JP2008103885A - Imaging device, focus detecting device, and imaging apparatus - Google Patents

Imaging device, focus detecting device, and imaging apparatus Download PDF

Info

Publication number
JP2008103885A
JP2008103885A JP2006283600A JP2006283600A JP2008103885A JP 2008103885 A JP2008103885 A JP 2008103885A JP 2006283600 A JP2006283600 A JP 2006283600A JP 2006283600 A JP2006283600 A JP 2006283600A JP 2008103885 A JP2008103885 A JP 2008103885A
Authority
JP
Japan
Prior art keywords
focus detection
pixel
photoelectric conversion
imaging
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006283600A
Other languages
Japanese (ja)
Other versions
JP4867566B2 (en
Inventor
Yosuke Kusaka
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006283600A priority Critical patent/JP4867566B2/en
Publication of JP2008103885A publication Critical patent/JP2008103885A/en
Application granted granted Critical
Publication of JP4867566B2 publication Critical patent/JP4867566B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a pixel output readout circuit of an imaging device from becoming complex. <P>SOLUTION: The imaging device is constituted by arraying pixels for imaging each having a photoelectric conversion unit and pixels for focus detection each having a pair of a first photoelectric conversion unit and a second photoelectric conversion unit in two dimensions. The imaging device has an output unit which outputs a signal, generated by adding together outputs of first photoelectric conversion units 322 and 332 of a first pixel 321 for focus detection and a second pixel 331 for focus detection which are adjacent to each other among the plurality of pixels for focus detection from the first pixel 321 for focus detection and also outputs a signal generated by adding together outputs of second photoelectric conversion units 323 and 333 from the second pixel 331 for focus detection. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、撮像素子、焦点検出装置および撮像装置に関する。   The present invention relates to an imaging device, a focus detection device, and an imaging device.

撮像素子の一部の領域にマイクロレンズとその背後に配置された一対の光電変換部とからなる焦点検出用画素を配列し、この撮像素子を光学系の予定焦点面に配置して瞳分割位相差検出方式で光学系の焦点調節状態を検出するようにした焦点検出装置が知られている(例えば、特許文献1参照)。   A focus detection pixel consisting of a microlens and a pair of photoelectric conversion units arranged behind the microlens is arranged in a partial area of the image sensor, and this image sensor is arranged on the planned focal plane of the optical system to thereby divide the pupil. A focus detection apparatus that detects a focus adjustment state of an optical system using a phase difference detection method is known (see, for example, Patent Document 1).

この出願の発明に関連する先行技術文献としては次のものがある。
特開平01−216306号公報
Prior art documents related to the invention of this application include the following.
Japanese Unexamined Patent Publication No. 01-216306

上述した従来の焦点検出装置では、撮像素子の各画素から出力の読み出しを行う場合に、焦点検出用画素には2つの光電変換部が存在するため、通常の読出しシーケンスでは2つの光電変換部の信号を独立に読み出すことができないという問題がある。   In the conventional focus detection apparatus described above, when the output is read out from each pixel of the image sensor, since there are two photoelectric conversion units in the focus detection pixel, in the normal readout sequence, the two photoelectric conversion units have two photoelectric conversion units. There is a problem that signals cannot be read independently.

(1) 請求項1の発明は、光電変換部を有する撮像用画素と、一対の第1光電変換部および第2光電変換部を有する焦点検出用画素とが二次元的に配列された撮像素子であって、複数の焦点検出用画素のうち互いに隣接する第1焦点検出用画素と第2焦点検出用画素のそれぞれの第1光電変換部の出力どうしを加算した信号を第1焦点検出用画素から出力するとともに、第2光電変換部の出力どうしを加算した信号を第2焦点検出用画素から出力する出力部を備える。
(2) 請求項2の撮像素子は、撮像用画素と焦点検出用画素の前記配列における位置を指定するアドレス回路を備え、出力部は、アドレス回路によって指定された位置に対応する撮像用画素または第1焦点検出用画素または第2焦点検出用画素から信号を出力する。
(3) 請求項3の撮像素子は、第1焦点検出用画素と第2焦点検出用画素は、第1光電変換部と第2光電変換部の並び方向に隣接して複数組配置される。
(4) 請求項4の撮像素子は、第1焦点検出用画素と第2焦点検出用画素は、第1光電変換部と第2光電変換部の並び方向と交差する方向に隣接して配置されるとともに、複数組の第1焦点検出用画素と第2焦点検出用画素が並び方向に沿って配置される。
(5) 請求項5の発明は、請求項1〜4のいずれか1項に記載の撮像素子と、第1焦点検出用画素および第2焦点検出用画素から出力される信号に基づいて、撮像素子上に形成された像の焦点調節状態を検出する焦点検出手段とを備える焦点検出装置である。
(6) 請求項6の発明は、請求項1〜4のいずれか1項に記載の撮像素子と、第1焦点検出用画素および第2焦点検出用画素から出力される信号に基づいて、撮像素子上に形成された画像の焦点調節状態を検出する焦点検出手段と、撮像素子の撮像用画素、第1焦点検出用画素および第2焦点検出用画素から出力される信号に基づいて、画像の信号を生成する撮像手段とを備える撮像装置である。
(1) The invention of claim 1 is an imaging device in which an imaging pixel having a photoelectric conversion unit and a focus detection pixel having a pair of first photoelectric conversion unit and second photoelectric conversion unit are two-dimensionally arranged. The first focus detection pixel is a signal obtained by adding the outputs of the first photoelectric conversion units of the first focus detection pixel and the second focus detection pixel adjacent to each other among the plurality of focus detection pixels. And an output unit that outputs a signal obtained by adding the outputs of the second photoelectric conversion units from the second focus detection pixels.
(2) The image pickup device according to claim 2 includes an address circuit that specifies a position in the arrangement of the image pickup pixel and the focus detection pixel, and the output unit includes an image pickup pixel corresponding to the position specified by the address circuit, or A signal is output from the first focus detection pixel or the second focus detection pixel.
(3) In the imaging device according to claim 3, a plurality of first focus detection pixels and second focus detection pixels are arranged adjacent to each other in the arrangement direction of the first photoelectric conversion unit and the second photoelectric conversion unit.
(4) In the imaging device according to claim 4, the first focus detection pixel and the second focus detection pixel are arranged adjacent to each other in a direction intersecting with the arrangement direction of the first photoelectric conversion unit and the second photoelectric conversion unit. In addition, a plurality of sets of first focus detection pixels and second focus detection pixels are arranged along the alignment direction.
(5) The invention according to claim 5 is based on the image sensor according to any one of claims 1 to 4 and a signal output from the first focus detection pixel and the second focus detection pixel. And a focus detection unit that detects a focus adjustment state of an image formed on the element.
(6) The invention according to claim 6 is based on the image pickup device according to any one of claims 1 to 4 and a signal output from the first focus detection pixel and the second focus detection pixel. A focus detection unit that detects a focus adjustment state of an image formed on the element, and a signal output from the imaging pixel, the first focus detection pixel, and the second focus detection pixel of the image sensor. An imaging apparatus comprising imaging means for generating a signal.

本発明によれば、撮像素子上の焦点検出用画素から画素単位で出力信号を読み出すことができ、画像信号の読み出し回路が複雑になるのを避けることができる。   According to the present invention, an output signal can be read out in units of pixels from focus detection pixels on an image sensor, and it is possible to avoid a complicated image signal read circuit.

本願発明の一実施の形態による撮像装置をデジタルスチルカメラに適用した例を説明する。図1は一実施の形態の構成を示す。一実施の形態のデジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、交換レンズ202はマウント部204によりカメラボディ203に装着される。   An example in which the imaging apparatus according to an embodiment of the present invention is applied to a digital still camera will be described. FIG. 1 shows the configuration of an embodiment. A digital still camera 201 according to an embodiment includes an interchangeable lens 202 and a camera body 203, and the interchangeable lens 202 is attached to the camera body 203 by a mount unit 204.

交換レンズ202はレンズ駆動制御装置206、ズーミング用レンズ208、レンズ209、フォーカシング用レンズ210、絞り211などを備えている。レンズ駆動制御装置206は、マイクロコンピューターとメモリなどの周辺部品から成り、フォーカシング用レンズ210と絞り211の駆動制御、絞り211、ズーミング用レンズ208およびフォーカシング用レンズ210の状態検出、後述するボディ駆動制御装置214に対するレンズ情報の送信とカメラ情報の受信などを行う。   The interchangeable lens 202 includes a lens drive control device 206, a zooming lens 208, a lens 209, a focusing lens 210, a diaphragm 211, and the like. The lens drive control device 206 includes peripheral components such as a microcomputer and a memory. The lens drive control device 206 controls driving of the focusing lens 210 and the aperture 211, detects the state of the aperture 211, the zooming lens 208 and the focusing lens 210, and body drive control described later. Transmission of lens information to the device 214 and reception of camera information are performed.

カメラボディ203は撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には後述する画素が二次元状に配列されており、交換レンズ202の予定結像面に配置されて交換レンズ202により結像される被写体像を撮像する。なお、詳細を後述するが撮像素子212の所定の焦点検出位置には焦点検出用画素が配列される。   The camera body 203 includes an imaging element 212, a body drive control device 214, a liquid crystal display element drive circuit 215, a liquid crystal display element 216, an eyepiece lens 217, a memory card 219, and the like. Pixels, which will be described later, are arranged in a two-dimensional manner on the imaging element 212, and are arranged on the planned imaging plane of the interchangeable lens 202 to capture a subject image formed by the interchangeable lens 202. Although details will be described later, focus detection pixels are arranged at predetermined focus detection positions of the image sensor 212.

