周面のうち第二の内輪軌道と上記シール材を摺接させた部分との間部分に支持固定されており、センサ装置は、上記カバーを介して上記外輪に支持固定されている、請求項1に記載した駆動輪用ハブユニット。   Of the pair of sealing devices, the axially inner sealing device includes an annular cover whose base end is fitted and fixed to the inner end of the outer ring in the axial direction, and the base end of the entire periphery around the front end of the cover. And a seal member whose tip edge is slidably contacted with the entire surface of the drive shaft member, and the encoder includes the second inner ring raceway and the above-mentioned inner ring raceway on the outer peripheral surface of the intermediate portion of the drive shaft member. 2. The drive wheel hub unit according to claim 1, wherein the sensor device is supported and fixed to a portion between which the seal material is slidably contacted, and the sensor device is supported and fixed to the outer ring via the cover. エンコーダを永久磁石製とすると共に、このエンコーダの被検出面の特性を円周方向に関して交互に変化させるべく、この被検出面にS極とN極とを円周方向に関して交互に配置している、請求項1〜2のうちの何れか1項に記載した状態量測定装置付駆動輪用ハブユニット。   The encoder is made of a permanent magnet, and S poles and N poles are alternately arranged in the circumferential direction on the detected surface in order to alternately change the characteristics of the detected surface of the encoder in the circumferential direction. A hub unit for a drive wheel with a state quantity measuring device according to any one of claims 1 and 2. エンコーダを、磁性材製で円環状の芯金の全周に添着固定すると共に、この芯金を内側部材の一部に嵌合固定する事により、この内側部材に対して上記エンコーダを支持固定している、請求項3に記載した状態量測定装置付駆動輪用ハブユニット。   The encoder is fixedly attached to the entire circumference of an annular cored bar made of a magnetic material, and the encoder is supported and fixed to the inner member by fitting and fixing the cored bar to a part of the inner member. A hub unit for a drive wheel with a state quantity measuring device according to claim 3. 接着剤を使用して芯金の全周にエンコーダを添着固定している、請求項4に記載した状態量測定装置付駆動輪用ハブユニット。   The drive wheel hub unit with a state quantity measuring device according to claim 4, wherein an encoder is attached and fixed to the entire circumference of the core metal using an adhesive. 芯金をインサート部品としてエンコーダをインサート成形する事により、この芯金の全周にエンコーダを添着固定している、請求項4に記載した状態量測定装置付駆動輪用ハブユニット。   The drive wheel hub unit with a state quantity measuring device according to claim 4, wherein the encoder is attached and fixed to the entire circumference of the core metal by insert molding the core metal as an insert part. 芯金の表面のうち、エンコーダを添着固定した部分から外れた部分に、軸方向内側の密封装置を構成するシール材の一部を摺接させている、請求項4〜6のうちの何れか1項に記載した状態量測定装置付駆動輪用ハブユニット。   The part of the sealing material which comprises the sealing device of an axial direction inner side is slidably contacted with the part which remove | deviated from the part which attached and fixed the encoder among the surfaces of a metal core. A hub unit for a drive wheel with a state quantity measuring device described in item 1. エンコーダの被検出面の幅方向端縁部と、内側部材又は芯金との間に、この被検出面の幅方向に関する隙間を設けている、請求項3〜7のうちの何れか1項に記載した状態量測定装置付駆動輪用ハブユニット。   The gap in the width direction of the detected surface is provided between the edge in the width direction of the detected surface of the encoder and the inner member or the cored bar. Drive wheel hub unit with state quantity measuring device described. エンコーダの被検出面の幅方向端部に、S極及びN極が配置されていない無着磁領域を設けている、請求項3〜8のうちの何れか1項に記載した状態量測定装置付駆動輪用ハブユニット。
The state quantity measuring device according to any one of claims 3 to 8, wherein a non-magnetized region in which the S pole and the N pole are not provided is provided at an end in the width direction of the detected surface of the encoder. Hub unit for attached drive wheels.
JP2006289484A 2006-10-25 2006-10-25 Hub unit for driving wheel with state quantity measuring device Pending JP2008107177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289484A JP2008107177A (en) 2006-10-25 2006-10-25 Hub unit for driving wheel with state quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289484A JP2008107177A (en) 2006-10-25 2006-10-25 Hub unit for driving wheel with state quantity measuring device

Publications (1)

Publication Number Publication Date
JP2008107177A true JP2008107177A (en) 2008-05-08

Family

ID=39440646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289484A Pending JP2008107177A (en) 2006-10-25 2006-10-25 Hub unit for driving wheel with state quantity measuring device

Country Status (1)

Country Link
JP (1) JP2008107177A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2111002A1 (en) 2008-04-16 2009-10-21 Fujitsu Limited Packet relaying apparatus
JP2009276326A (en) * 2008-05-19 2009-11-26 Nsk Ltd Apparatus for measuring the state quantity of rolling bearing unit
JP2013019459A (en) * 2011-07-11 2013-01-31 Nsk Ltd Bearing device for railway vehicle axle
JP2016075325A (en) * 2014-10-03 2016-05-12 内山工業株式会社 Seal device
CN106050943A (en) * 2015-04-10 2016-10-26 斯凯孚公司 Capped Bearing with Vibration Sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2111002A1 (en) 2008-04-16 2009-10-21 Fujitsu Limited Packet relaying apparatus
JP2009276326A (en) * 2008-05-19 2009-11-26 Nsk Ltd Apparatus for measuring the state quantity of rolling bearing unit
JP2013019459A (en) * 2011-07-11 2013-01-31 Nsk Ltd Bearing device for railway vehicle axle
JP2016075325A (en) * 2014-10-03 2016-05-12 内山工業株式会社 Seal device
CN106050943A (en) * 2015-04-10 2016-10-26 斯凯孚公司 Capped Bearing with Vibration Sensor

Similar Documents

Publication Publication Date Title
JP4844010B2 (en) Rolling bearing unit with load measuring device
CN102481806B (en) With the wheel-support rolling bearing unit of code device
JP4333259B2 (en) Rolling bearing unit with rotational speed detector
JP5596471B2 (en) Rolling bearing unit with rotational speed detector
JP2005042866A5 (en)
JP2008107177A (en) Hub unit for driving wheel with state quantity measuring device
JP2008162569A (en) Rolling bearing unit with physical quantity measuring device
JP4784967B2 (en) Wheel bearing device with rotation speed detector
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP4628049B2 (en) Wheel bearing device with rotation speed detector
JP2007183247A (en) Rotation supporting device with load measuring device
JP2008151727A (en) Rotation speed detector and wheel bearing device with the detector
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2007171104A (en) Roller bearing unit with load-measuring device
JP4957259B2 (en) State quantity measuring device for rolling bearing units
JP2008082483A (en) Rolling bearing unit with state quantity measuring device
JP4628053B2 (en) Wheel bearing device with rotation speed detector
JP2004176730A (en) Roller bearing unit for wheel with encoder
JP2001234928A (en) Rolling bearing unit with encoder
JP2007232150A (en) Seal with encoder and bearing unit
JP2006201157A (en) Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device
JP6488920B2 (en) Rolling bearing unit with rotational speed detector
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit
JP2007003266A (en) Bearing device for wheel fitted with rotational speed detector
JP2008224397A (en) Load measuring device for roller bearing unit