JP2008106024A - Proteinaceous medicine-containing sustained release particulate composition and method for producing the same - Google Patents

Proteinaceous medicine-containing sustained release particulate composition and method for producing the same Download PDF

Info

Publication number
JP2008106024A
JP2008106024A JP2006292936A JP2006292936A JP2008106024A JP 2008106024 A JP2008106024 A JP 2008106024A JP 2006292936 A JP2006292936 A JP 2006292936A JP 2006292936 A JP2006292936 A JP 2006292936A JP 2008106024 A JP2008106024 A JP 2008106024A
Authority
JP
Japan
Prior art keywords
protein drug
weight
sustained
porous hydroxyapatite
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006292936A
Other languages
Japanese (ja)
Inventor
Takeshi Nagao
剛 長尾
Yoko Miyamoto
陽子 宮本
Jun Niimi
純 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GALENISEARCH LAB Inc
GALENISEARCH LABORATORIES Inc
Original Assignee
GALENISEARCH LAB Inc
GALENISEARCH LABORATORIES Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GALENISEARCH LAB Inc, GALENISEARCH LABORATORIES Inc filed Critical GALENISEARCH LAB Inc
Priority to JP2006292936A priority Critical patent/JP2008106024A/en
Publication of JP2008106024A publication Critical patent/JP2008106024A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sustained release particulate composition which is suppressed in the excessive release of a proteinaceous medicine in the early stage of administration, keeps stable sustained release and hardly causes the local disorder of administration. <P>SOLUTION: The composition comprises porous hydroxyapatite derivative particulates and a proteinaceous medicine, wherein the content of the proteinaceous medicine is 40-80 wt.% of the saturated adsorption weight to the porous hydroxyapatite derivative particulates. The method for producing the composition comprises mixing the hydroxyapatite derivative particulates containing the proteinaceous medicine in an amount of 40-80 wt.% of the saturated absorption weight into the porous hydroxyapatite derivative particulates with a water-soluble bivalent metal compound aqueous solution, agitating, freeze-drying to prepare a powder, mixing the powder with an aqueous solution or suspension of a water-affinitive polymer disappearing in vivo, agitating and freeze-drying or vacuum-drying to prepare a powder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生体内で緩徐に消失する多孔性ヒドロキシアパタイト誘導体の微粒子を基剤とするたんぱく性薬物の徐放性微粒子組成物およびその製造方法に関する。   The present invention relates to a sustained-release fine particle composition of a protein drug based on fine particles of a porous hydroxyapatite derivative that slowly disappears in vivo and a method for producing the same.

たんぱく性薬物の長期にわたる徐放性注射用製剤は、これまでポリ乳酸・グリコール酸(PLGA)を基剤にして検討されてきた(例えば、特許文献1、2、非特許文献1,2,3参照)。また、ヒト成長ホルモン(hGH)を含有するPLGAを基剤とした徐放性マイクロカプセルが米国において治療に使用されている(例えば、非特許文献4参照)。PLGAは、生体内で加水分解して徐々に消失する生体内消失性の基剤で、注射剤の基剤として好ましい性質を有している。一般的にはPLGAを使用する徐放性製剤を製造する際には、それを溶解する有機溶媒を使用する。一方、多くのたんぱく性薬物は、水溶性であり、PLGAを用いた徐放性微粒子製剤を製造するには有機溶媒溶液と水溶液とを使用することになる。   Long-term sustained-release injection preparations of protein drugs have been studied based on polylactic acid / glycolic acid (PLGA) (for example, Patent Documents 1 and 2, Non-Patent Documents 1, 2, and 3). reference). In addition, sustained-release microcapsules based on PLGA containing human growth hormone (hGH) are used for treatment in the United States (see, for example, Non-Patent Document 4). PLGA is a bioerodible base that gradually disappears upon hydrolysis in vivo, and has favorable properties as a base for injections. In general, when producing a sustained-release preparation using PLGA, an organic solvent for dissolving it is used. On the other hand, many protein drugs are water-soluble, and an organic solvent solution and an aqueous solution are used to produce a sustained-release fine particle preparation using PLGA.

この2つの溶媒を同時に使用するとたんぱく性薬物は、変性して失活する。このような活性の低下は、有効性を損なうのみならず生体に対しても悪い影響をもたらす危険性がある。また、水溶性のたんぱく性薬物の徐放性微粒子製剤においては、投与初期(直後)に一過性の過剰放出をすることが避けられない。また、ヒドロキシアパタイトを用いたhGH(たんぱく性薬物)の徐放性微粒子製剤についての報告(例えば、非特許文献5、6,7および特許文献3参照)もあるが、非特許文献5、6は、いずれも2成分系であり、ヒドロキシアパタイトの粒子径も40から80μmあるいは200μmと大きく、細い注射針による投与は困難である。さらに、in vivo における徐放効果は不明である。   When these two solvents are used simultaneously, the protein drug is denatured and inactivated. Such a decrease in activity not only impairs the effectiveness but also has a risk of adversely affecting the living body. In addition, in a sustained-release fine particle formulation of a water-soluble proteinaceous drug, it is inevitable that a temporary excessive release occurs at the initial stage (immediately after administration). In addition, there is a report on a sustained release fine particle formulation of hGH (protein drug) using hydroxyapatite (see Non-Patent Documents 5, 6, 7 and Patent Document 3, for example). These are two-component systems, and the particle diameter of hydroxyapatite is as large as 40 to 80 μm or 200 μm, and administration with a thin injection needle is difficult. Furthermore, the sustained release effect in vivo is unknown.

また、ヒドロキシアパタイト中に含まれるhGH量も1%以下で少ないものであった。特許文献3および非特許文献7は、多孔性ヒドロキシアパタイト微粒子に存在する細孔に生物学的活性薬剤、ヒト血清たんぱく質、ムコ多糖類を充填し、2価金属イオンを加えて塞栓する又は水溶性のカルシウム塩を充填し、炭酸ナトリウムもしくは炭酸水素ナトリウム又は炭酸イオン水溶液を加えて該微粒子の外層を栓塞することにより徐放性組成物を製造する方法を提供しているが、微粒子製剤中のたんぱく性薬物の含量は、1%程度で、徐放期間も7日程度であり、臨床使用には該製剤の投与量を増加せざるを得ないため実用的な観点からは解決すべき問題点があった。 Further, the amount of hGH contained in hydroxyapatite was 1% or less and was small. Patent Literature 3 and Non-Patent Literature 7 describe that pores present in porous hydroxyapatite fine particles are filled with a biologically active agent, human serum protein, mucopolysaccharide, and added with divalent metal ions to embolize or be water-soluble. Is provided, and a method for producing a sustained-release composition by plugging the outer layer of the fine particles by adding sodium carbonate or sodium hydrogen carbonate or an aqueous carbonate ion solution is provided. The content of the sex drug is about 1% and the sustained release period is about 7 days. For clinical use, the dosage of the preparation must be increased, so there is a problem to be solved from a practical viewpoint. there were.

一般的にたんぱく性薬物の注射用徐放性製剤においては、投与後、薬物の放出が終了する頃に生体内から消失する生体内消失性の機能を有する基剤を選定しなければならない。また、たんぱく性薬物の製造に関しては水に混和しない有機溶媒と水溶液との同時併用は避け、たんぱく性薬物の変性を回避しなければならない。製剤の投与量が大きくなりすぎて細い注射針による投与が困難になる懸念を回避するため微粒子製剤中の薬物吸着量は、少なくとも5%以上が好ましい。さらに、多くの場合、当該微粒子製剤は、反復投与となるので、患者の負担を軽減するためにも細い注射針を通ることが好ましく、その徐放期間は、少なくとも1週間以上で、かつ、副作用の原因となり得る初期過剰放出を極力少なくしなければならない。   In general, in a sustained-release preparation for injection of a protein drug, a base having an in-vivo disappearance function that disappears from the living body after the release of the drug after administration must be selected. For the production of protein drugs, simultaneous use of an organic solvent that is not miscible with water and an aqueous solution must be avoided to avoid denaturation of the protein drug. In order to avoid the concern that the dosage of the preparation becomes too large and administration with a thin injection needle becomes difficult, the drug adsorption amount in the fine particle preparation is preferably at least 5% or more. Further, in many cases, since the microparticle preparation is repeatedly administered, it is preferable to pass through a thin injection needle in order to reduce the burden on the patient, and the sustained release period is at least one week or more and side effects. It is necessary to minimize the initial excessive release that can cause the above.

既に、このような問題点については多孔性ヒドロキシアパタイト誘導体の微粒子を基剤として利用し、適量の水溶性2価金属化合物を使用すること(特許文献3および特許文献4参照)による解決方法が提出された。すなわち、これらの技術により生体内消失性および徐放性機能を併せ持ち、1週間以上にわたりほぼ一定速度で含有する薬物を徐放し、その薬物吸着量も5%以上であり、分解性、通針性も良好であるたんぱく性薬物の注射用徐放性微粒子製剤およびその製造法が明らかとなり、さらに、生体内消失性の水親和性の疎水性部と親水性部からなるブロックコポリマーで薬物含有微粒子を被覆することにより薬物の徐放性をより長く持続させ、好ましい徐放性を付与する技術も提出されている(特許文献5参照)。
特開平10-231252 米国特許5656297 国際公開広報 WO2004/112827 A1 国際公開広報 WO2004/112751 A1 国際公開広報 WO2005/082405 A1 O.L. Johnson et al.: Nature Medicine, 2: 795-799 (1996). M. Takenaga et al.: J. Pharmacy Pharmacology, 54: 1189-1194 (2002). S. Takada et al.: J. Controlled Release, 88: 229-242 (2003). NDA21-075 J. Guicheux et al.: J. Biomedical Materials Research, 34: 165-170 (1997). H. Gautier et al.: J. Biomedical Materials Research, 40: 606-613 (1998). Y. Mizushima et al: J. Controlled Release, 110:260-265 (2006).
Already, such a problem has been submitted by using a fine particle of a porous hydroxyapatite derivative as a base and using an appropriate amount of a water-soluble divalent metal compound (see Patent Document 3 and Patent Document 4). It was done. That is, these techniques have both in vivo disappearance and sustained release functions, and release the drug contained at a substantially constant rate over a week or more, and the amount of adsorbed drug is 5% or more. In addition, a sustained-release fine particle formulation for injection of a protein drug and a method for producing the same have been clarified. A technique has also been proposed in which a sustained release of a drug is sustained for a longer time by coating to impart a preferable sustained release (see Patent Document 5).
JP 10-231252 A US Patent 5656297 International public relations WO2004 / 112827 A1 International public relations WO2004 / 112751 A1 International public relations WO2005 / 082405 A1 OL Johnson et al .: Nature Medicine, 2: 795-799 (1996). M. Takenaga et al .: J. Pharmacy Pharmacology, 54: 1189-1194 (2002). S. Takada et al .: J. Controlled Release, 88: 229-242 (2003). NDA21-075 J. Guicheux et al .: J. Biomedical Materials Research, 34: 165-170 (1997). H. Gautier et al .: J. Biomedical Materials Research, 40: 606-613 (1998). Y. Mizushima et al: J. Controlled Release, 110: 260-265 (2006).

前述のごとくたんぱく性薬物の注射用徐放性微粒子製剤においては投与初期の過剰放出が避けられないことはよく知られているが、可能な限り初期放出を抑制するためには抑制効果のある2価金属化合物が公知技術として利用されている。しかしながら、2価金属化合物のなかで効果の優れた亜鉛化合物を利用する場合、初期過剰放出の抑制とは裏腹に投与量の増加に伴い、場合により投与局所に傷害を引き起こす可能性がある。したがって、より安全性の高い徐放性製剤を得るためには初期の過剰放出を抑制し、かつ、人体に対しても投与局所の傷害を可能な限り少なくする必要がある。   As described above, it is well known that excessive release at the initial stage of administration is inevitable in the sustained-release fine particle preparation for injection of protein drugs, but it has an inhibitory effect to suppress the initial release as much as possible. Valence metal compounds are used as a known technique. However, when a zinc compound having an excellent effect among divalent metal compounds is used, contrary to the suppression of initial excessive release, there is a possibility of causing an injury locally in some cases as the dose increases. Therefore, in order to obtain a safer sustained-release preparation, it is necessary to suppress the initial excessive release and to reduce the local injury to the human body as much as possible.

このような状況下、さらに各種たんぱく性薬物について投与初期の過剰放出を極力小さくし、かつ、安定した徐放性を得る目的でさらなる検討を続けた結果、多孔性ヒドロキシアパタイト誘導体微粒子が本来たんぱく性薬物を吸着(含有)できる最大量を下回る量の該たんぱく性薬物を弱酸性状態で多孔性ヒドロキシアパタイト誘導体に吸着させることによって、2価金属化合物の添加量を減量した場合でも投与初期の過剰放出を抑制し、さらに安定した徐放性を保持し、かつ、投与局所傷害の少ないたんぱく性薬物含有徐放性微粒子組成物が得られることを見出した。   Under these circumstances, the results of further investigations aimed at minimizing excessive release at the initial stage of administration for various protein drugs and obtaining stable sustained release have resulted in that the porous hydroxyapatite derivative fine particles are inherently proteinaceous. Even when the amount of the divalent metal compound added is reduced by adsorbing the proteinaceous drug in an amount less than the maximum amount capable of adsorbing (containing) the drug to the porous hydroxyapatite derivative in a weakly acidic state, excessive release at the initial stage of administration It was found that a sustained-release fine-particle composition containing a protein drug that suppresses the above, further maintains a stable sustained-release property, and has few local injuries to administration can be obtained.

そこで、本発明の目的は、たんぱく性薬物について投与初期の過剰放出を抑制し、さらに安定した徐放性を保持し、かつ、投与局所傷害の少ない徐放性微粒子組成物を得ることである。   Accordingly, an object of the present invention is to obtain a sustained-release fine particle composition that suppresses excessive release at the beginning of administration of a protein drug, maintains stable sustained-release properties, and has little local injury to the administration.

前記目的を達成するため、本発明のたんぱく性薬物含有徐放性微粒子組成物は、多孔性ヒドロキシアパタイト誘導体微粒子とたんぱく性薬物からなる組成物であって、該たんぱく性薬物の吸着量(含有量)が該多孔性ヒドロキシアパタイト誘導体微粒子への飽和吸着重量の40〜80重量%からなる。   In order to achieve the above object, the sustained release fine particle composition containing a protein drug of the present invention is a composition comprising porous hydroxyapatite derivative fine particles and a protein drug, and the adsorbed amount (content of the protein drug) ) Comprises 40 to 80% by weight of the saturated adsorption weight on the porous hydroxyapatite derivative fine particles.

又、本発明のたんぱく性薬物含有徐放性微粒子組成物は、多孔性ヒドロキシアパタイト誘導体微粒子、たんぱく性薬物および水親和性生体内消失性高分子化合物からなる組成物であって、該たんぱく性薬物の吸着量(含有量)が該多孔性ヒドロキシアパタイト誘導体微粒子への飽和吸着重量の40〜80重量%からなることを特徴とするたんぱく性薬物含有徐放性微粒子組成物。   The protein drug-containing sustained-release fine particle composition of the present invention is a composition comprising porous hydroxyapatite derivative fine particles, a protein drug and a water-affinity bioerodible polymer compound, the protein drug A protein drug-containing sustained-release fine particle composition, wherein the adsorbed amount (content) is 40 to 80% by weight of the saturated adsorption weight to the porous hydroxyapatite derivative fine particles.

又、本発明のたんぱく性薬物含有徐放性微粒子組成物は、多孔性ヒドロキシアパタイト誘導体微粒子を基剤として、たんぱく性薬物、水溶性2価金属化合物および水親和性生体内消失性高分子化合物からなる組成物であって、該たんぱく性薬物の吸着量(含有量)が、該多孔性ヒドロキシアパタイト誘導体微粒子への飽和吸着重量(飽和含有重量)の40〜80重量%からなる。   The protein drug-containing sustained-release fine particle composition of the present invention is based on a porous hydroxyapatite derivative fine particle as a base, from a protein drug, a water-soluble divalent metal compound, and a water-affinity bioerodible polymer compound. The protein drug adsorption amount (content) is 40 to 80% by weight of the saturated adsorption weight (saturation content weight) to the porous hydroxyapatite derivative fine particles.

又、本発明のたんぱく性薬物含有徐放性微粒子組成物は、多孔性ヒドロキシアパタイト誘導体微粒子を基剤としてたんぱく性薬物、水溶性2価金属化合物および水親和性生体内消失性高分子化合物からなる組成物であって、該水溶性2価金属化合物が塩化亜鉛であり、塩化亜鉛の含有量が組成物に対し2から15重量%であることからなる。   The protein drug-containing sustained-release fine particle composition of the present invention comprises a protein drug, a water-soluble divalent metal compound, and a water-affinity bioerodible polymer compound based on porous hydroxyapatite derivative fine particles. It is a composition, and the water-soluble divalent metal compound is zinc chloride, and the content of zinc chloride is 2 to 15% by weight based on the composition.

ここに記載のたんぱく性薬物含有徐放性微粒子組成物を構成する多孔性ヒドロキシアパタイト誘導体微粒子とは、多孔性ヒドロキシアパタイトの構成成分であるカルシウム原子の一部を亜鉛原子に置換した化合物である。このときの亜鉛原子の置換率(モル比)は、モル比でカルシウム原子の1〜20%(モル)が好ましい。換言すれば、多孔性ヒドロキシアパタイト誘導体微粒子中のカルシウム原子数と亜鉛原子数の比が、99:1〜4:1であることが好ましい。
例えば、カルシウム原子10個のうち、0.5個を亜鉛原子に置換した誘導体微粒子は、Ca9.5Zn0.5(PO4)6(OH)2の分子式で表される。一般式はCa(10-x)Znx(PO4)6(OH)2 となり、式中、xは0.1-2.0が好ましいということになる。それぞれHAp-Zn-0.5、HAp-Zn-xと表記する。カルシウム原子と置換した亜鉛原子は、結晶格子中に存在するので水に懸濁した状態では溶出することはない。
The porous hydroxyapatite derivative fine particles constituting the protein drug-containing sustained release fine particle composition described herein are compounds in which a part of calcium atoms, which are constituents of porous hydroxyapatite, are substituted with zinc atoms. At this time, the substitution rate (molar ratio) of zinc atoms is preferably 1 to 20% (molar) of calcium atoms by molar ratio. In other words, the ratio of the number of calcium atoms and the number of zinc atoms in the porous hydroxyapatite derivative fine particles is preferably 99: 1 to 4: 1.
For example, derivative fine particles in which 0.5 of 10 calcium atoms are substituted with zinc atoms are represented by the molecular formula of Ca9.5Zn0.5 (PO4) 6 (OH) 2. The general formula is Ca (10-x) Znx (PO4) 6 (OH) 2, where x is preferably 0.1-2.0. Represented as HAp-Zn-0.5 and HAp-Zn-x, respectively. The zinc atom substituted with the calcium atom is present in the crystal lattice and therefore does not elute when suspended in water.

ヒドロキシアパタイト誘導体のナノ結晶は、水酸化カルシウムの水懸濁液中に所定量の塩化亜鉛を含むリン酸水溶液を滴下する湿式法で合成される。この反応は、酸とアルカリの中和反応であり、大きさ40nm前後の亜鉛を含有するアパタイトナノ結晶が直接沈殿する。このようにして得られた亜鉛含有ヒドロキシアパタイトナノ結晶の懸濁液をスプレードライ法により噴霧・乾燥させることによりナノ粒子が多数集合した多孔質微粒子が得られる。さらにこの多孔質微粒子を高温で焼成処理して製造される(生駒俊之ら、PHARM TECH JAPAN 21: 2088-2090(2005).参照)。   The nanocrystals of the hydroxyapatite derivative are synthesized by a wet method in which a phosphoric acid aqueous solution containing a predetermined amount of zinc chloride is dropped into an aqueous suspension of calcium hydroxide. This reaction is a neutralization reaction between an acid and an alkali, and apatite nanocrystals containing zinc having a size of about 40 nm are directly precipitated. The zinc-containing hydroxyapatite nanocrystal suspension thus obtained is sprayed and dried by a spray drying method to obtain porous fine particles in which a large number of nanoparticles are aggregated. Furthermore, the porous fine particles are produced by firing at a high temperature (see Toshiyuki Ikoma et al., PHARM TECH JAPAN 21: 2088-2090 (2005)).

多孔性ヒドロキシアパタイト誘導体微粒子は、前述のとおり調製後、高温で焼成される。この焼成温度は、低いほうが水に溶けやすく、消失速度も速くなる。処理温度は、室温〜800℃が用いられるが、150〜600℃が好ましい。800℃以上で焼成されると生体内では消失されなくなる。また、100℃以下で処理すると粒子同士が凝集しやすくなり、通常の注射投与が困難となる。その粒子径は、平均値で50μm以下が好ましく用いられる。しかし、あまり小さいとたんぱく性薬物の封入率が低下することが懸念され、0.1〜50μmが好ましく、0.5〜30μmがより好ましく使用される。また、多孔性ヒドロキシアパタイト誘導体微粒子にたんぱく性薬物を含有させる場合、多孔性ヒドロキシアパタイト誘導体微粒子中のたんぱく性薬物吸着量(含有量)が4から25%であることが好ましい。   The porous hydroxyapatite derivative fine particles are prepared as described above and then fired at a high temperature. The lower the firing temperature, the easier it is to dissolve in water and the faster the disappearance rate. The treatment temperature is from room temperature to 800 ° C, preferably from 150 to 600 ° C. When it is baked at 800 ° C. or higher, it will not disappear in vivo. Moreover, when it processes at 100 degrees C or less, particle | grains will aggregate easily and normal injection administration will become difficult. The average particle size is preferably 50 μm or less. However, if it is too small, there is a concern that the encapsulation rate of the protein drug is lowered, and 0.1 to 50 μm is preferable, and 0.5 to 30 μm is more preferably used. In addition, when a proteinaceous drug is contained in the porous hydroxyapatite derivative fine particles, the protein drug adsorption amount (content) in the porous hydroxyapatite derivative fine particles is preferably 4 to 25%.

たんぱく性薬物の初期過剰放出を抑制するために用いる水溶性2価金属化合物としては、亜鉛化合物であることが好ましく、塩化亜鉛、酢酸亜鉛、炭酸亜鉛が挙げられる。なかでも塩化亜鉛が好ましく用いられる。塩化亜鉛に加えて、炭酸ナトリウムまたは炭酸水素ナトリウムを併用してもよい。その使用量は、内封されるたんぱく性薬物によって異なるが、一般的には多孔性ハイドロキシアパタイト誘導体微粒子組成物の2〜25重量%の範囲が好ましく用いられる。さらに好ましい範囲は2〜15重量%である。   The water-soluble divalent metal compound used for suppressing the initial excessive release of the protein drug is preferably a zinc compound, and examples thereof include zinc chloride, zinc acetate and zinc carbonate. Of these, zinc chloride is preferably used. In addition to zinc chloride, sodium carbonate or sodium bicarbonate may be used in combination. The amount used varies depending on the protein drug encapsulated, but in general, a range of 2 to 25% by weight of the porous hydroxyapatite derivative fine particle composition is preferably used. A more preferred range is 2 to 15% by weight.

徐放性を持たせるために使用する水親和性のブロックコポリマーについては生体内消失性高分子化合物がよく、種々検討の結果、たんぱく性薬物の変性を避けるために親水性のポリエチレングリコール(PEG)にポリ乳酸(PLA)またはポリ乳酸・グリコール酸(PLGA)が結合したブロックコポリマーが好ましく、ブロックコポリマーは、PLAまたはPLGA―PEG―PLAまたはPLGAからなるブロックコポリマーであることがより好ましいと結論された。この親水性基を導入することによってタンパク性薬物を含有した多孔性ヒドロキシアパタイト誘導体の微粒子を水系で処理することが可能となる。水系のみで処理すればタンパク性薬物の変性は避けられる。   For the water-affinity block copolymer used to give sustained release, in vivo disappearance polymer compounds are good, and as a result of various studies, hydrophilic polyethylene glycol (PEG) is used to avoid denaturation of protein drugs. It was concluded that a block copolymer in which polylactic acid (PLA) or polylactic acid / glycolic acid (PLGA) is bonded to is preferable, and that the block copolymer is more preferably a block copolymer composed of PLA or PLGA-PEG-PLA or PLGA. . By introducing this hydrophilic group, it is possible to treat fine particles of a porous hydroxyapatite derivative containing a proteinaceous drug in an aqueous system. Protein treatment can be avoided if treated only with aqueous systems.

このブロックコポリマー結合様式は、PEGの両末端の水酸基にPLAまたはPLGAがエステル結合した化合物(トリブロックコポリマー)でもよく、PEGの片末端にエステル結合した化合物でもよい。片末端エステルの場合、他の末端は、アルコキシ基などで保護されていることが好ましいが、アミノ基、カルボキシル基などの官能基が結合していてもよい。ブロックコポリマーの両末端または片末端にPEGとPLAまたはPLGAの比率は、PEGが重量比で20〜90%が好ましく、25〜65%がより好ましい。ブロックコポリマーの分子量は、3,000〜20,000が好ましく、5,000〜12,000がより好ましい。水親和性生体内消失性高分子化合物である該ブロックコポリマーは、多孔性ヒドロキシアパタイト誘導体微粒子の3〜100重量%の範囲で使用されるが、好ましくは5〜30%の範囲で用いられる。   This block copolymer bonding mode may be a compound in which PLA or PLGA is ester-bonded to hydroxyl groups at both ends of PEG (triblock copolymer), or a compound in which an ester bond is formed at one end of PEG. In the case of a single terminal ester, the other terminal is preferably protected with an alkoxy group or the like, but a functional group such as an amino group or a carboxyl group may be bonded thereto. The ratio of PEG to PLA or PLGA at both ends or one end of the block copolymer is preferably 20 to 90% by weight, more preferably 25 to 65% by weight. The molecular weight of the block copolymer is preferably 3,000 to 20,000, and more preferably 5,000 to 12,000. The block copolymer which is a water-affinity bioerodible polymer compound is used in the range of 3 to 100% by weight of the porous hydroxyapatite derivative fine particles, preferably in the range of 5 to 30%.

たんぱく性薬物としてはその分子量が5,000以上の化合物に適用される。例えば、ヒト成長ホルモン(hGH)、肝細胞成長因子(HGF)、繊維芽細胞成長因子(FGF)、IGF-1、NK4、VEGF、NGF、BDNF、BMP、アディポネクチン、インターフェロン類(IFN-α、IFN-β)、インターロイキン類(IL-2、IL-4、IL-5など)、エリスロポエチン(EPO)、顆粒球形成刺激因子(G-CSF、GM-CSF)、インスリン、ANP、TNF-α、抗体などが挙げられる。多孔性ヒドロキシアパタイトまたはその誘導体内への飽和封入される量は、アパタイトの5〜50%が一般的である。   The protein drug is applied to a compound having a molecular weight of 5,000 or more. For example, human growth hormone (hGH), hepatocyte growth factor (HGF), fibroblast growth factor (FGF), IGF-1, NK4, VEGF, NGF, BDNF, BMP, adiponectin, interferons (IFN-α, IFN) -β), interleukins (IL-2, IL-4, IL-5, etc.), erythropoietin (EPO), granulocyte stimulating factor (G-CSF, GM-CSF), insulin, ANP, TNF-α, An antibody etc. are mentioned. The amount of saturated and encapsulated porous porous apatite or a derivative thereof is generally 5 to 50% of the apatite.

本発明のたんぱく性薬物含有徐放性微粒子組成物の製造方法は、多孔性ヒドロキシアパタイト誘導体微粒子中にたんぱく性薬物を飽和吸着重量の40から80重量%を含有させた該多孔性ヒドロキシアパタイト誘導体微粒子と水溶性2価金属化合物水溶液とを混和し、攪拌後、凍結乾燥して得られた粉末を水親和性生体内消失性高分子水溶液または懸濁液と混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることからなる。   The method for producing a sustained-release fine particle composition containing a protein drug according to the present invention comprises the porous hydroxyapatite derivative fine particles containing 40 to 80% by weight of the saturated adsorption weight of the protein drug in the porous hydroxyapatite derivative fine particles. Is mixed with a water-soluble divalent metal compound aqueous solution, stirred, and then lyophilized. The resulting powder is mixed with an aqueous biocompatible polymer aqueous solution or suspension, stirred, lyophilized, or vacuum-dried. It consists of making it powder by drying.

又、本発明のたんぱく性薬物含有徐放性微粒子組成物の製造方法は、多孔性ヒドロキシアパタイト誘導体微粒子中にたんぱく性薬物を飽和吸着重量の40から80重量%を含有させ、攪拌後、さらに凍結乾燥して得られた粉末を水親和性生体内消失性高分子水溶液または懸濁液と混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることからなる。   In addition, the method for producing a sustained-release fine particle composition containing a protein drug of the present invention comprises the porous hydroxyapatite derivative fine particles containing a protein drug in an amount of 40 to 80% by weight of the saturated adsorption weight, followed by further freezing. The powder obtained by drying is mixed with an aqueous solution or suspension of an aqueous biocompatible polymer, and after stirring, freeze-dried or vacuum-dried to obtain a powder.

又、本発明のたんぱく性薬物含有徐放性微粒子組成物の製造方法は、多孔性ヒドロキシアパタイト誘導体微粒子と該多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着重量の40から80重量%を含有する該たんぱく性薬物水溶液または緩衝液とを混和し、水溶性2価金属化合物を添加、攪拌後、凍結乾燥して得られた粉末を水親和性生体内消失性高分子水溶液または懸濁液と混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることからなる。   The method for producing a sustained-release fine particle composition containing a protein drug of the present invention comprises porous hydroxyapatite derivative fine particles and 40 to 80% by weight of the protein drug saturated adsorption weight of the porous hydroxyapatite derivative fine particles. Mix with the protein drug aqueous solution or buffer, add the water-soluble divalent metal compound, stir, and freeze-dry the resulting powder with the water-soluble bioerodible polymer aqueous solution or suspension. Then, after stirring, the powder is formed by freeze drying or vacuum drying.

又、本発明のたんぱく性薬物含有徐放性微粒子組成物の製造方法は、多孔性ヒドロキシアパタイト誘導体微粒子と該多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着重量の40から80重量%を含有する該たんぱく性薬物水溶液または緩衝液とを混和し、組成物に対し2〜15重量%の塩化亜鉛水溶液を添加、攪拌後、凍結乾燥して得られた粉末と水親和性生体内消失性高分子水溶液または懸濁液とを混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることからなる。   The method for producing a sustained-release fine particle composition containing a protein drug of the present invention comprises porous hydroxyapatite derivative fine particles and 40 to 80% by weight of the protein drug saturated adsorption weight of the porous hydroxyapatite derivative fine particles. The protein obtained by mixing the protein drug aqueous solution or buffer solution, adding 2 to 15% by weight of zinc chloride aqueous solution to the composition, stirring and freeze-drying, and the water-soluble bioerodible polymer An aqueous solution or a suspension is mixed, and after stirring, freeze-dried or vacuum-dried to form a powder.

又、本発明のたんぱく性薬物含有徐放性微粒子組成物の製造方法、多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着重量の40から80重量%のたんぱく性薬物を含有するpH4.0から6.9の弱酸性水溶液または緩衝液と多孔性ヒドロキシアパタイト誘導体微粒子とを混和し、組成物に対し2から15重量%の塩化亜鉛水溶液を添加、攪拌後、凍結乾燥して得られた粉末とPLA-PEG-PLAの20(W/V)%アセトン水溶液または懸濁液とを混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることからなる。   Further, the method for producing a sustained release fine particle composition containing a protein drug of the present invention, a pH of 4.0 to 6 containing a protein drug of 40 to 80% by weight of the saturated adsorption weight of the protein drug of the porous hydroxyapatite derivative fine particles. .9 weakly acidic aqueous solution or buffer and porous hydroxyapatite derivative fine particles are mixed, and 2 to 15% by weight of zinc chloride aqueous solution is added to the composition. After stirring, the powder obtained by freeze-drying and PLA -PEG-PLA is mixed with a 20 (W / V)% acetone aqueous solution or suspension, stirred, and then freeze-dried or vacuum-dried to form a powder.

又、本発明のたんぱく性薬物含有徐放性微粒子組成物の製造方法は、多孔性ヒドロキシアパタイト誘導体微粒子と2から5重量%の塩化亜鉛水溶液とを混和し、攪拌後、該多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着重量の40から80重量%のたんぱく性薬物を含有するpH4.0から6.9の弱酸性水溶液または緩衝液とを混和し、攪拌後、凍結乾燥して得られた粉末とPLA-PEG-PLAの20(W/V)%アセトン水溶液または懸濁液とを混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることからなる。   The method for producing a sustained-release fine particle composition containing a protein drug according to the present invention comprises mixing porous hydroxyapatite derivative fine particles with 2 to 5% by weight of zinc chloride aqueous solution and stirring the porous hydroxyapatite derivative. It was obtained by mixing a weakly acidic aqueous solution or buffer solution having a pH of 4.0 to 6.9 containing 40 to 80% by weight of a protein drug saturated adsorption weight of fine particles, stirring, and freeze-drying. The powder and PLA-PEG-PLA 20 (W / V)% acetone aqueous solution or suspension are mixed, and after stirring, freeze-dried or vacuum-dried to obtain a powder.

しかしながら、一般的には次のような操作からなる。多孔性ヒドロキシアパタイト誘導体微粒子を該多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着重量の40から80重量%のたんぱく性薬物を含む弱酸性溶液(好ましくはpHが3から7、より好ましくは4.0から6.9)と混和し、攪拌し、該たんぱく性薬物を吸着させ、遠心分離などによりたんぱく性薬物が吸着した該ヒドロキシアパタイト誘導体微粒子を分取する。さらに、分取したたんぱく性薬物吸着該ヒドロキシアパタイト誘導体微粒子と必要であれば2価金属化合物水溶液を混和、攪拌し、たんぱく性薬物を吸着した該ヒドロキシアパタイト誘導体微粒子に2価金属化合物水溶液を浸潤させる。次いで、ろ過により得た沈殿部分を真空乾燥または凍結乾燥してたんぱく性薬物含有の粉末微粒子を得る。この粉末微粒子と必要であれば水親和性生体内消失性高分子化合物の水溶液または懸濁液または水混和性溶媒(例えば、アセトン、エタノールなど)を含む溶液とを混和し、攪拌後、必要に応じて安定化剤を加えて凍結乾燥または真空乾燥することによって粉末として製造する。   However, generally it consists of the following operations. The porous hydroxyapatite derivative fine particle is a weakly acidic solution (preferably having a pH of 3 to 7, more preferably 4.) containing 40 to 80% by weight of the protein drug saturated adsorption weight of the porous hydroxyapatite derivative fine particle. 0 to 6.9), and the mixture is stirred to adsorb the protein drug, and the hydroxyapatite derivative fine particles adsorbed with the protein drug are collected by centrifugation or the like. Further, the collected protein drug-adsorbed hydroxyapatite derivative fine particles and the divalent metal compound aqueous solution are mixed and stirred if necessary, and the hydroxyapatite derivative fine particles adsorbed with the protein drug are infiltrated with the divalent metal compound aqueous solution. . Subsequently, the precipitate part obtained by filtration is vacuum-dried or freeze-dried to obtain powder fine particles containing a proteinaceous drug. If necessary, mix this powder microparticles with an aqueous solution or suspension of a water-compatible bioerodible polymer compound or a solution containing a water-miscible solvent (eg, acetone, ethanol, etc.) The powder is prepared by adding a stabilizer and freeze-drying or vacuum-drying accordingly.

実際に投与するときには、この粉末微粒子を適当な分散媒中に分散させて皮下または筋肉内などに注射投与する。最終的に得られた徐放性微粒子組成物の粒子径は、通常の投与に用いられる注射針を通過すればよい。実際には注射針は、細いほど患者の恐怖心は小さいので、注射針の太さを表す国際基準で25Gより細い針を通過することが好ましい。これらを満足する徐放性微粒子の平均粒子径は、0.5〜50μmである。また、たんぱく性薬物の徐放期間は、薬物の種類にもよるが、一般的には1週間以上が好ましい。   When actually administered, the fine powder particles are dispersed in a suitable dispersion medium and injected subcutaneously or intramuscularly. The particle diameter of the finally obtained sustained-release fine particle composition may be passed through an injection needle used for normal administration. In fact, the thinner the injection needle, the less fear the patient has. Therefore, it is preferable to pass a needle thinner than 25G according to the international standard representing the thickness of the injection needle. The average particle diameter of the sustained-release fine particles satisfying these is 0.5 to 50 μm. In addition, the sustained release period of the proteinaceous drug is generally preferably one week or longer, although it depends on the type of drug.

本発明により、初期放出量を低減し、薬物の有効濃度をより長期間持続でき、たんぱく性薬物の変性がなく、かつ、投与局所の炎症を極力抑えた好ましい徐放性を有するたんぱく性薬物含有徐放性微粒子組成物およびその製造方法を提供することが出来た。すなわち、多孔性ヒドロキシアパタイト誘導体微粒子に薬物を封入する工程において多孔性ヒドロキシアパタイト誘導体微粒子に飽和吸着(最大吸着)されるたんぱく性薬物量の30〜90%、より好ましくは40〜80重量%、に相当する量の薬物を含む弱酸性水溶液または緩衝液(好ましくはpH=3〜7、さらに好ましくは4.0〜6.9)と多孔性ヒドロキシアパタイト誘導体微粒子とを混和させ、亜鉛化合物水溶液、水親和性高分子化合物で処理することによりたんぱく性薬物含有徐放性微粒子組成物を得ることを特徴とする新しい方法を見出した。なお、上記の製造工程中で予め水溶性2価金属化合物を多孔性ハイドロキシアパタイト誘導体微粒子に吸着させた後、該多孔性ハイドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着量の40〜80重量%を含有する弱酸性溶液または緩衝液とを混和し、その後、水親和性高分子化合物で処理してもよい。   According to the present invention, the initial release amount can be reduced, the effective concentration of the drug can be maintained for a longer period, the protein drug is not denatured, and the protein drug has a preferable sustained release property that suppresses the local inflammation as much as possible. The sustained-release fine particle composition and the production method thereof could be provided. That is, in the step of encapsulating the drug in the porous hydroxyapatite derivative fine particles, 30 to 90%, more preferably 40 to 80% by weight of the amount of the protein drug saturated and adsorbed (maximum adsorption) to the porous hydroxyapatite derivative fine particles. A weakly acidic aqueous solution or buffer solution (preferably pH = 3 to 7, more preferably 4.0 to 6.9) containing a corresponding amount of drug and porous hydroxyapatite derivative fine particles are mixed, and a zinc compound aqueous solution, water is mixed. The present inventors have found a new method characterized in that a sustained release fine particle composition containing a protein drug is obtained by treatment with an affinity polymer compound. In addition, after the water-soluble divalent metal compound is adsorbed to the porous hydroxyapatite derivative fine particles in advance during the above production process, it contains 40 to 80% by weight of the protein drug saturated adsorption amount of the porous hydroxyapatite derivative fine particles. It may be mixed with a weakly acidic solution or buffer solution, and then treated with a water-affinity polymer compound.

本発明により得られたたんぱく性薬物含有徐放性微粒子組成物は、たんぱく性薬物を少なくとも7日以上にわたり徐放し、初期の過剰放出が小さく、皮下投与2日目以降の血中濃度がたんぱく性薬物を飽和吸着させた徐放性微粒子組成物に比べて2倍〜10倍高く保たれることおよびこれらの組成物を投与した場合、従来技術により作製した製剤に比べて水溶性2価金属化合物の配合量を3分の1程度まで少なくしても過剰放出は小さく、徐放性も十分に維持でき、これによって金属化合物による投与局所傷害をなくすことができることを見出した。また、得られた組成物は、25Gまたは27Gの注射針を通過した。最終的に凍結乾燥することで徐放化した微粒子製剤に調製でき、封入されたたんぱく性薬物も非常に安定していた。   The sustained-release fine particle composition containing a protein drug obtained by the present invention provides a sustained release of a protein drug over at least 7 days, a small initial excess release, and a blood concentration after the second day after subcutaneous administration. 2 to 10 times higher than the sustained-release fine particle composition in which the drug is saturated and adsorbed, and when these compositions are administered, the water-soluble divalent metal compound compared to the preparation prepared by the prior art The present inventors have found that even when the blending amount is reduced to about one third, the excessive release is small and the sustained release property can be sufficiently maintained, thereby eliminating the local injury caused by the metal compound. The resulting composition passed through a 25G or 27G needle. Finally, it was possible to prepare a microparticle preparation that was sustained-released by lyophilization, and the encapsulated protein drug was also very stable.

以下に実施例により得られたたんぱく性薬物含有徐放性微粒子組成物を対照組成物と比較したin vitroおよびin vivoの徐放性試験結果を示すが、この例に限定されるものではない。   The in vitro and in vivo sustained release test results comparing the protein drug-containing sustained release fine particle composition obtained in Examples with the control composition are shown below, but are not limited to this example.

[試験例1]
蓋付プラスチック容器に400℃で焼成したヒドロキシアパタイト誘導体微粒子(HAp-Zn-0.5、カルシウム10原子のうち0.5原子を亜鉛原子に置換した誘導体、以下同様)100mgをはかりとり、これとPD-10カラム(Amersham Pharmacia)を用いて脱塩処理して調製したヒト成長ホルモン(hGH)水溶液(10.07mg/mL)2.18mL、精製水2.22mLおよび100mM酢酸アンモニウム緩衝液1.10mLからなる混液5mLとを混和し、5分間攪拌した後、3,000rpmで3分間遠心処理し、得られた沈殿に精製水10mLを加えて1分間攪拌したのち、3,000rpmで3分間遠心処理した。得られた沈殿と20mg/mL塩化亜鉛水溶液(和光純薬、大阪)0.68mL(塩化亜鉛は、HAp-Zn-0.5 100 mgに対して100μモルに相当)とを混和し、タッチミキサーで1分間攪拌した後、凍結乾燥した。得られた凍結乾燥粉末とPLA-PEG-PLAの20(W/V)%アセトン水溶液0.5mLとを混和し、タッチミキサーでよく攪拌した後、凍結乾燥した。なお、PLA-PEG-PLAは、分子量11,400、PEG比45.6モル%のものを用いた。得られたhGH含有微粒子組成物のhGH含量をMicro BCA Protein Assay kit(Pierce)により定量したところhGHの吸着量は、21.3mg(飽和吸着量の63%)、該組成物中のhGH含量は、13%であった。
対照製剤としてhGH溶液(10.07mg/mL)3.8mL、精製水0.6mLおよび100mM酢酸アンモニウム緩衝液1.10mLからなる混液5mLを用いて上記徐放性微粒子組成物と同様の方法で調製し、最終工程の凍結乾燥工程を経て、hGH含有徐放性微粒子組成物を作製した。hGHの吸着量は、33.9mg(飽和吸着量)、該組成物中のhGH含量は、19%であった。
[Test Example 1]
Weigh 100 mg of hydroxyapatite derivative fine particles (HAp-Zn-0.5, a derivative in which 0.5 atom of 10 calcium atoms is replaced with zinc atom, the same applies below), which is baked at 400 ° C, in a plastic container with a lid. Consists of 2.18 mL of human growth hormone (hGH) aqueous solution (10.07 mg / mL) prepared by desalting using 10 columns (Amersham Pharmacia), 2.22 mL of purified water and 1.10 mL of 100 mM ammonium acetate buffer. The mixture was mixed with 5 mL, stirred for 5 minutes, centrifuged at 3,000 rpm for 3 minutes, 10 mL of purified water was added to the resulting precipitate, stirred for 1 minute, and then centrifuged at 3,000 rpm for 3 minutes. The obtained precipitate and 20 mg / mL zinc chloride aqueous solution (Wako Pure Chemicals, Osaka) 0.68 mL (zinc chloride is equivalent to 100 μmol per 100 mg of HAp-Zn-0.5) are mixed, and 1 with a touch mixer. After stirring for minutes, it was lyophilized. The obtained freeze-dried powder and PLA-PEG-PLA 20 (W / V)% acetone aqueous solution 0.5 mL were mixed, stirred well with a touch mixer, and then freeze-dried. PLA-PEG-PLA having a molecular weight of 11,400 and a PEG ratio of 45.6 mol% was used. When the hGH content of the obtained hGH-containing fine particle composition was quantified using Micro BCA Protein Assay kit (Pierce), the adsorbed amount of hGH was 21.3 mg (63% of the saturated adsorbed amount), and the hGH content in the composition was 13%.
Prepared in the same manner as the sustained-release fine particle composition using 3.8 mL of hGH solution (10.07 mg / mL), 0.6 mL of purified water and 5 mL of a mixture of 1.10 mL of 100 mM ammonium acetate buffer as a control formulation. The hGH-containing sustained-release fine particle composition was prepared through the final freeze-drying step. The adsorption amount of hGH was 33.9 mg (saturated adsorption amount), and the hGH content in the composition was 19%.

作製したhGH含有徐放性微粒子組成物のin vitroにおける放出性を比較した。得られた各hGH含有徐放性微粒子組成物サンプル2.5mgを精秤し、これに水を0.25mL添加し、8,000rpmで3分間遠心処理し、沈殿に1/10リン酸緩衝生理食塩水(PBS)0.25mLを添加し、37℃でインキュベート後、経時的に上清を回収し、ゲルろ過HPLC(TOSO G2000SW-xl)により上清中に放出されたhGH量を定量し、溶出率を算出した。この結果を表1に示す。飽和吸着量の63%含有組成物の溶出率は、対照として作製した飽和吸着組成物に比べてPBS中へのhGH溶出が抑制されていた。   The in vitro release properties of the prepared hGH-containing sustained release fine particle compositions were compared. 2.5 mg of each hGH-containing sustained-release fine particle composition sample thus obtained is precisely weighed, 0.25 mL of water is added thereto, centrifuged at 8,000 rpm for 3 minutes, and 1/10 phosphate buffered physiology is added to the precipitate. After adding 0.25 mL of saline (PBS) and incubating at 37 ° C., the supernatant was collected over time, and the amount of hGH released in the supernatant was quantified by gel filtration HPLC (TOSO G2000SW-xl). The elution rate was calculated. The results are shown in Table 1. As for the elution rate of the composition containing 63% of the saturated adsorption amount, elution of hGH in PBS was suppressed as compared with the saturated adsorption composition prepared as a control.

Figure 2008106024
Figure 2008106024

作製したhGH含有徐放性微粒子組成物を0.5%CMC-Na、0.1%Tween80で懸濁し、タクロリムス(アステラス製薬、東京)投与により免疫抑制を施した各群4匹の雄性SD系ラットの背部皮下に10.5mg/kg(30IU/kg)投与した。なお、タクロリムスは、あらかじめ製剤投与3日前と前日に0.1mg/ラット、製剤投与開始後1日おきに0.1mg/ラットの投与量を背部皮下に投与した。
該組成物投与後、4,8、12時間、以後1または2日ごとに尾静脈から採血し、hGHの血中濃度を全自動EIA装置AIA-600II(東ソー株式会社)でEテスト「TOSOH」II(HGH)を用いて測定した。この結果および特許文献3実施例4の既技術により作製したhGH含有徐放性微粒子組成物(対照2組成物、hGHは飽和吸着量)のラット血中hGH濃度の成績を表2に示す。
飽和吸着量の63%含有組成物は、塩化亜鉛が多孔性ハイドロキシアパタイト誘導体微粒子重量の13.6重量%(対照2組成物の1/3)であるにもかかわらず、塩化亜鉛量は同量ではあるが、吸着量が飽和状態である対照1組成物に比べて投与初期の過剰放出が抑制され、投与3日目以降の血中濃度推移も塩化亜鉛量が40.8重量%である対照2組成物と同様に良好で、好ましい徐放性を示した。
Suspended hGH-containing sustained-release fine particle composition was suspended in 0.5% CMC-Na, 0.1% Tween 80, and 4 male SDs were immunosuppressed by administration of tacrolimus (Astellas Pharma Inc., Tokyo). 10.5 mg / kg (30 IU / kg) was administered subcutaneously to the back of the rat. In addition, tacrolimus was administered subcutaneously in the dorsal region at a dosage of 0.1 mg / rat 3 days before and 1 days before administration of the preparation and 0.1 mg / rat every other day after the start of preparation administration.
After administration of the composition, blood is collected from the tail vein every 4, 8 or 12 hours, and every 1 or 2 days thereafter, and the blood concentration of hGH is E-test “TOSOH” using a fully automatic EIA device AIA-600II (Tosoh Corporation). Measurement was performed using II (HGH). Table 2 shows the results of hGH concentration in rat blood of this result and the hGH-containing sustained-release fine particle composition (control 2 composition, hGH is a saturated adsorption amount) prepared by the prior art of Example 4 of Patent Document 3.
The composition containing 63% of the saturated adsorption amount has the same amount of zinc chloride even though zinc chloride is 13.6% by weight of the porous hydroxyapatite derivative fine particle weight (1/3 of the control 2 composition). However, compared with the control 1 composition in which the adsorption amount is saturated, the excessive release at the initial stage of administration is suppressed, and the blood concentration transition after the third day of administration is also 40.8% by weight. It was as good as the two compositions and showed favorable sustained release properties.

一方、投与局所の状態については、飽和吸着量の63%含有組成物および対照1組成物は、いずれも塩化亜鉛量が対照2組成物より少ないため、外見上傷害は認められなかったが、対照2組成物では3倍量の塩化亜鉛が存在するため投与した全ての投与部位に弱い炎症が観察された。
なお、参考までに表2の血中濃度推移を図示する(表3)。
On the other hand, regarding the administration local state, the composition containing 63% of the saturated adsorption amount and the control 1 composition were both less in the amount of zinc chloride than the control 2 composition. In the two compositions, weak inflammation was observed at all administered sites due to the presence of 3 times the amount of zinc chloride.
For reference, the blood concentration transition in Table 2 is shown in the figure (Table 3).

Figure 2008106024
Figure 2008106024

Figure 2008106024
Figure 2008106024

[試験例2]
蓋付プラスチック容器に400℃で焼成したヒドロキシアパタイト誘導体微粒子(HAp-Zn-0.5)200mgをはかりとり、これとPD-10カラム(Amersham Pharmacia)を用いて脱塩処理して調製したインターフェロン-α(IFN-α)20mM酢酸アンモニウム水溶液(1mg/mL)30mLとを混和し、5分間攪拌した後、3,000rpmで3分間遠心処理した。得られた沈殿と精製水10mLとを混和して1分間攪拌したのち、3,000rpmで3分間遠心処理した。分取した沈殿と20.4mg/mL塩化亜鉛水溶液(和光純薬、大阪)1.34mL(塩化亜鉛は、HAp-Zn-0.5 100 mgに対して100μモルに相当)とを混和し、タッチミキサーで1分間攪拌した後、凍結乾燥した。得られた凍結乾燥粉末とPLA-PEG-PLAの20(W/V)%アセトン水溶液1mLとを混和し、タッチミキサーでよく攪拌した後、凍結乾燥して粉末状のサンプル1組成物を得た。なお、PLA-PEG-PLAは、分子量11,400、PEG比45.6モル%のものを用いた。得られたIFN-α含有微粒子組成物中のIFN-α含量をMicro BCA Protein Assay kit(Pierce)により定量したところ、この組成物のIFN-αの吸着量は、14.5mg(飽和吸着量の72%)であり、該組成物中のIFN-α含量は、8.9%であった。
[Test Example 2]
Weighing 200 mg of hydroxyapatite derivative fine particles (HAp-Zn-0.5) calcined at 400 ° C. into a plastic container with a lid, and interferon-α prepared by desalting using this and a PD-10 column (Amersham Pharmacia) IFN-α) was mixed with 20 mL of 20 mM aqueous ammonium acetate (1 mg / mL), stirred for 5 minutes, and then centrifuged at 3,000 rpm for 3 minutes. The resulting precipitate and 10 mL of purified water were mixed and stirred for 1 minute, and then centrifuged at 3,000 rpm for 3 minutes. Mix the precipitated precipitate with 1.34 mL of 20.4 mg / mL zinc chloride aqueous solution (Wako Pure Chemicals, Osaka) (zinc chloride is equivalent to 100 μmol per 100 mg of HAp-Zn-0.5), and touch mixer And then lyophilized. The obtained freeze-dried powder was mixed with 1 mL of PLA-PEG-PLA 20 (W / V)% acetone aqueous solution, stirred well with a touch mixer, and then freeze-dried to obtain a powdery sample 1 composition. . Note that PLA-PEG-PLA having a molecular weight of 11,400 and a PEG ratio of 45.6 mol% was used. When the IFN-α content in the obtained IFN-α-containing fine particle composition was quantified using a Micro BCA Protein Assay kit (Pierce), the amount of IFN-α adsorbed to this composition was 14.5 mg (of the saturated adsorption amount). 72%), and the IFN-α content in the composition was 8.9%.

同様に調製したIFN-α20mM酢酸アンモニウム水溶液(1mg/mL)20mLを用いて、サンプル1組成物と同様に処理、作製し、粉末状の組成物サンプル2組成物を得た。得られた組成物のIFN-α吸着量は、9.9mg(飽和吸着量の49%)であり、該組成物中のIFN-α含量は、6.2%であった。   Using 20 mL of an IFN-α 20 mM ammonium acetate aqueous solution (1 mg / mL) prepared in the same manner, treatment and preparation were performed in the same manner as the sample 1 composition to obtain a powdery composition sample 2 composition. The obtained composition had an IFN-α adsorption amount of 9.9 mg (49% of the saturated adsorption amount), and the IFN-α content in the composition was 6.2%.

対照として蓋付プラスチック容器に400℃で焼成したHAp-Zn-0.5 150mgをはかりとり、これとIFN-α20mM酢酸アンモニウム水溶液(1mg/mL)37.5mLとを混和して同様に処理して粉末を得た。これとPLA-PEG-PLAの20(W/V)%アセトン水溶液0.75mLとを混和して以後同様に処理して粉末状のサンプル3組成物を作製した。この組成物のIFN-αの吸着量は、飽和吸着状態である20mgであり、該組成物中のIFN-α含量は、12.4%であった。   As a control, weigh 150 mg of HAp-Zn-0.5 calcined at 400 ° C. into a plastic container with a lid, mix this with 37.5 mL of IFN-α 20 mM ammonium acetate aqueous solution (1 mg / mL), and treat the powder in the same manner. Obtained. This was mixed with 0.75 mL of a 20% (W / V) acetone aqueous solution of PLA-PEG-PLA and processed in the same manner to prepare a powdery sample 3 composition. The amount of IFN-α adsorbed in this composition was 20 mg in a saturated adsorption state, and the IFN-α content in the composition was 12.4%.

作製した各IFN-α含有徐放性微粒子組成物を0.5%CMC-Na、0.1%Tween80で懸濁し、タクロリムス(アステラス製薬、東京)投与により免疫抑制を施した各群4匹の雄性SD系ラットの背部皮下に12mg/kgを投与した。なお、タクロリムスは、該組成物投与3日前と前日に0.1mg/ラット、該組成物投与開始後1日おきに0.1mg/ラットを背部皮下に投与した。
該組成物投与後、4、8、12時間経過時、以後1または2日ごとに尾静脈から採血し、IFN-αの血中濃度をELISA法により測定した。この結果を表4に示す。飽和吸着量の72%あるいは49%含有組成物は、吸着量が飽和状態にある対照に比べて投与初期過剰放出が低値で、投与2日目以降の血中IFN-α濃度は、高値で持続し、より好ましい徐放性を示した。
なお、参考までに表4の血中濃度推移を図示する(表5)。
Each prepared IFN-α-containing sustained-release fine particle composition was suspended in 0.5% CMC-Na, 0.1% Tween 80, and 4 groups were administered immunosuppression by administration of tacrolimus (Astellas Pharma Inc., Tokyo). 12 mg / kg was administered subcutaneously to the back of male SD rats. As for tacrolimus, 0.1 mg / rat was administered subcutaneously on the back 3 days before and after administration of the composition, and 0.1 mg / rat every other day after the start of administration of the composition.
After administration of the composition, blood was collected from the tail vein at 4, 8, and 12 hours, and thereafter every 1 or 2 days, and the blood concentration of IFN-α was measured by ELISA. The results are shown in Table 4. A composition containing 72% or 49% of the saturated adsorption amount has a low initial excessive release compared to a control in which the adsorption amount is saturated, and the blood IFN-α concentration after the second day of administration is high. Sustained and more preferable sustained release.
For reference, the blood concentration transition in Table 4 is shown in the figure (Table 5).

Figure 2008106024
Figure 2008106024

Figure 2008106024
Figure 2008106024

Claims (21)

多孔性ヒドロキシアパタイト誘導体微粒子とたんぱく性薬物からなる組成物であって、該たんぱく性薬物の吸着量が該多孔性ヒドロキシアパタイト誘導体微粒子への飽和吸着重量の40〜80重量%からなることを特徴とするたんぱく性薬物含有徐放性微粒子組成物。 A composition comprising porous hydroxyapatite derivative fine particles and a protein drug, wherein the protein drug adsorption amount is 40 to 80% by weight of the saturated adsorption weight to the porous hydroxyapatite derivative fine particles. A sustained-release fine particle composition containing a protein drug. 多孔性ヒドロキシアパタイト誘導体微粒子、たんぱく性薬物および水親和性生体内消失性高分子化合物からなる組成物であって、該たんぱく性薬物の吸着量が該多孔性ヒドロキシアパタイト誘導体微粒子への飽和吸着重量の40〜80重量%からなることを特徴とするたんぱく性薬物含有徐放性微粒子組成物。 A composition comprising a porous hydroxyapatite derivative fine particle, a protein drug and a water-affinity bioerodible polymer compound, wherein the adsorption amount of the protein drug is equal to the saturated adsorption weight of the porous hydroxyapatite derivative fine particle. A protein drug-containing sustained-release fine particle composition comprising 40 to 80% by weight. 多孔性ヒドロキシアパタイト誘導体微粒子を基剤として、たんぱく性薬物、水溶性2価金属化合物および水親和性生体内消失性高分子化合物からなる組成物であって、該たんぱく性薬物の吸着量が、該多孔性ヒドロキシアパタイト誘導体微粒子への飽和吸着重量の40〜80重量%からなることを特徴とするたんぱく性薬物含有徐放性微粒子組成物。 A composition comprising a porous drug based on porous hydroxyapatite derivative fine particles, a protein drug, a water-soluble divalent metal compound, and a water-affinity bioerodible polymer compound, wherein the adsorption amount of the protein drug is A protein drug-containing sustained-release fine particle composition comprising 40 to 80% by weight of a saturated adsorption weight to porous hydroxyapatite derivative fine particles. 多孔性ヒドロキシアパタイト誘導体微粒子を基剤としてたんぱく性薬物、水溶性2価金属化合物および水親和性生体内消失性高分子化合物からなる組成物であって、該水溶性2価金属化合物が塩化亜鉛であり、塩化亜鉛の含有量が組成物に対し2から15重量%であることを特徴とするたんぱく性薬物含有徐放性微粒子組成物。 A composition comprising a protein drug based on porous hydroxyapatite derivative fine particles, a water-soluble divalent metal compound, and a water-compatible bioerodible polymer compound, wherein the water-soluble divalent metal compound is zinc chloride. A protein drug-containing sustained-release fine particle composition characterized in that the content of zinc chloride is 2 to 15% by weight based on the composition. 前記多孔性ヒドロキシアパタイト誘導体微粒子が多孔性ヒドロキシアパタイトの構成成分であるカルシウム原子の一部を亜鉛原子に置換した多孔性ヒドロキシアパタイト誘導体微粒子であることを特徴とする請求項1〜4のいずれか1項に記載のたんぱく性薬物含有徐放性微粒子組成物。 The porous hydroxyapatite derivative fine particles are porous hydroxyapatite derivative fine particles obtained by substituting a part of calcium atoms, which are constituents of porous hydroxyapatite, with zinc atoms. 10. A sustained-release fine particle composition containing the protein drug according to item. 前記多孔性ヒドロキシアパタイト誘導体微粒子中のカルシウム原子数と亜鉛原子数の比が、99:1〜4:1であることを特徴とする請求項5に記載のたんぱく性薬物含有徐放性微粒子組成物。 The protein drug-containing sustained-release fine particle composition according to claim 5, wherein the ratio of the number of calcium atoms and the number of zinc atoms in the porous hydroxyapatite derivative fine particles is 99: 1 to 4: 1. . 前記多孔性ヒドロキシアパタイト誘導体微粒子の平均粒子径が0.5から30μmであることを特徴とする請求項1〜5のいずれか1項に記載のたんぱく性薬物含有徐放性微粒子組成物。 The protein drug-containing sustained-release fine particle composition according to any one of claims 1 to 5, wherein the porous hydroxyapatite derivative fine particles have an average particle size of 0.5 to 30 µm. 前記多孔性ヒドロキシアパタイト誘導体微粒子が150℃から600℃で処理されたことを特徴とする請求項1〜5のいずれか1項に記載のたんぱく性薬物含有徐放性微粒子組成物。 The protein drug-containing sustained-release fine particle composition according to any one of claims 1 to 5, wherein the porous hydroxyapatite derivative fine particles are treated at 150 ° C to 600 ° C. 前記多孔性ヒドロキシアパタイト誘導体微粒子中のたんぱく性薬物吸着量が組成物に対し4から25重量%であることを特徴とする請求項1〜5のいずれか1項に記載のたんぱく性薬物含有徐放性微粒子組成物。 The protein drug-containing sustained release according to any one of claims 1 to 5, wherein the amount of protein drug adsorbed in the porous hydroxyapatite derivative fine particles is 4 to 25% by weight based on the composition. Fine particle composition. 前記水溶性2価金属化合物が亜鉛化合物であることを特徴とする請求項3又は4のいずれか1項に記載のたんぱく性薬物含有徐放性微粒子組成物。 The protein-containing sustained-release fine particle composition according to any one of claims 3 and 4, wherein the water-soluble divalent metal compound is a zinc compound. 前記亜鉛化合物が塩化亜鉛、酢酸亜鉛または炭酸亜鉛であることを特徴とする請求項10記載のたんぱく性薬物含有徐放性微粒子組成物。 The protein drug-containing sustained-release fine particle composition according to claim 10, wherein the zinc compound is zinc chloride, zinc acetate or zinc carbonate. 前記水親和性生体内消失性高分子化合物がポリエチレングリコールとポリ乳酸またはポリ乳酸・グリコール酸からなるブロックコポリマーであることを特徴とする請求項2〜4のいずれか1項に記載のたんぱく性薬物含有徐放性微粒子組成物。 The protein drug according to any one of claims 2 to 4, wherein the water-affinity bioerodible polymer compound is a block copolymer comprising polyethylene glycol and polylactic acid or polylactic acid / glycolic acid. Contained sustained release fine particle composition. 前記ポリエチレングリコールとポリ乳酸またはポリ乳酸・グリコール酸からなるブロックコポリマーがポリ乳酸またはポリ乳酸・グリコール酸―ポリエチレングリコール―ポリ乳酸またはポリ乳酸・グリコール酸からなるトリブロックコポリマーであることを特徴とする請求項12記載のたんぱく性薬物含有徐放性微粒子組成物。 The block copolymer composed of polyethylene glycol and polylactic acid or polylactic acid / glycolic acid is a triblock copolymer composed of polylactic acid or polylactic acid / glycolic acid-polyethylene glycol-polylactic acid or polylactic acid / glycolic acid. Item 13. A sustained-release fine particle composition containing a protein drug according to Item 12. 前記ポリ乳酸またはポリ乳酸・グリコール酸―ポリエチレングリコール―ポリ乳酸またはポリ乳酸・グリコール酸からなるトリブロックコポリマーの重量平均分子量が5,000から12,000であることを特徴とする請求項13記載のたんぱく性薬物含有徐放性微粒子組成物。 14. The weight average molecular weight of the polylactic acid or a polyblock copolymer composed of polylactic acid / glycolic acid-polyethylene glycol-polylactic acid or polylactic acid / glycolic acid is 5,000 to 12,000. A sustained-release fine particle composition containing a protein drug. 前記ポリエチレングリコールとポリ乳酸またはポリ乳酸・グリコール酸からなるブロックコポリマーのうち、ポリエチレングリコールの重量割合が20から90重量%であることを特徴とする請求項12記載のたんぱく性薬物含有徐放性微粒子組成物 The protein drug-containing sustained-release fine particles according to claim 12, wherein, in the block copolymer comprising polyethylene glycol and polylactic acid or polylactic acid / glycolic acid, the weight ratio of polyethylene glycol is 20 to 90% by weight. Composition 多孔性ヒドロキシアパタイト誘導体微粒子中にたんぱく性薬物を飽和吸着重量の40から80重量%を吸着させた該多孔性ヒドロキシアパタイト誘導体微粒子と水溶性2価金属化合物水溶液とを混和し、攪拌後、凍結乾燥して得られた粉末を水親和性生体内消失性高分子水溶液または懸濁液と混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることを特徴とするたんぱく性薬物含有徐放性微粒子組成物の製造方法。 The porous hydroxyapatite derivative fine particles obtained by adsorbing 40 to 80% by weight of the saturated adsorption weight of the protein drug in the porous hydroxyapatite derivative fine particles are mixed with the water-soluble divalent metal compound aqueous solution, stirred and then lyophilized. A protein drug-containing sustained release, wherein the powder obtained by mixing with an aqueous solution or suspension of an aqueous biocompatible polymer is stirred and then freeze-dried or vacuum-dried. For producing a fine particle composition. 多孔性ヒドロキシアパタイト誘導体微粒子中にたんぱく性薬物を飽和吸着重量の40から80重量%を吸着させ、攪拌後、さらに凍結乾燥して得られた粉末を水親和性生体内消失性高分子水溶液または懸濁液と混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることを特徴とするたんぱく性薬物含有徐放性微粒子組成物の製造方法。 The powder obtained by adsorbing 40 to 80% by weight of the saturated adsorption weight of the protein drug in the porous hydroxyapatite derivative fine particles, stirring, and further freeze-drying is added to the aqueous hydrophilic bioerodible polymer aqueous solution or suspension. A method for producing a sustained-release fine particle composition containing a protein drug, which is mixed with a turbid liquid, stirred, and then freeze-dried or vacuum-dried to obtain a powder. 多孔性ヒドロキシアパタイト誘導体微粒子と該多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着重量の40から80重量%を含有する該たんぱく性薬物水溶液または緩衝液とを混和し、水溶性2価金属化合物を添加、攪拌後、凍結乾燥して得られた粉末を水親和性生体内消失性高分子水溶液または懸濁液と混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることを特徴とするたんぱく性薬物含有徐放性微粒子組成物の製造方法。 A porous hydroxyapatite derivative fine particle and the protein drug aqueous solution or buffer containing 40 to 80% by weight of the protein drug saturated adsorption weight of the porous hydroxyapatite derivative fine particle are mixed to form a water-soluble divalent metal compound. After adding, stirring, and freeze-drying, the powder obtained by mixing with an aqueous biocompatible polymer aqueous solution or suspension is mixed into the powder, and after stirring, freeze-dried or vacuum-dried to form a powder. A method for producing a sustained-release fine particle composition containing a protein drug. 多孔性ヒドロキシアパタイト誘導体微粒子と該多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着重量の40から80重量%を含有する該たんぱく性薬物水溶液または緩衝液とを混和し、組成物に対し2から15重量%の塩化亜鉛水溶液を添加、攪拌後、凍結乾燥して得られた粉末と水親和性生体内消失性高分子水溶液または懸濁液とを混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることを特徴とするたんぱく性薬物含有徐放性微粒子組成物の製造方法。 The porous hydroxyapatite derivative fine particles are mixed with the protein drug aqueous solution or buffer containing 40 to 80% by weight of the protein drug saturated adsorption weight of the porous hydroxyapatite derivative fine particles. Add a weight percent aqueous solution of zinc chloride, stir and freeze-dry the powder obtained by mixing the water-affected biodissolvable polymer aqueous solution or suspension, then stir and freeze-dry or vacuum-dry. A method for producing a sustained-release fine particle composition containing a protein drug, characterized in that the powder is made into a powder. 多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着重量の40から80重量%のたんぱく性薬物を含有するpH4.0から6.9の弱酸性水溶液または緩衝液と多孔性ヒドロキシアパタイト誘導体微粒子とを混和し、組成物に対し2から15重量%の塩化亜鉛水溶液を添加、攪拌後、凍結乾燥して得られた粉末と、ポリ乳酸・グリコール酸―ポリエチレングリコール―ポリ乳酸またはポリ乳酸・グリコール酸からなるトリブロックコポリマーのアセトン水溶液または懸濁液とを混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることを特徴とするたんぱく性薬物含有徐放性微粒子組成物の製造方法。 Mixing a weakly acidic aqueous solution or buffer solution having a pH of 4.0 to 6.9 containing a protein drug of 40 to 80% by weight of the saturated adsorption weight of the protein of the porous hydroxyapatite derivative fine particles with the porous hydroxyapatite derivative fine particles. Then, a powder obtained by adding 2 to 15% by weight of zinc chloride aqueous solution to the composition, stirring and freeze-drying, and polylactic acid / glycolic acid-polyethylene glycol-polylactic acid or polylactic acid / glycolic acid A method for producing a sustained-release fine particle composition containing a protein drug, which comprises mixing a triblock copolymer with an aqueous acetone solution or suspension, stirring, and freeze-drying or vacuum-drying to obtain a powder. 多孔性ヒドロキシアパタイト誘導体微粒子と組成物に対し2から15重量%の塩化亜鉛水溶液とを混和し、攪拌後、該多孔性ヒドロキシアパタイト誘導体微粒子のたんぱく性薬物飽和吸着量の40から80重量%のたんぱく性薬物を含有するpH4.0から6.9の弱酸性水溶液または緩衝液とを混和し、攪拌後、凍結乾燥して得られた粉末と、ポリ乳酸・グリコール酸―ポリエチレングリコール―ポリ乳酸またはポリ乳酸・グリコール酸からなるトリブロックコポリマーのアセトン水溶液または懸濁液とを混和し、攪拌後、凍結乾燥または真空乾燥することによって粉末とすることを特徴とするたんぱく性薬物含有徐放性微粒子組成物の製造方法。 The porous hydroxyapatite derivative fine particles and the composition are mixed with 2 to 15% by weight of zinc chloride aqueous solution, and after stirring, the protein having a saturated drug adsorption amount of 40 to 80% by weight of the porous hydroxyapatite derivative fine particles. A powder obtained by mixing a weakly acidic aqueous solution or buffer solution having a pH of 4.0 to 6.9 containing a drug and stirring and freeze-drying, and polylactic acid / glycolic acid-polyethylene glycol-polylactic acid or polylactic acid A sustained-release fine-particle composition containing a protein drug, which is mixed with an acetone aqueous solution or suspension of a triblock copolymer composed of lactic acid / glycolic acid, stirred and then freeze-dried or vacuum-dried to form a powder. Manufacturing method.
JP2006292936A 2006-10-27 2006-10-27 Proteinaceous medicine-containing sustained release particulate composition and method for producing the same Pending JP2008106024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006292936A JP2008106024A (en) 2006-10-27 2006-10-27 Proteinaceous medicine-containing sustained release particulate composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292936A JP2008106024A (en) 2006-10-27 2006-10-27 Proteinaceous medicine-containing sustained release particulate composition and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008106024A true JP2008106024A (en) 2008-05-08

Family

ID=39439674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292936A Pending JP2008106024A (en) 2006-10-27 2006-10-27 Proteinaceous medicine-containing sustained release particulate composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008106024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137875A (en) * 2007-12-05 2009-06-25 National Institute For Materials Science Erythropoietin sustained release preparation, and method for preparing the same
US10682442B2 (en) 2014-04-04 2020-06-16 University Of Kentucky Research Foundation Small molecule drug release from in situ forming degradable scaffolds incorporating hydrogels and bioceramic microparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137875A (en) * 2007-12-05 2009-06-25 National Institute For Materials Science Erythropoietin sustained release preparation, and method for preparing the same
US10682442B2 (en) 2014-04-04 2020-06-16 University Of Kentucky Research Foundation Small molecule drug release from in situ forming degradable scaffolds incorporating hydrogels and bioceramic microparticles

Similar Documents

Publication Publication Date Title
EP1906928B1 (en) Cores and microcapsules suitable for parenteral administration as well as process for their manufacture
TW555569B (en) Biodegradable microparticles for the sustained delivery of therapeutic drugs
JP2004075662A (en) Sustained-release composition, method for producing the same and preparation of the same
RU2409348C2 (en) Medicinal agents with controlled release based on block-copolymers
WO2002096396A1 (en) Fine inorganic particles having drug included therein, method for preparation thereof and pharmaceutical preparation comprising fine inorganic particles having drug included therein
JP5160005B2 (en) Sustained release formulation
AU3317501A (en) Microencapsulation and sustained release of biologically active agent
KR20040018407A (en) A bioactive agent delivering system comprised of microparticules within a biodegradable to improve release profiles
PT779806E (en) SUSTAINED LIBERATION PREPARATION CONTAINING A METALLIC SALT FROM A PEPTIDE
KR20060123384A (en) Drug-containing nanoparticle, process for producing the same and parenterally administered preparation from the nanoparticle
JPWO2005082405A1 (en) Sustained release fine particle preparation for protein drug injection and its production method
AU2006214913A1 (en) Sustained release composition of protein drug
KR20140097541A (en) Polymeric drug-delivery material, method for manufacturing thereofand method for delivery of a drug-delivery composition
US8313767B2 (en) Drug-containing sustained release microparticle, process for producing the same and preparation containing the microparticle
US20060269606A1 (en) Cores and microcapsules suitable for parenteral administration as well as process for their manufacture
Bokharaei et al. Erythropoietin encapsulation in chitosan nanoparticles and kinetics of drug release
JP2008106024A (en) Proteinaceous medicine-containing sustained release particulate composition and method for producing the same
Shim et al. Fabrication of hollow porous PLGA microspheres using sucrose for controlled dual delivery of dexamethasone and BMP2
KR20090116494A (en) Poly(lactide-co-glycolide) microsphere, a process for the preparatrion thereof, and a protein or peptide drug formulation comprising the same
EP1640019B1 (en) Sustained-release fine granular preparation of human growth hormone and process for producing the same
WO2008041704A1 (en) Controlled release preparation
KR100908517B1 (en) Sustained Release Porous Microparticles for Respiratory System Drug Delivery and Its Manufacturing Method
WO2021016211A1 (en) Porous self-healing polymer matrix for encapsulation of active macromolecules and methods