ボディ駆動制御装置214はマイクロコンピューターとメモリなどの周辺部品から構成され、撮像素子212からの画像信号の読み出し、画像信号の補正、交換レンズ202の焦点調節状態の検出、レンズ駆動制御装置206からのレンズ情報の受信とカメラ情報(デフォーカス量)の送信、ディジタルスチルカメラ全体の動作制御などを行う。ボディ駆動制御装置214とレンズ駆動制御装置206は、マウント部204の電気接点部213を介して通信を行い、各種情報の授受を行う。   The body drive control device 214 includes a microcomputer and peripheral components such as a memory. The body drive control device 214 reads an image signal from the image sensor 212, corrects the image signal, detects the focus adjustment state of the interchangeable lens 202, and outputs from the lens drive control device 206. It receives lens information, transmits camera information (defocus amount), and controls the operation of the entire digital still camera. The body drive control device 214 and the lens drive control device 206 communicate via the electrical contact portion 213 of the mount portion 204 to exchange various information.

液晶表示素子駆動回路215は、電子ビューファインダー(EVF:電気的ビューファインダー)の液晶表示素子216を駆動する。撮影者は接眼レンズ217を介して液晶表示素子216に表示された像を観察することができる。メモリカード219はカメラボディ203に脱着可能であり、画像信号を格納記憶する可搬記憶媒体である。   The liquid crystal display element driving circuit 215 drives a liquid crystal display element 216 of an electronic viewfinder (EVF: electric viewfinder). The photographer can observe an image displayed on the liquid crystal display element 216 via the eyepiece lens 217. The memory card 219 is removable from the camera body 203 and is a portable storage medium that stores and stores image signals.

交換レンズ202を通過して撮像素子212上に形成された被写体像は、撮像素子212により光電変換され、その出力はボディ駆動制御装置214へ送られる。ボディ駆動制御装置214は、撮像素子212上の焦点検出画素の出力データに基づいて所定の焦点検出位置におけるデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像素子212の出力に基づいて生成した画像信号をメモリカード219に格納するとともに、画像信号を液晶表示素子駆動回路215へ送り、液晶表示素子216に画像を表示させる。   The subject image formed on the image sensor 212 through the interchangeable lens 202 is photoelectrically converted by the image sensor 212 and the output is sent to the body drive controller 214. The body drive control device 214 calculates a defocus amount at a predetermined focus detection position based on the output data of the focus detection pixels on the image sensor 212, and sends this defocus amount to the lens drive control device 206. The body drive control device 214 stores an image signal generated based on the output of the image sensor 212 in the memory card 219 and sends the image signal to the liquid crystal display element drive circuit 215 to display an image on the liquid crystal display element 216. Let

カメラボディ203には不図示の操作部材(シャッターボタン、焦点検出位置の設定部材など)が設けられており、これらの操作部材からの操作状態信号をボディ駆動制御装置214が検出し、検出結果に応じた動作(撮像動作、焦点検出位置の設定動作、画像処理動作)の制御を行う。   The camera body 203 is provided with operation members (not shown) (shutter buttons, focus detection position setting members, etc.), and the body drive control device 214 detects operation state signals from these operation members. The corresponding operations (imaging operation, focus detection position setting operation, image processing operation) are controlled.

レンズ駆動制御装置206はレンズ情報をフォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じて変更する。具体的には、レンズ駆動制御装置206は、レンズ208、210の位置と絞り211の絞り位置をモニターし、モニター情報に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからモニター情報に応じたレンズ情報を選択する。レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、このレンズ駆動量に基づいてフォーカシングレンズ210を不図示のモーター等の駆動源により合焦点へと駆動する。   The lens drive control device 206 changes the lens information according to the focusing state, zooming state, aperture setting state, aperture opening F value, and the like. Specifically, the lens drive control device 206 monitors the positions of the lenses 208 and 210 and the diaphragm position of the diaphragm 211, calculates lens information according to the monitor information, or monitors from a lookup table prepared in advance. Select lens information according to the information. The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to a focal point by a drive source such as a motor (not shown) based on the lens drive amount.

図2は、後述する焦点検出画素列が焦点検出を行う際に画面上で像をサンプリングする領域(焦点検出エリア、焦点検出位置)を示す。画面100の中央に焦点検出エリア101が配置される。長方形で示す焦点検出エリアの長手方向に焦点検出画素が直線的に配列される。   FIG. 2 shows a region (focus detection area, focus detection position) on which an image is sampled on the screen when a focus detection pixel column described later performs focus detection. A focus detection area 101 is arranged at the center of the screen 100. Focus detection pixels are linearly arranged in the longitudinal direction of the focus detection area indicated by a rectangle.

図3は撮像素子212の詳細な構成を示す正面図であり、撮像素子212上の焦点検出エリア近傍を拡大して示す。図において、縦横は図2の画面100の縦横に対応している。撮像素子212は、撮像用の撮像画素310と、焦点検出用の焦点検出画素311とから構成される。   FIG. 3 is a front view showing a detailed configuration of the image sensor 212, and shows an enlarged vicinity of the focus detection area on the image sensor 212. In the figure, the vertical and horizontal directions correspond to the vertical and horizontal directions of the screen 100 of FIG. The imaging element 212 includes an imaging pixel 310 for imaging and a focus detection pixel 311 for focus detection.

撮像画素310は、図4に示すようにマイクロレンズ10、光電変換部11、不図示の色フィルタから構成される。色フィルタは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの分光感度は図6に示す特性を有している。各色フィルタを備えた撮像画素310がベイヤー配列されている。   As shown in FIG. 4, the imaging pixel 310 includes a microlens 10, a photoelectric conversion unit 11, and a color filter (not shown). There are three types of color filters, red (R), green (G), and blue (B), and each spectral sensitivity has the characteristics shown in FIG. An imaging pixel 310 having each color filter is arranged in a Bayer array.

一方、焦点検出画素311は、図5に示すようにマイクロレンズ10、一対の光電変換部12,13から構成される。焦点検出画素311には光量をかせぐために色フィルタは配置されておらず、その分光特性は図7に示すように光電変換を行うフォトダイオードの分光感度と、赤外カットフィルタ(不図示)の分光特性とを総合した分光特性になる。この分光特性は、図6に示す緑画素、赤画素および青画素の分光特性を加算したような分光特性であり、その感度の光波長領域は緑画素、赤画素および青画素の感度の光波長領域を包括している。   On the other hand, the focus detection pixel 311 includes a microlens 10 and a pair of photoelectric conversion units 12 and 13 as shown in FIG. The focus detection pixel 311 is not provided with a color filter in order to increase the amount of light, and the spectral characteristics thereof include the spectral sensitivity of a photodiode that performs photoelectric conversion and the spectral characteristics of an infrared cut filter (not shown) as shown in FIG. Spectral characteristics combining characteristics. This spectral characteristic is a spectral characteristic obtained by adding the spectral characteristics of the green pixel, the red pixel, and the blue pixel shown in FIG. 6, and the light wavelength region of the sensitivity is the light wavelength of the sensitivity of the green pixel, the red pixel, and the blue pixel. Comprehensive area.

撮像画素310の光電変換部11は、マイクロレンズ10により最も明るい交換レンズの射出瞳(例えばF1.0)を通過する光束をすべて受光するような形状に設計される。また、焦点検出画素311の一対の光電変換部12、13は、マイクロレンズ10により所定の絞り開口径(例えばF2.8)の光束を受光するような形状に設計される。   The photoelectric conversion unit 11 of the imaging pixel 310 is designed so as to receive all the light flux that passes through the exit pupil (for example, F1.0) of the brightest interchangeable lens by the microlens 10. In addition, the pair of photoelectric conversion units 12 and 13 of the focus detection pixel 311 are designed to receive a light beam having a predetermined aperture diameter (for example, F2.8) by the microlens 10.

図3に示すように、2次元平面上に配置された撮像画素310にはRGBのベイヤー配列の色フィルタが備えられる。焦点検出画素311は、図2に示す焦点検出エリア101に対応する領域の、撮像画素310のBとGが配置されるべき行に直線的に配置される。   As shown in FIG. 3, the imaging pixels 310 arranged on the two-dimensional plane are provided with RGB color filters of the Bayer array. The focus detection pixels 311 are linearly arranged in rows where B and G of the imaging pixels 310 are to be arranged in a region corresponding to the focus detection area 101 shown in FIG.

図8は撮像画素310の断面を示す。撮像画素310において、撮像用の光電変換部11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部11の像が前方に投影される。光電変換部11は半導体回路基板29上に形成される。また、不図示の色フィルタはマイクロレンズ10と光電変換部11の中間に配置される。   FIG. 8 shows a cross section of the imaging pixel 310. In the imaging pixel 310, the microlens 10 is disposed in front of the photoelectric conversion unit 11 for imaging, and an image of the photoelectric conversion unit 11 is projected forward by the microlens 10. The photoelectric conversion unit 11 is formed on the semiconductor circuit substrate 29. A color filter (not shown) is arranged between the microlens 10 and the photoelectric conversion unit 11.

図9は焦点検出画素311の断面を示す。焦点検出用画素311において、焦点検出用の光電変換部12、13の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部12、13の像が前方に投影される。光電変換部12、13は半導体回路基板29上に形成される。   FIG. 9 shows a cross section of the focus detection pixel 311. In the focus detection pixel 311, the microlens 10 is disposed in front of the focus detection photoelectric conversion units 12 and 13, and the images of the photoelectric conversion units 12 and 13 are projected forward by the microlens 10. The photoelectric conversion units 12 and 13 are formed on the semiconductor circuit substrate 29.

図10はマイクロレンズを用いた瞳分割方式による焦点検出の説明図である。90は交換レンズの予定結像面に配置されたマイクロレンズの前方d0の距離に設定された射出瞳であり、距離d0はマイクロレンズの曲率、屈折率、マイクロレンズと光電変換部の間の距離などに応じて決まる距離であって、以下では測距瞳距離と呼ぶ。91は交換レンズ202の光軸、50,60はマイクロレンズ、52,53、62,63は焦点検出画素の一対の光電変換部、72,73、82,83は焦点検出光束である。また、92はマイクロレンズ50、60により投影された光電変換部52,62の領域(以下では測距瞳と呼ぶ)、93はマイクロレンズ50、60により投影された光電変換部53,63の領域(以下では測距瞳と呼ぶ)。   FIG. 10 is an explanatory diagram of focus detection by a pupil division method using a microlens. Reference numeral 90 denotes an exit pupil set at a distance d0 in front of the microlens arranged on the planned imaging plane of the interchangeable lens. The distance d0 is the curvature and refractive index of the microlens and the distance between the microlens and the photoelectric conversion unit. The distance is determined depending on the distance, and is hereinafter referred to as a distance measuring pupil distance. 91 is an optical axis of the interchangeable lens 202, 50 and 60 are microlenses, 52, 53, 62 and 63 are a pair of photoelectric conversion units of focus detection pixels, and 72, 73, 82 and 83 are focus detection light beams. Reference numeral 92 denotes a region of the photoelectric conversion units 52 and 62 projected by the microlenses 50 and 60 (hereinafter referred to as a distance measuring pupil), and 93 denotes a region of the photoelectric conversion units 53 and 63 projected by the microlenses 50 and 60. (Hereinafter referred to as ranging pupil).

図10では、便宜的に光軸上にある焦点検出画素(マイクロレンズ50と一対の光電変換部52、53からなる)と、隣接する焦点検出画素(マイクロレンズ60と一対の光電変換部62、63からなる)とを模式的に例示しているが、焦点検出画素が画面周辺の光軸から離れた位置にあった場合でも、一対の光電変換部はそれぞれ一対の測距瞳から各マイクロレンズに到来する光束を受光する。焦点検出画素の配列方向は、一対の測距瞳の並び方向すなわち一対の光電変換部の並び方向と一致させる。   In FIG. 10, for convenience, a focus detection pixel (consisting of a microlens 50 and a pair of photoelectric conversion units 52 and 53) on the optical axis and an adjacent focus detection pixel (a microlens 60 and a pair of photoelectric conversion units 62, 63). However, even when the focus detection pixel is at a position away from the optical axis at the periphery of the screen, the pair of photoelectric conversion units is connected to each microlens from the pair of distance measurement pupils. Receives the light flux coming in The arrangement direction of the focus detection pixels is made to coincide with the arrangement direction of the pair of distance measuring pupils, that is, the arrangement direction of the pair of photoelectric conversion units.

マイクロレンズ50、60は光学系の予定結像面近傍に配置されており、マイクロレンズ50によりその背後に配置された一対の光電変換部52、53の形状がマイクロレンズ50、60から投影距離d0だけ離間した射出瞳90上に投影され、その投影形状は測距瞳92,93を形成する。マイクロレンズ60によりその背後に配置された一対の光電変換部62、63の形状が投影距離d0だけ離間した射出瞳90上に投影され、その投影形状は測距瞳92,93を形成する。すなわち、投影距離d0にある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳92,93)が一致するように各画素の投影方向が決定されている。一対の測距瞳92,93と一対の光電変換部(52、53)および一対の光電変換部(62、63)は、マイクロレンズ50,60を介して共役な関係となっている。   The microlenses 50 and 60 are disposed in the vicinity of the planned imaging plane of the optical system, and the shape of the pair of photoelectric conversion units 52 and 53 disposed behind the microlens 50 is projected from the microlenses 50 and 60 to the projection distance d0. Projected onto the exit pupil 90 separated by a distance, the projection shape forms distance measuring pupils 92 and 93. The shape of the pair of photoelectric conversion units 62 and 63 arranged behind the microlens 60 is projected onto the exit pupil 90 separated by the projection distance d0, and the projection shape forms the distance measurement pupils 92 and 93. That is, the projection direction of each pixel is determined so that the projection shape (ranging pupils 92 and 93) of the photoelectric conversion unit of each focus detection pixel matches on the exit pupil 90 at the projection distance d0. The pair of distance measurement pupils 92 and 93, the pair of photoelectric conversion units (52 and 53), and the pair of photoelectric conversion units (62 and 63) have a conjugate relationship via the microlenses 50 and 60.

光電変換部52は測距瞳92を通過し、マイクロレンズ50に向う焦点検出光束72によりマイクロレンズ50上に形成される像の強度に対応した信号を出力する。光電変換部53は測距瞳93を通過し、マイクロレンズ50に向う焦点検出光束73によりマイクロレンズ50上に形成される像の強度に対応した信号を出力する。光電変換部62は測距瞳92を通過し、マイクロレンズ60に向う焦点検出光束82によりマイクロレンズ60上に形成される像の強度に対応した信号を出力する。光電変換部63は測距瞳93を通過し、マイクロレンズ60に向う焦点検出光束83によりマイクロレンズ60上に形成される像の強度に対応した信号を出力する。   The photoelectric conversion unit 52 passes through the distance measuring pupil 92 and outputs a signal corresponding to the intensity of the image formed on the microlens 50 by the focus detection light beam 72 toward the microlens 50. The photoelectric conversion unit 53 passes through the distance measuring pupil 93 and outputs a signal corresponding to the intensity of the image formed on the microlens 50 by the focus detection light beam 73 directed to the microlens 50. The photoelectric conversion unit 62 outputs a signal corresponding to the intensity of the image formed on the microlens 60 by the focus detection light beam 82 passing through the distance measuring pupil 92 and directed to the microlens 60. The photoelectric conversion unit 63 outputs a signal corresponding to the intensity of the image formed on the microlens 60 by the focus detection light beam 83 passing through the distance measuring pupil 93 and directed to the microlens 60.

上述した焦点検出画素を直線状に多数配置し、各画素の一対の光電変換部の出力を測距瞳92および測距瞳93に対応した出力グループにまとめることによって、測距瞳92と測距瞳93を各々通過する焦点検出光束が焦点検出画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことにより、いわゆる瞳分割位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を行うことにより、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。   A large number of the focus detection pixels described above are arranged in a straight line, and the output of the pair of photoelectric conversion units of each pixel is grouped into an output group corresponding to the distance measurement pupil 92 and the distance measurement pupil 93, whereby the distance measurement pupil 92 and the distance measurement Information on the intensity distribution of a pair of images formed on the focus detection pixel array by the focus detection light fluxes that pass through the pupils 93 is obtained. By applying an image shift detection calculation process (correlation calculation process, phase difference detection process) to be described later to this information, the image shift amount of a pair of images is detected by a so-called pupil division phase difference detection method. Furthermore, by performing a conversion calculation according to the center of gravity distance of the pair of distance measuring pupils to the image shift amount, the current imaging plane with respect to the planned imaging plane (the focal point corresponding to the position of the microlens array on the planned imaging plane) The deviation (defocus amount) of the imaging plane at the detection position is calculated.

なお、上記説明では測距瞳は絞り開口によって制限されていない状態として説明を行ったが、実際には測距瞳は絞り開口によって制限された形状、大きさになる。   In the above description, the distance measuring pupil is described as being not limited by the aperture opening. However, the distance measuring pupil actually has a shape and size limited by the aperture opening.

図11は撮像画素と射出瞳の関係を説明する図である。なお、図10に示す同様な要素に対しては説明を省略する。70はマイクロレンズ、71は撮像画素の光電変換部、81は撮像光束、94はマイクロレンズ70により投影された光電変換部71の領域である。図11では、光軸91上にある撮像画素(マイクロレンズ70と光電変換部71からなる)を模式的に例示したが、その他の撮像画素においても光電変換部はそれぞれ領域94から各マイクロレンズに到来する光束を受光する。   FIG. 11 is a diagram illustrating the relationship between the imaging pixels and the exit pupil. Note that description of similar elements shown in FIG. 10 is omitted. Reference numeral 70 denotes a microlens, 71 denotes a photoelectric conversion unit of an imaging pixel, 81 denotes an imaging light beam, and 94 denotes a region of the photoelectric conversion unit 71 projected by the microlens 70. In FIG. 11, the image pickup pixel (consisting of the microlens 70 and the photoelectric conversion unit 71) on the optical axis 91 is schematically illustrated, but in other image pickup pixels, the photoelectric conversion unit is changed from the region 94 to each microlens. Receives incoming light flux.

マイクロレンズ70は光学系の予定結像面近傍に配置されており、光軸91上に配置されたマイクロレンズ70によりその背後に配置された光電変換部71の形状がマイクロレンズ70から投影距離d0だけ離間した射出瞳90上に投影され、その投影形状は領域94を形成する。光電変換部71は領域94を通過し、マイクロレンズ70に向う焦点検出光束81によりマイクロレンズ70上に形成される像の強度に対応した信号を出力する。このような撮像画素を二次元状に多数配置することによって、各画素の光電変換部に基づいて画像情報が得られる。なお、上記説明では領域94は絞り開口によって制限されていない状態として説明を行ったが、実際には領域94は絞り開口によって制限された形状、大きさになる。   The microlens 70 is disposed in the vicinity of the planned imaging plane of the optical system, and the shape of the photoelectric conversion unit 71 disposed behind the microlens 70 disposed on the optical axis 91 is projected from the microlens 70 to the projection distance d0. The projected shape is projected onto the exit pupil 90 separated by a distance, and the projection shape forms a region 94. The photoelectric conversion unit 71 passes through the region 94 and outputs a signal corresponding to the intensity of the image formed on the microlens 70 by the focus detection light beam 81 directed to the microlens 70. By arranging a large number of such imaging pixels two-dimensionally, image information can be obtained based on the photoelectric conversion unit of each pixel. In the above description, the region 94 is described as being not limited by the aperture opening. However, the region 94 actually has a shape and size limited by the aperture opening.

図12は焦点検出画素の出力関係を説明するための図である。隣接する焦点検出画素321、331を例にとって、一対の光電変換部の出力関係について説明する。図10に示す測距瞳92を通過する光束を受光する焦点検出画素321の光電変換部322と、焦点検出画素331の光電変換部332の出力は合成加算され、焦点検出画素331の位置の画素信号として出力される。一方、図10に示す測距瞳93を通過する光束を受光する焦点検出画素321の光電変換部323と、焦点検出画素331の光電変換部333の出力は合成加算され、焦点検出画素321の位置の画素信号として出力される。   FIG. 12 is a diagram for explaining the output relationship of the focus detection pixels. The output relationship between a pair of photoelectric conversion units will be described by taking adjacent focus detection pixels 321 and 331 as an example. The outputs of the photoelectric conversion unit 322 of the focus detection pixel 321 that receives the light beam passing through the distance measuring pupil 92 shown in FIG. 10 and the output of the photoelectric conversion unit 332 of the focus detection pixel 331 are synthesized and added, and the pixel at the position of the focus detection pixel 331 Output as a signal. On the other hand, the outputs of the photoelectric conversion unit 323 of the focus detection pixel 321 and the photoelectric conversion unit 333 of the focus detection pixel 331 that receive the light beam passing through the distance measuring pupil 93 shown in FIG. Are output as pixel signals.

図13は撮像画素の詳細な回路図、図14は撮像画素の素子構造を示す平面図である。撮像画素310の光電変換部はフォトダイオード(PD)で構成される。フォトダイオードPDで蓄積された電荷は、浮遊拡散層(フローティングディフュージョン:FD)に蓄積される。フォトダイオードFDは増幅MOSトランジスタ(AMP)のゲートに接続されており、AMPはFDに蓄積された電荷の量に応じた信号を発生する。FD部はリセットMOSトランジスタ510を介して電源電圧Vddに接続されており、制御信号ΦRnによりリセットMOSトランジスタ510がオンし、FDおよびPDに溜まった電荷がクリアされリセット状態となる。AMPの出力は行選択MOSトランジスタ512を介して垂直出力線501に接続されており、制御信号ΦSnにより行選択MOSトランジスタ512がオンし、AMPの出力が垂直出力線501に出力される。   FIG. 13 is a detailed circuit diagram of the imaging pixel, and FIG. 14 is a plan view showing the element structure of the imaging pixel. The photoelectric conversion unit of the imaging pixel 310 is configured by a photodiode (PD). The electric charge accumulated in the photodiode PD is accumulated in a floating diffusion layer (floating diffusion: FD). The photodiode FD is connected to the gate of the amplification MOS transistor (AMP), and the AMP generates a signal corresponding to the amount of charge accumulated in the FD. The FD portion is connected to the power supply voltage Vdd via the reset MOS transistor 510. The reset MOS transistor 510 is turned on by the control signal ΦRn, and the charges accumulated in the FD and PD are cleared to be in a reset state. The output of AMP is connected to the vertical output line 501 via the row selection MOS transistor 512. The row selection MOS transistor 512 is turned on by the control signal ΦSn, and the output of AMP is output to the vertical output line 501.

図15は焦点検出画素の詳細な回路図、図16は焦点検出画素の素子構造を示す平面図である。ここでは、隣接する焦点検出画素321,331を例にとって説明する。焦点検出画素321の一対の光電変換部は、フォトダイオードPD1aとPD2aで構成される。また、焦点検出画素331の一対の光電変換部は、フォトダイオードPD1bとPD2bで構成される。PD1aおよびPD1bで蓄積された電荷は、浮遊拡散層(フローティングディフュージョン)FDaに蓄積される。また、PD2aおよびPD2bで蓄積された電荷は、浮遊拡散層(フローティングディフュージョン)FDbに蓄積される。   FIG. 15 is a detailed circuit diagram of the focus detection pixel, and FIG. 16 is a plan view showing the element structure of the focus detection pixel. Here, description will be given by taking adjacent focus detection pixels 321 and 331 as an example. A pair of photoelectric conversion units of the focus detection pixel 321 includes photodiodes PD1a and PD2a. The pair of photoelectric conversion units of the focus detection pixel 331 includes photodiodes PD1b and PD2b. The charges accumulated in PD1a and PD1b are accumulated in floating diffusion layer (floating diffusion) FDa. The charges accumulated in PD2a and PD2b are accumulated in the floating diffusion layer (floating diffusion) FDb.

FDaおよびFDbは増幅MOSトランジスタAMPaおよびAMPbのゲートに接続されており、AMPaおよびAMPbはFDaおよびFDbに蓄積された電荷の量に応じた信号を発生する。FDaおよびFDbはリセットMOSトランジスタ510を介して電源電圧Vddに接続されており、制御信号ΦR3によりリセットMOSトランジスタ510がオンし、FDa、FDbおよびPDa、PDbに溜まった電荷がクリアされリセット状態となる。AMPaおよびAMPbの出力は行選択MOSトランジスタ512を介して垂直出力線501に接続されており、制御信号ΦS3により行選択MOSトランジスタ512がオンし、AMPaおよびAMPbの出力が垂直出力線501に出力される。   FDa and FDb are connected to the gates of amplifying MOS transistors AMPa and AMPb, and AMPA and AMPb generate a signal corresponding to the amount of charge accumulated in FDa and FDb. FDa and FDb are connected to the power supply voltage Vdd via the reset MOS transistor 510. The reset MOS transistor 510 is turned on by the control signal ΦR3, and the charges accumulated in the FDa, FDb, PDa, and PDb are cleared to be in a reset state. . The outputs of AMPa and AMPb are connected to the vertical output line 501 via the row selection MOS transistor 512. The row selection MOS transistor 512 is turned on by the control signal ΦS3, and the outputs of AMPa and AMPb are output to the vertical output line 501. The

図17は撮像素子の回路構成を示す概念図である。ここでは、撮像素子全体の回路構成を、模式的に画素数が4画素×4画素であるとして説明する。画素の配置は4画素×4画素のレイアウトになっており、焦点検出画素311は2画素が3行目の2列目と3列目に配置され、その他は撮像画素310である。信号保持部502は1行分の画素の画像信号を一時的保持するバッファであり、垂直信号線501に出力されている画像信号を垂直走査回路503が発する制御信号ΦHに基づいてラッチする。   FIG. 17 is a conceptual diagram showing a circuit configuration of the image sensor. Here, the circuit configuration of the entire image sensor will be described assuming that the number of pixels is 4 pixels × 4 pixels. The pixel arrangement is a 4 × 4 pixel layout. The focus detection pixels 311 are arranged in the second and third columns of the third row, and the other pixels are the imaging pixels 310. The signal holding unit 502 is a buffer that temporarily holds an image signal of pixels for one row, and latches the image signal output to the vertical signal line 501 based on a control signal ΦH generated by the vertical scanning circuit 503.

撮像画素310の電荷蓄積は、蓄積制御回路504が発する制御信号(ΦR1〜ΦR4)により行ごとに制御される。撮像画素310および焦点検出画素311からの画像信号の出力は、垂直走査回路503が発する制御信号(ΦS1〜ΦS4)により行ごとに独立に制御される。制御信号により選択された画素の画像信号は、垂直信号線501に出力される。信号保持部502に保持された画像信号は水平転送回路505が発する制御信号(ΦV1〜ΦV4)により、順次出力回路505へ転送され、出力回路506で設定された増幅度で増幅されて外部に出力される。   The charge accumulation of the imaging pixel 310 is controlled for each row by a control signal (ΦR1 to ΦR4) generated by the accumulation control circuit 504. Output of image signals from the imaging pixel 310 and the focus detection pixel 311 is independently controlled for each row by a control signal (ΦS1 to ΦS4) generated by the vertical scanning circuit 503. The image signal of the pixel selected by the control signal is output to the vertical signal line 501. The image signals held in the signal holding unit 502 are sequentially transferred to the output circuit 505 by the control signals (ΦV1 to ΦV4) generated by the horizontal transfer circuit 505, amplified with the amplification set by the output circuit 506, and output to the outside. Is done.

図18は、図17に示す撮像素子の動作タイミングチャートである。1行目の撮像画素310は垂直走査回路503が発する制御信号ΦS1により選択され、選択された撮像画素310の画像信号は垂直信号線501に出力される。制御信号ΦS1と同期して発せられる制御信号ΦHにより、垂直信号線501に出力された1行目の画像信号は信号保持部502に一時的に保持される。信号保持部502に保持された1行目の撮像画素の画像信号は、水平走査回路505から順次発せられる制御信号ΦV1〜ΦV4にしたがって出力回路506に転送され、出力回路506で設定された増幅度で増幅された外部に出力される。   FIG. 18 is an operation timing chart of the image sensor shown in FIG. The imaging pixel 310 in the first row is selected by the control signal ΦS1 generated by the vertical scanning circuit 503, and the image signal of the selected imaging pixel 310 is output to the vertical signal line 501. The image signal of the first row output to the vertical signal line 501 is temporarily held in the signal holding unit 502 by the control signal ΦH issued in synchronization with the control signal ΦS1. The image signals of the imaging pixels in the first row held in the signal holding unit 502 are transferred to the output circuit 506 according to the control signals ΦV1 to ΦV4 sequentially issued from the horizontal scanning circuit 505, and the amplification degree set by the output circuit 506 is set. It is output to the outside amplified by.

1行目の撮像画素310の画像信号の信号保持部への転送が終了した時点で、蓄積制御回路504より発せられる制御信号ΦR1により1行目の撮像画素がリセットされ、1行目の撮像画素310の次の電荷蓄積が開始される。1行目の撮像画素310の画像信号の出力回路からの出力が終了した時点で、2行目の撮像画素310は垂直走査回路503が発する制御信号ΦS2により選択され、選択された撮像画素310の画像信号は垂直信号線501に出力される。   When the transfer of the image signal of the imaging pixel 310 in the first row to the signal holding unit is completed, the imaging pixel in the first row is reset by the control signal ΦR1 issued from the accumulation control circuit 504. The next charge accumulation at 310 is started. When the output from the image signal output circuit of the imaging pixel 310 in the first row is completed, the imaging pixel 310 in the second row is selected by the control signal ΦS2 generated by the vertical scanning circuit 503, and the selected imaging pixel 310 is selected. The image signal is output to the vertical signal line 501.

以下同様にして2行目の撮像画素310の画像信号の保持および撮像画素のリセット、画像信号の出力が行われる。続いて3行目の撮像画素310と焦点検出画素311の画像信号の保持および撮像画素のリセット、撮像画素310と焦点検出画素311の画像信号の出力が行われる。続いて4行目の撮像画素310の画像信号の保持および撮像画素310のリセット、撮像画素310の画像信号の出力が行われる。続いてぶたたび1行目に戻って上記動作が繰り返される。1行目の撮像画素310の画像信号の電荷保持タイミングから次回の1行目の撮像画素310の画像信号の電荷保持タイミングまでの周期Tsは、一定に制御される。   Thereafter, similarly, the image signal of the image pickup pixel 310 in the second row is retained, the image pickup pixel is reset, and the image signal is output. Subsequently, the image signals of the imaging pixels 310 and the focus detection pixels 311 in the third row are held, the imaging pixels are reset, and the image signals of the imaging pixels 310 and the focus detection pixels 311 are output. Subsequently, the image signal of the imaging pixel 310 in the fourth row is held, the imaging pixel 310 is reset, and the image signal of the imaging pixel 310 is output. Subsequently, the above operation is repeated after returning to the first line. The period Ts from the charge holding timing of the image signal of the imaging pixel 310 of the first row to the charge holding timing of the image signal of the imaging pixel 310 of the next first row is controlled to be constant.

撮像画素310および焦点検出画素311の電荷蓄積時間Ti(露光時間)は、画素のリセットタイミングから画像信号の保持タイミングまでの時間となる。また、制御信号ΦR1〜ΦR4のパルス幅を変更することによって、撮像画素310および焦点検出画素311の電荷蓄積時間Ti(露光時間)を調整することができる。   The charge accumulation time Ti (exposure time) of the imaging pixel 310 and the focus detection pixel 311 is the time from the pixel reset timing to the image signal holding timing. In addition, the charge accumulation time Ti (exposure time) of the imaging pixel 310 and the focus detection pixel 311 can be adjusted by changing the pulse width of the control signals ΦR1 to ΦR4.

このように、3行目が選択された場合には、3行目の2列目に配置された焦点検出画素311からは、その画素の一対の光電変換部のうち片方の光電変換部に蓄積された信号と、隣接する焦点検出画素(3列目)の一対の光電変換部のうちの片方の光電変換部に蓄積された信号とが合成加算されて垂直信号線501に出力される。一方、3行目の3列目に配置された焦点検出画素からは、その画素の一対の光電変換部の内のもう一方の光電変換部に蓄積された信号と、隣接する焦点検出画素(3列目)の一対の光電変換部の内のもう一方の光電変換部に蓄積された信号とが合成加算されて垂直信号線501に出力される。   As described above, when the third row is selected, the focus detection pixel 311 arranged in the second column of the third row accumulates in one photoelectric conversion unit of the pair of photoelectric conversion units of the pixel. The combined signal and the signal accumulated in one of the pair of photoelectric conversion units of the adjacent focus detection pixels (third column) are synthesized and added and output to the vertical signal line 501. On the other hand, from the focus detection pixel arranged in the third column of the third row, the signal accumulated in the other photoelectric conversion unit of the pair of photoelectric conversion units of the pixel and the adjacent focus detection pixel (3 A signal accumulated in the other photoelectric conversion unit of the pair of photoelectric conversion units in the column) is synthesized and added and output to the vertical signal line 501.

これにより、撮像素子全体としては、焦点検出画素311が配置されているにも関わらず、あたかもすべてが撮像画素310で構成されている撮像素子と同じ画像信号の読み出しシーケンスで焦点検出画素311からの画像信号を読み出すことが可能になり、撮像素子の動作制御の複雑化を防止することができる。   As a result, although the focus detection pixels 311 are arranged as a whole in the image pickup device, it is as if all of the image pickup devices from the focus detection pixels 311 have the same image signal readout sequence as that of the image pickup device constituted by the image pickup pixels 310. The image signal can be read out, and the operation control of the image sensor can be prevented from becoming complicated.

図19は、図1に示すデジタルスチルカメラ(撮像装置)の動作を示すフローチャートである。ボディ駆動制御装置214は、ステップ100でカメラの電源が投入されるとステップ110へ進み、撮像動作を開始する。ステップ110で、図1には不図示の測光装置によって測光した被写界輝度に応じて自動的に決定された撮影絞り値、あるいは図1には不図示の操作部材によってユーザーが手動で設定した撮影絞り値に応じた絞り制御情報をレンズ駆動制御装置206へ送り、絞り開口径を撮影絞り値に設定し、この絞り開口径にて撮像画素のデータを間引き読み出しし、電子ビューファインダーに表示させる。   FIG. 19 is a flowchart showing the operation of the digital still camera (imaging device) shown in FIG. When the power of the camera is turned on in step 100, the body drive control device 214 proceeds to step 110 and starts an imaging operation. In step 110, the photographing aperture value automatically determined according to the field luminance measured by a photometer (not shown in FIG. 1), or manually set by the user using an operation member (not shown in FIG. 1). Aperture control information corresponding to the photographic aperture value is sent to the lens drive control device 206, the aperture aperture diameter is set to the photographic aperture value, and the data of the imaged pixels are thinned and read out with this aperture aperture diameter and displayed on the electronic viewfinder. .

ステップ120において、絞り開口径が撮影絞り値に設定された状態で焦点検出画素列からデータを読み出す。ステップ130では、焦点検出画素列に対応した一対の像データに基づいて、後述する像ズレ検出演算処理(相関演算処理)を行って像ズレ量を演算し、さらにデフォーカス量を算出する。ステップ140において合焦近傍か否か、すなわち算出されたデフォーカス量の絶対値が所定値以内であるか否かを判別する。合焦近傍でないと判別されるとステップ150へ進み、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ210を合焦位置まで駆動させ、その後ステップ110へ戻って上記動作を繰り返す。   In step 120, data is read from the focus detection pixel array with the aperture diameter set to the photographing aperture value. In step 130, based on a pair of image data corresponding to the focus detection pixel row, an image shift detection calculation process (correlation calculation process) described later is performed to calculate an image shift amount, and a defocus amount is further calculated. In step 140, it is determined whether or not the focus is close, that is, whether or not the absolute value of the calculated defocus amount is within a predetermined value. If it is determined that the focus is not close, the process proceeds to step 150, where the defocus amount is transmitted to the lens drive control device 206, the focusing lens 210 of the interchangeable lens 202 is driven to the focus position, and then the process returns to step 110 to perform the above operation. repeat.

なお、焦点検出不能な場合もこのステップ150へ分岐し、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシングレンズ210を無限から至近までの間でスキャン駆動させ、その後ステップ110へ戻って上記動作を繰り返す。   Even when focus detection is impossible, the process branches to step 150, a scan drive command is transmitted to the lens drive control device 206, and the focusing lens 210 of the interchangeable lens 202 is driven to scan from infinity to the nearest position, and then step 110 is performed. Return to and repeat the above operation.

一方、合焦近傍であると判別された場合はステップ160へ進み、不図示のレリーズ手段の操作によりシャッターレリーズがなされたか否かを判定し、なされていないと判定された場合はステップ110へ戻って上記動作を繰り返す。シャッターレリーズがなされたと判定された場合は、レンズ駆動制御装置206へ絞り制御情報を送信し、交換レンズ202の絞り値を撮影絞り値にする。絞り制御が終了した時点で、撮像素子212に撮像動作を行わせ、撮像素子212の撮像画素および全ての焦点検出画素から画像データを読み出す。   On the other hand, if it is determined that it is in the vicinity of the in-focus state, the process proceeds to step 160, where it is determined whether or not a shutter release has been performed by operating a release means (not shown). Repeat the above operation. If it is determined that the shutter release has been performed, the aperture control information is transmitted to the lens drive control device 206, and the aperture value of the interchangeable lens 202 is set to the photographing aperture value. When the aperture control is completed, the image sensor 212 is caused to perform an imaging operation, and image data is read from the imaging pixels of the image sensor 212 and all focus detection pixels.

ステップ180では、焦点検出画素列の各画素位置の画素データを周囲の撮像画素のデータに基づいて補間する。続くステップ190において、撮像画素のデータおよび補間されたデータからなる画像データをメモリーカード219に保存し、ステップ110へ戻って上記動作を繰り返す。   In step 180, pixel data at each pixel position in the focus detection pixel row is interpolated based on data of surrounding imaging pixels. In the next step 190, image data composed of the imaged pixel data and the interpolated data is stored in the memory card 219, and the process returns to step 110 to repeat the above operation.

ここで、図19のステップ130で実行される像ズレ量検出とデフォーカス量算出の詳細を説明する。焦点検出画素列から出力される一対のデータ列(α1〜αM、β1〜βM:Mはデータ数)に対し、(1)式に示すような高周波カットフィルタ処理を施し、第1データ列、第2データ列(A1〜AN、B1〜BN)を生成することによって、データ列から相関処理に悪影響を及ぼすノイズ成分や高周波成分を除去する。
An=αn+2×αn+1+αn+2,
Bn=βn+2×βn+1+βn+2 ・・・(1)
(1)式において、n=1〜Nである。なお、演算時間の短縮を図る場合や、すでに大きくデフォーカスしていて高周波成分が少ないことがわかっている場合などには、この処理を省略することもできる。
Here, details of the image shift amount detection and the defocus amount calculation executed in step 130 of FIG. 19 will be described. A pair of data strings (α1 to αM, β1 to βM, where M is the number of data) output from the focus detection pixel column is subjected to a high frequency cut filter process as shown in Equation (1), and the first data string By generating two data strings (A1 to AN, B1 to BN), noise components and high frequency components that adversely affect the correlation process are removed from the data strings.
An = αn + 2 × αn + 1 + αn + 2,
Bn = βn + 2 × βn + 1 + βn + 2 (1)
In the formula (1), n = 1 to N. Note that this processing can be omitted when the calculation time is shortened or when it is known that the high-frequency component is small because the focus is already largely defocused.

ここで、データ列α1〜αMは、一対の測距瞳の片方(測距瞳92)を通過する光束により形成された像を、焦点検出画素の一対の光電変換部の内の一方(光電変換部12)で受光して得られた信号と、隣接する焦点検出画素の一対の光電変換部の内の一方(光電変換部12)で受光して得られた信号とを加算した信号に対応する。また、データ列β1〜βMは、一対の測距瞳の片方(測距瞳93)を通過する光束により形成された像を、焦点検出画素の一対の光電変換部の内の一方(光電変換部13)で受光して得られた信号と、隣接する焦点検出画素の一対の光電変換部の内の一方(光電変換部13)で受光して得られた信号とを加算した信号に対応する。   Here, the data strings α1 to αM represent an image formed by a light beam passing through one of the pair of distance measurement pupils (the distance measurement pupil 92) as one of the pair of photoelectric conversion units of the focus detection pixels (photoelectric conversion). Corresponding to a signal obtained by adding the signal obtained by receiving the light at the unit 12) and the signal obtained by receiving at one of the pair of photoelectric conversion units (photoelectric conversion unit 12) of the adjacent focus detection pixels. . The data strings β1 to βM represent an image formed by a light beam passing through one of the pair of distance measurement pupils (the distance measurement pupil 93) as one of the pair of photoelectric conversion units (photoelectric conversion unit) of the focus detection pixel. 13) corresponds to a signal obtained by adding the signal obtained by receiving light at 13) and the signal obtained by receiving light at one of the pair of photoelectric conversion units (photoelectric conversion unit 13) of the adjacent focus detection pixels.

次に、データ列An、Bnに対し(2)式に示す相関演算を行い、相関量C(k)を演算する。
C(k)=Σ|An×Bn+1+k−Bn+k×An+1| ・・・(2)
(2)式において、Σ演算はnについて累積され、nのとる範囲はずらし量kに応じてAn、An+1、Bn+k、Bn+1+kのデータが存在する範囲に限定される。ずらし量kは整数であり、データ列のデータ間隔を単位とした相対的シフト量である。
Next, the correlation calculation shown in the equation (2) is performed on the data strings An and Bn, and the correlation amount C (k) is calculated.
C (k) = Σ | An × Bn + 1 + k−Bn + k × An + 1 | (2)
In equation (2), the Σ operation is accumulated for n, and the range taken by n is limited to a range in which data of An, An + 1, Bn + k, and Bn + 1 + k exist according to the shift amount k. . The shift amount k is an integer and is a relative shift amount with the data interval of the data string as a unit.

(2)式の演算結果は、図20(a)に示すように、一対のデータの相関が高いシフト量(図20(a)ではk=kj=2)において相関量C(k)が極小(小さいほど相関度が高い)になる。次に、(3)式〜(6)式による3点内挿の手法を用いて、連続的な相関量に対する極小値C(x)を与えるシフト量xを求める。
x=kj+D/SLOP ・・・(3),
C(x)= C(kj)−|D| ・・・(4),
D={C(kj-1)−C(kj+1)}/2 ・・・(5),
SLOP=MAX{C(kj+1)−C(kj),C(kj-1)−C(kj)} ・・・(6)
As shown in FIG. 20A, the calculation result of the expression (2) indicates that the correlation amount C (k) is minimal in the shift amount with high correlation between the pair of data (k = kj = 2 in FIG. 20A). (The smaller the value, the higher the degree of correlation). Next, the shift amount x that gives the minimum value C (x) with respect to the continuous correlation amount is obtained by using the three-point interpolation method according to the equations (3) to (6).
x = kj + D / SLOP (3),
C (x) = C (kj) − | D | (4),
D = {C (kj-1) -C (kj + 1)} / 2 (5),
SLOP = MAX {C (kj + 1) -C (kj), C (kj-1) -C (kj)} (6)

(3)式で算出されたずらし量xの信頼性があるかどうかは、次のようにして判定する。図20(b)に示すように、一対のデータの相関度が低い場合は、内挿された相関量の極小値C(x)の値が大きくなる。したがって、C(x)が所定の閾値以上の場合は算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいは、C(x)をデータのコントラストで規格化するために、コントラストに比例した値となるSLOPでC(x)を除した値が所定値以上の場合は、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。図20(c)に示すように、一対のデータの相関度が低く、シフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、極小値C(x)を求めることができず、このような場合は焦点検出不能と判定する。   Whether or not the shift amount x calculated by the equation (3) is reliable is determined as follows. As shown in FIG. 20B, when the degree of correlation between a pair of data is low, the minimum value C (x) of the interpolated correlation amount increases. Accordingly, when C (x) is equal to or greater than a predetermined threshold value, it is determined that the calculated shift amount has low reliability, and the calculated shift amount x is canceled. Alternatively, in order to normalize C (x) with the contrast of data, when the value obtained by dividing C (x) by SLOP that is proportional to the contrast is equal to or greater than a predetermined value, the reliability of the calculated shift amount Is determined to be low, and the calculated shift amount x is canceled. Alternatively, when SLOP that is a value proportional to the contrast is equal to or less than a predetermined value, it is determined that the subject has low contrast and the reliability of the calculated shift amount is low, and the calculated shift amount x is canceled. As shown in FIG. 20C, when the degree of correlation between the pair of data is low and there is no drop in the correlation amount C (k) between the shift ranges kmin to kmax, the minimum value C (x) is obtained. In such a case, it is determined that the focus cannot be detected.

なお、(2)式に示す相関演算の代わりに次式に示す相関演算を行い、相関量C(k)を演算してもよい。
C(k)=Σ|An/An+1−Bn+k/Bn+1+k| ・・・(7)
(7)式において、Σ演算はnについて累積され、nのとる範囲はずらし量kに応じてAn、An+1、Bn+k、Bn+1+kのデータが存在する範囲に限定される。
Note that the correlation amount C (k) may be calculated by performing the correlation calculation shown in the following equation instead of the correlation calculation shown in the equation (2).
C (k) = Σ | An / An + 1−Bn + k / Bn + 1 + k | (7)
In equation (7), the Σ operation is accumulated for n, and the range taken by n is limited to a range in which data of An, An + 1, Bn + k, and Bn + 1 + k exist according to the shift amount k. .

算出されたずらし量xの信頼性があると判定された場合は、被写体像面の予定結像面に対するデフォーカス量DEFを(8)式で求めることができる。
DEF=KX・PY・x ・・・(8)
(8)式において、PYは検出ピッチ(焦点検出画素の配列ピッチの2倍)であり、KXは一対の測距瞳を通過する光束の重心の開き角の大きさによって決まる変換係数である。一対の測距瞳を通過する光束の重心の開き角の大きさは、交換レンズの絞り開口の大きさ(絞り値)に応じて変化するので、レンズ情報に応じて決定される。
When it is determined that the calculated shift amount x is reliable, the defocus amount DEF of the subject image plane with respect to the planned image formation plane can be obtained by Expression (8).
DEF = KX · PY · x (8)
In equation (8), PY is a detection pitch (twice the arrangement pitch of focus detection pixels), and KX is a conversion coefficient determined by the size of the opening angle of the center of gravity of the light beam passing through the pair of distance measurement pupils. Since the magnitude of the opening angle of the center of gravity of the light beam passing through the pair of distance measuring pupils changes according to the size of the aperture opening (aperture value) of the interchangeable lens, it is determined according to the lens information.

<その他の実施例>
図21は変形例の撮像素子212Aの構成を示す。図3に示す撮像素子212では、図12に示すように、焦点検出画素の並び方向に隣接する焦点検出画素の一対の光電変換部の信号を合成加算しているが、図21に示すように焦点検出画素列を垂直方向に2行平行に配置し、垂直方向に隣接する焦点検出画素の間で光電変換部の信号を合成加算する。
<Other examples>
FIG. 21 shows a configuration of an imaging element 212A according to a modification. In the image sensor 212 shown in FIG. 3, as shown in FIG. 12, the signals of the pair of photoelectric conversion units of the focus detection pixels adjacent in the alignment direction of the focus detection pixels are synthesized and added. The focus detection pixel columns are arranged in parallel in the vertical direction, and the signals of the photoelectric conversion units are synthesized and added between the focus detection pixels adjacent in the vertical direction.

図22は、図21に示す焦点検出画素の出力関係の説明するための図である。垂直方向に隣接する焦点検出画素321、341を例に挙げて、一対の光電変換部の出力関係について説明する。図10に示す測距瞳92を通過する光束を受光する焦点検出画素321の光電変換部322と、焦点検出画素341の光電変換部342の出力は合成加算され、焦点検出画素341の位置の画素信号として出力される。一方、図10に示す測距瞳93を通過する光束を受光する焦点検出画素321の光電変換部323と、焦点検出画素341の光電変換部343の出力は合成加算され、焦点検出画素321の位置の画素信号として出力される。   FIG. 22 is a diagram for explaining the output relationship of the focus detection pixels shown in FIG. The output relationship between the pair of photoelectric conversion units will be described using the focus detection pixels 321 and 341 adjacent in the vertical direction as an example. The outputs of the photoelectric conversion unit 322 of the focus detection pixel 321 and the photoelectric conversion unit 342 of the focus detection pixel 341 that receive the light beam passing through the distance measuring pupil 92 shown in FIG. Output as a signal. On the other hand, the outputs of the photoelectric conversion unit 323 of the focus detection pixel 321 and the photoelectric conversion unit 343 of the focus detection pixel 341 that receive the light beam passing through the distance measuring pupil 93 shown in FIG. Are output as pixel signals.

このような構成にすると、焦点検出画素列から出力される一対のデータ列のデータピッチが画素ピッチと同じになり、図3に示す撮像素子212の構成に比較して小さくなるので、焦点検出精度が向上する。   With such a configuration, the data pitch of the pair of data rows output from the focus detection pixel row becomes the same as the pixel pitch, and becomes smaller than the configuration of the image sensor 212 shown in FIG. Will improve.

図23は変形例の撮像素子の回路構成を示す図である。図17に示す撮像素子の回路構成では、撮像画素310および焦点検出画素311からの画像信号の出力は、垂直走査回路503が発する制御信号(ΦS1〜ΦS4)により行単位に同時出力されて信号保持部502に保持され、その後、水平転送回路505が発する制御信号(ΦV1〜ΦV4)により、順次外部に出力されるが、図23に示す回路構成では、画素単位で画素が選択され、選択された画素が画素信号を出力する。   FIG. 23 is a diagram illustrating a circuit configuration of an imaging element according to a modification. In the circuit configuration of the image sensor shown in FIG. 17, the output of the image signal from the image pickup pixel 310 and the focus detection pixel 311 is simultaneously output in units of rows by the control signal (ΦS1 to ΦS4) generated by the vertical scanning circuit 503 and holds the signal. 23, and then sequentially output to the outside by the control signals (ΦV1 to ΦV4) generated by the horizontal transfer circuit 505. In the circuit configuration illustrated in FIG. 23, pixels are selected and selected in units of pixels. The pixel outputs a pixel signal.

図23において、Yアドレス回路510は制御信号(ΦY1〜ΦY4)により行を選択する。また、Xアドレス回路511は制御信号(ΦX1〜ΦX4)により列を選択する。行と列を同時に選択された画素の画像信号は、垂直信号線512に出力される。垂直信号線512に接続された出力回路513で設定された増幅度で増幅されて外部に出力される。このような回路構成では、画素の位置を指定して画素単位で画素を選択できるので、必要な時に必要な画素の画素信号のみを読み出すことができ、画素信号の読み出しの高速化を図ることができる。例えば焦点検出のみを行う場合には、焦点検出画素の画素信号のみを読み出すようにすればよい。   In FIG. 23, a Y address circuit 510 selects a row by a control signal (ΦY1 to ΦY4). The X address circuit 511 selects a column by a control signal (ΦX1 to ΦX4). An image signal of a pixel whose row and column are selected at the same time is output to the vertical signal line 512. The signal is amplified by the amplification set by the output circuit 513 connected to the vertical signal line 512 and output to the outside. In such a circuit configuration, the pixel position can be designated and the pixel can be selected in units of pixels, so that only the pixel signal of the necessary pixel can be read out when necessary, and the pixel signal can be read out at high speed. it can. For example, when only focus detection is performed, only the pixel signal of the focus detection pixel may be read out.

図3に示す撮像素子では、撮像画素がベイヤー配列の色フィルタを備えた例を示したが、色フィルタの構成や配列はこれに限定されず、補色フィルタ(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)を採用してもよい。この場合、焦点検出画素はシアンとマゼンタ(出力誤差が比較的目立たない青成分を含む)が配置されるべき画素位置に配置される。   In the image pickup device shown in FIG. 3, the example in which the image pickup pixel includes the color filter of the Bayer arrangement is shown. However, the configuration and arrangement of the color filter are not limited to this, and the complementary color filters (green: G, yellow: Ye, magenta : Mg, cyan: Cy) may be employed. In this case, the focus detection pixel is arranged at a pixel position where cyan and magenta (including a blue component whose output error is relatively inconspicuous) should be arranged.

図3に示す撮像素子では、焦点検出画素に色フィルタを設けない例を示したが、撮像画素と同色の色フィルタの内、ひとつのフィルタ(たとえば緑フィルタ)を備えるようにした場合でも、本発明を適用することができる。   In the image pickup device shown in FIG. 3, an example in which a color filter is not provided in the focus detection pixel is shown. However, even when one filter (for example, a green filter) is provided among the color filters of the same color as the image pickup pixel, The invention can be applied.

本発明はマイクロレンズを用いた瞳分割型位相差検出方式の撮像素子に限定されず、1画素に一対の光電変換部を備えた画素を有する撮像素子にも適用することができる。例えば、偏光を利用した瞳分割型の撮像素子にも適用可能である。   The present invention is not limited to the pupil division type phase difference detection type imaging device using a microlens, and can also be applied to an imaging device having a pixel including a pair of photoelectric conversion units in one pixel. For example, the present invention can be applied to a pupil division type image pickup device using polarized light.

また、撮像装置は、カメラボディに交換レンズが装着されるデジタルスチルカメラやフィルムスチルカメラに限定されず、レンズ一体型のデジタルスチルカメラやフィルムスチルカメラやビデオカメラにも適用できる。あるいは、携帯電話などに内蔵される小型カメラモジュールや監視カメラなどにも適用できる。さらには、カメラ以外の焦点検出装置や測距装置やステレオ測距装置にも適用できる。   Further, the imaging apparatus is not limited to a digital still camera or a film still camera in which an interchangeable lens is mounted on the camera body, and can be applied to a lens-integrated digital still camera, a film still camera, or a video camera. Alternatively, the present invention can be applied to a small camera module or a surveillance camera built in a mobile phone or the like. Furthermore, the present invention can also be applied to a focus detection device other than a camera, a distance measuring device, and a stereo distance measuring device.

以上説明したように、一実施の形態とその変形例によれば、撮像素子の一部の領域に一対の光電変換部を有する焦点検出用画素を配列した撮像素子に対し、アドレス回路による画素出力の読み出しを行う場合でも、通常の読み出しシーケンスにより画素単位に信号を読み出すことができ、画像信号の読み出し回路が複雑になるのを避けることができる。   As described above, according to one embodiment and its modification, the pixel output by the address circuit is applied to the image sensor in which focus detection pixels having a pair of photoelectric conversion units are arranged in a partial area of the image sensor. Even when reading is performed, signals can be read out in units of pixels by a normal reading sequence, and it is possible to avoid the complexity of the image signal reading circuit.

一実施の形態の構成を示す図The figure which shows the structure of one embodiment 画面内の焦点検出エリアを示す図Figure showing the focus detection area in the screen 撮像素子の詳細な構成を示す図The figure which shows the detailed structure of an image sensor 撮像画素の構成を示す図The figure which shows the structure of an imaging pixel 焦点検出画素の構成を示す図The figure which shows the structure of a focus detection pixel 色フィルターの分光感度特性を示す図Diagram showing spectral sensitivity characteristics of color filter 焦点検出画素の分光感度特性を示す図The figure which shows the spectral sensitivity characteristic of a focus detection pixel 撮像画素の断面図Cross section of imaging pixel 焦点検出画素の断面図Cross section of focus detection pixel マイクロレンズを用いた瞳分割方式による焦点検出の説明図Illustration of focus detection by pupil division method using microlenses 撮像画素と射出瞳の関係を説明する図The figure explaining the relationship between an imaging pixel and an exit pupil 焦点検出画素の出力関係を示す図The figure which shows the output relation of a focus detection pixel 撮像画素の詳細な回路図Detailed circuit diagram of imaging pixels 撮像画素の素子構造を示す平面図Plan view showing element structure of imaging pixel 焦点検出画素の詳細な回路図Detailed circuit diagram of focus detection pixel 焦点検出画素の素子構造を示す平面図Top view showing element structure of focus detection pixel 撮像素子の回路構成を示す概念図Conceptual diagram showing the circuit configuration of the image sensor 図17に示す撮像素子の動作タイミングチャートOperation timing chart of the image sensor shown in FIG. 一実施の形態のデジタルスチルカメラの動作を示すフローチャートThe flowchart which shows the operation | movement of the digital still camera of one embodiment 焦点検出演算の説明図Illustration of focus detection calculation 変形例の撮像素子の構成を示す図The figure which shows the structure of the image pick-up element of a modification. 図21に示す焦点検出画素の出力関係を示す図The figure which shows the output relationship of the focus detection pixel shown in FIG. 図21に示す撮像素子の回路構成を示す図The figure which shows the circuit structure of the image pick-up element shown in FIG.

符号の説明Explanation of symbols

212、212A 撮像素子
214 ボディ駆動制御装置
310 撮像画素
311 焦点検出画素
11、12、13 光電変換部
AMPa、AMPb アンプ
212, 212A Imaging element 214 Body drive control device 310 Imaging pixel 311 Focus detection pixels 11, 12, 13 Photoelectric conversion unit AMPa, AMPb Amplifier

Claims (6)

光電変換部を有する撮像用画素と、一対の第1光電変換部および第2光電変換部を有する焦点検出用画素とが二次元的に配列された撮像素子であって、
複数の前記焦点検出用画素のうち互いに隣接する第1焦点検出用画素と第2焦点検出用画素のそれぞれの前記第1光電変換部の出力どうしを加算した信号を前記第1焦点検出用画素から出力するとともに、前記第2光電変換部の出力どうしを加算した信号を前記第2焦点検出用画素から出力する出力部を備えることを特徴とする撮像素子。
An imaging element in which an imaging pixel having a photoelectric conversion unit and a focus detection pixel having a pair of first photoelectric conversion unit and second photoelectric conversion unit are two-dimensionally arranged,
A signal obtained by adding the outputs of the first photoelectric conversion units of the first focus detection pixel and the second focus detection pixel adjacent to each other among the plurality of focus detection pixels is output from the first focus detection pixel. An image pickup device comprising: an output unit that outputs and outputs a signal obtained by adding the outputs of the second photoelectric conversion units from the second focus detection pixels.
請求項1に記載の撮像素子において、
前記撮像用画素と前記焦点検出用画素の前記配列における位置を指定するアドレス回路を備え、
前記出力部は、前記アドレス回路によって指定された位置に対応する前記撮像用画素または前記第1焦点検出用画素または前記第2焦点検出用画素から信号を出力することを特徴とする撮像素子。
The imaging device according to claim 1,
An address circuit for designating positions of the imaging pixels and the focus detection pixels in the array;
The output unit outputs a signal from the imaging pixel, the first focus detection pixel, or the second focus detection pixel corresponding to a position designated by the address circuit.
請求項1または請求項2に記載の撮像素子において、
前記第1焦点検出用画素と前記第2焦点検出用画素は、前記第1光電変換部と前記第2光電変換部の並び方向に隣接して複数組配置されることを特徴とする撮像素子。
The imaging device according to claim 1 or 2,
An imaging device, wherein a plurality of sets of the first focus detection pixels and the second focus detection pixels are arranged adjacent to each other in the arrangement direction of the first photoelectric conversion unit and the second photoelectric conversion unit.
請求項1または請求項2に記載の撮像素子において、
前記第1焦点検出用画素と前記第2焦点検出用画素は、前記第1光電変換部と前記第2光電変換部の並び方向と交差する方向に隣接して配置されるとともに、複数組の前記第1焦点検出用画素と前記第2焦点検出用画素が前記並び方向に沿って配置されることを特徴とする撮像素子。
The imaging device according to claim 1 or 2,
The first focus detection pixel and the second focus detection pixel are disposed adjacent to each other in a direction intersecting with an alignment direction of the first photoelectric conversion unit and the second photoelectric conversion unit, and a plurality of sets of the pixels An image sensor, wherein the first focus detection pixels and the second focus detection pixels are arranged along the alignment direction.
請求項1〜4のいずれか1項に記載の撮像素子と、
前記第1焦点検出用画素および前記第2焦点検出用画素から出力される信号に基づいて、前記撮像素子上に形成された像の焦点調節状態を検出する焦点検出手段とを備えることを特徴とする焦点検出装置。
The imaging device according to any one of claims 1 to 4,
Focus detection means for detecting a focus adjustment state of an image formed on the image sensor based on signals output from the first focus detection pixel and the second focus detection pixel. Focus detection device.
請求項1〜4のいずれか1項に記載の撮像素子と、
前記第1焦点検出用画素および前記第2焦点検出用画素から出力される信号に基づいて、前記撮像素子上に形成された画像の焦点調節状態を検出する焦点検出手段と、
前記撮像素子の前記撮像用画素、前記第1焦点検出用画素および前記第2焦点検出用画素から出力される信号に基づいて、前記画像の信号を生成する撮像手段とを備えることを特徴とする撮像装置。
The imaging device according to any one of claims 1 to 4,
Focus detection means for detecting a focus adjustment state of an image formed on the image sensor based on signals output from the first focus detection pixel and the second focus detection pixel;
An image pickup unit configured to generate a signal of the image based on signals output from the image pickup pixel, the first focus detection pixel, and the second focus detection pixel of the image pickup device; Imaging device.
JP2006283600A 2006-10-18 2006-10-18 Imaging device, focus detection device, and imaging device Expired - Fee Related JP4867566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283600A JP4867566B2 (en) 2006-10-18 2006-10-18 Imaging device, focus detection device, and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283600A JP4867566B2 (en) 2006-10-18 2006-10-18 Imaging device, focus detection device, and imaging device

Publications (2)

Publication Number Publication Date
JP2008103885A true JP2008103885A (en) 2008-05-01
JP4867566B2 JP4867566B2 (en) 2012-02-01

Family

ID=39437892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283600A Expired - Fee Related JP4867566B2 (en) 2006-10-18 2006-10-18 Imaging device, focus detection device, and imaging device

Country Status (1)

Country Link
JP (1) JP4867566B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003122A (en) * 2007-06-20 2009-01-08 Canon Inc Imaging device and its control method
JP2010016762A (en) * 2008-07-07 2010-01-21 Nikon Corp Camera
WO2010041721A1 (en) * 2008-10-10 2010-04-15 Canon Kabushiki Kaisha Image capturing apparatus and method and program for controlling same
WO2010055931A1 (en) * 2008-11-11 2010-05-20 Canon Kabushiki Kaisha Focus detection apparatus and control method therefor
WO2010134444A1 (en) * 2009-05-19 2010-11-25 Canon Kabushiki Kaisha Optical device and focus state detection method
WO2012073727A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Imaging device and focal position detection method
CN103391397A (en) * 2012-05-07 2013-11-13 佳能株式会社 Focus detection apparatus and image pickup apparatus that perform focus detection using phase difference method
JP2014072541A (en) * 2012-09-27 2014-04-21 Nikon Corp Image sensor and image pick-up device
US8913175B2 (en) 2008-11-27 2014-12-16 Canon Kabushiki Kaisha Solid-state image sensing element and image sensing apparatus for detecting a focus state of a photographing lens
US8964084B2 (en) 2012-01-31 2015-02-24 Sony Corporation Solid-state image sensor and camera system
JP2015049402A (en) * 2013-09-02 2015-03-16 キヤノン株式会社 Defocus-amount detection device, and control method of the same, and imaging device
US9071748B2 (en) 2013-03-22 2015-06-30 Harvest Imaging bvba Image sensor with focus-detection pixels, and method for reading focus-information
WO2015141081A1 (en) * 2014-03-18 2015-09-24 富士フイルム株式会社 Imaging device and focus control method
JP2015222948A (en) * 2015-05-27 2015-12-10 キヤノン株式会社 Imaging apparatus driving method
US9313469B2 (en) 2013-04-10 2016-04-12 Canon Kabushiki Kaisha Image capturing apparatus and method of controlling the same
US20160360095A1 (en) * 2012-09-28 2016-12-08 Nikon Corporation Focus detection device and image-capturing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258142A (en) * 2001-02-28 2002-09-11 Canon Inc Imaging apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002258142A (en) * 2001-02-28 2002-09-11 Canon Inc Imaging apparatus

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003122A (en) * 2007-06-20 2009-01-08 Canon Inc Imaging device and its control method
JP2010016762A (en) * 2008-07-07 2010-01-21 Nikon Corp Camera
WO2010041721A1 (en) * 2008-10-10 2010-04-15 Canon Kabushiki Kaisha Image capturing apparatus and method and program for controlling same
JP2010091991A (en) * 2008-10-10 2010-04-22 Canon Inc Imaging apparatus, control method and program therefor
US8634015B2 (en) 2008-10-10 2014-01-21 Canon Kabushiki Kaisha Image capturing apparatus and method and program for controlling same
US8576329B2 (en) 2008-11-11 2013-11-05 Canon Kabushiki Kaisha Focus detection apparatus and control method therefor
JP2010140013A (en) * 2008-11-11 2010-06-24 Canon Inc Focus detection device and control method therefor
WO2010055931A1 (en) * 2008-11-11 2010-05-20 Canon Kabushiki Kaisha Focus detection apparatus and control method therefor
US8913175B2 (en) 2008-11-27 2014-12-16 Canon Kabushiki Kaisha Solid-state image sensing element and image sensing apparatus for detecting a focus state of a photographing lens
WO2010134444A1 (en) * 2009-05-19 2010-11-25 Canon Kabushiki Kaisha Optical device and focus state detection method
JP2010271419A (en) * 2009-05-19 2010-12-02 Canon Inc Optical device and focal point detecting method
US8842212B2 (en) 2009-05-19 2014-09-23 Canon Kabushiki Kaisha Optical device and focus state detection method
WO2012073727A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Imaging device and focal position detection method
US9445024B2 (en) 2012-01-31 2016-09-13 Sony Corporation Solid-state image sensor and camera system
US8964084B2 (en) 2012-01-31 2015-02-24 Sony Corporation Solid-state image sensor and camera system
US9843751B2 (en) 2012-01-31 2017-12-12 Sony Corporation Solid-state image sensor and camera system
CN103391397B (en) * 2012-05-07 2016-12-28 佳能株式会社 Phase difference method is used to carry out focus detection and the picture pick-up device of focus detection
CN103391397A (en) * 2012-05-07 2013-11-13 佳能株式会社 Focus detection apparatus and image pickup apparatus that perform focus detection using phase difference method
US11405576B2 (en) 2012-09-27 2022-08-02 Nikon Corporation Image sensor and image-capturing device
CN104718745A (en) * 2012-09-27 2015-06-17 株式会社尼康 Image pick-up element and image pick-up device
JP2014072541A (en) * 2012-09-27 2014-04-21 Nikon Corp Image sensor and image pick-up device
US20150256778A1 (en) 2012-09-27 2015-09-10 Nikon Corporation Image sensor and image-capturing device
US11032506B2 (en) 2012-09-27 2021-06-08 Nikon Corporation Image sensor and image-capturing device
US10270999B2 (en) 2012-09-27 2019-04-23 Nikon Corporation Image sensor and image-capturing device
US9756237B2 (en) * 2012-09-28 2017-09-05 Nikon Corporation Focus detection device and image-capturing apparatus
US20160360095A1 (en) * 2012-09-28 2016-12-08 Nikon Corporation Focus detection device and image-capturing apparatus
US9071748B2 (en) 2013-03-22 2015-06-30 Harvest Imaging bvba Image sensor with focus-detection pixels, and method for reading focus-information
US9313469B2 (en) 2013-04-10 2016-04-12 Canon Kabushiki Kaisha Image capturing apparatus and method of controlling the same
JP2015049402A (en) * 2013-09-02 2015-03-16 キヤノン株式会社 Defocus-amount detection device, and control method of the same, and imaging device
JP5982600B2 (en) * 2014-03-18 2016-08-31 富士フイルム株式会社 Imaging apparatus and focus control method
CN106062607B (en) * 2014-03-18 2018-09-25 富士胶片株式会社 Photographic device and focusing control method
WO2015141081A1 (en) * 2014-03-18 2015-09-24 富士フイルム株式会社 Imaging device and focus control method
JP2015222948A (en) * 2015-05-27 2015-12-10 キヤノン株式会社 Imaging apparatus driving method

Also Published As

Publication number Publication date
JP4867566B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4867566B2 (en) Imaging device, focus detection device, and imaging device
JP4867552B2 (en) Imaging device
JP4946313B2 (en) Imaging device
JP5045350B2 (en) Imaging device and imaging apparatus
JP4720508B2 (en) Imaging device and imaging apparatus
JP5092685B2 (en) Imaging device and imaging apparatus
JP5098405B2 (en) Imaging device, focus detection device, and imaging device
JP5256711B2 (en) Imaging device and imaging apparatus
JP5157400B2 (en) Imaging device
US8525917B2 (en) Image sensing apparatus with plural focus detection pixel groups
JP5076416B2 (en) Imaging device and imaging apparatus
JP2019193280A (en) Imaging element and imaging device
JP5211590B2 (en) Image sensor and focus detection apparatus
JP4983271B2 (en) Imaging device
JP5167783B2 (en) Focus detection apparatus and imaging apparatus
JP4858179B2 (en) Focus detection apparatus and imaging apparatus
JP5609098B2 (en) Imaging device
JP5962830B2 (en) Focus detection device
JP5804104B2 (en) Focus adjustment device
JP2010039106A (en) Imaging element, focus detection device and imaging apparatus
JP6365568B2 (en) Imaging device and imaging apparatus
JP5403117B2 (en) Focus detection apparatus and imaging apparatus
JP2019091093A (en) Focus adjustment device
JP2018191304A (en) Imaging element and imaging device
JP2016189019A (en) Focus adjustment apparatus and electronic camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees