JP2008104908A - Amphoteric polymer flocculant and sludge-treating method using the same - Google Patents

Amphoteric polymer flocculant and sludge-treating method using the same Download PDF

Info

Publication number
JP2008104908A
JP2008104908A JP2006287835A JP2006287835A JP2008104908A JP 2008104908 A JP2008104908 A JP 2008104908A JP 2006287835 A JP2006287835 A JP 2006287835A JP 2006287835 A JP2006287835 A JP 2006287835A JP 2008104908 A JP2008104908 A JP 2008104908A
Authority
JP
Japan
Prior art keywords
sludge
polymer flocculant
amphoteric polymer
flocculant
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006287835A
Other languages
Japanese (ja)
Other versions
JP4684980B2 (en
Inventor
Shigeru Tanabe
茂 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2006287835A priority Critical patent/JP4684980B2/en
Publication of JP2008104908A publication Critical patent/JP2008104908A/en
Application granted granted Critical
Publication of JP4684980B2 publication Critical patent/JP4684980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amphoteric polymer flocculant which is not influenced by changes of properties of sludge, remarkably improves a filtration rate even if sludge of low concentration is treated, reduces a water content of a dehydrated cake, and shows excellent performance in condensation processing and dehydration processing of activated sludge and waste sludge: to provide a sludge-treating method using the flocculant. <P>SOLUTION: The amphoteric polymer flocculant is composed of a copolymer which is obtained by copolymerizing a constituent which contains a cation monomer and an anion monomer. In addition, a value of 1%ηs/1%ηB is 0.02-0.10, wherein 1%ηs represents viscosity at 25°C of a 1 mass% flocculant solution which is prepared by dissolving the amphoteric polymer flocculant in 0.2 N sodium chloride aqueous solution, and 1 %ηB represents viscosity at 25°C of a 1 mass% flocculant solution which is prepared by dissolving the amphoteric polymer flocculant in ion-exchange water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、両性高分子凝集剤及びこれを用いた汚泥の処理方法に関し、特にベルトプレス型の濃縮機または脱水機に対して優れた濾過性能を示す両性高分子凝集剤に関する。   The present invention relates to an amphoteric polymer flocculant and a sludge treatment method using the same, and more particularly to an amphoteric polymer flocculant exhibiting excellent filtration performance with respect to a belt press type concentrator or dehydrator.

下水処理場や、製紙工業、食品工業等の排水処理施設では、沈降分離、生物処理等の方法により廃水の浄化処理を行っている。かかる浄化処理の際に発生する汚泥は、通常、スクリュウデカンター、ベルトプレス等で脱水処理して含水率の低い脱水ケーキとした後に焼却処分している。
また、汚泥の脱水処理を効率的に行う目的で、予め汚泥に高分子凝集剤を添加混合して汚泥粒子をフロック化する方法が広く用いられている。なお、高分子凝集剤としては、従来よりカチオン性高分子凝集剤が知られている。
Wastewater treatment facilities such as sewage treatment plants, paper industry, food industry, etc., purify wastewater by methods such as sedimentation separation and biological treatment. The sludge generated during such purification treatment is usually dewatered by a screw decanter, a belt press or the like to obtain a dehydrated cake having a low water content, and then incinerated.
In addition, for the purpose of efficiently performing sludge dewatering, a method of flocating sludge particles by adding a polymer flocculant to sludge in advance and mixing is widely used. As the polymer flocculant, a cationic polymer flocculant is conventionally known.

さらに、近年では、浄化処理水の水質向上や富栄養化対策を目的として、生物学的脱窒、脱リン処理方法を導入する施設が増加している。
窒素は生物学的脱窒処理の過程において、最終的に窒素ガスに変換され系外に排出される。一方、リンは活性汚泥に取り込まれた後、余剰汚泥として系外に排出される。該余剰汚泥は初沈汚泥と混合し、濃縮・貯槽後、脱水処理するのが一般的である。
しかし、濃縮・貯槽時の時間経過により、汚泥中からリンが再放出され系内に戻ることがあった。そこで、リンの再放出を防止するため、活性汚泥または余剰汚泥を直接脱水する方法や、濃縮後に続けて脱水する方法等が提案されている。
Furthermore, in recent years, an increasing number of facilities have introduced biological denitrification and dephosphorization methods for the purpose of improving the quality of purified water and measures for eutrophication.
Nitrogen is finally converted into nitrogen gas and discharged out of the system in the process of biological denitrification. On the other hand, phosphorus is taken into activated sludge and then discharged out of the system as surplus sludge. In general, the excess sludge is mixed with primary sludge, dehydrated after concentration and storage.
However, with the passage of time during concentration and storage, phosphorus was re-released from the sludge and returned to the system. Therefore, in order to prevent re-release of phosphorus, a method of directly dehydrating activated sludge or excess sludge, a method of dehydrating continuously after concentration, and the like have been proposed.

ところが、従来のカチオン性高分子凝集剤では、十分な処理効果が得らなかった。この原因の一つとして、濃度が低い、強熱減量(以下、「VTS」という。)が高い、コロイド荷電量が少ない、といった汚泥の性状により、カチオン性高分子凝集剤では、濃縮及び脱水に適した大きく且つ緻密な凝集フロックの生成が困難であることが挙げられる。
また、汚泥発生量の増加、汚泥性状の悪化等により、カチオン性高分子凝集剤では、汚泥の処理量や濾過速度に限界があり、含水率が十分に低い脱水ケーキが得られにくくなった。
However, the conventional cationic polymer flocculant has not obtained a sufficient treatment effect. One of the causes is that the cationic polymer flocculant is used for concentration and dehydration due to sludge properties such as low concentration, high loss on ignition (hereinafter referred to as “VTS”), and low colloidal charge. It is difficult to produce suitable large and dense aggregated flocs.
In addition, due to an increase in the amount of sludge generated, deterioration of sludge properties, etc., the cationic polymer flocculant has a limit in the amount of sludge treated and the filtration rate, making it difficult to obtain a dehydrated cake having a sufficiently low water content.

そこで、これら従来のカチオン性高分子凝集剤の欠点を改良し、カチオン性とアニオン性の双方を兼ね備えた、両性高分子凝集剤が種々提案されている(例えば、特許文献1〜3参照。)。
特許文献1には、3級アミンを有する両性高分子凝集剤が提案されている。
特許文献2には、4級アンモニウム塩を有する両性高分子凝集剤が提案されている。
特許文献1、2に記載の両性高分子凝集剤は、従来のカチオン性高分子凝集剤に比べて凝集性に優れ、大きなフロックを形成できる。特に特許文献2の両性高分子凝集剤は、粉末製品とした際の保存安定性にも優れていた。
特許文献3には、2種類の4級アンモニウム塩を有する両性高分子凝集剤が提案されている。該両性高分子凝集剤は、凝集剤添加量、凝集性、粉末製品の保存安定性、溶解性等に優れていた。
特開昭62−205112号公報 特開昭53−149292号公報 特開平7−256299号公報
Therefore, various amphoteric polymer flocculants that improve both the drawbacks of these conventional cationic polymer flocculants and have both cationic and anionic properties have been proposed (see, for example, Patent Documents 1 to 3). .
Patent Document 1 proposes an amphoteric polymer flocculant having a tertiary amine.
Patent Document 2 proposes an amphoteric polymer flocculant having a quaternary ammonium salt.
The amphoteric polymer flocculants described in Patent Documents 1 and 2 are superior in flocculence compared to conventional cationic polymer flocculants and can form large flocs. In particular, the amphoteric polymer flocculant of Patent Document 2 was excellent in storage stability when it was made into a powder product.
Patent Document 3 proposes an amphoteric polymer flocculant having two types of quaternary ammonium salts. The amphoteric polymer flocculant was excellent in the amount of flocculant added, the flocculence, the storage stability of the powder product, the solubility, and the like.
JP-A-62-205112 JP-A-53-149292 JP 7-256299 A

しかしながら、特許文献1に記載の両性高分子凝集剤では、汚泥のpH値や汚泥濃度等の性状変化の影響を受けやすく、安定した処理が困難であった。
また、特許文献2に記載の両性高分子凝集剤では、必要とする両性高分子凝集剤の添加量が多く、汚泥の濾過速度が遅かった。
さらに、特許文献3に記載の両性高分子凝集剤では、活性汚泥や余剰汚泥等、濃度の低い汚泥を処理する場合、濾過速度が遅く、脱水ケーキの含水率が高くなることがあった。
However, the amphoteric polymer flocculant described in Patent Document 1 is susceptible to changes in properties such as sludge pH value and sludge concentration, and stable treatment is difficult.
Moreover, in the amphoteric polymer flocculant described in Patent Document 2, the amount of amphoteric polymer flocculant required is large and the sludge filtration rate is slow.
Furthermore, in the amphoteric polymer flocculant described in Patent Document 3, when sludge having a low concentration such as activated sludge and excess sludge is treated, the filtration rate is slow, and the moisture content of the dehydrated cake may be high.

本発明は、上記事情を鑑みてなされたもので、汚泥の性状変化に影響を受けず、低濃度の汚泥を処理する場合であっても濾過速度を飛躍的に向上させ、脱水ケーキの含水率を低減し、活性汚泥や余剰汚泥の濃縮処理及び脱水処理に優れた濾過性能を発揮する両性高分子凝集剤及びこれを用いた汚泥の処理方法の提供を課題とする。   The present invention has been made in view of the above circumstances, is not affected by changes in the properties of sludge, and dramatically improves the filtration rate even when processing low-concentration sludge, and the moisture content of the dewatered cake It is an object of the present invention to provide an amphoteric polymer flocculant that exhibits excellent filtration performance for concentration treatment and dewatering treatment of activated sludge and excess sludge, and a sludge treatment method using the same.

本発明者らは、上記課題を解決するべく鋭意検討した結果、両性高分子凝集剤の粘度が濾過速度の向上や脱水ケーキの含水率の低減に関与していることを見出し、本発明に至った。
すなわち、本発明の両性高分子凝集剤は、カチオン性単量体とアニオン性単量体とを含有する構成成分を共重合した共重合体からなる両性高分子凝集剤であって、1%ηs/1%ηBの値が0.02〜0.10であることを特徴とする両性高分子凝集剤。
1%ηsとは、両性高分子凝集剤を0.2N−塩化ナトリウム水溶液に溶解し、1質量%凝集剤溶液とした際の25℃における粘度である。
1%ηBとは、両性高分子凝集剤をイオン交換水に溶解し、1質量%凝集剤溶液とした際の25℃における粘度である。
また、前記カチオン性単量体が、ジアルキルアミノアルキルメタクリレート単量体の4級アンモニウム塩を有し、ジアルキルアミノアルキルアクリレート単量体の4級アンモニウム塩の含有量が構成成分100モル%中、5モル%未満であることが好ましい。
さらに、本発明の汚泥の処理方法は、前記両性高分子凝集剤を汚泥に添加して調質し、ベルトプレス型の濃縮機または脱水機を用いて濃縮処理または脱水処理することを特徴とする。
また、前記汚泥が活性汚泥または余剰汚泥であることが好ましい。
As a result of intensive studies to solve the above problems, the present inventors have found that the viscosity of the amphoteric polymer flocculant is involved in improving the filtration rate and reducing the moisture content of the dehydrated cake, leading to the present invention. It was.
That is, the amphoteric polymer flocculant of the present invention is an amphoteric polymer flocculant composed of a copolymer obtained by copolymerizing components containing a cationic monomer and an anionic monomer, and contains 1% ηs. The amphoteric polymer flocculant having a value of / 1% ηB of 0.02 to 0.10.
1% ηs is a viscosity at 25 ° C. when an amphoteric polymer flocculant is dissolved in a 0.2 N sodium chloride aqueous solution to form a 1 mass% flocculant solution.
1% ηB is a viscosity at 25 ° C. when an amphoteric polymer flocculant is dissolved in ion-exchanged water to obtain a 1 mass% flocculant solution.
Further, the cationic monomer has a quaternary ammonium salt of a dialkylaminoalkyl methacrylate monomer, and the content of the quaternary ammonium salt of a dialkylaminoalkyl acrylate monomer is 5 in 100 mol% of the constituent components. It is preferable that it is less than mol%.
Furthermore, the sludge treatment method of the present invention is characterized in that the amphoteric polymer flocculant is added to the sludge for tempering, and the concentration treatment or dehydration treatment is performed using a belt press type concentrator or dehydrator. .
The sludge is preferably activated sludge or excess sludge.

本発明によれば、汚泥の性状変化に影響を受けず、低濃度の汚泥を処理する場合であっても濾過速度を飛躍的に向上させ、脱水ケーキの含水率を低減し、活性汚泥や余剰汚泥の濃縮処理及び脱水処理に優れた濾過性能を発揮する両性高分子凝集剤及びこれを用いた汚泥の処理方法を提供できる。   According to the present invention, it is not affected by changes in sludge properties, and even when processing low-concentration sludge, the filtration rate is dramatically improved, the moisture content of the dehydrated cake is reduced, activated sludge and surplus It is possible to provide an amphoteric polymer flocculant that exhibits excellent filtration performance for sludge concentration treatment and dehydration treatment, and a sludge treatment method using the same.

以下、本発明を詳細に説明する。
本発明の両性高分子凝集剤は、カチオン性単量体とアニオン性単量体とを含有する構成成分を共重合した共重合体からなる。
The present invention will be described in detail below.
The amphoteric polymer flocculant of the present invention comprises a copolymer obtained by copolymerizing constituents containing a cationic monomer and an anionic monomer.

カチオン性単量体は、下記一般式(1)で表される、ジアルキルアミノアルキルメタクリレートの塩化メチル付加物等のハロゲン化アルキル付加物、塩化ベンジル付加物等のハロゲン化アリール付加物等の4級アンモニウム塩を有するのが好ましい。ジアルキルアミノアルキルメタクリレートとしては、例えば、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、ジエチルアミノ−2−ヒドロキシプロピルメタクリレート等が挙げられる。これらのうちではジメチルアミノエチルメタクリレートが好ましい。   The cationic monomer is a quaternary compound represented by the following general formula (1) such as a halogenated alkyl adduct such as methyl chloride adduct of dialkylaminoalkyl methacrylate, an aryl halide adduct such as benzyl chloride adduct, etc. It preferably has an ammonium salt. Examples of the dialkylaminoalkyl methacrylate include dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, diethylamino-2-hydroxypropyl methacrylate and the like. Of these, dimethylaminoethyl methacrylate is preferred.

Figure 2008104908
Figure 2008104908

式(1)中、Rは炭素数2〜3のアルキレン基である。R、Rは炭素数1〜2のアルキル基であり、それぞれ同一であっても異なってもよい。Rは炭素数1〜2のアルキル基またはベンジル基である。Xはハロゲン化物などの陰イオンである。 In formula (1), R 1 is an alkylene group having 2 to 3 carbon atoms. R 2 and R 3 are alkyl groups having 1 to 2 carbon atoms, and may be the same or different. R 4 is an alkyl group having 1 to 2 carbon atoms or a benzyl group. X 1 is an anion such as a halide.

また、カチオン性単量体は下記一般式(2)で表される、ジアルキルアミノアルキルアクリレートの塩化メチル付加物等のハロゲン化アルキル付加物、塩化ベンジル付加物等のハロゲン化アリール付加物等の4級アンモニウム塩を含んでもよい。ジアルキルアミノアルキルアクリレートとしては、例えば、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、ジエチルアミノ−2−ヒドロキシプロピルアクリレート等が挙げられる。これらのうちではジメチルアミノエチルアクリレートが好ましい。   Further, the cationic monomer is represented by the following general formula (2), such as a halogenated alkyl adduct such as methyl chloride adduct of dialkylaminoalkyl acrylate, an aryl halide adduct such as benzyl chloride adduct, etc. A quaternary ammonium salt may be included. Examples of the dialkylaminoalkyl acrylate include dimethylaminoethyl acrylate, diethylaminoethyl acrylate, diethylamino-2-hydroxypropyl acrylate, and the like. Of these, dimethylaminoethyl acrylate is preferred.

Figure 2008104908
Figure 2008104908

式(2)中、Rは炭素数2〜3のアルキレン基である。R、Rは炭素数1〜2のアルキル基であり、それぞれ同一であっても異なってもよい。Rは炭素数1〜2のアルキル基またはベンジル基である。Xはハロゲン化物などの陰イオンである。 In Formula (2), R 5 is an alkylene group having 2 to 3 carbon atoms. R 6 and R 7 are each an alkyl group having 1 to 2 carbon atoms and may be the same or different. R 8 is an alkyl group having 1 to 2 carbon atoms or a benzyl group. X 2 is an anion such as halide.

さらに、カチオン性単量体は他の成分を含んでもよい。他の成分としては、ジメチルアミノエチル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレートの塩酸塩、硫酸塩等の3級塩;N,N−ジメチル(メタ)アクリルアミド等のジアルキル(メタ)アクリルアミドの塩酸塩、硫酸塩等の3級塩や、塩化メチル付加物等のハロゲン化アルキル付加物、塩化ベンジル付加物等のハロゲン化アリール付加物等の4級アンモニウム塩が挙げられる。   Further, the cationic monomer may contain other components. Other components include dialkylaminoalkyl (meth) acrylate hydrochlorides such as dimethylaminoethyl (meth) acrylate, tertiary salts such as sulfates; dialkyl (meth) acrylamides such as N, N-dimethyl (meth) acrylamide And quaternary ammonium salts such as halogenated alkyl adducts such as methyl chloride adduct and halogenated aryl adducts such as benzyl chloride adduct.

これらカチオン性単量体は、1種単独で用いてよく、2種以上を併用してもよい。カチオン性単量体の含有量は、構成成分100モル%中、20〜80モル%が好ましく、30〜60モル%がより好ましい。カチオン性単量体の含有量が上記範囲より少ないと大きな凝集フロックを生成するものの、脱水ケーキの含水率が高くなる。一方、含有量が上記範囲より多いと小さな凝集フロックが生成され、濾過速度が劣る結果となる。   These cationic monomers may be used alone or in combination of two or more. As for content of a cationic monomer, 20-80 mol% is preferable in 100 mol% of structural components, and 30-60 mol% is more preferable. When the content of the cationic monomer is less than the above range, a large aggregated floc is generated, but the water content of the dehydrated cake is increased. On the other hand, if the content is larger than the above range, small aggregated flocs are generated, resulting in poor filtration rate.

なお、カチオン性単量体がジアルキルアミノアルキルアクリレートの4級アンモニウム塩を含む場合、ジアルキルアミノアルキルアクリレートの4級アンモニウム塩の含有量は構成成分100モル%中、5モル%未満が好ましく、より好ましい含有量は0.1〜2モル%である。ジアルキルアミノアルキルアクリレートの4級アンモニウム塩の含有量が上記範囲より多いと、汚泥に添加した際に粗大な凝集フロックを生成し、優れた凝集性を示すものの、濾過速度が不十分となる。
また、カチオン性単量体が他の成分を含む場合は、ジアルキルアミノアルキルアクリレートの4級アンモニウム塩と他の成分の合計含有量が、構成成分100モル%中、5モル%未満となるのが望ましい。
When the cationic monomer contains a quaternary ammonium salt of dialkylaminoalkyl acrylate, the content of the quaternary ammonium salt of dialkylaminoalkyl acrylate is preferably less than 5 mol%, more preferably in 100 mol% of the constituent components. Content is 0.1-2 mol%. When the content of the quaternary ammonium salt of dialkylaminoalkyl acrylate is more than the above range, coarse flocculation flocs are produced when added to sludge and excellent cohesiveness is exhibited, but the filtration rate becomes insufficient.
When the cationic monomer contains other components, the total content of the quaternary ammonium salt of the dialkylaminoalkyl acrylate and the other components is less than 5 mol% in 100 mol% of the constituent components. desirable.

アニオン性単量体としては、例えば、(メタ)アクリル酸及びこのナトリウム塩等のアルカリ金属塩またはアンモニウム塩;マレイン酸等及びこのアルカリ金属塩またはアンモニウム塩;アクリルアミド−2−メチルプロパンスルホン酸及びこのナトリウム塩等のアルカリ金属塩またはアンモニウム塩;ビニルスルホン酸及びこのナトリウム塩等のアルカリ金属塩またはアンモニウム塩等が挙げられる。これらのうちでは、下記一般式(3)で表される(メタ)アクリル酸が好ましい。  Examples of the anionic monomer include (meth) acrylic acid and alkali metal salts or ammonium salts thereof such as sodium salt; maleic acid and the like and alkali metal salts or ammonium salts thereof; acrylamido-2-methylpropanesulfonic acid and Examples include alkali metal salts or ammonium salts such as sodium salts; alkali metal salts or ammonium salts such as vinylsulfonic acid and sodium salts thereof. Among these, (meth) acrylic acid represented by the following general formula (3) is preferable.

Figure 2008104908
Figure 2008104908

これらアニオン性単量体は、1種単独で用いてよく、2種以上を併用してもよい。アニオン性単量体の含有量は、構成成分100モル%中、1〜15モル%が好ましく、3〜10モル%がより好ましい。アニオン性単量体の含有量が上記範囲より少ないと小さな凝集フロックが生成され、濾過速度が劣る結果となる。一方、含有量が上記範囲より多いと両性高分子凝集剤の添加量が多くなり、また、脱水ケーキの含水率が高くなる。   These anionic monomers may be used individually by 1 type, and may use 2 or more types together. The content of the anionic monomer is preferably from 1 to 15 mol%, more preferably from 3 to 10 mol%, in 100 mol% of the constituent components. If the content of the anionic monomer is less than the above range, small aggregated flocs are generated, resulting in poor filtration rate. On the other hand, when the content is larger than the above range, the amount of amphoteric polymer flocculant added increases, and the water content of the dehydrated cake increases.

本発明においては、共重合体の共重合には、ノニオン性単量体を用いてもよい。ノニオン性単量体を用いることにより、カチオン性、アニオン性のイオン強度を調整することができる。
ノニオン性単量体としては(メタ)アクリルアミド、スチレン、アクリロニトリル、酢酸ビニル、アクリル酸アルキル等が挙げられる。これらのうちでは、下記一般式(4)で表される(メタ)アクリルアミドが好ましい。
In the present invention, a nonionic monomer may be used for copolymerization of the copolymer. By using a nonionic monomer, cationic and anionic ionic strength can be adjusted.
Nonionic monomers include (meth) acrylamide, styrene, acrylonitrile, vinyl acetate, alkyl acrylate, and the like. Among these, (meth) acrylamide represented by the following general formula (4) is preferable.

Figure 2008104908
Figure 2008104908

これらノニオン性単量体は、1種単独で用いてよく、2種以上を併用してもよい。ノニオン性単量体を構成成分に含む場合の含有量は、構成成分100モル%中、5〜80モル%が好ましく、35〜65モル%がより好ましい。ノニオン性単量体の含有量が上記範囲より少ないと小さな凝集フロックが生成され、濾過速度が劣る結果となる。一方、含有量が上記範囲より多いと脱水ケーキの含水率が高くなる。   These nonionic monomers may be used individually by 1 type, and may use 2 or more types together. The content when the nonionic monomer is contained in the constituent component is preferably 5 to 80 mol%, more preferably 35 to 65 mol%, in 100 mol% of the constituent component. If the content of the nonionic monomer is less than the above range, small aggregated flocs are generated, resulting in a poor filtration rate. On the other hand, when the content is larger than the above range, the moisture content of the dehydrated cake increases.

本発明の両性高分子凝集剤は、上述した構成成分を共重合した共重合体からなる。重合方法としては、例えば、沈殿重合、塊状重合、分散重合、水溶液重合等が挙げられるが、特にこれらに限定されるものではない。   The amphoteric polymer flocculant of the present invention comprises a copolymer obtained by copolymerizing the above-described constituent components. Examples of the polymerization method include precipitation polymerization, bulk polymerization, dispersion polymerization, aqueous solution polymerization, and the like, but are not particularly limited thereto.

両性高分子凝集剤は、1%ηs/1%ηBの値が0.02〜0.10であり、0.03〜0.08が好ましく、0.03〜0.06がより好ましい。1%ηs/1%ηBの値を上記範囲内とすることにより、低濃度の汚泥を処理する場合であっても、大きく且つ緻密な凝集フロックを形成させるので、濾過速度の向上や、脱水ケーキの含水率の低減に優れた効果を発揮できる。特に、後述するベルトプレス型の脱水機にて汚泥を脱水処理する場合、1%ηs/1%ηBの値が上記範囲より大きくなると、大きな凝集フロックが得られるものの、密度が粗くなる(粗大となる)。一方、1%ηs/1%ηBの値が上記範囲より小さくなると、凝集フロックが小さくなり、濾過速度が遅くなる。なお、凝集フロックは粗大となった場合でも、濾過速度は遅くなる傾向にある。
ここで、1%ηsとは、両性高分子凝集剤を0.2N−塩化ナトリウム水溶液に溶解し、1質量%凝集剤溶液とした際の25℃における粘度である。
また、1%ηBとは、両性高分子凝集剤をイオン交換水に溶解し、1質量%凝集剤溶液とした際の25℃における粘度である。
The amphoteric polymer flocculant has a value of 1% ηs / 1% ηB of 0.02 to 0.10, preferably 0.03 to 0.08, and more preferably 0.03 to 0.06. By setting the value of 1% ηs / 1% ηB within the above range, even when processing sludge with a low concentration, a large and dense coagulated floc is formed. Excellent effect in reducing the moisture content of In particular, when sludge is dewatered by a belt press type dehydrator described later, if the value of 1% ηs / 1% ηB is larger than the above range, a large coagulated floc is obtained, but the density becomes coarse (coarse and coarse). Become). On the other hand, when the value of 1% ηs / 1% ηB is smaller than the above range, the aggregation flocs become small and the filtration rate becomes slow. In addition, even when the aggregation floc becomes coarse, the filtration rate tends to be slow.
Here, 1% ηs is a viscosity at 25 ° C. when an amphoteric polymer flocculant is dissolved in a 0.2 N sodium chloride aqueous solution to form a 1 mass% flocculant solution.
1% ηB is a viscosity at 25 ° C. when an amphoteric polymer flocculant is dissolved in ion-exchanged water to obtain a 1 mass% flocculant solution.

なお、両性高分子凝集剤の1%ηs及び1%ηBの値は、両性高分子凝集剤の分子量、イオン性の割合、分子量分布、製造方法、組成分布、親水性・疎水性度合い等の調整によって制御できる。
例えば、ジアルキルアミノアルキルアクリレートの4級アンモニウム塩の共重合割合を多くすると、1%ηs及び1%ηBの値が増加する傾向になる。一方、両性高分子凝集剤の分子量を小さくすると、1%ηs及び1%ηBの値が減少する傾向になる。
In addition, the values of 1% ηs and 1% ηB of the amphoteric polymer flocculant are adjustments of the molecular weight, ionic ratio, molecular weight distribution, production method, composition distribution, hydrophilicity / hydrophobicity degree, etc. of the amphoteric polymer flocculant Can be controlled by.
For example, when the copolymerization ratio of the quaternary ammonium salt of dialkylaminoalkyl acrylate is increased, the values of 1% ηs and 1% ηB tend to increase. On the other hand, when the molecular weight of the amphoteric polymer flocculant is decreased, the values of 1% ηs and 1% ηB tend to decrease.

本発明の汚泥の処理方法としては、公知の濃縮処理方法および脱水処理方法を用いることができる。すなわち、上述した両性高分子凝集剤を汚泥に添加して凝集フロックを形成させ、濃縮装置にて汚泥を濃縮処理した後に脱水処理し、または直接脱水装置にて脱水処理して脱水ケーキを作成することにより、汚泥の処理を完了することができる。さらに、得られた脱水ケーキを焼却する等により、汚泥を最終処分することができる。   As the sludge treatment method of the present invention, known concentration treatment methods and dehydration treatment methods can be used. That is, the amphoteric polymer flocculant described above is added to sludge to form a floc floc, and the sludge is concentrated with a concentrator and then dehydrated or directly with a dehydrator to create a dehydrated cake. Thus, the sludge treatment can be completed. Furthermore, the sludge can be finally disposed of by, for example, incinerating the obtained dehydrated cake.

両性高分子凝集剤の添加量は、汚泥の質、濃度等により異なり一概には言えないが大まかな目安として、汚泥固形物に対して0.1%以上が好ましく、0.2%以上がより好ましい。本発明において、両性高分子凝集剤の過剰添加による濾過性への悪影響は少なく、両性高分子凝集剤の添加量の上限は特に制限されないが、処理コストの点からは、汚泥固形物に対して1.0%以下が好ましく、0.6%以下がより好ましい。
なお、両性高分子凝集剤は、1種単独で用いてよく、2種以上を併用してもよい。
また、本発明においては、両性高分子凝集剤を使用するに際して、水溶解性を向上させるために固体酸を適宜併用してもよい。固体酸としてはスルファミン酸、酸性亜硫酸ソーダ等が挙げられる。
The amount of amphoteric polymer flocculant added depends on the quality and concentration of the sludge and cannot be generally specified, but as a rough guideline, it is preferably 0.1% or more, more preferably 0.2% or more based on the sludge solids. preferable. In the present invention, there is little adverse effect on the filterability due to the excessive addition of the amphoteric polymer flocculant, and the upper limit of the amount of amphoteric polymer flocculant added is not particularly limited. 1.0% or less is preferable and 0.6% or less is more preferable.
In addition, an amphoteric polymer flocculant may be used individually by 1 type, and may use 2 or more types together.
In the present invention, when an amphoteric polymer flocculant is used, a solid acid may be used in combination as appropriate in order to improve water solubility. Examples of the solid acid include sulfamic acid and acidic sodium sulfite.

前記濃縮装置としては、ベルトプレス型濃縮機及びスクリューデカンター等を例示することができるが、濾過速度の特性によりベルトプレス型濃縮機が好ましい。
また、脱水装置としては、スクリュープレス型脱水機、ベルトプレス型脱水機、フィルタープレス型脱水機、スクリューデカンター等を例示することができるが、濾過速度、圧搾脱水性の特性によりベルトプレス型脱水機が好ましい。
Examples of the concentrating device include a belt press type concentrator and a screw decanter. A belt press type concentrator is preferable depending on the characteristics of filtration speed.
Examples of the dehydrating device include a screw press type dehydrator, a belt press type dehydrator, a filter press type dehydrator, a screw decanter, and the like. Is preferred.

本発明で処理できる汚泥としては、下水処理施設や、化学、食品工業等で生じる有機性排水の生物処理施設から発生する活性汚泥、余剰汚泥、消化汚泥、凝集汚泥またはそれらの混合汚泥等を例示できる。特に、汚泥濃度が低く、脱水性が困難な活性汚泥や余剰汚泥に効果的である。   Examples of sludge that can be treated in the present invention include activated sludge, surplus sludge, digested sludge, agglomerated sludge, or mixed sludge generated from sewage treatment facilities and biological wastewater treatment facilities for organic wastewater generated in the chemical and food industries. it can. In particular, it is effective for activated sludge and excess sludge having a low sludge concentration and difficult to dewater.

このように本発明によれば、両性高分子凝集剤の1%ηs/1%ηBの値を特定することにより、従来の方法では濃縮及び脱水処理が困難であった低濃度の活性汚泥や余剰汚泥の処理においても、濾過速度に優れ、濃縮性、脱水性が向上し、効率的な汚泥処理が可能になる。   As described above, according to the present invention, by specifying the value of 1% ηs / 1% ηB of the amphoteric polymer flocculant, low-concentration activated sludge or surplus which has been difficult to concentrate and dehydrate by the conventional method. Also in the sludge treatment, the filtration rate is excellent, the concentrating property and the dewatering property are improved, and the efficient sludge treatment becomes possible.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

以下の実施例及び比較例において、両性高分子凝集剤及びカチオン性高分子凝集剤(以下、「高分子凝集剤」という場合がある。)は、表1に示す重合体を水に溶解して、0.3質量%の水溶液としたものを使用した。
なお、各高分子凝集剤の各粘度は、以下のようにして求めた。結果を表1に示す。
In the following Examples and Comparative Examples, amphoteric polymer flocculants and cationic polymer flocculants (hereinafter sometimes referred to as “polymer flocculants”) are prepared by dissolving the polymers shown in Table 1 in water. A 0.3% by mass aqueous solution was used.
In addition, each viscosity of each polymer flocculant was calculated | required as follows. The results are shown in Table 1.

(1%ηBの測定)
500mlのガラスビーカーにイオン交換水495.0gを採取した。次いで、図1に示すような溶解装置10を用いて、280rpmの回転数で攪拌しながら高分子凝集剤5.00gを、ママコを作らないよう少量ずつ投入した。高分子凝集剤投入後4時間攪拌を続け、1質量%凝集剤溶液を作成した。
得られた1質量%凝集剤溶液の粘度はB型粘度計((株)東京計器製)を用い、6rpmの回転速度で測定した。
なお、溶解装置10は可変式攪拌機11と伸縮架台12を有し、可変式攪拌機11には、例えば、直径が7.5〜7.9Φの攪拌軸11aと、幅Wが45mm、厚さTが15mmの2つの攪拌翼11b(撹拌翼11b同士の距離Dは35mm)が備わっている。
(Measurement of 1% ηB)
495.0 g of ion-exchanged water was collected in a 500 ml glass beaker. Next, using a dissolving apparatus 10 as shown in FIG. 1, 5.00 g of the polymer flocculant was added little by little while stirring at a rotation speed of 280 rpm so as not to make mamako. Stirring was continued for 4 hours after adding the polymer flocculant to prepare a 1% by weight flocculant solution.
The viscosity of the obtained 1% by mass flocculant solution was measured using a B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) at a rotation speed of 6 rpm.
The melting apparatus 10 includes a variable stirrer 11 and a telescopic stand 12. The variable stirrer 11 includes, for example, a stirring shaft 11a having a diameter of 7.5 to 7.9Φ, a width W of 45 mm, and a thickness T. Is provided with two stirring blades 11b (the distance D between the stirring blades 11b is 35 mm).

(1%ηsの測定)
先に得られた1質量%凝集剤溶液に塩化ナトリウム5.84gを加え、溶解装置10にて280rpmの回転数で30分間攪拌し、塩化ナトリウムを溶解させた際の粘度を、B型粘度計を用い、6rpmの回転速度で測定した。
(Measurement of 1% ηs)
5.84 g of sodium chloride was added to the previously obtained 1% by mass flocculant solution, and the mixture was stirred for 30 minutes at a rotational speed of 280 rpm in the dissolution apparatus 10 to dissolve the sodium chloride. Was measured at a rotational speed of 6 rpm.

Figure 2008104908
Figure 2008104908

表1において、構成成分の略号はそれぞれ下記に示す単量体を表す。
DMC:ジメチルアミノエチルメタクリレート・メチルクロライド4級塩。
DME:ジメチルアミノエチルアクリレート・メチルクロライド4級塩。
DMZ:ジメチルアミノエチルメタクリレート・硫酸塩。
AAm:アクリルアミド。
AA:アクリル酸。
なお、上記DMC、DMEはカチオン性単量体の4級アンモニウム塩、DMZはカチオン性単量体の3級塩、AAmはノニオン性単量体、AAはアニオン性単量体である。
In Table 1, the abbreviations of the constituent components represent the monomers shown below.
DMC: dimethylaminoethyl methacrylate / methyl chloride quaternary salt.
DME: dimethylaminoethyl acrylate / methyl chloride quaternary salt.
DMZ: Dimethylaminoethyl methacrylate sulfate.
AAm: acrylamide.
AA: acrylic acid.
The above DMC and DME are quaternary ammonium salts of cationic monomers, DMZ is a tertiary salt of cationic monomers, AAm is a nonionic monomer, and AA is an anionic monomer.

<測定方法>
以下の実施例及び比較例において、各特性の測定は以下の方法で行った。
TS濃度(蒸発残留物):定法に基づき測定した((財)日本下水道協会編、「下水道試験法上巻1997年度版」p296−297)。
VTS値(強熱減量):定法に基づき測定した((財)日本下水道協会編、「下水道試験法上巻1997年度版」p297)。
凝集フロック平均粒径:目視により測定した。
濾過速度:攪拌後の汚泥を、ろ布を敷いたヌッチュにて濾過を行う際の、濾過開始後5秒間のろ液の量を濾過速度として測定した。
脱水ケーキ含水率:定法に基づき測定した((財)日本下水道協会編、「下水道試験法上巻1997年度版」p296−297)。
濃縮汚泥濃度:TS濃度(蒸発残留物)と同様にして、定法に基づき測定した。
<Measurement method>
In the following examples and comparative examples, each characteristic was measured by the following method.
TS concentration (evaporation residue): Measured based on a standard method (edited by Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p. 296-297)”.
VTS value (loss on ignition): Measured based on a regular method (edited by the Japan Sewerage Association, “Sewerage Test Method Vol. 1997 edition” p297).
Aggregated floc average particle diameter: measured by visual observation.
Filtration rate: The amount of filtrate for 5 seconds after the start of filtration was measured as the filtration rate when the sludge after agitation was filtered with a nutsch with a filter cloth.
Moisture content of dehydrated cake: measured based on a conventional method (edited by the Japan Sewerage Association, “Sewerage Test Method, Vol. 1997, p. 296-297)”.
Concentrated sludge concentration: Measured based on a conventional method in the same manner as TS concentration (evaporation residue).

<実施例1〜6>
下水余剰汚泥1(pH:6.8、TS濃度:0.60%、VTS:67.7%)を用いて脱水処理の試験を行った。
まず、500mlのビーカーに上記下水余剰汚泥1を300ml採取し、表2に示す種類の両性高分子凝集剤を表2に示す量を添加し、スパチュラを用いて1分間当たり100回程度の割合で20秒間攪拌混合し、凝集フロックを形成させた。
凝集フロックの平均粒径及び濾過速度を測定した。
濾過開始から1分経過した後、ろ布上の残渣(濃縮汚泥)をろ布に挟み、0.1Mapの圧力でプレス脱水して脱水ケーキを作成し、脱水ケーキの含水率を求めた。試験結果を表2に示す。
<Examples 1-6>
A test of dehydration treatment was performed using sewage surplus sludge 1 (pH: 6.8, TS concentration: 0.60%, VTS: 67.7%).
First, 300 ml of the above sewage surplus sludge 1 is collected in a 500 ml beaker, and the amphoteric polymer flocculant of the type shown in Table 2 is added in an amount shown in Table 2, and the rate is about 100 times per minute using a spatula. The mixture was stirred and mixed for 20 seconds to form aggregated floc.
The average particle size and filtration rate of the agglomerated floc were measured.
After 1 minute from the start of filtration, the residue (concentrated sludge) on the filter cloth was sandwiched between the filter cloths, press dehydrated at a pressure of 0.1 Map to create a dehydrated cake, and the moisture content of the dehydrated cake was determined. The test results are shown in Table 2.

<比較例1〜5>
両性高分子凝集剤を、表2に示す種類の高分子凝集剤に変更した以外は実施例1〜6と同様にして脱水処理の試験を実施し、各特性の測定を行った。結果を表2に示す。
<Comparative Examples 1-5>
Except that the amphoteric polymer flocculant was changed to the type of polymer flocculant shown in Table 2, a dehydration test was conducted in the same manner as in Examples 1 to 6, and each characteristic was measured. The results are shown in Table 2.

Figure 2008104908
Figure 2008104908

表2から明らかなように、実施例1〜5ではいずれも、平均粒径が大きく、濾過速度に優れた凝集フロックが形成され、脱水ケーキの含水率が低く、良好な結果が得られた。また、DMEの含有量が8モル%である実施例6では、やや粗大な凝集フロックが形成さ、濾過速度や脱水ケーキの含水率が実施例1〜5に比べるとわずかに不十分であった。
一方、1%ηs/1%ηBの値が0.18の両性高分子凝集剤を使用した比較例1、2では、粗大な凝集フロックが形成され、濾過速度や脱水ケーキの含水率が実施例1〜6に比べていずれも劣っていた。また、1%ηs/1%ηBの値が0.018の両性高分子凝集剤を使用した比較例3では、凝集フロックの平均粒径が小さく、濾過速度や脱水ケーキの含水率が実施例1〜6に比べて劣っていた。さらに、カチオン性高分子凝集剤を用いた比較例4、5では、濾過速度や脱水ケーキの含水率が実施例1〜6に比べて劣っていた。
As is clear from Table 2, in Examples 1 to 5, all of the average particle size was large, and a floc floc having an excellent filtration rate was formed. The moisture content of the dehydrated cake was low, and good results were obtained. In Example 6 where the DME content was 8 mol%, a slightly coarse aggregated floc was formed, and the filtration rate and the moisture content of the dehydrated cake were slightly insufficient compared to Examples 1-5. .
On the other hand, in Comparative Examples 1 and 2 using an amphoteric polymer flocculant having a value of 1% ηs / 1% ηB of 0.18, coarse flocculated flocs were formed, and the filtration rate and the moisture content of the dehydrated cake were examples. All were inferior to 1-6. Further, in Comparative Example 3 using an amphoteric polymer flocculant having a value of 1% ηs / 1% ηB of 0.018, the average particle size of the flocculated floc is small, and the filtration rate and the moisture content of the dehydrated cake are in Example 1. It was inferior to ~ 6. Furthermore, in Comparative Examples 4 and 5 using a cationic polymer flocculant, the filtration rate and the moisture content of the dehydrated cake were inferior to those of Examples 1 to 6.

<実施例7〜9>
下水余剰汚泥2(pH:6.5、TS濃度:1.03%、VTS:39.8%)を用いて脱水処理の試験を行った。
500mlのビーカーに上記下水余剰汚泥2を300ml採取し、表3に示す種類の両性高分子凝集剤を表3に示す量を添加した以外は、実施例1〜6と同様にして脱水処理の試験を実施し、各特性の測定を行った。結果を表3に示す。
<Examples 7 to 9>
A test of dehydration treatment was performed using sewage surplus sludge 2 (pH: 6.5, TS concentration: 1.03%, VTS: 39.8%).
Test of dehydration treatment in the same manner as in Examples 1 to 6 except that 300 ml of the sewage surplus sludge 2 was collected in a 500 ml beaker and the amount of amphoteric polymer flocculant of the type shown in Table 3 was added as shown in Table 3. And each characteristic was measured. The results are shown in Table 3.

<比較例6、7>
両性高分子凝集剤を、表3に示す種類の高分子凝集剤に変更した以外は実施例1〜6と同様にして脱水処理の試験を実施し、各特性の測定を行った。結果を表3に示す。
<Comparative Examples 6 and 7>
Except that the amphoteric polymer flocculant was changed to the type of polymer flocculant shown in Table 3, a dehydration test was conducted in the same manner as in Examples 1 to 6, and each characteristic was measured. The results are shown in Table 3.

Figure 2008104908
Figure 2008104908

表3から明らかなように、実施例7〜9ではいずれも、平均粒径が大きく、濾過速度に優れた凝集フロックが形成され、脱水ケーキの含水率が低く、良好な結果が得られた。
一方、1%ηs/1%ηBの値が0.18の両性高分子凝集剤を使用した比較例6では、粗大な凝集フロックが形成され、濾過速度や脱水ケーキの含水率が実施例7〜9に比べていずれも劣っていた。また、カチオン性高分子凝集剤を用いた比較例7では、濾過速度や脱水ケーキの含水率が実施例1〜6に比べて劣っていた。
As is clear from Table 3, in Examples 7 to 9, all of the average particle diameters were large, flocculent flocs having excellent filtration speed were formed, the moisture content of the dehydrated cake was low, and good results were obtained.
On the other hand, in Comparative Example 6 using an amphoteric polymer flocculant having a value of 1% ηs / 1% ηB of 0.18, coarse flocculated flocs were formed, and the filtration rate and the moisture content of the dehydrated cake were in Examples 7 to. All were inferior to 9. Moreover, in the comparative example 7 using a cationic polymer flocculant, the filtration rate and the moisture content of the dewatering cake were inferior compared with Examples 1-6.

<実施例10、11>
食品余剰汚泥(pH:6.8、TS濃度:0.52%、VTS:76.7%)を用いて濃縮処理の試験を行った。
まず、500mlのビーカーに上記食品余剰汚泥を300ml採取し、表4に示す種類の両性高分子凝集剤を表4に示す量を添加し、スパチュラを用いて1分間当たり100回程度の割合で20秒間攪拌混合し、凝集フロックを形成させた。
凝集フロックの平均粒径及び濾過速度を測定した。
濾過開始から1分経過した後、ろ布上の残渣(濃縮汚泥)を採取し、その濃度を求めた。結果を表4に示す。
<Examples 10 and 11>
Concentration treatment was tested using food surplus sludge (pH: 6.8, TS concentration: 0.52%, VTS: 76.7%).
First, 300 ml of the above food surplus sludge is collected in a 500 ml beaker, the amount of amphoteric polymer flocculant of the type shown in Table 4 is added in the amount shown in Table 4, and 20 times at a rate of about 100 times per minute using a spatula. The mixture was stirred and mixed for 2 seconds to form aggregated floc.
The average particle size and filtration rate of the agglomerated floc were measured.
After 1 minute from the start of filtration, the residue (concentrated sludge) on the filter cloth was collected and its concentration was determined. The results are shown in Table 4.

<比較例8、9>
両性高分子凝集剤を、表4に示す種類の高分子凝集剤に変更した以外は実施例10、11と同様にして濃縮処理の試験を実施し、各特性の測定を行った。結果を表4に示す。
<Comparative Examples 8 and 9>
Concentration tests were conducted in the same manner as in Examples 10 and 11 except that the amphoteric polymer flocculant was changed to the type of polymer flocculant shown in Table 4, and each characteristic was measured. The results are shown in Table 4.

Figure 2008104908
Figure 2008104908

表4から明らかなように、実施例10、11ではいずれも、濾過速度に優れ、濃縮汚泥の濃度が高く、良好な結果が得られた。
一方、1%ηs/1%ηBの値が0.18の両性高分子凝集剤を使用した比較例8では、粗大な凝集フロックが形成され、実施例10、11に比べて濾過速度が劣り、濃縮汚泥の濃度が低かった。また、カチオン性高分子凝集剤を用いた比較例9では、実施例10、11に比べて濾過速度が劣り、濃縮汚泥の濃度が低かった。
As is clear from Table 4, in Examples 10 and 11, the filtration rate was excellent, the concentration of concentrated sludge was high, and good results were obtained.
On the other hand, in Comparative Example 8 using an amphoteric polymer flocculant having a value of 1% ηs / 1% ηB of 0.18, coarse aggregated flocs were formed, and the filtration rate was inferior to Examples 10 and 11, The concentration of concentrated sludge was low. Moreover, in the comparative example 9 using a cationic polymer flocculant, the filtration rate was inferior compared with Examples 10 and 11, and the density | concentration of concentrated sludge was low.

1%ηs及び1%ηBの測定に用いる溶解装置の一例を示す概略図である。It is the schematic which shows an example of the melt | dissolution apparatus used for the measurement of 1% (eta) s and 1% (eta) B.

符号の説明Explanation of symbols

10 溶解装置
11 可変式攪拌機
11a 攪拌軸
11b 攪拌翼
12 伸縮架台
DESCRIPTION OF SYMBOLS 10 Dissolution apparatus 11 Variable stirrer 11a Stirring shaft 11b Stirring blade 12 Telescopic stand

Claims (4)

カチオン性単量体とアニオン性単量体とを含有する構成成分を共重合した共重合体からなる両性高分子凝集剤であって、
1%ηs/1%ηBの値が0.02〜0.10であることを特徴とする両性高分子凝集剤。
1%ηsとは、両性高分子凝集剤を0.2N−塩化ナトリウム水溶液に溶解し、1質量%凝集剤溶液とした際の25℃における粘度である。
1%ηBとは、両性高分子凝集剤をイオン交換水に溶解し、1質量%凝集剤溶液とした際の25℃における粘度である。
An amphoteric polymer flocculant composed of a copolymer obtained by copolymerizing components containing a cationic monomer and an anionic monomer,
An amphoteric polymer flocculant having a value of 1% ηs / 1% ηB of 0.02 to 0.10.
1% ηs is a viscosity at 25 ° C. when an amphoteric polymer flocculant is dissolved in a 0.2 N sodium chloride aqueous solution to form a 1 mass% flocculant solution.
1% ηB is a viscosity at 25 ° C. when an amphoteric polymer flocculant is dissolved in ion-exchanged water to obtain a 1 mass% flocculant solution.
前記カチオン性単量体が、ジアルキルアミノアルキルメタクリレート単量体の4級アンモニウム塩を有し、ジアルキルアミノアルキルアクリレート単量体の4級アンモニウム塩の含有量が構成成分100モル%中、5モル%未満であることを特徴とする請求項1に記載の両性高分子凝集剤。   The cationic monomer has a quaternary ammonium salt of a dialkylaminoalkyl methacrylate monomer, and the content of the quaternary ammonium salt of a dialkylaminoalkyl acrylate monomer is 5 mol% in 100 mol% of the constituent components. The amphoteric polymer flocculant according to claim 1, wherein 請求項1または2に記載の両性高分子凝集剤を汚泥に添加して調質し、ベルトプレス型の濃縮機または脱水機を用いて濃縮処理または脱水処理することを特徴とする汚泥の処理方法。   A method for treating sludge, characterized in that the amphoteric polymer flocculant according to claim 1 or 2 is added to a sludge for tempering, and a concentration treatment or a dehydration treatment is performed using a belt press type concentrator or a dehydrator. . 前記汚泥が活性汚泥または余剰汚泥であることを特徴とする請求項3に記載の汚泥の処理方法。


The method of treating sludge according to claim 3, wherein the sludge is activated sludge or excess sludge.


JP2006287835A 2006-10-23 2006-10-23 Amphoteric polymer flocculant and sludge treatment method using the same Active JP4684980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006287835A JP4684980B2 (en) 2006-10-23 2006-10-23 Amphoteric polymer flocculant and sludge treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006287835A JP4684980B2 (en) 2006-10-23 2006-10-23 Amphoteric polymer flocculant and sludge treatment method using the same

Publications (2)

Publication Number Publication Date
JP2008104908A true JP2008104908A (en) 2008-05-08
JP4684980B2 JP4684980B2 (en) 2011-05-18

Family

ID=39438724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006287835A Active JP4684980B2 (en) 2006-10-23 2006-10-23 Amphoteric polymer flocculant and sludge treatment method using the same

Country Status (1)

Country Link
JP (1) JP4684980B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071264A (en) * 2010-09-29 2012-04-12 Hymo Corp Method of enriching sludge
JP2018108560A (en) * 2016-12-30 2018-07-12 Mtアクアポリマー株式会社 Polymer flocculant and method for manufacture of same, and method for dewatering sludge by use of polymer flocculant, and method for evaluating flocculation performance of polymer flocculant
CN110261265A (en) * 2019-06-25 2019-09-20 成都建工赛利混凝土有限公司 Flocculant detection method and its detection device in a kind of sand
WO2020027312A1 (en) * 2018-08-03 2020-02-06 Mtアクアポリマー株式会社 Macromolecular coagulant and sludge dehydration method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205409A (en) * 2005-01-19 2005-08-04 Toagosei Co Ltd Amphoteric polymer coagulant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205409A (en) * 2005-01-19 2005-08-04 Toagosei Co Ltd Amphoteric polymer coagulant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012071264A (en) * 2010-09-29 2012-04-12 Hymo Corp Method of enriching sludge
JP2018108560A (en) * 2016-12-30 2018-07-12 Mtアクアポリマー株式会社 Polymer flocculant and method for manufacture of same, and method for dewatering sludge by use of polymer flocculant, and method for evaluating flocculation performance of polymer flocculant
WO2020027312A1 (en) * 2018-08-03 2020-02-06 Mtアクアポリマー株式会社 Macromolecular coagulant and sludge dehydration method
JPWO2020027312A1 (en) * 2018-08-03 2021-08-10 Mtアクアポリマー株式会社 Method of dehydrating polymer flocculants and sludge
JP7362620B2 (en) 2018-08-03 2023-10-17 Mtアクアポリマー株式会社 Polymer flocculant and sludge dewatering method
CN110261265A (en) * 2019-06-25 2019-09-20 成都建工赛利混凝土有限公司 Flocculant detection method and its detection device in a kind of sand

Also Published As

Publication number Publication date
JP4684980B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
DK1274652T3 (en) A process for the purification of water by the use of cationic dispersion polymers of low molecular weight
JP5512068B2 (en) Water treatment method
JP5621256B2 (en) Wastewater coagulation method
JP2011139997A (en) Coagulation treatment method for waste water
JP2011131164A (en) Method for treating oil-containing waste water
JP5172372B2 (en) Sludge dewatering method
JP5117228B2 (en) Sewage sludge treatment method
JP4684980B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP5042057B2 (en) Sludge dewatering method
WO2008050702A1 (en) Processes for dewatering digested sewage sludge
JPS63500589A (en) Clarification of Bayer method liquid
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP2011131165A (en) Treatment method for inorganic substance-suspended waste water
JP4479095B2 (en) Polymer flocculant and sludge dewatering method
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP2001179300A (en) Method for dehydrating sludge of pulp or papermaking industry
JP3906636B2 (en) Amphoteric polymer flocculant and sludge dewatering method
JP4804707B2 (en) Sludge dewatering method
JP2668711B2 (en) Paper and pulp wastewater coagulation treatment method
JP4795290B2 (en) How to remove phosphorus
JP2991588B2 (en) Method for dewatering sludge containing calcium compound
JP4156441B2 (en) Polymer flocculant
JP2002045900A (en) Method for dewatering sludge
JP2003117600A (en) Dewatering method for sludge
JP4828152B2 (en) Sewage treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250