JP2008107106A - Optical path testing system - Google Patents

Optical path testing system Download PDF

Info

Publication number
JP2008107106A
JP2008107106A JP2006287804A JP2006287804A JP2008107106A JP 2008107106 A JP2008107106 A JP 2008107106A JP 2006287804 A JP2006287804 A JP 2006287804A JP 2006287804 A JP2006287804 A JP 2006287804A JP 2008107106 A JP2008107106 A JP 2008107106A
Authority
JP
Japan
Prior art keywords
optical
test
communication device
far
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006287804A
Other languages
Japanese (ja)
Other versions
JP4901421B2 (en
Inventor
Yoshitaka Enomoto
圭高 榎本
Tsuneichi Watanabe
常一 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006287804A priority Critical patent/JP4901421B2/en
Publication of JP2008107106A publication Critical patent/JP2008107106A/en
Application granted granted Critical
Publication of JP4901421B2 publication Critical patent/JP4901421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical path testing system capable of specifying which far-end-side optical communication device reflected pulses are from optical pulse reflecting means for test corresponding to without requiring operators to determine or actually measure the distances between a near-end-side optical communication device such as OLT and far-end-side optical communication devices such as ONUs on the basis of their design drawing. <P>SOLUTION: The optical path testing system 100 includes a test acceptance determining means 70. The test acceptance determining means 70 determines the difference between a reflection level when the M-th far-end-side optical communication device 30 is connected to a second optical path 24 and a reflection level when the (M-1)-th far-end-side optical communication device 30 is connected to the second optical path 24 and correlates reflecting locations in such a way that the distance to a reflecting location at which the reflection level is the highest among the reflection level differences may be correlated to the M-th far-end-side optical communication device 30. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光パルス測定器(Optical Time Domain Reflectometer)を用いて光ファイバの光損失を測定する光線路試験システムに関する。   The present invention relates to an optical line test system for measuring optical loss of an optical fiber by using an optical pulse measuring device (Optical Time Domain Reflectometer).

ONU(Optical Network Unit)の直前に取付けられた反射器からの反射レベルを測定して、光パルス測定器で光ファイバ通信網の光ファイバの光損失を求める技術が開示されている(例えば、特許文献1を参照。)。   A technique is disclosed in which a reflection level from a reflector attached immediately before an ONU (Optical Network Unit) is measured, and an optical loss of an optical fiber of an optical fiber communication network is obtained by an optical pulse measuring device (for example, a patent) See reference 1.)

また、光パルス測定器でONUの直前に取付けられた反射器からの反射レベル及び反射位置の変化を測定し、光ファイバ通信網で発生した故障の切り分けを行う技術が開示されている(例えば、特許文献2を参照。)。   In addition, a technique for measuring a change in a reflection level and a reflection position from a reflector attached immediately before an ONU with an optical pulse measuring device and isolating a failure occurring in an optical fiber communication network is disclosed (for example, (See Patent Document 2).

特開2003−222573号公報JP 2003-222573 A 特開平4−211204号公報JP-A-4-211204

光ファイバ通信網に複数のONUが接続されている場合、特許文献1又は2で開示される技術では、1回の試験用光パルスの出射で複数のONUからの複数の反射パルスが測定されるため、事前にどの反射パルスがどのONUに対応するか特定する必要があった。ここで、事前に反射パルスとONUとの対応を特定しておかないと、反射パルスの反射レベルが変動しても、どのONUまでの間で故障が発生したかを切り分けるのが難しいという問題があった。   When a plurality of ONUs are connected to an optical fiber communication network, the technique disclosed in Patent Document 1 or 2 measures a plurality of reflected pulses from a plurality of ONUs by emitting one test optical pulse. Therefore, it is necessary to identify which reflected pulse corresponds to which ONU in advance. Here, if the correspondence between the reflected pulse and the ONU is not specified in advance, even if the reflected level of the reflected pulse fluctuates, it is difficult to determine which ONU has failed. there were.

OLT(Optical Line Terminal)からONUまでの距離を設計図面から求めることで、反射パルスとONUとの対応を特定することが可能である。しかし、作業者が設計図面からOLTからONUまでの距離を求める方法では、設計図面の設計誤差に加え、クロージャー又はキャビネット内での光ファイバの接続余長があり、誤差が生じる場合がある。この誤差が生じることで、OLTから複数のONUまでの距離が近い場合、反射パルスとONUとの対応を正確に特定できない問題があった。   By determining the distance from the optical line terminal (OLT) to the ONU from the design drawing, it is possible to specify the correspondence between the reflected pulse and the ONU. However, in the method in which the operator obtains the distance from the OLT to the ONU from the design drawing, there is a connection error of the optical fiber in the closure or the cabinet in addition to the design error of the design drawing, and an error may occur. Due to this error, when the distance from the OLT to the plurality of ONUs is short, there is a problem that the correspondence between the reflected pulse and the ONU cannot be specified accurately.

また、OLTとONUとを結ぶ光ファイバの長さを工事や点検の際、作業者がメジャー等の測定手段で測定し、OLTからONUまでの距離を求める方法がある。しかし、作業者が光ファイバの長さを実測することは大変な手間が掛かり、更に、光ファイバが配管内部に敷設されている場合、光ファイバの長さを測定することが非常に困難な問題があった。   In addition, there is a method in which the operator measures the length of the optical fiber connecting the OLT and the ONU with a measuring means such as a measure during construction or inspection, and obtains the distance from the OLT to the ONU. However, it is very difficult for the operator to actually measure the length of the optical fiber, and when the optical fiber is laid inside the pipe, it is very difficult to measure the length of the optical fiber. was there.

本発明は、前記課題を解決するため、作業者がOLT等の近端側光通信装置からONU等の遠端側光通信装置までの距離を設計図面から求めることなく或いは実測することなく、どの遠端側光通信装置に対応する試験用光パルス反射手段からの反射パルスであるかを特定可能な光線路試験システムを提供することを目的とする。さらに、本発明は、光損失を求めると共に、光線路の故障であるか或いは遠端側光通信装置の故障であるかを切り分け可能な光線路試験システムを提供することを目的とする。   In order to solve the above-described problem, the present invention can determine which distance from a near-end optical communication device such as an OLT to a far-end optical communication device such as an ONU without obtaining or actually measuring the distance from the design drawing. It is an object of the present invention to provide an optical line test system capable of specifying whether a reflected pulse from a test optical pulse reflecting means corresponding to a far-end optical communication device. Another object of the present invention is to provide an optical line test system capable of determining optical loss and determining whether the optical line is faulty or the far-end optical communication apparatus is faulty.

上記目的を達成するために、本発明に係る光線路試験システムは、M個目の遠端側光通信装置が第2光線路に接続されたときの反射レベルとM−1個目の遠端側光通信装置が第2光線路に接続されたときの反射レベルとの差分を求め、差分の中で最も高い反射レベルとなる反射位置までの距離をM個目の遠端側光通信装置に対応させる反射位置の対応付けを行う試験合否判定手段を備えることを特徴とする。   In order to achieve the above object, an optical line test system according to the present invention includes a reflection level when an Mth far-end optical communication device is connected to a second optical line, and an M-1st far-end. The difference from the reflection level when the side optical communication device is connected to the second optical line is obtained, and the distance to the reflection position having the highest reflection level among the differences is determined to the Mth far-end optical communication device. Test pass / fail judgment means for associating corresponding reflection positions is provided.

具体的には、本発明に係る光線路試験システムは、近端側光通信装置、前記近端側光通信装置と通信するN個(但し、Nは正整数)の遠端側光通信装置、N以上に分岐する光分岐回路、前記近端側光通信装置と前記光分岐回路とを接続する第1光線路、前記光分岐回路と前記N個の遠端側光通信装置とをそれぞれ接続するN個の第2光線路、及び、前記N個の遠端側光通信装置と前記第2光線路との間に挿入され、試験用光パルスを反射する試験用光パルス反射手段、を有する光ネットワークを試験する光線路試験システムであって、前記第1光線路に結合回路を介して接続され、前記遠端側光通信装置に向けて前記試験用光パルスを出射し、反射位置までの距離に対する反射レベルを測定する光パルス測定器と、前記光パルス測定器に前記試験用光パルスを出射させて前記光パルス測定器が測定する反射位置までの距離に対する反射レベルから前記結合回路と前記試験用光パルス反射手段との間の光損失を求め、前記光損失に基づいて試験の合否を判定する試験合否判定手段と、を備え、前記試験合否判定手段は、M個目(但し、MはN以下の正整数)の前記遠端側光通信装置が前記第2光線路に接続されたときの前記反射位置までの距離に対する反射レベルとM−1個目の前記遠端側光通信装置が前記第2光線路に接続されたときの前記反射位置までの距離に対する反射レベルとの差分を求め、前記差分の中で最も高い反射レベルとなる前記反射位置までの距離を前記M個目の遠端側光通信装置に対応させる反射位置の対応付けを行うことを特徴とする。   Specifically, the optical line testing system according to the present invention includes a near-end optical communication device, N (where N is a positive integer) far-end optical communication devices communicating with the near-end optical communication device, An optical branch circuit that branches to N or more, a first optical line that connects the near-end optical communication device and the optical branch circuit, and the optical branch circuit and the N far-end optical communication devices are connected to each other. Light having N second optical lines, and a test light pulse reflecting means that is inserted between the N far-end optical communication devices and the second optical line and reflects the test light pulse. An optical line test system for testing a network, which is connected to the first optical line via a coupling circuit, emits the test optical pulse toward the far-end optical communication device, and is a distance to a reflection position An optical pulse measuring instrument for measuring the reflection level with respect to the optical pulse measuring instrument An optical loss between the coupling circuit and the test optical pulse reflecting means is obtained from a reflection level with respect to a distance to a reflection position measured by the optical pulse measuring device by emitting a test optical pulse, and based on the optical loss. Test pass / fail judgment means for judging pass / fail of the test, wherein the test pass / fail judgment means is configured such that the Mth (where M is a positive integer less than or equal to N) the far-end optical communication device is the second light beam. The reflection level with respect to the distance to the reflection position when connected to the road and the reflection with respect to the distance to the reflection position when the M−1th far-end optical communication device is connected to the second optical line. A difference with a level is obtained, and a reflection position is associated with which the distance to the reflection position having the highest reflection level among the differences is associated with the M-th far-end optical communication device. To do.

前記差分は、M個目の前記遠端側光通信装置のみに対応する。これによって、前記差分からM個目の前記遠端側光通信装置までの距離を求めることができる。従って、上記の光線路試験システムは、前記反射位置の対応付けを行うことによって、作業者が前記近端側光通信装置から前記遠端側光通信装置まで距離を設計図面から求めることなく或いは実測することなく、どの遠端側光通信装置に対応する試験用光パルス反射手段からの反射パルスであるかを特定可能である。さらに、上記の光線路試験システムは、光損失を求めると共に、光線路の故障であるか或いは遠端側光通信装置の故障であるかを切り分け可能である。   The difference corresponds only to the Mth far-end optical communication apparatus. Thereby, the distance to the M-th far-end optical communication device can be obtained from the difference. Therefore, the optical line test system described above performs the actual measurement without associating the distance from the near-end side optical communication apparatus to the far-end side optical communication apparatus from the design drawing by associating the reflection positions. Without this, it is possible to identify which far-end optical communication device corresponds to the reflected pulse from the test optical pulse reflecting means. Furthermore, the optical line test system described above can determine whether an optical loss or a far-end side optical communication apparatus has a failure while obtaining an optical loss.

上記目的を達成するために、本発明に係る光線路試験システムは、試験用光パルスを反射する試験用光パルス反射手段、及び、M個目の遠端側光通信装置が第2光線路に接続されたときの反射レベルとM−1個目の遠端側光通信装置が第2光線路に接続されたときの反射レベルとの差分を求め、差分の中で最も高い反射レベルとなる反射位置までの距離をM個目の遠端側光通信装置に対応させる反射位置の対応付けを行う試験合否判定手段を備えることを特徴とする。   To achieve the above object, an optical line test system according to the present invention includes a test optical pulse reflecting means for reflecting a test optical pulse, and an M-th far-end optical communication device as a second optical line. The difference between the reflection level when connected and the reflection level when the M−1th far-end optical communication device is connected to the second optical line is obtained, and the reflection becomes the highest reflection level among the differences. Test pass / fail judgment means for associating a reflection position with which the distance to the position is associated with the Mth far-end optical communication device is provided.

具体的には、本発明に係る光線路試験システムは、近端側光通信装置、前記近端側光通信装置と通信するN個(但し、Nは正整数)の遠端側光通信装置、N以上に分岐する光分岐回路、前記近端側光通信装置と前記光分岐回路とを接続する第1光線路、及び、前記光分岐回路と前記N個の遠端側光通信装置とをそれぞれ接続するN個の第2光線路、を有する光ネットワークを試験する光線路試験システムであって、前記N個の遠端側光通信装置と前記第2光線路との間に挿入され、試験用光パルスを反射する試験用光パルス反射手段と、前記第1光線路に結合回路を介して接続され、前記遠端側光通信装置に向けて前記試験用光パルスを出射し、反射位置までの距離に対する反射レベルを測定する光パルス測定器と、前記光パルス測定器に前記試験用光パルスを出射させて前記光パルス測定器が測定する反射位置までの距離に対する反射レベルから前記結合回路と前記試験用光パルス反射手段との間の光損失を求め、前記光損失に基づいて試験の合否を判定する試験合否判定手段と、を備え、前記試験合否判定手段は、M個目(但し、MはN以下の正整数)の前記遠端側光通信装置が前記第2光線路に接続されたときの前記反射位置までの距離に対する反射レベルとM−1個目の前記遠端側光通信装置が前記第2光線路に接続されたときの前記反射位置までの距離に対する反射レベルとの差分を求め、前記差分の中で最も高い反射レベルとなる前記反射位置までの距離を前記M個目の遠端側光通信装置に対応させる反射位置の対応付けを行うことを特徴とする。   Specifically, the optical line testing system according to the present invention includes a near-end optical communication device, N (where N is a positive integer) far-end optical communication devices communicating with the near-end optical communication device, An optical branch circuit that branches to N or more, a first optical line that connects the near-end optical communication device and the optical branch circuit, and an optical branch circuit and the N far-end optical communication devices, respectively. An optical line test system for testing an optical network having N second optical lines to be connected, which is inserted between the N far-end optical communication devices and the second optical line, A test light pulse reflecting means for reflecting the light pulse; and connected to the first optical line via a coupling circuit; emitting the test light pulse toward the far-end optical communication device; An optical pulse measuring instrument for measuring the reflection level with respect to the distance; A light loss between the coupling circuit and the test light pulse reflecting means is obtained from a reflection level with respect to a distance to a reflection position measured by the light pulse measuring device by emitting a test light pulse, and based on the light loss. Test pass / fail judgment means for judging pass / fail of the test, wherein the test pass / fail judgment means is configured such that the Mth (where M is a positive integer less than or equal to N) the far-end optical communication device is the second light beam. The reflection level with respect to the distance to the reflection position when connected to the road and the reflection with respect to the distance to the reflection position when the M−1th far-end optical communication device is connected to the second optical line. A difference with a level is obtained, and a reflection position is associated with which the distance to the reflection position having the highest reflection level among the differences is associated with the M-th far-end optical communication device. To do.

前記差分は、M個目の前記遠端側光通信装置のみに対応する。これによって、前記差分からM個目の前記遠端側光通信装置までの距離を求めることができる。従って、上記の光線路試験システムは、前記反射位置の対応付けを行うことによって、作業者が前記近端側光通信装置から前記遠端側光通信装置まで距離を設計図面から求めることなく或いは実測することなく、どの遠端側光通信装置に対応する試験用光パルス反射手段からの反射パルスであるかを特定可能である。さらに、上記の光線路試験システムは、光損失を求めると共に、光線路の故障であるか或いは遠端側光通信装置の故障であるかを切り分け可能である。   The difference corresponds only to the Mth far-end optical communication apparatus. Thereby, the distance to the M-th far-end optical communication device can be obtained from the difference. Therefore, the optical line test system described above performs the actual measurement without associating the distance from the near-end side optical communication apparatus to the far-end side optical communication apparatus from the design drawing by associating the reflection positions. Without this, it is possible to identify which far-end optical communication device corresponds to the reflected pulse from the test optical pulse reflecting means. Furthermore, the optical line test system described above can determine whether an optical loss or a far-end side optical communication apparatus has a failure while obtaining an optical loss.

本発明に係る光線路試験システムでは、前記光ネットワークは、前記近端側光通信装置とM個目の前記遠端側光通信装置との間でリンクが確立されたときに、前記リンクが確立された旨のリンク情報を前記近端側光通信装置が前記試験合否判定手段に送信し、前記試験合否判定手段は、前記リンク情報を前記近端側光通信装置から受信した後に前記反射位置の対応付けを行うことが好ましい。   In the optical line test system according to the present invention, the optical network is established when a link is established between the near-end side optical communication device and the M-th far-end side optical communication device. The near-end optical communication device transmits link information indicating that the reflection position has been received, and the test acceptance / rejection determination unit receives the link information from the near-end optical communication device. It is preferable to perform association.

上記の光線路試験システムは、前記反射位置の対応付けを行う前にさらに前記遠端側光通信装置が前記第2光線路に接続されてしまうことで、前記反射位置の対応付けを行うことができない事態を減少させることができる。   In the above optical line test system, the far-end side optical communication device is further connected to the second optical line before the reflection position is associated, so that the reflection position is associated. The situation that cannot be reduced can be reduced.

本発明に係る光線路試験システムでは、前記試験合否判定手段は、前記光パルス測定器の内部で発生するノイズによる前記反射レベルが最も高くなるノイズレベルを求め、前記ノイズレベルを基準として前記反射位置の対応付けを行うことが好ましい。   In the optical line test system according to the present invention, the test pass / fail judgment means obtains a noise level at which the reflection level is highest due to noise generated inside the optical pulse measuring device, and the reflection position is based on the noise level. Is preferably performed.

上記の光線路試験システムは、前記ノイズに影響されず、前記反射位置の対応付けを正確に行うことができる。   The above optical line test system can accurately associate the reflection positions without being affected by the noise.

本発明に係る光線路試験システムでは、前記試験合否判定手段は、前記光パルス測定器の測定する反射位置までの距離に対する後方散乱光の前記反射レベルが最も高くなる後方散乱光レベルを求め、前記後方散乱光レベルを基準として前記反射位置の対応付けを行うことが好ましい。   In the optical line test system according to the present invention, the test pass / fail determination means obtains the backscattered light level at which the reflection level of the backscattered light with respect to the distance to the reflection position measured by the optical pulse measuring device is the highest, It is preferable to associate the reflection positions with reference to the backscattered light level.

上記の光線路試験システムは、前記後方散乱光に影響されず、前記反射位置の対応付けを正確に行うことができる。   The above optical line test system can accurately associate the reflection positions without being affected by the backscattered light.

本発明に係る光線路試験システムでは、前記光ネットワークは、前記光パルス測定器と前記遠端側光通信装置との間に光コネクタが配置され、前記試験合否判定手段は、前記光コネクタで発生する前記反射レベルが最も高くなる光コネクタ反射レベルを求め、前記光コネクタ反射レベルが前記後方散乱光レベルよりも高い場合、前記光コネクタ反射レベルを基準として前記反射位置の対応付けを行うことが好ましい。   In the optical line test system according to the present invention, the optical network includes an optical connector disposed between the optical pulse measuring instrument and the far-end optical communication device, and the test pass / fail judgment means is generated at the optical connector. Preferably, the optical connector reflection level at which the reflection level is the highest is obtained, and when the optical connector reflection level is higher than the backscattered light level, the reflection position is associated with the optical connector reflection level as a reference. .

上記の光線路試験システムは、前記光コネクタで発生する前記反射レベルに影響されず、前記反射位置の対応付けをより正確に行うことができる。   The optical line test system described above can be more accurately associated with the reflection position without being affected by the reflection level generated in the optical connector.

本発明に係る光線路試験システムでは、前記試験の合否を表示する通信端末をさらに備え、前記試験合否判定手段は前記試験の合否を無線で前記通信端末に通知することが好ましい。   In the optical line testing system according to the present invention, it is preferable that the optical fiber testing system further includes a communication terminal that displays the pass / fail of the test, and the test pass / fail determination means wirelessly notifies the communication terminal of the pass / fail of the test.

上記の光線路試験システムは、作業者の居場所に関わらず、前記通信端末を所持する作業者が試験の合否を知ることができ、利便性が良い。   The optical line test system described above is convenient because the operator who has the communication terminal can know whether the test has passed, regardless of where the operator is.

本発明に係る光線路試験システムでは、前記光ネットワークは、前記近端側光通信装置が前記試験の合否を示す警告を前記遠端側光通信装置に転送し、前記遠端側光通信装置が前記警告に従って前記警告の内容を出力し、前記試験合否判定手段は、前記警告を前記近端側光通信装置に送信し前記警告を前記遠端側光通信装置に転送させることが好ましい。   In the optical line testing system according to the present invention, the optical network transfers a warning indicating that the near-end optical communication device passes the test to the far-end optical communication device, and the far-end optical communication device It is preferable that the content of the warning is output according to the warning, and the test pass / fail determination means transmits the warning to the near-end side optical communication device and forwards the warning to the far-end side optical communication device.

上記の光線路試験システムは、前記遠端側光通信装置の近くにいる作業者に試験の合否を通知でき、利便性が良い。   The above optical line test system is convenient because it can notify the operator near the far-end optical communication device of the success or failure of the test.

本発明は、作業者がOLT等の近端側光通信装置からONU等の遠端側光通信装置までの距離を設計図面から求めることなく或いは実測することなく、どの遠端側光通信装置に対応する試験用光パルス反射手段からの反射パルスであるかを特定可能な光線路試験システムを提供することができる。さらに、本発明は、光損失を求めると共に、光線路の故障であるか或いは遠端側光通信装置の故障であるかを切り分け可能な光線路試験システムを提供することができる。   The present invention relates to which far-end optical communication device an operator does not obtain or actually measure the distance from a near-end optical communication device such as an OLT to a far-end optical communication device such as an ONU from a design drawing. It is possible to provide an optical line test system capable of specifying whether the reflected pulse is from the corresponding test optical pulse reflecting means. Furthermore, the present invention can provide an optical line test system that can determine whether the optical loss is a failure or the far-end optical communication device is a failure while determining the optical loss.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。また、同一部材及び同一部位には同一符号を付した。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment. Moreover, the same code | symbol was attached | subjected to the same member and the same site | part.

(第1実施形態)
図1に、第1実施形態に係る光線路試験システムの概略構成図を示した。第1実施形態に係る光線路試験システムは、近端側光通信装置10、近端側光通信装置10と通信する8個の遠端側光通信装置30、8以上に分岐する光分岐回路22、近端側光通信装置10と光分岐回路22とを接続する第1光線路20、光分岐回路22と8個の遠端側光通信装置30とをそれぞれ接続する8個の第2光線路24、及び、8個の遠端側光通信装置30と第2光線路24との間に挿入され、試験用光パルスを反射する試験用光パルス反射手段60、を有する光ネットワークを試験する光線路試験システム100であって、第1光線路20に結合回路52を介して接続され、遠端側光通信装置30に向けて試験用光パルスを出射し、反射位置までの距離に対する反射レベルを測定する光パルス測定器50と、光パルス測定器50に試験用光パルスを出射させて光パルス測定器が測定する反射位置までの距離に対する反射レベルから結合回路52と試験用光パルス反射手段60との間の光損失を求め、光損失に基づいて試験の合否を判定する試験合否判定手段70と、を備え、試験合否判定手段70は、M個目(但し、Mは8以下の正整数)の遠端側光通信装置30が第2光線路24に接続されたときの反射位置までの距離に対する反射レベルとM−1個目の遠端側光通信装置30が第2光線路24に接続されたときの反射位置までの距離に対する反射レベルとの差分を求め、差分の中で最も高い反射レベルとなる反射位置までの距離をM個目の遠端側光通信装置30に対応させる反射位置の対応付けを行う。さらに、図1には、光スイッチ54を示した。なお、図1では、3個目〜7個目までの遠端側光通信装置及び第2光線路を省略している。
(First embodiment)
FIG. 1 shows a schematic configuration diagram of an optical line test system according to the first embodiment. The optical line test system according to the first embodiment includes a near-end optical communication device 10, eight far-end optical communication devices 30 that communicate with the near-end optical communication device 10, and an optical branch circuit 22 that branches into eight or more. The first optical line 20 that connects the near-end side optical communication device 10 and the optical branch circuit 22, and the eight second optical lines that connect the optical branch circuit 22 and the eight far-end side optical communication devices 30, respectively. 24 and a light beam for testing an optical network, which is inserted between the eight far-end optical communication devices 30 and the second optical line 24 and has a test light pulse reflecting means 60 for reflecting the test light pulse. The road test system 100 is connected to the first optical line 20 via a coupling circuit 52, emits a test optical pulse toward the far-end optical communication device 30, and sets the reflection level with respect to the distance to the reflection position. Optical pulse measuring instrument 50 to measure and optical pulse measuring instrument 5 The optical loss between the coupling circuit 52 and the test optical pulse reflecting means 60 is obtained from the reflection level with respect to the distance to the reflection position measured by the optical pulse measuring device by emitting the test optical pulse, and based on the optical loss. A test pass / fail judgment means 70 for judging pass / fail of the test, and the test pass / fail judgment means 70 is configured such that the M-th (where M is a positive integer of 8 or less) far-end optical communication device 30 is the second optical line. The reflection level with respect to the distance to the reflection position when connected to 24 and the reflection level with respect to the distance to the reflection position when the M−1th far-end optical communication device 30 is connected to the second optical line 24 Is obtained, and the reflection position is associated with the Mth far-end optical communication device 30 with the distance to the reflection position having the highest reflection level in the difference. Further, FIG. 1 shows an optical switch 54. In FIG. 1, the third to seventh far-end optical communication devices and the second optical line are omitted.

近端側光通信装置10としては、例えば、OLTがある。また、第1光線路20としては、芯線が1本の単芯光ファイバがある。また、光分岐回路22としては、例えば、光スプリッタがある。   An example of the near-end optical communication device 10 is an OLT. The first optical line 20 includes a single-core optical fiber having a single core wire. Moreover, as the optical branch circuit 22, there is an optical splitter, for example.

第2光線路24としては、例えば、光ファイバがある。ここで、第2光線路24は、例えば、光分岐回路22からの引き込み区間(ドロップ区間)となっている。また、遠端側光通信装置30としては、例えば、ONUがある。さらに、試験用光パルス反射手段60としては、例えば、試験用光パルスを反射し、信号光を透過する光フィルタがある。図2に、試験用光パルス反射手段60を遠端側光通信装置30と第2光線路24との間に挿入する形態を示した。図1の光線路試験システム100では、図2(a)に示すように、試験用光パルス反射手段60は、遠端側光通信装置30の外部に配置されている。ここで、図2(b)に示すように、試験用光パルス反射手段60は、遠端側光通信装置30の内部に配置することが好ましい。これによって、遠端側光通信装置30が第2光線路24に接続されたとき、試験用光パルス反射手段60の設置する時間を要することなく速やかに試験を行うことが可能となる。   An example of the second optical line 24 is an optical fiber. Here, the second optical line 24 is, for example, a lead-in section (drop section) from the optical branch circuit 22. Further, as the far-end optical communication device 30, for example, there is an ONU. Further, the test light pulse reflecting means 60 includes, for example, an optical filter that reflects the test light pulse and transmits the signal light. FIG. 2 shows a form in which the test optical pulse reflecting means 60 is inserted between the far-end side optical communication device 30 and the second optical line 24. In the optical line test system 100 of FIG. 1, the test light pulse reflecting means 60 is arranged outside the far-end optical communication device 30 as shown in FIG. Here, as shown in FIG. 2B, the test light pulse reflecting means 60 is preferably arranged inside the far-end optical communication device 30. As a result, when the far-end optical communication device 30 is connected to the second optical line 24, it is possible to quickly perform the test without requiring the time for installing the test optical pulse reflecting means 60.

図1の結合回路52は、試験を行う光ファイバの芯線を選択する光スイッチ54と接続される。図1には図示していないが、光スイッチ54は、例えば、複数の結合回路と接続されている。光パルス測定器50は、例えば、光スイッチ54に光ファイバを介して接続される。試験合否判定手段70は、例えば、近端側光通信装置10、光パルス測定器50及び光スイッチ54に接続される。   The coupling circuit 52 in FIG. 1 is connected to an optical switch 54 that selects the core of the optical fiber to be tested. Although not shown in FIG. 1, the optical switch 54 is connected to a plurality of coupling circuits, for example. The optical pulse measuring instrument 50 is connected to the optical switch 54 via an optical fiber, for example. The test pass / fail determination means 70 is connected to, for example, the near-end optical communication device 10, the optical pulse measuring device 50, and the optical switch 54.

図3に、第1実施形態における試験合否判定手段のブロック図を示した。試験合否判定手段70は、例えば、CPU71、OLTインターフェース72、光スイッチインターフェース73、光パルス測定器インターフェース74及び記憶部75を有する。CPU71は、例えば、OLTインターフェース72、光スイッチインターフェース73、光パルス測定器インターフェース74及び記憶部75の制御並びに試験の合否の判定に必要な演算を行う。OLTインターフェース72は、例えば、電気ケーブル等の電気的接続手段を介してOLT等の近端側光通信装置に接続するための端子である。光スイッチインターフェース73は、例えば、電気的接続手段を介して光スイッチに接続するための端子である。光パルス測定器インターフェース74は、例えば、電気的接続手段を介して光パルス測定器に接続するための端子である。これによって、図1の試験合否判定手段70は、近端側光通信装置10からの信号を受信し、光パルス測定器50及び光スイッチ54の制御が可能となる。   FIG. 3 shows a block diagram of the test pass / fail judgment means in the first embodiment. The test pass / fail determination means 70 includes, for example, a CPU 71, an OLT interface 72, an optical switch interface 73, an optical pulse measuring instrument interface 74, and a storage unit 75. For example, the CPU 71 performs calculations necessary for controlling the OLT interface 72, the optical switch interface 73, the optical pulse measuring instrument interface 74, and the storage unit 75, and determining whether or not the test has passed. The OLT interface 72 is a terminal for connecting to a near-end side optical communication device such as an OLT via an electrical connection means such as an electric cable. The optical switch interface 73 is, for example, a terminal for connecting to the optical switch via an electrical connection means. The optical pulse measuring instrument interface 74 is a terminal for connecting to the optical pulse measuring instrument via, for example, an electrical connection means. As a result, the test pass / fail judgment means 70 in FIG. 1 receives the signal from the near-end optical communication device 10 and can control the optical pulse measuring instrument 50 and the optical switch 54.

図3の記憶部75は、例えば、ONU記憶部75a、測定条件記憶部75b、測定結果記憶部75c、ノイズレベル記憶部75d、後方散乱光レベル記憶部75e及び光コネクタ反射レベル記憶部75fを有する。ONU記憶部75aは、例えば、第2光線路24に接続されたONU等の遠端側光通信装置の個数を記憶する。測定条件記憶部75bは、例えば、試験用光パルスの出力レベル、波長及びパルス幅、測定距離レンジ、サンプリングレート並びに平均化回数等の測定条件並びに試験の合否の基準となる規定値を記憶する。測定条件記憶部75bが記憶した測定条件を読み込こむことで、同一の測定条件での試験が可能となる。測定結果記憶部75cは、例えば、光パルス測定器が測定した反射レベル、光パルス測定器が測定した反射位置までの距離、光パルス測定器が測定した反射波形、及び、試験合否判定手段70が行う反射位置の対応付けを記憶する。ノイズレベル記憶部75dは、例えば、ノイズレベルを記憶する。後方散乱光レベル記憶部75eは、例えば、後方散乱光レベルを記憶する。光コネクタ反射レベル記憶部75fは、例えば、光コネクタ反射レベルを記憶する。なお、ノイズレベル、後方散乱光レベル及び光コネクタ反射レベルの詳細については、後述する。   3 includes, for example, an ONU storage unit 75a, a measurement condition storage unit 75b, a measurement result storage unit 75c, a noise level storage unit 75d, a backscattered light level storage unit 75e, and an optical connector reflection level storage unit 75f. . The ONU storage unit 75a stores the number of far-end side optical communication devices such as ONUs connected to the second optical line 24, for example. The measurement condition storage unit 75b stores, for example, measurement conditions such as the output level of the test optical pulse, the wavelength and pulse width, the measurement distance range, the sampling rate, the number of times of averaging, and the standard values that serve as criteria for pass / fail of the test. By reading the measurement conditions stored in the measurement condition storage unit 75b, tests under the same measurement conditions can be performed. The measurement result storage unit 75c includes, for example, the reflection level measured by the optical pulse measuring instrument, the distance to the reflection position measured by the optical pulse measuring instrument, the reflected waveform measured by the optical pulse measuring instrument, and the test pass / fail judgment means 70. The association of reflection positions to be performed is stored. The noise level storage unit 75d stores a noise level, for example. The backscattered light level storage unit 75e stores, for example, a backscattered light level. The optical connector reflection level storage unit 75f stores, for example, an optical connector reflection level. Details of the noise level, the backscattered light level, and the optical connector reflection level will be described later.

図1の一点鎖線で囲われた部分、すなわち、2個目の遠端側光通信装置30aを第2光線路24aに接続する場合を例として、遠端側光通信装置30の接続作業の手順について説明する。図4に、遠端側光通信装置を光分岐手段に接続する作業のフローチャートを示した。まず、作業者は、図1の第2光線路24aの配線工事を実施する(図4のS101を参照。)。次に、作業者は、試験用光パルス反射手段60aを第2光線路24aの端に取り付ける(図4のS102を参照。)。作業者は、試験用光パルス反射手段60aが取付けられた第2光線路24aの端を遠端側光通信装置30aに接続し、遠端側光通信装置30aの電源を投入する(図4のS103を参照。)。作業者は、遠端側光通信装置30aと近端側光通信装置10とのリンクを開始させる。このとき、遠端側光通信装置30aが接続されたらリンクを確立できるように、近端側光通信装置10の設定を事前に行っておくことが好ましい。第1実施形態に係る光線路試験システムでは、光ネットワークは、近端側光通信装置10と2個目の遠端側光通信装置30との間でリンクが確立されたときに(図4のS104を参照。)、リンクが確立された旨のリンク情報を近端側光通信装置10が試験合否判定手段70に送信し(図4のS105を参照。)、試験合否判定手段70は、リンク情報を近端側光通信装置10から受信した後、すみやかに反射位置の対応付けを行うことが好ましい(図4のS106を参照。)。これによって、第1実施形態に係る光線路試験システムは、遠端側光通信装置30aを接続した後、反射位置の対応付けを行う前にさらに遠端側光通信装置30が第2光線路24に接続されてしまうことで、反射位置の対応付けを行うことができない事態を減少させることができる。また、反射位置の対応付けの詳細については、後述する。このとき、同時に2以上の遠端側光通信装置30を第2光線路24に接続しないように、遠端側光通信装置30の接続作業のスケジュールの調整を必要とする場合がある。なお、図4は遠端側光通信装置の接続作業の手順の一例であり、図4に示す手順に限定されない。   The portion surrounded by the one-dot chain line in FIG. 1, that is, the procedure for connecting the far-end optical communication device 30 as an example of connecting the second far-end optical communication device 30a to the second optical line 24a. Will be described. FIG. 4 shows a flowchart of the operation of connecting the far-end side optical communication device to the optical branching means. First, the worker carries out wiring work for the second optical line 24a in FIG. 1 (see S101 in FIG. 4). Next, the operator attaches the test light pulse reflecting means 60a to the end of the second optical line 24a (see S102 in FIG. 4). The operator connects the end of the second optical line 24a to which the test optical pulse reflecting means 60a is attached to the far-end optical communication device 30a, and turns on the far-end optical communication device 30a (see FIG. 4). (See S103). The worker starts a link between the far-end side optical communication device 30a and the near-end side optical communication device 10. At this time, it is preferable to set the near-end optical communication device 10 in advance so that a link can be established when the far-end optical communication device 30a is connected. In the optical line test system according to the first embodiment, the optical network is configured when a link is established between the near-end optical communication device 10 and the second far-end optical communication device 30 (see FIG. 4). (See S104.), The near-end optical communication device 10 transmits link information indicating that the link has been established to the test pass / fail judgment means 70 (see S105 in FIG. 4). After the information is received from the near-end optical communication device 10, it is preferable to immediately associate the reflection positions (see S106 in FIG. 4). Thereby, in the optical line testing system according to the first embodiment, after the far-end optical communication device 30a is connected, the far-end optical communication device 30 is further connected to the second optical line 24 before the reflection position is associated. As a result, the situation where the reflection positions cannot be associated can be reduced. Details of the reflection position association will be described later. At this time, it may be necessary to adjust the connection schedule of the far-end optical communication devices 30 so that two or more far-end optical communication devices 30 are not connected to the second optical line 24 at the same time. FIG. 4 is an example of a procedure for connecting the far-end optical communication device, and is not limited to the procedure shown in FIG.

試験合否判定手段の動作について説明する。図5に、試験合否判定手段の処理のフローチャートを示した。まず、試験合否判定手段は、試験を行う芯線を光スイッチに選択させる(図5のS201を参照。)。次に、試験合否判定手段は、1個目の遠端側光通信装置が接続されたか判定する(図5のS202を参照。)。ここで、第2光線路に既に接続されている遠端側光通信装置の個数は、図3のONU記憶部75aから読み込むか、作業者が予め試験合否判定手段に登録するか、或いは、設備データベース(図1及び図3には図示していない。)から取得する。図5に示すように、試験合否判定手段は、1個目の遠端側光通信装置が第2光線路に接続された場合と2個目以降の遠端側光通信装置が第2光線路に接続された場合とで、動作が異なる。まず、1個目の遠端側光通信装置が第2光線路に接続された場合の試験合否判定手段の動作について説明する。   The operation of the test pass / fail judgment means will be described. FIG. 5 shows a flowchart of the processing of the test pass / fail judgment means. First, the test pass / fail determination means causes the optical switch to select the core wire to be tested (see S201 in FIG. 5). Next, the test pass / fail determination means determines whether or not the first far-end optical communication device is connected (see S202 of FIG. 5). Here, the number of far-end optical communication devices already connected to the second optical line is read from the ONU storage unit 75a in FIG. 3, or the operator registers in advance in the test pass / fail determination means, or the equipment Obtained from a database (not shown in FIGS. 1 and 3). As shown in FIG. 5, the test pass / fail determination means includes the case where the first far-end optical communication device is connected to the second optical line and the second and subsequent far-end optical communication devices are the second optical line. The operation is different depending on the connection. First, the operation of the test pass / fail determination means when the first far-end optical communication device is connected to the second optical line will be described.

試験合否判定手段は、測定条件を設定し、設定した測定条件を記憶する(図5のS203を参照。)。設定した測定条件の下、試験合否判定手段は、光パルス測定器に試験用光パルスを出射させ、光パルス測定器が測定する反射レベルを記憶する(図5のS204を参照。)。試験合否判定手段は、反射レベルから反射位置の対応付けを行い、この反射位置の対応付けを記憶する(図5のS205を参照。)。図6に、1個目の遠端側光通信装置が第2光線路に接続された場合の反射波形を示した。このとき、試験合否判定手段は、反射パルスαの中で最も高い反射レベルaとなる反射位置までの距離bを1個目の遠端側光通信装置に対応させる反射位置の対応付けを行うことが好ましい。光ネットワークには、1個の試験用光パルス反射手段しか取付けられておらず、1個目の遠端側光通信装置に対応する反射パルスαが測定されるためである。試験合否判定手段は、反射位置までの距離に対する反射レベルから光損失を算出し、光損失と予め定められた規定値とを比較して試験の合否を判定する(図5のS206を参照。)。   The test acceptance / rejection determination unit sets measurement conditions and stores the set measurement conditions (see S203 in FIG. 5). Under the set measurement conditions, the test pass / fail determination means causes the optical pulse measuring device to emit a test optical pulse and stores the reflection level measured by the optical pulse measuring device (see S204 in FIG. 5). The test acceptance / rejection determination unit associates the reflection position based on the reflection level, and stores the association of the reflection position (see S205 in FIG. 5). FIG. 6 shows a reflected waveform when the first far-end optical communication device is connected to the second optical line. At this time, the test acceptance / rejection determination unit associates the reflection position with which the distance b to the reflection position having the highest reflection level a in the reflection pulse α corresponds to the first far-end optical communication device. Is preferred. This is because only one test optical pulse reflecting means is attached to the optical network, and the reflected pulse α corresponding to the first far-end optical communication device is measured. The test pass / fail determination means calculates the optical loss from the reflection level with respect to the distance to the reflection position, and determines the pass / fail of the test by comparing the optical loss with a predetermined specified value (see S206 in FIG. 5). .

次に、2個目の遠端側光通信装置が第2光線路に接続された場合の試験合否判定手段の動作について説明する。図5のS201及びS202は、上記と同様である。試験合否判定手段は、記憶されている測定条件を読み込む(図5のS207を参照。)。読み込まれている測定条件の下、試験合否判定手段は、光パルス測定器に試験用光パルスを出射させ、光パルス測定器が測定する反射レベルを記憶する(図5のS208を参照。)。試験合否判定手段は、差分から反射位置の対応付けを行い、この反射位置の対応付けを記憶する(図5のS209を参照。)。図7に、2個目の遠端側光通信装置が第2光線路に接続された場合の反射波形を示した。光ネットワークには2個の試験用光パルス反射手段が取り付けられているため、図7に示すように2個の遠端側光通信装置に対応する反射パルスα,βが測定される。ここで、1個目の遠端側光通信装置が第2光線路に接続されたときの反射レベルと2個目の遠端側光通信装置が第2光線路に接続されたときの反射レベルとの差分を求める。図8に、図6の反射波形と図7の反射波形の差分波形を示した。試験合否判定手段は、差分の中で最も高い反射レベルcとなる反射位置までの距離dを2個目の遠端側光通信装置に対応させる反射位置として対応付けを行う。すなわち、図7で、距離dとなる反射パルスβが2個目の遠端側光通信装置として対応付けを行う。試験合否判定手段は、反射パルスβと反射位置までの距離dから光損失を算出し、光損失と予め定められた規定値とを比較して試験の合否を判定する(図5のS206を参照。)。従って、第1実施形態に係る光線路試験システムは、反射位置の対応付けを行うことによって、作業者が近端側光通信装置から遠端側光通信装置まで距離を設計図面から求めることなく或いは実測することなく、どの遠端側光通信装置に対応する試験用光パルス反射手段からの反射パルスであるかを特定可能である。   Next, the operation of the test pass / fail determination means when the second far-end optical communication device is connected to the second optical line will be described. S201 and S202 in FIG. 5 are the same as described above. The test pass / fail judgment means reads the stored measurement conditions (see S207 in FIG. 5). Under the read measurement conditions, the test pass / fail judgment means causes the optical pulse measuring device to emit a test optical pulse and stores the reflection level measured by the optical pulse measuring device (see S208 in FIG. 5). The test acceptance / rejection determination unit associates the reflection positions based on the difference, and stores the association of the reflection positions (see S209 in FIG. 5). FIG. 7 shows a reflected waveform when the second far-end optical communication device is connected to the second optical line. Since two optical pulse reflection means for testing are attached to the optical network, the reflection pulses α and β corresponding to the two far-end optical communication devices are measured as shown in FIG. Here, the reflection level when the first far-end optical communication device is connected to the second optical line and the reflection level when the second far-end optical communication device is connected to the second optical line. Find the difference between FIG. 8 shows a differential waveform between the reflected waveform of FIG. 6 and the reflected waveform of FIG. The test acceptance / rejection determination unit associates the distance d to the reflection position having the highest reflection level c among the differences as a reflection position that corresponds to the second far-end optical communication device. That is, in FIG. 7, the reflected pulse β at the distance d is associated as the second far-end optical communication device. The test pass / fail determination means calculates the optical loss from the reflection pulse β and the distance d to the reflection position, and compares the optical loss with a predetermined value to determine pass / fail of the test (see S206 in FIG. 5). .) Therefore, the optical line test system according to the first embodiment allows the operator to obtain the distance from the near-end side optical communication device to the far-end side optical communication device by associating the reflection positions or from the design drawing. Without actually measuring, it is possible to specify which far-end side optical communication device corresponds to the reflected pulse from the test optical pulse reflecting means.

さらに、3個目の遠端側光通信装置が第2光線路に接続されたときは、試験合否判定手段は、2個目の遠端側光通信装置が第2光線路に接続されたときの反射レベルと3個目の遠端側光通信装置が第2光線路に接続されたときの反射レベルとの差分から反射位置の対応付けを行う。   Further, when the third far-end optical communication device is connected to the second optical line, the test pass / fail determination means is when the second far-end optical communication device is connected to the second optical line. The reflection position is associated based on the difference between the reflection level of the third optical communication device and the reflection level when the third far-end optical communication device is connected to the second optical line.

また、図5のフローチャートは、遠端側光通信装置の接続時の処理である。ここで、故障が発生した際、予め、試験合否判定手段に記憶されている反射レベルと故障発生時に測定した反射レベルの測定結果とを比較することで、どの遠端側光通信装置との間で故障が発生したかを特定可能である。さらに、第1実施形態に係る光線路試験システムは、光損失を求めると共に、試験用光パルス反射手段からの反射光が測定されなければ光線路の故障とし、或いは、試験用光パルス反射手段からの反射光が測定されれば遠端側光通信装置の故障とする故障の切り分けが可能である。なお、図5は試験合否判定手段の動作の一例であり、図5に示す手順に限定されない。   Further, the flowchart of FIG. 5 is a process when the far-end optical communication device is connected. Here, when a failure occurs, by comparing the reflection level stored in the test pass / fail judgment means in advance with the measurement result of the reflection level measured at the time of the failure, which far-end optical communication device is in contact with It is possible to specify whether or not a failure has occurred. Furthermore, the optical line test system according to the first embodiment obtains optical loss, and if the reflected light from the test optical pulse reflection means is not measured, it is determined that the optical line has failed, or from the test optical pulse reflection means. If the reflected light is measured, it is possible to identify a failure as a failure of the far-end optical communication device. FIG. 5 is an example of the operation of the test pass / fail judgment means, and is not limited to the procedure shown in FIG.

光パルス測定器の内部で発生するノイズの影響について、図9を用いて説明する。図9に、光パルス測定器の内部で発生するノイズxと2個目の遠端側光通信装置が第2光線路に接続されたときの反射波形とを重ねて示した。図9の破線で示すように、反射パルスα,βにノイズxが重なっている。この場合、差分波形を求めると、図8に示すように、反射パルスγが凹凸の激しいギザギザ状となってしまう。図10に、光パルス測定器の内部で発生するノイズx及びノイズレベルeを示した。第1実施形態に係る光線路試験システムでは、試験合否判定手段は、光パルス測定器の内部で発生するノイズによる反射レベルが最も高くなるノイズレベルeを求め、ノイズレベルeを基準として反射位置の対応付けを行うことが好ましい。図11に、ノイズレベルeを基準とした場合の1個目の遠端側光通信装置が第2光線路に接続されたときの反射波形を示した。また、図12に、ノイズレベルeを基準とした場合の2個目の遠端側光通信装置が第2光線路に接続されたときの反射波形を示した。ノイズレベルeを基準としているため、図11及び図12に示すように、ノイズに影響されない。図13に、図11の反射波形と図12の反射波形との差分波形を示した。図11及び図12のようにノイズに影響されないことで、図13の反射パルスβは、ギザギザ状とならず、2個目の遠端側光通信装置に対応する反射パルス(図12の反射パルスβを参照。)と略等しくなる。これによって、第1実施形態に係る光線路試験システムは、ノイズに影響されず、反射位置の対応付けを正確に行うことができる。   The influence of noise generated inside the optical pulse measuring device will be described with reference to FIG. FIG. 9 shows the noise x generated inside the optical pulse measuring device and the reflected waveform when the second far-end optical communication device is connected to the second optical line. As indicated by the broken line in FIG. 9, the noise x overlaps the reflected pulses α and β. In this case, when the differential waveform is obtained, the reflected pulse γ becomes a jagged shape with severe irregularities, as shown in FIG. FIG. 10 shows noise x and noise level e generated inside the optical pulse measuring instrument. In the optical line test system according to the first embodiment, the test pass / fail determination means obtains the noise level e at which the reflection level due to the noise generated inside the optical pulse measuring device becomes the highest, and the reflection position is determined based on the noise level e. It is preferable to perform association. FIG. 11 shows a reflected waveform when the first far-end optical communication device with the noise level e as a reference is connected to the second optical line. FIG. 12 shows a reflected waveform when the second far-end optical communication device with the noise level e as a reference is connected to the second optical line. Since the noise level e is used as a reference, it is not affected by noise as shown in FIGS. FIG. 13 shows a differential waveform between the reflected waveform of FIG. 11 and the reflected waveform of FIG. 11 and 12, the reflected pulse β in FIG. 13 does not have a jagged shape, and the reflected pulse corresponding to the second far-end optical communication device (the reflected pulse in FIG. 12) is not affected by noise. (See β). Thereby, the optical line test system according to the first embodiment can accurately associate the reflection positions without being affected by noise.

第1光線路及び第2光線路では、試験の際に光線路内で後方散乱光が反射波形とともに測定される場合がある。図14に、ノイズx及び後方散乱光yが測定される場合の1個目の遠端側光通信装置が第2光線路に接続されたときの反射波形を示した。ここで、反射パルスδが遠端側光通信装置に対応する反射パルスである。図14に示すように、ノイズレベルeより、後方散乱光レベルfの方が高くなる。また、後方散乱光yとノイズxとが重なる場合、ノイズレベルeが変化し、試験合否判定手段が誤ってノイズを反射位置と対応付けてしまうことがある。第1実施形態に係る光線路試験システムでは、試験合否判定手段は、光パルス測定器の測定する反射位置までの距離に対する後方散乱光yの反射レベルが最も高くなる後方散乱光レベルfを求め、後方散乱光レベルfを基準として反射位置の対応付けを行うことが好ましい。これによって、第1実施形態に係る光線路試験システムは、後方散乱光に影響されず、反射位置の対応付けを正確に行うことができる。   In the first optical line and the second optical line, backscattered light may be measured together with the reflected waveform in the optical line during the test. FIG. 14 shows a reflected waveform when the first far-end optical communication device when the noise x and the backscattered light y are measured is connected to the second optical line. Here, the reflected pulse δ is a reflected pulse corresponding to the far-end optical communication device. As shown in FIG. 14, the backscattered light level f is higher than the noise level e. Further, when the backscattered light y and the noise x overlap, the noise level e may change, and the test pass / fail determination means may erroneously associate the noise with the reflection position. In the optical line test system according to the first embodiment, the test pass / fail determination means obtains the backscattered light level f at which the reflection level of the backscattered light y is the highest with respect to the distance to the reflection position measured by the optical pulse measuring device, It is preferable to associate the reflection positions with reference to the backscattered light level f. As a result, the optical line test system according to the first embodiment can accurately associate the reflection positions without being affected by the backscattered light.

後方散乱光レベルfは、光パルス測定器の出荷時に工場等でダミーファイバを用いて後方散乱光レベルfを算出しても良い。もしくは、光パルス測定器がダミーファイバを内部に備えて後方散乱光レベルfを随時測定可能としても良い。なお、後方散乱光と重なるノイズ幅は、平均化回数と相関し、これを考慮すると、反射位置の対応付けがさらに正確になる。   The backscattered light level f may be calculated by using a dummy fiber at a factory or the like when the optical pulse measuring device is shipped. Alternatively, the optical pulse measuring device may include a dummy fiber inside so that the backscattered light level f can be measured at any time. Note that the noise width overlapping with the backscattered light correlates with the number of times of averaging, and taking this into account makes the correspondence of the reflection positions more accurate.

光パルス測定器と遠端側光通信装置との間に光コネクタが配置されている場合、光コネクタで発生する反射パルスが後方散乱光に重なって測定される場合がある。図15に、ノイズx、後方散乱光y及び光コネクタで発生する反射パルスzが測定される場合の1個目の遠端側光通信装置が第2光線路に接続されたときの反射波形を示した。ここで、光コネクタで発生する反射パルスzが光コネクタの温度変化又は経年劣化によって変化した場合、光コネクタで発生する反射パルスzを測定してしまうことがある。第1実施形態に係る光線路試験システムでは、光ネットワークは、光パルス測定器と遠端側光通信装置との間に光コネクタが配置され、試験合否判定手段は、光コネクタで発生する反射レベルzが最も高くなる光コネクタ反射レベルgを求め、光コネクタ反射レベルgが後方散乱光レベルfよりも高い場合、光コネクタ反射レベルgを基準として反射位置の対応付けを行うことが好ましい。これによって、第1実施形態に係る光線路試験システムは、光コネクタで発生する反射レベルに影響されず、反射位置の対応付けを正確に行うことができる。   When an optical connector is arranged between the optical pulse measuring device and the far-end optical communication device, a reflected pulse generated by the optical connector may be measured by overlapping with the backscattered light. FIG. 15 shows a reflected waveform when the first far-end optical communication device is connected to the second optical line when noise x, backscattered light y, and reflected pulse z generated at the optical connector are measured. Indicated. Here, when the reflected pulse z generated in the optical connector changes due to temperature change or aging deterioration of the optical connector, the reflected pulse z generated in the optical connector may be measured. In the optical line test system according to the first embodiment, the optical network has an optical connector disposed between the optical pulse measuring device and the far-end optical communication device, and the test pass / fail judgment means has a reflection level generated at the optical connector. It is preferable that the optical connector reflection level g with the highest z is obtained, and when the optical connector reflection level g is higher than the backscattered light level f, the reflection position is associated with the optical connector reflection level g as a reference. Thereby, the optical line test system according to the first embodiment can accurately associate the reflection positions without being influenced by the reflection level generated in the optical connector.

基準となる光コネクタの反射レベルとして、例えば、光コネクタの代表的な反射減衰量である40dBから求めれば、試験合否判定手段が誤った反射位置の対応付けを行うといった問題が発生することはない。ただし、光コネクタによって代表的な反射減衰量が異なる為、光コネクタの反射レベルを求める方法としては、該当する光線路に使われる光コネクタの種別と、光コネクタの種別毎に有する工事規格値から基準となる光コネクタの反射レベルを用いれば良い。なお、光コネクタが外部要因で劣化することによって反射減衰量が、例えば、20dBに悪化した場合、光コネクタでの反射レベルが光コネクタ反射レベルgを超え、かつ、反射パルスδをも超えた場合、試験合否判定手段が故障と判断する。第1実施形態に係る光線路試験システムは、光線路の故障の検出が目的であるため、光コネクタの故障を検出しても運用上問題ない。   If the reflection level of the reference optical connector is obtained from, for example, 40 dB, which is a typical reflection attenuation amount of the optical connector, there is no problem that the test pass / fail judgment means associates the wrong reflection position. . However, since the typical return loss varies depending on the optical connector, the method for obtaining the reflection level of the optical connector is based on the type of optical connector used in the corresponding optical line and the construction standard value for each type of optical connector. The reflection level of the reference optical connector may be used. When the optical connector deteriorates due to external factors and the return loss deteriorates to, for example, 20 dB. When the reflection level at the optical connector exceeds the optical connector reflection level g and also exceeds the reflection pulse δ. The test pass / fail determination means determines that a failure has occurred. Since the optical line test system according to the first embodiment is intended to detect a failure in the optical line, there is no operational problem even if a failure in the optical connector is detected.

(第2実施形態)
第2実施形態に係る光線路試験システムについて、第1実施形態に係る光線路試験システムと異なる点を中心に説明する。図16に、第2実施形態に係る光線路試験システムの概略構成図を示した。第2実施形態に係る光線路試験システムは、近端側光通信装置10、近端側光通信装置10と通信する8個の遠端側光通信装置30、8以上に分岐する光分岐回路22、近端側光通信装置10と光分岐回路22とを接続する第1光線路20、及び、光分岐回路22と8個の遠端側光通信装置30とをそれぞれ接続する8個の第2光線路24、を有する光ネットワークを試験する光線路試験システム101であって、8個の遠端側光通信装置30と第2光線路24との間に挿入され、試験用光パルスを反射する試験用光パルス反射手段60と、第1光線路20に結合回路52を介して接続され、遠端側光通信装置30に向けて試験用光パルスを出射し、反射位置までの距離に対する反射レベルを測定する光パルス測定器50と、光パルス測定器50に試験用光パルスを出射させて光パルス測定器50が測定する反射位置までの距離に対する反射レベルから結合回路52と試験用光パルス反射手段60との間の光損失を求め、光損失に基づいて試験の合否を判定する試験合否判定手段70と、を備え、試験合否判定手段70は、M個目(但し、Mは8以下の正整数)の遠端側光通信装置30が第2光線路24に接続されたときの反射位置までの距離に対する反射レベルとM−1個目の遠端側光通信装置30が第2光線路24に接続されたときの反射位置までの距離に対する反射レベルとの差分を求め、差分の中で最も高い反射レベルとなる反射位置までの距離をM個目の遠端側光通信装置30に対応させる反射位置の対応付けを行う。なお、図16では、3個目〜7個目までの遠端側光通信装置及び第2光線路を省略し、無線通信手段80及び通信端末90を示した。無線通信手段80は、例えば、無線で通信する機能を有する。
(Second Embodiment)
The optical line test system according to the second embodiment will be described focusing on differences from the optical line test system according to the first embodiment. In FIG. 16, the schematic block diagram of the optical line test system which concerns on 2nd Embodiment was shown. The optical line test system according to the second embodiment includes a near-end optical communication device 10, eight far-end optical communication devices 30 that communicate with the near-end optical communication device 10, and an optical branch circuit 22 that branches into eight or more. The first optical line 20 that connects the near-end side optical communication device 10 and the optical branch circuit 22, and the eight second lines that connect the optical branch circuit 22 and the eight far-end side optical communication devices 30, respectively. An optical line test system 101 for testing an optical network having an optical line 24, which is inserted between eight far-end optical communication devices 30 and a second optical line 24, and reflects a test optical pulse. A test light pulse reflecting means 60 is connected to the first optical line 20 via a coupling circuit 52, emits a test light pulse toward the far-end optical communication device 30, and is a reflection level with respect to the distance to the reflection position. Optical pulse measuring instrument 50 for measuring light and optical pulse measuring instrument The optical loss between the coupling circuit 52 and the test optical pulse reflecting means 60 is obtained from the reflection level with respect to the distance to the reflection position measured by the optical pulse measuring device 50 by emitting the test optical pulse to 0, and the optical loss is calculated. And a test pass / fail judgment means 70 for judging the pass / fail of the test based on the Mth (where M is a positive integer of 8 or less) far-end optical communication device 30 is the second. The reflection level with respect to the distance to the reflection position when connected to the optical line 24 and the reflection with respect to the distance to the reflection position when the M−1th far-end optical communication device 30 is connected to the second optical line 24. The difference with the level is obtained, and the reflection position is associated with the Mth far-end optical communication device 30 with the distance to the reflection position having the highest reflection level in the difference. In FIG. 16, the third to seventh far-end optical communication devices and the second optical line are omitted, and the wireless communication unit 80 and the communication terminal 90 are shown. The wireless communication unit 80 has a function of performing wireless communication, for example.

図17に、第2実施形態における試験合否判定手段のブロック図を示した。試験合否判定手段70は、無線インターフェース76を介して無線通信手段80が接続される。   FIG. 17 shows a block diagram of the test pass / fail judgment means in the second embodiment. The test acceptance / rejection determination unit 70 is connected to the wireless communication unit 80 via the wireless interface 76.

図16の通信端末90は、無線で通信する機能を有する端末であり、例えば、携帯電話、PHS(Personal Handy−phone System)、PDA(Personal Digital Assistants)及び無線通信機能を備えたノート型パソコンである。第2実施形態に係る光線路試験システムでは、試験の合否を表示する通信端末90をさらに備え、試験合否判定手段70は試験の合否を無線で通信端末90に通知することが好ましい。第2実施形態に係る光線路試験システムは、作業者の居場所に関わらず、通信端末を所持する作業者に試験の合否を通知でき、利便性が良い。   The communication terminal 90 in FIG. 16 is a terminal having a function of communicating wirelessly. For example, the communication terminal 90 is a mobile phone, a personal handy-phone system (PHS), a PDA (Personal Digital Assistant), and a notebook computer having a wireless communication function. is there. The optical line test system according to the second embodiment preferably further includes a communication terminal 90 that displays the pass / fail status of the test, and the test pass / fail determination means 70 preferably notifies the communication terminal 90 of the pass / fail status of the test. The optical line test system according to the second embodiment can notify the operator who has the communication terminal of the pass / fail of the test regardless of the location of the operator, and is convenient.

以上のように、第2実施形態係る光線路試験システムは、第1実施形態に係る光線路試験システムと同様に、反射位置の対応付けを行うことによって、作業者が近端側光通信装置から遠端側光通信装置まで距離を設計図面から求めることなく或いは実測することなく、どの遠端側光通信装置に対応する試験用光パルス反射手段からの反射パルスであるかを特定可能である。さらに、第2実施形態に係る光線路試験システムは、第1実施形態に係る光線路試験システムと同様に、光損失を求めると共に、光線路の故障であるか或いは遠端側光通信装置の故障であるかを切り分け可能である。   As described above, the optical line test system according to the second embodiment is similar to the optical line test system according to the first embodiment. It is possible to specify which far-end optical communication device corresponds to the reflected pulse from the test optical pulse reflection means without obtaining the distance to the far-end optical communication device from the design drawing or actually measuring the distance. Further, the optical line test system according to the second embodiment obtains the optical loss as well as the failure of the optical line or the failure of the far-end side optical communication device, similarly to the optical line test system according to the first embodiment. Can be carved out.

(第3実施形態)
第3実施形態に係る光線路試験システムについて、第2実施形態に係る光線路試験システムと異なる点を中心に説明する。第3実施形態に係る光線路試験システムでは、図16の通信端末90の代わりに、光ネットワークは、近端側光通信装置10が試験の合否を示す警告を遠端側光通信装置30に転送し、遠端側光通信装置30が警告に従って警告の内容を出力し、試験合否判定手段70は、警告を近端側光通信装置10に送信し警告を遠端側光通信装置30に転送させても良い。遠端側光通信装置30が備える警告を出力する手段としては、例えば、アラームランプ、アラーム音又は音声を出力するスピーカー、警告文を出力するディスプレイがある。第3実施形態に係る光線路試験システムは、遠端側光通信装置10の近くにいる作業者に試験の合否を通知でき、利便性が良い。
(Third embodiment)
The optical line test system according to the third embodiment will be described focusing on differences from the optical line test system according to the second embodiment. In the optical line testing system according to the third embodiment, instead of the communication terminal 90 of FIG. 16, the optical network forwards a warning indicating that the near-end optical communication device 10 has passed or failed the test to the far-end optical communication device 30. Then, the far-end optical communication device 30 outputs the content of the warning according to the warning, and the test pass / fail determination means 70 transmits the warning to the near-end optical communication device 10 and forwards the warning to the far-end optical communication device 30. May be. Examples of means for outputting a warning provided in the far-end optical communication device 30 include an alarm lamp, a speaker that outputs an alarm sound or sound, and a display that outputs a warning text. The optical line test system according to the third embodiment can notify the operator near the far-end optical communication device 10 of the success or failure of the test, and is convenient.

以上のように、第3実施形態に係る光線路試験システムは、第2実施形態に係る光線路試験システムと同様に効果に加え、既存の光ネットワークを利用して警告を転送できるので低コストである。   As described above, the optical line test system according to the third embodiment has the same effect as the optical line test system according to the second embodiment, and can transfer a warning using an existing optical network, so that the cost is low. is there.

本発明に係る光通信システムは、PON(Passive Optical Network)をはじめとする光ネットワークで利用することができる。   The optical communication system according to the present invention can be used in an optical network such as a PON (Passive Optical Network).

第1実施形態に係る光線路試験システムの概略構成図である。It is a schematic block diagram of the optical line test system which concerns on 1st Embodiment. 試験用光パルス反射手段を遠端側光通信装置と第2光線路との間に挿入する形態を示す概念図である。It is a conceptual diagram which shows the form which inserts the test optical pulse reflection means between a far end side optical communication apparatus and a 2nd optical line. 試験合否判定手段のブロック図である。It is a block diagram of a test pass / fail determination means. 遠端側光通信装置を光分岐手段に接続する作業のフローチャートである。It is a flowchart of the operation | work which connects a far end side optical communication apparatus to an optical branching means. 試験合否判定手段の処理のフローチャートである。It is a flowchart of a process of a test pass / fail determination means. 1個目の遠端側光通信装置が第2光線路に接続された場合の反射波形を示す概念図である。It is a conceptual diagram which shows the reflected waveform when the 1st far end side optical communication apparatus is connected to the 2nd optical line. 2個目の遠端側光通信装置が第2光線路に接続された場合の反射波形を示す概念図である。It is a conceptual diagram which shows a reflected waveform when the 2nd far-end side optical communication apparatus is connected to the 2nd optical line. 図6の反射波形と図7の反射波形との差分波形を示す概念図である。It is a conceptual diagram which shows the difference waveform of the reflected waveform of FIG. 6, and the reflected waveform of FIG. パルス測定器の内部で発生するノイズと2個目の遠端側光通信装置が第2光線路に接続されたときの反射波形とを重ねた概念図である。It is the conceptual diagram which accumulated the noise which generate | occur | produces inside a pulse measuring device, and the reflected waveform when the 2nd far end side optical communication apparatus is connected to the 2nd optical line. 光パルス測定器の内部で発生するノイズ及びノイズレベルを示す概念図である。It is a conceptual diagram which shows the noise and noise level which generate | occur | produce inside an optical pulse measuring device. ノイズレベルを基準とした場合の1個目の遠端側光通信装置が第2光線路に接続されたときの反射波形を示す概念図である。It is a conceptual diagram which shows a reflected waveform when the 1st far end side optical communication apparatus on the basis of a noise level is connected to the 2nd optical line. ノイズレベルを基準とした場合の2個目の遠端側光通信装置が第2光線路に接続されたときの反射波形を示す図である。It is a figure which shows a reflected waveform when the 2nd far-end side optical communication apparatus on the basis of a noise level is connected to the 2nd optical line. 図11の反射波形と図12の反射波形との差分波形を示す図である。It is a figure which shows the difference waveform of the reflected waveform of FIG. 11, and the reflected waveform of FIG. ノイズ及び後方散乱光が測定される場合の1個目の遠端側光通信装置が第2光線路に接続されたときの反射波形を示す図である。It is a figure which shows a reflected waveform when the 1st far end side optical communication apparatus in case noise and backscattered light are measured is connected to the 2nd optical line. ノイズ、後方散乱光及び光コネクタで発生する反射波形が測定される場合の1個目の遠端側光通信装置が第2光線路に接続されたときの反射波形を示す図である。It is a figure which shows a reflected waveform when the 1st far end side optical communication apparatus in case noise, a backscattered light, and the reflected waveform which generate | occur | produces with an optical connector are measured is connected to the 2nd optical line. 第2実施形態に係る光線路試験システムの概略構成図である。It is a schematic block diagram of the optical line test system which concerns on 2nd Embodiment. 第2実施形態における試験合否判定手段のブロック図である。It is a block diagram of the test pass / fail determination means in the second embodiment.

符号の説明Explanation of symbols

100、101 光線路試験システム
10 近端側光通信装置
20 第1光線路
22 光分岐回路
24、24a 第2光線路
30、30a 遠端側光通信装置
50 光パルス測定器
52 結合回路
54 光スイッチ
60、60a 試験用光パルス反射手段
70 試験合否判定手段
71 CPU
72 OLTインターフェース
73 光スイッチインターフェース
74 光パルス測定器インターフェース
75 記憶部
75a ONU記憶部
75b 測定条件記憶部
75c 測定結果記憶部
75d ノイズレベル記憶部
75e 後方散乱光レベル記憶部
75f 光コネクタ反射レベル記憶部
76 無線インターフェース
80 無線通信手段
90 通信端末
a、c 反射レベルの最高値
b、d 反射位置からの距離
e ノイズレベル
f 後方散乱光レベル
g 光コネクタ反射レベル
x ノイズ
y 後方散乱光
z 光コネクタで発生する反射パルス
α、β、γ、δ 反射パルス
100, 101 Optical line test system 10 Near-end side optical communication device
20 1st optical line 22 Optical branch circuit 24, 24a 2nd optical line 30, 30a Far end side optical communication apparatus
50 Optical pulse measuring device 52 Coupling circuit 54 Optical switch 60, 60a Optical pulse reflection means for test 70 Test pass / fail judgment means 71 CPU
72 OLT interface 73 Optical switch interface 74 Optical pulse measuring instrument interface 75 Storage unit 75a ONU storage unit 75b Measurement condition storage unit 75c Measurement result storage unit 75d Noise level storage unit 75e Backscattered light level storage unit 75f Optical connector reflection level storage unit 76 Wireless interface 80 Wireless communication means 90 Communication terminal a, c Maximum reflection level b, d Distance from reflection position e Noise level f Back scattered light level g Optical connector reflection level x Noise y Back scattered light z Generated at optical connector Reflected pulse α, β, γ, δ Reflected pulse

Claims (8)

近端側光通信装置、前記近端側光通信装置と通信するN個(但し、Nは正整数)の遠端側光通信装置、N以上に分岐する光分岐回路、前記近端側光通信装置と前記光分岐回路とを接続する第1光線路、前記光分岐回路と前記N個の遠端側光通信装置とをそれぞれ接続するN個の第2光線路、及び、前記N個の遠端側光通信装置と前記第2光線路との間に挿入され、試験用光パルスを反射する試験用光パルス反射手段、を有する光ネットワークを試験する光線路試験システムであって、
前記第1光線路に結合回路を介して接続され、前記遠端側光通信装置に向けて前記試験用光パルスを出射し、反射位置までの距離に対する反射レベルを測定する光パルス測定器と、
前記光パルス測定器に前記試験用光パルスを出射させて前記光パルス測定器が測定する反射位置までの距離に対する反射レベルから前記結合回路と前記試験用光パルス反射手段との間の光損失を求め、前記光損失に基づいて試験の合否を判定する試験合否判定手段と、を備え、
前記試験合否判定手段は、M個目(但し、MはN以下の正整数)の前記遠端側光通信装置が前記第2光線路に接続されたときの前記反射位置までの距離に対する反射レベルとM−1個目の前記遠端側光通信装置が前記第2光線路に接続されたときの前記反射位置までの距離に対する反射レベルとの差分を求め、前記差分の中で最も高い反射レベルとなる前記反射位置までの距離を前記M個目の遠端側光通信装置に対応させる反射位置の対応付けを行うことを特徴とする光線路試験システム。
Near-end side optical communication device, N (N is a positive integer) far-end side optical communication device communicating with the near-end side optical communication device, optical branch circuit branching to N or more, and near-end side optical communication A first optical line connecting the device and the optical branch circuit, N second optical lines connecting the optical branch circuit and the N far-end optical communication devices, and the N far optical circuits, respectively. An optical line test system for testing an optical network, which is inserted between an end-side optical communication device and the second optical line and has a test optical pulse reflecting means for reflecting a test optical pulse,
An optical pulse measuring device connected to the first optical line via a coupling circuit, emitting the test optical pulse toward the far-end optical communication device, and measuring a reflection level with respect to a distance to a reflection position;
The light loss between the coupling circuit and the test light pulse reflecting means is calculated from the reflection level with respect to the distance to the reflection position measured by the light pulse measuring device by emitting the test light pulse to the light pulse measuring device. And a test pass / fail judgment means for judging pass / fail of the test based on the light loss,
The test acceptance / rejection determining means is a reflection level relative to a distance to the reflection position when the M-th (where M is a positive integer less than or equal to N) the far-end optical communication device is connected to the second optical line. And the M−1th far-end optical communication device is connected to the second optical line to obtain the difference between the reflection level with respect to the distance to the reflection position, and the highest reflection level among the differences An optical line test system, wherein a reflection position is associated with a distance to the reflection position corresponding to the M-th far-end optical communication device.
近端側光通信装置、前記近端側光通信装置と通信するN個(但し、Nは正整数)の遠端側光通信装置、N以上に分岐する光分岐回路、前記近端側光通信装置と前記光分岐回路とを接続する第1光線路、及び、前記光分岐回路と前記N個の遠端側光通信装置とをそれぞれ接続するN個の第2光線路、を有する光ネットワークを試験する光線路試験システムであって、
前記N個の遠端側光通信装置と前記第2光線路との間に挿入され、試験用光パルスを反射する試験用光パルス反射手段と、
前記第1光線路に結合回路を介して接続され、前記遠端側光通信装置に向けて前記試験用光パルスを出射し、反射位置までの距離に対する反射レベルを測定する光パルス測定器と、
前記光パルス測定器に前記試験用光パルスを出射させて前記光パルス測定器が測定する反射位置までの距離に対する反射レベルから前記結合回路と前記試験用光パルス反射手段との間の光損失を求め、前記光損失に基づいて試験の合否を判定する試験合否判定手段と、を備え、
前記試験合否判定手段は、M個目(但し、MはN以下の正整数)の前記遠端側光通信装置が前記第2光線路に接続されたときの前記反射位置までの距離に対する反射レベルとM−1個目の前記遠端側光通信装置が前記第2光線路に接続されたときの前記反射位置までの距離に対する反射レベルとの差分を求め、前記差分の中で最も高い反射レベルとなる前記反射位置までの距離を前記M個目の遠端側光通信装置に対応させる反射位置の対応付けを行うことを特徴とする光線路試験システム。
Near-end side optical communication device, N (N is a positive integer) far-end side optical communication device communicating with the near-end side optical communication device, optical branch circuit branching to N or more, and near-end side optical communication An optical network having a first optical line connecting a device and the optical branch circuit, and N second optical lines respectively connecting the optical branch circuit and the N far-end optical communication devices. An optical line test system to be tested,
A test optical pulse reflecting means that is inserted between the N far-end optical communication devices and the second optical line and reflects the test optical pulse;
An optical pulse measuring device connected to the first optical line via a coupling circuit, emitting the test optical pulse toward the far-end optical communication device, and measuring a reflection level with respect to a distance to a reflection position;
The light loss between the coupling circuit and the test light pulse reflecting means is calculated from the reflection level with respect to the distance to the reflection position measured by the light pulse measuring device by emitting the test light pulse to the light pulse measuring device. And a test pass / fail judgment means for judging pass / fail of the test based on the light loss,
The test acceptance / rejection determining means is a reflection level relative to a distance to the reflection position when the M-th (where M is a positive integer less than or equal to N) the far-end optical communication device is connected to the second optical line. And the M−1th far-end optical communication device is connected to the second optical line to obtain the difference between the reflection level with respect to the distance to the reflection position, and the highest reflection level among the differences An optical line test system, wherein a reflection position is associated with a distance to the reflection position corresponding to the M-th far-end optical communication device.
前記光ネットワークは、前記近端側光通信装置とM個目の前記遠端側光通信装置との間でリンクが確立されたときに、前記リンクが確立された旨のリンク情報を前記近端側光通信装置が前記試験合否判定手段に送信し、
前記試験合否判定手段は、前記リンク情報を前記近端側光通信装置から受信した後に前記反射位置の対応付けを行うことを特徴とする請求項1又は2に記載の光線路試験システム。
When the link is established between the near-end optical communication device and the M-th far-end optical communication device, the optical network transmits link information indicating that the link is established to the near-end. The side optical communication device transmits to the test pass / fail judgment means,
The optical path test system according to claim 1, wherein the test pass / fail determination unit associates the reflection positions after receiving the link information from the near-end optical communication device.
前記試験合否判定手段は、前記光パルス測定器の内部で発生するノイズによる前記反射レベルが最も高くなるノイズレベルを求め、前記ノイズレベルを基準として前記反射位置の対応付けを行うことを特徴とする請求項1から3のいずれかに記載の光線路試験システム。   The test acceptance / rejection determining unit obtains a noise level at which the reflection level is highest due to noise generated inside the optical pulse measuring device, and associates the reflection position with the noise level as a reference. The optical line test system according to claim 1. 前記試験合否判定手段は、前記光パルス測定器の測定する反射位置までの距離に対する後方散乱光の前記反射レベルが最も高くなる後方散乱光レベルを求め、前記後方散乱光レベルを基準として前記反射位置の対応付けを行うことを特徴とする請求項1から3のいずれかに記載の光線路試験システム。   The test acceptance / rejection determination unit obtains a backscattered light level at which the reflection level of the backscattered light is highest with respect to a distance to the reflection position measured by the optical pulse measuring device, and the reflection position is based on the backscattered light level. The optical line test system according to any one of claims 1 to 3, wherein the correlation is performed. 前記光ネットワークは、前記光パルス測定器と前記遠端側光通信装置との間に光コネクタが配置され、
前記試験合否判定手段は、前記光コネクタで発生する前記反射レベルが最も高くなる光コネクタ反射レベルを求め、前記光コネクタ反射レベルが前記後方散乱光レベルよりも高い場合、前記光コネクタ反射レベルを基準として前記反射位置の対応付けを行うことを特徴とする請求項5に記載の光線路試験システム。
In the optical network, an optical connector is disposed between the optical pulse measuring device and the far-end optical communication device,
The test acceptance / rejection determination unit obtains an optical connector reflection level at which the reflection level generated at the optical connector is highest, and when the optical connector reflection level is higher than the backscattered light level, the optical connector reflection level is used as a reference. The optical path test system according to claim 5, wherein the reflection positions are associated with each other.
前記試験の合否を表示する通信端末をさらに備え、前記試験合否判定手段は前記試験の合否を無線で前記通信端末に通知することを特徴とする請求項1から6のいずれかに記載の光線路試験システム。   The optical line according to any one of claims 1 to 6, further comprising a communication terminal that displays the pass / fail of the test, wherein the test pass / fail determination means wirelessly notifies the communication terminal of the pass / fail of the test. Test system. 前記光ネットワークは、前記近端側光通信装置が前記試験の合否を示す警告を前記遠端側光通信装置に転送し、前記遠端側光通信装置が前記警告に従って前記警告の内容を出力し、
前記試験合否判定手段は、前記警告を前記近端側光通信装置に送信し前記警告を前記遠端側光通信装置に転送させることを特徴とする請求項1から7のいずれかに記載の光線路試験システム。
The optical network transfers a warning indicating that the near-end optical communication device has passed or failed the test to the far-end optical communication device, and the far-end optical communication device outputs the content of the warning according to the warning. ,
The light beam according to any one of claims 1 to 7, wherein the test acceptance / rejection determination unit transmits the warning to the near-end side optical communication device and causes the warning to be transferred to the far-end side optical communication device. Road test system.
JP2006287804A 2006-10-23 2006-10-23 Optical line test system Expired - Fee Related JP4901421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287804A JP4901421B2 (en) 2006-10-23 2006-10-23 Optical line test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287804A JP4901421B2 (en) 2006-10-23 2006-10-23 Optical line test system

Publications (2)

Publication Number Publication Date
JP2008107106A true JP2008107106A (en) 2008-05-08
JP4901421B2 JP4901421B2 (en) 2012-03-21

Family

ID=39440584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287804A Expired - Fee Related JP4901421B2 (en) 2006-10-23 2006-10-23 Optical line test system

Country Status (1)

Country Link
JP (1) JP4901421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038892A (en) * 2009-08-11 2011-02-24 Yokogawa Electric Corp Optical pulse testing system and mobile terminal apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329526A (en) * 1996-06-10 1997-12-22 Ando Electric Co Ltd Multi-branching optical path testing device
JPH116785A (en) * 1997-06-18 1999-01-12 Ando Electric Co Ltd Tester for multistage multiple-branched optical path

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329526A (en) * 1996-06-10 1997-12-22 Ando Electric Co Ltd Multi-branching optical path testing device
JPH116785A (en) * 1997-06-18 1999-01-12 Ando Electric Co Ltd Tester for multistage multiple-branched optical path

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038892A (en) * 2009-08-11 2011-02-24 Yokogawa Electric Corp Optical pulse testing system and mobile terminal apparatus

Also Published As

Publication number Publication date
JP4901421B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
US8270828B2 (en) Optical line monitoring apparatus and optical line monitoring method
JP4902213B2 (en) Optical line monitoring apparatus and method
WO2019172276A1 (en) Optical fiber monitoring method, and optical fiber monitoring system
JP2004132967A (en) System for optical network test using otdr
JPH0658840A (en) System and method for inspecting optical fiber
KR20140093515A (en) Apparatus and method for fault identification of optical link monitoring
JP4759493B2 (en) Optical equipment detection method and optical equipment detection system
JP4901421B2 (en) Optical line test system
US11047766B2 (en) Systems and methods for identification and testing of optical fibers
CN111487034A (en) Optical time domain reflectometer and optical pulse testing method
US7317518B2 (en) Determination of an optical property of a DUT by OTDR measurement
JP3762186B2 (en) Optical transmission line and optical transmission line with optical line monitoring device
KR101210465B1 (en) One body type optical power meter having fault position finder
JP5210338B2 (en) Optical communication line monitoring system and optical communication line monitoring method
JP2016099166A (en) Optical fiber characteristic analysis device and optical fiber characteristic analysis method
JP5493571B2 (en) OTDR waveform judgment method
KR101414770B1 (en) Optical measuring device for testing state of optical cable, optical inspecting device using the same, and method for inspecting optical capble using optical measuring device and optical source device
JP4160939B2 (en) Optical line fault search method
US20050117147A1 (en) Visual fault detection for optical measurements
JP5313184B2 (en) Optical communication line monitoring system and optical communication line monitoring method
JP2009020029A (en) Optical transmission line remote testing/monitoring method, and optical transmission line remote testing/monitoring system
TWI577142B (en) Fiber optic detection method and device
JP3599693B2 (en) Optical pulse test equipment
JP2003207414A (en) Ray path testing system and light source power level monitoring method
JPH11287735A (en) Optical element and method and system for localizing defect at optical fiber system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees