JP2008103670A - Organic thin film photodetector, manufacturing method thereof, organic thin film light receiving/emitting element, manufacturing method thereof, and pulse sensor - Google Patents

Organic thin film photodetector, manufacturing method thereof, organic thin film light receiving/emitting element, manufacturing method thereof, and pulse sensor Download PDF

Info

Publication number
JP2008103670A
JP2008103670A JP2007158649A JP2007158649A JP2008103670A JP 2008103670 A JP2008103670 A JP 2008103670A JP 2007158649 A JP2007158649 A JP 2007158649A JP 2007158649 A JP2007158649 A JP 2007158649A JP 2008103670 A JP2008103670 A JP 2008103670A
Authority
JP
Japan
Prior art keywords
thin film
organic thin
receiving element
film light
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007158649A
Other languages
Japanese (ja)
Inventor
Kinya Kumazawa
金也 熊沢
Jun Okada
順 岡田
Hirosumi Ogawa
裕純 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007158649A priority Critical patent/JP2008103670A/en
Publication of JP2008103670A publication Critical patent/JP2008103670A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic thin film photodetector, and its manufacturing method capable of detecting extremely weak light with high sensitivity at a low voltage. <P>SOLUTION: An organic thin film photodetector 1 comprises a substrate 2, an anode 3 which is formed on the surface of the substrate 2 and allows the transmission of an ultraviolet ray, visible light, or a nearinfrared ray, an optically conductive organic semiconductor layer 4 formed on the surface of the anode 3, and a cathode 5 formed on the surface of the optically conductive organic semiconductor layer 4. The optically conductive organic semiconductor layer 4 comprises an optically conductive organic semiconductor and a ferro-dielectric polymer resin material which generates an electric field in the optically conductive organic semiconductor layer 4 even if no voltage is applied from the outside. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超微弱光を検出する有機薄膜受光素子及びその製造方法、この有機薄膜受光素子を利用した有機薄膜受発光素子及びその製造方法と脈拍センサに関する。   The present invention relates to an organic thin film light receiving element that detects ultra-weak light and a method for manufacturing the same, and an organic thin film light receiving and emitting element that uses the organic thin film light receiving element, a method for manufacturing the same, and a pulse sensor.

近年、人体の動脈や静脈に特定波長の光を照射し、その光の透過光を生体情報として検出することによって、動脈流や静脈流内のヘモグロビン変化量を検出する試みや、人体から発せられるバイオフォトン(生体発光)を生体情報として検出する研究がなされている。これら生体情報としての光は、その発光強度が10−7〜10−15[W/cm]程度と極めて微弱な光であるために、光電子倍増管(フォトマルチプライヤー),アンプ,フォトンカウンター等を組合せた微弱光検出システムにより検出されている。 In recent years, attempts have been made to detect the amount of hemoglobin change in the arterial flow or venous flow by irradiating the human artery or vein with light of a specific wavelength and detecting the transmitted light as biological information. Research has been made on detecting biophotons (bioluminescence) as biological information. The light as the biological information is very weak light having a light emission intensity of about 10 −7 to 10 −15 [W / cm 2 ], and therefore, a photomultiplier tube, an amplifier, a photon counter, etc. Is detected by a weak light detection system.

ところが、光電子倍増管を利用して微弱光を検出することには、実用上次のような問題点がある。第1に、光電子倍増管を利用して微弱光を検出する場合、1,500〜2,000[V]程度の高電圧を印加する必要があるために、検出システムを被験者に携帯させたり(ウェアラブル化)、検出システムをステアリング等の車室内に設けたりすることが安全上及び付帯設備の点から難しい。第2に、光電子倍増管は真空管を利用するために振動や衝撃に弱く、破損しやすい。第3に、光電子倍増管は薄膜固体素子と比較して大きいことから、車室内等の狭い空間や3次元曲面形状を有する部品(例えば、先ほどのステアリング)へのレイアウトが困難である。   However, the detection of weak light using a photomultiplier tube has the following practical problems. First, when weak light is detected using a photomultiplier tube, it is necessary to apply a high voltage of about 1,500 to 2,000 [V]. It is difficult to provide a wearable) and detection system in the vehicle interior such as a steering wheel for safety and incidental facilities. Secondly, since the photomultiplier tube uses a vacuum tube, it is vulnerable to vibration and impact, and is easily damaged. Thirdly, since the photomultiplier tube is larger than the thin film solid-state device, it is difficult to lay out in a narrow space such as a vehicle interior or a part having a three-dimensional curved surface shape (for example, the above steering).

このような背景から、近年、光導電性有機半導体層と電極の界面でのキャリヤトラップを積極的に利用した新しい原理に基づく「光電流倍増現象」が見出され、この光電流倍増現象を利用した有機薄膜受光素子の報告がなされている(非特許文献1,2、特許文献1,2参照)。そしてこの有機薄膜受光素子の性能は、印加電圧数十[V]で10−5[W/cm]程度の光強度の微弱光を検出できるレベルに至っている。 Against this background, in recent years, a “photocurrent doubling phenomenon” based on a new principle that actively utilizes carrier traps at the interface between the photoconductive organic semiconductor layer and the electrode has been found, and this photocurrent doubling phenomenon is utilized. There have been reports of organic thin film light-receiving elements (see Non-Patent Documents 1 and 2, Patent Documents 1 and 2). The performance of this organic thin film light receiving element has reached a level at which weak light having a light intensity of about 10 −5 [W / cm 2 ] can be detected with an applied voltage of several tens [V].

上記有機薄膜受光素子における微弱光検出は、概ね、次のようなメカニズムで発現すると考えられている。すなわち、直流電源により陽極と陰極の間に電圧印加された状態で陽極側から微弱光が入射すると、光キャリヤ(電子,正孔)が生成され、光キャリヤのうちの正孔は、電界下で陰極側へ輸送されるが、その一部は光導電性有機半導体層と陰極の界面近傍に存在する界面準位に捕捉されて蓄積される。その結果、光導電性有機半導体層と陰極の界面に電界が集中し、陰極から電子が大量にトンネル注入されて光電流倍増現象が発現する。   It is considered that the weak light detection in the organic thin film light receiving element is generally expressed by the following mechanism. That is, when weak light is incident from the anode side with a voltage applied between the anode and the cathode by a DC power source, photocarriers (electrons, holes) are generated, and the holes of the photocarriers are generated under an electric field. Although it is transported to the cathode side, a part of it is captured and accumulated at the interface state existing in the vicinity of the interface between the photoconductive organic semiconductor layer and the cathode. As a result, an electric field concentrates on the interface between the photoconductive organic semiconductor layer and the cathode, and a large amount of electrons are tunneled from the cathode, so that a photocurrent doubling phenomenon appears.

しかしながら、上記光検出子は、光導電性有機半導体層が有機顔料の真空蒸着膜により形成されているために、(1)均一な膜質を確保することができず、ピンホールが発生しやすい、(2)大面積化が困難、(3)真空プロセスが必要となるために低コスト化が困難等の問題を有する。そこで、このような問題を解決するために、最近、光導電性有機半導体を樹脂に分散させた樹脂分散型光検出子が提案されている(特許文献3参照)。
Appl. Phys. Lett., 64, 2546 (1994) 未来材料,第2巻9号第34頁 特開2002−190616号公報 特開2003−282934号公報 特開2002−076430号公報
However, in the above photo detector, since the photoconductive organic semiconductor layer is formed of a vacuum vapor deposition film of an organic pigment, (1) uniform film quality cannot be ensured and pinholes are likely to occur. (2) There is a problem that it is difficult to increase the area, and (3) it is difficult to reduce the cost because a vacuum process is required. In order to solve such a problem, recently, a resin-dispersed photodetector in which a photoconductive organic semiconductor is dispersed in a resin has been proposed (see Patent Document 3).
Appl. Phys. Lett., 64, 2546 (1994) Future Materials, Vol.2, No.9, p.34 JP 2002-190616 A JP 2003-282934 A JP 2002-076430 A

しかしながら、上記従来の有機薄膜受光素子は、数十[V]の印加電圧で10−5[W/cm]程度の強度の微弱光を検出することができるものの、強度が10−7〜10−15[W/cm]程度の超微弱光を低電圧で検出することはできない。 However, although the conventional organic thin film light receiving element can detect weak light having an intensity of about 10 −5 [W / cm 2 ] with an applied voltage of several tens [V], the intensity is 10 −7 to 10 −10. Ultra-weak light of about −15 [W / cm 2 ] cannot be detected at a low voltage.

本発明は、上記課題を解決するためになされたものであり、その目的は、低電圧、且つ、高感度に超微弱光を検出可能な有機薄膜受光素子及びその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an organic thin film light-receiving element capable of detecting ultra-weak light with low voltage and high sensitivity, and a method for manufacturing the same. .

また本発明の他の目的は、低電圧、且つ、高感度に超微弱光を検出可能な有機薄膜受発光素子及びその製造方法を提供することにある。   Another object of the present invention is to provide an organic thin film light emitting / receiving element capable of detecting ultra-weak light with high sensitivity and low voltage, and a method for manufacturing the same.

さらに本発明の他の目的は、低電圧、且つ、高感度に脈拍を検出可能な脈拍センサを提供することにある。   Still another object of the present invention is to provide a pulse sensor capable of detecting a pulse with low voltage and high sensitivity.

本発明では、有機薄膜受光素子を構成する光導電性有機半導体層が、陽極と陰極間に電圧が印加されていない状態において電場を発生する内部電場発生体を含有する。   In this invention, the photoconductive organic-semiconductor layer which comprises an organic thin film light receiving element contains the internal electric field generator which generate | occur | produces an electric field in the state in which the voltage is not applied between an anode and a cathode.

本発明によれば、内部電場によって光誘起電流を倍増させることができるので、強度が10−7〜10−15[W/cm]程度の超微弱光を低電圧、且つ、高感度に検出することができる。 According to the present invention, since the photo-induced current can be doubled by the internal electric field, ultra-weak light having an intensity of about 10 −7 to 10 −15 [W / cm 2 ] can be detected with low voltage and high sensitivity. can do.

本願発明の発明者らは、精力的な研究を重ねてきた結果、外部から電圧が印加されていない状態においても電場を発生する内部電場発生体(自発分極を有する材料)を光導電性有機半導体層内部に含有させることにより、光強度が10−7〜10−15[W/cm]程度の超微弱光を低電圧で検出できることを見出した。本明細書中において「内部電場発生体」とは、図1(a)に示すように、外部から電圧を印加していない状態、即ち、外部電場Eeが0であるにもかかわらず、光導電性有機半導体層4a内部において一定方向の内部電場Eiを形成する物質4bを意味し、分子構造中のある分子同士の間に電気的な力である双極子(ダイポール)を発生させ、その向きを積極的に揃えた状態を意味する。内部電場発生体が光導電性有機半導体層に含有されていると、内部電場Eiが形成されている状態でさらに外部電場Eeが印加された場合、光導電性有機半導体層の全電場Eは、図1(b)に示すように内部電場Eiと外部電場Eeの和で与えられることになる。なお、上記図1(a),(b)には、個々の双極子は表記せず、ドメイン状の領域(分子集合体)で双極子が形成されるとして矢印(→)で分子集合体を表記した。 As a result of intensive research, the inventors of the present invention have developed an internal electric field generator (material having spontaneous polarization) that generates an electric field even when no voltage is applied from the outside as a photoconductive organic semiconductor. It has been found that ultra-weak light having a light intensity of about 10 −7 to 10 −15 [W / cm 2 ] can be detected at a low voltage by being contained inside the layer. In the present specification, the “internal electric field generator” means a photoconductive state as shown in FIG. 1A in a state where no voltage is applied from the outside, that is, the external electric field Ee is zero. Means a substance 4b that forms an internal electric field Ei in a certain direction inside the conductive organic semiconductor layer 4a, and generates a dipole that is an electric force between molecules in the molecular structure. It means a state of positive alignment. When the internal electric field generator is contained in the photoconductive organic semiconductor layer, when the external electric field Ee is further applied in a state where the internal electric field Ei is formed, the total electric field E of the photoconductive organic semiconductor layer is: As shown in FIG. 1B, it is given by the sum of the internal electric field Ei and the external electric field Ee. In FIGS. 1A and 1B, individual dipoles are not shown, and a dipole is formed in a domain-like region (molecular assembly), and the molecular assembly is indicated by an arrow (→). Indicated.

内部電場発生体としては強誘電性高分子樹脂材料を用いることが望ましい。具体的には、強誘電性高分子樹脂材料としては、ポリフッ化ビニリデン(PVDF),ポリフッ化ビニリデン共重合体,又はこれらの複合体を例示することができる。複合体の具体的例としては、ポリフッ化ビニリデン−3フッ化エチレン,ポリフッ化ビニリデン−4フッ化エチレン等を例示することができる。ポリフッ化ビニリデン−3フッ化エチレンにより内部磁場発生体を形成する場合、ポリフッ化ビニリデンを60〜90[モル%]、3フッ化エチレンを40〜10[モル%]の割合で共重合すると、例えば、可視光線領域(波長380nm〜波長780nm)での光透過率が大きく、且つ、大きな電気双極子を有する樹脂体を形成することができる。これらの物質が内部電場発生体として機能するメカニズムは現段階では明らかではないが、強誘電性高分子ポリフッ化ビニリデンでは、水素原子Hが正、フッ素原子Fが負に帯電するために、フッ素原子Fから水素原子Hに向かう双極子が形成される。このため、この双極子が一定方向に揃うことにより、内部電場発生体として機能すると考えられる。   It is desirable to use a ferroelectric polymer resin material as the internal electric field generator. Specifically, examples of the ferroelectric polymer resin material include polyvinylidene fluoride (PVDF), a polyvinylidene fluoride copolymer, or a composite thereof. Specific examples of the composite include polyvinylidene fluoride-trifluoride ethylene, polyvinylidene fluoride-tetrafluoroethylene, and the like. When an internal magnetic field generator is formed from polyvinylidene fluoride-trifluoride ethylene, copolymerization of polyvinylidene fluoride at a ratio of 60 to 90 [mol%] and ethylene trifluoride at a ratio of 40 to 10 [mol%] A resin body having a large light transmittance in the visible light region (wavelength 380 nm to wavelength 780 nm) and a large electric dipole can be formed. The mechanism by which these substances function as an internal electric field generator is not clear at this stage, but in the ferroelectric polymer polyvinylidene fluoride, the hydrogen atom H is positively charged and the fluorine atom F is negatively charged. A dipole from F to the hydrogen atom H is formed. For this reason, it is considered that the dipoles are aligned in a certain direction and function as an internal electric field generator.

本明細書中において「光導電性有機半導体」とは、光照射により導電率が向上する有機半導体を意味する。具体的には、光導電性有機半導体としては、トリフェニルアミン誘導体,ベンジジン誘導体,フタロシアニン誘導体,メロシアニン誘導体、ポリチオフェン誘導体、ポリアニリン誘導体,ピラゾリン誘導体,スチリスアミン誘導体等のp型有機半導体や、オキサジアゾール誘導体,トリアゾール誘導体,シロール誘導体,ペリレン誘導体,ナフタレン誘導体,及びフラーレン誘導体からなる誘導体群の中から選択された一つの誘導体又は選択された一つの誘導体を含む混合物等のn型有機半導体を例示することができる。また、「光導電性(photoconduction)」とは、半導体や絶縁体に充分に短波長の光を照射すると、物質内部の伝導電子(キャリヤ)が増加する現象、またそれによって起こる電気伝導率が増加するなどの現象を言う。さて、より大きな光電流倍増現象を発現させるためには、p型半導体、n型半導体のいずれでも基本的に適用可能であるが、光導電性有機半導体のバンド構造からn型有機半導体を用いることがより好ましい。n型有機半導体を用いることにより、陰極との間で形成される電位障壁の高さと厚さを電圧印加(外部電場)で制御し、陰極からの電子トンネル注入を促進させることができる。   In the present specification, the “photoconductive organic semiconductor” means an organic semiconductor whose conductivity is improved by light irradiation. Specifically, photoconductive organic semiconductors include p-type organic semiconductors such as triphenylamine derivatives, benzidine derivatives, phthalocyanine derivatives, merocyanine derivatives, polythiophene derivatives, polyaniline derivatives, pyrazoline derivatives, styrisamine derivatives, and oxadiazole derivatives. , Triazole derivatives, silole derivatives, perylene derivatives, naphthalene derivatives, and n-type organic semiconductors such as one derivative selected from the group consisting of fullerene derivatives or a mixture containing one selected derivative it can. In addition, “photoconduction” is a phenomenon in which conduction electrons (carriers) inside a substance increase when semiconductors and insulators are irradiated with sufficiently short-wavelength light, and the electrical conductivity caused thereby increases. Say a phenomenon. In order to develop a larger photocurrent doubling phenomenon, either a p-type semiconductor or an n-type semiconductor can be basically applied. However, an n-type organic semiconductor is used from the band structure of a photoconductive organic semiconductor. Is more preferable. By using an n-type organic semiconductor, the height and thickness of the potential barrier formed between the cathode and the cathode can be controlled by voltage application (external electric field), and electron tunnel injection from the cathode can be promoted.

次に、光導電性有機半導体層内部に内部電場Eiが発現すると微弱光を低電圧で検出可能となる理由を図2を用いて説明する。図2は、内部電場Eiが存在する場合(本願発明)と存在しない場合(従来素子)それぞれの場合について、陽極と陰極間に電圧が印加された際に発生する外部電場Eeと微弱光(例えば波長490nmの微弱光)の入射により発現する光誘起電流Jの関係を測定した結果を示す。なお、光誘起電流Jは内部電場Eiが存在しない場合を10として規格化した。また光導電性有機半導体層は強誘電性高分子ポリフッ化ビニリデンにペリレン微粒子30[wet%]を含有させることにより形成した。 Next, the reason why the weak light can be detected at a low voltage when the internal electric field Ei appears in the photoconductive organic semiconductor layer will be described with reference to FIG. FIG. 2 shows an external electric field Ee generated when a voltage is applied between the anode and the cathode and weak light (for example, in the case where the internal electric field Ei exists (the present invention) and the case where the internal electric field Ei does not exist (conventional element) (for example, The result of having measured the relationship of the photoinduced current J which appears by incidence | injection of the weak light of wavelength 490nm) is shown. The light induced current J is normalized when the internal electric field Ei is not present as 10 0. The photoconductive organic semiconductor layer was formed by adding perylene fine particles 30 [wet%] to the ferroelectric polymer polyvinylidene fluoride.

図2から明らかなように、内部電場Eiが存在しない場合、光導電性有機半導体層の全電場Eは外部電場Eeと等しく、外部電場Eeの増加と共に光誘起電流Jは緩やかに増加するが、外部電場Ee=10[V/cm]付近から光誘起電流Jが急激に増大する。これは、外部電場Ee=10[V/cm]付近において電子のトンネル効果が顕著に現れるためと考えられる。一方、内部電場Eiが存在する場合には、光導電性有機半導体層の全電場Eは内部電場Eiと外部電場Eeの総和になるために、外部電場Eeだけの場合に比べ1桁程小さい外部電場Ee=10[V/cm]付近から光誘起電流Jが急激に増大する。 As is clear from FIG. 2, in the absence of the internal electric field Ei, the total electric field E of the photoconductive organic semiconductor layer is equal to the external electric field Ee, and the photo-induced current J increases gently with the increase of the external electric field Ee. The photoinduced current J increases rapidly from the vicinity of the external electric field Ee = 10 6 [V / cm]. This is presumably because the electron tunnel effect appears prominently in the vicinity of the external electric field Ee = 10 6 [V / cm]. On the other hand, when the internal electric field Ei exists, the total electric field E of the photoconductive organic semiconductor layer is the sum of the internal electric field Ei and the external electric field Ee. The photoinduced current J increases rapidly from around the electric field Ee = 10 5 [V / cm].

従って、微弱光の入射によって発生する光誘起電流Jは、同じ外部電場Eeで比較した場合、内部電場Eiが存在することにより2桁から数桁大きい値を示す。すなわち、内部電場Eiが存在する場合、入射光が微弱光であっても、従来の有機薄膜受光素子に比べ、2桁から数桁程、光誘起電流Jを倍増させることができる。なお、図2から読み取れるように、内部電場Eiが存在する場合には、従来の有機薄膜受光素子が外部電場Eeで得ていた光誘起電流Jを1桁小さな外部電場Eeで達成することになる。このように、内部電場Eiと外部から印加される外部電場Eeの和により、微弱光を低電圧で倍増することができる。   Therefore, when compared with the same external electric field Ee, the photo-induced current J generated by the incidence of weak light shows a value that is two to several orders of magnitude larger due to the presence of the internal electric field Ei. That is, when the internal electric field Ei is present, even if the incident light is weak light, the photo-induced current J can be doubled by two to several orders of magnitude compared to the conventional organic thin film light receiving element. As can be seen from FIG. 2, when the internal electric field Ei is present, the photo-induced current J obtained by the conventional organic thin film light receiving element with the external electric field Ee is achieved by the external electric field Ee that is one digit smaller. . As described above, the weak light can be doubled at a low voltage by the sum of the internal electric field Ei and the external electric field Ee applied from the outside.

上記内部電場Eiの大きさは、内部電場発生体を構成する分子の電荷Qの偏りに大きく依存するので、分極(ポーリング)処理を施し、双極子を強制的に一定方向に揃える等、熱的,電磁界的,及び光学的に電荷Qの偏りを積極的に形成することにより、変化させることができる。より具体的には、光導電性有機半導体層のガラス転移点以上の温度に保った状態下で陽極と陰極間に高電圧を一定時間印加した後、光導電性有機半導体層を急冷(例えば、液体窒素温度)し、電圧の印加を止めることにより、光導電性有機半導体層の厚み方向(電極に対し垂直方向)に、双極子の向きを配列固定させることができる。   Since the magnitude of the internal electric field Ei greatly depends on the bias of the charge Q of the molecules constituting the internal electric field generator, a thermal treatment such as applying polarization (polling) and forcibly aligning the dipoles in a certain direction. It can be changed by positively forming the bias of the charge Q electromagnetically and optically. More specifically, after a high voltage is applied between the anode and the cathode for a certain period of time while maintaining the temperature above the glass transition point of the photoconductive organic semiconductor layer, the photoconductive organic semiconductor layer is rapidly cooled (for example, Liquid nitrogen temperature) and the application of voltage is stopped, whereby the orientation of the dipoles can be fixed in the direction of the thickness of the photoconductive organic semiconductor layer (perpendicular to the electrodes).

この一定方向に配列固定された双極子は、半ば、半永久的に自発分極を保持した状態を保つことができる。また、電極を設けなくても、光導電性有機半導体層内に、電子のトラップされた状態を積極的に作り上げ、空間電荷を形成させることにより双極子を配列させることもできる。具体的には、常温下でコロナ放電処理、又は電子線やX線を照射するといった処理によっても同様な効果を発現させることができる。   This dipole array-fixed in a certain direction can maintain a state in which spontaneous polarization is maintained semi-permanently. Even without providing an electrode, it is possible to arrange the dipoles in the photoconductive organic semiconductor layer by actively creating a trapped state of electrons and forming space charges. Specifically, the same effect can be expressed by corona discharge treatment at room temperature or treatment such as irradiation with an electron beam or X-ray.

内部電場発生体を強誘電性高分子樹脂材料と強誘電性無機材料とから構成された系とすることにより、強誘電性高分子樹脂材料単体の場合に比べ、内部電場Eiをより大きくすることができる。強誘電性高分子樹脂材料と強誘電性無機材料とから構成される系としては、強誘電性高分子樹脂材料中に適量の強誘電性無機材料を分散させたものや、強誘電性高分子樹脂材料の薄膜層と強誘電性無機材料の薄膜層を多層膜化したもの等を例示することができる。具体的には、強誘電性高分子樹脂材料としてポリフッ化ビニリデン(PVDF)、強誘電性無機物質材料としてチタン酸バリウム(BaTiO)の微粒子を例示することができる。 By making the internal electric field generator a system composed of a ferroelectric polymer resin material and a ferroelectric inorganic material, the internal electric field Ei can be made larger than in the case of the ferroelectric polymer resin material alone. Can do. As a system composed of a ferroelectric polymer resin material and a ferroelectric inorganic material, an appropriate amount of a ferroelectric inorganic material dispersed in a ferroelectric polymer resin material, or a ferroelectric polymer For example, a thin film layer of a resin material and a thin film layer of a ferroelectric inorganic material formed into a multilayer film can be exemplified. Specifically, fine particles of polyvinylidene fluoride (PVDF) as the ferroelectric polymer resin material and barium titanate (BaTiO 3 ) as the ferroelectric inorganic material material can be exemplified.

この場合、透明電極(ITO)付ガラス基板の透明電極面にポリフッ化ビニリデン(PVDF)と、数十nm〜数μmサイズのチタン酸バリウム(BaTiO)微粒子を適量(例えば、数wet%)含有させた溶液を用意し、それを塗布してフィルムを作成する。その後、同フィルムのもう一方の面に、陰極として金(Au)蒸着膜を数十nm厚となるように形成したサンドイッチ型の系を作製する。その後、このサンドイッチ型の系に対し分極処理を施して両電極面に垂直に配列するような双極子を形成することができる。このような系とすることにより、その内部電場Eiとしては、概ね10〜10V/cm程度発現可能となる。なお、強誘電性高分子樹脂と強誘電性無機物質との組合せの系においては、使用する強誘電性無機物質の種類や形状、サイズ、さらに両者の含有比率等が内部電場Eiの大きさに影響を及ぼすので十分な留意が必要である。 In this case, the transparent electrode surface of the glass substrate with a transparent electrode (ITO) contains polyvinylidene fluoride (PVDF) and barium titanate (BaTiO 3 ) fine particles of several tens of nm to several μm in appropriate amounts (for example, several wet%). A prepared solution is prepared and applied to form a film. Thereafter, a sandwich type system in which a gold (Au) vapor deposition film having a thickness of several tens of nanometers as a cathode is formed on the other surface of the film. Thereafter, the sandwich type system can be polarized to form a dipole that is arranged perpendicular to both electrode surfaces. By adopting such a system, the internal electric field Ei can be expressed approximately by 10 2 to 10 7 V / cm. In the combination system of the ferroelectric polymer resin and the ferroelectric inorganic substance, the type, shape, size, and content ratio of the ferroelectric inorganic substance used are the magnitude of the internal electric field Ei. Sufficient attention is required as it will affect.

強誘電性無機材料としては、結晶構造中に正イオンと負イオンを有し、電気双極子が形成されるものであれば特に限定されないが、PZT,PbTiO、BaTiO等、ABOと表記されるペロブスカイト型の結晶構造を有する材料を用いることが好ましい。また、強誘電性高分子樹脂材料と強誘電性無機材料との組合せの系においては、使用する強誘電性無機材料の種類や形状(微粒子、薄膜等),大きさ,さらには両者の含有比率等を適宜設定することにより、狙いとする内部電場形成能を得ることができる。 The ferroelectric inorganic material is not particularly limited as long as it has a positive ion and a negative ion in the crystal structure and an electric dipole is formed, but is expressed as ABO 3 such as PZT, PbTiO 3 , BaTiO 3, etc. It is preferable to use a material having a perovskite crystal structure. In addition, in the combination system of ferroelectric polymer resin material and ferroelectric inorganic material, the type, shape (fine particles, thin film, etc.) and size of the ferroelectric inorganic material used, and the content ratio of both By appropriately setting, etc., a target internal electric field forming ability can be obtained.

〔有機薄膜受光素子の構成〕
次に、上記知見に基づき想到された、本発明の実施形態となる有機薄膜受光素子の構成について説明する。なお、本発明の実施形態となる有機薄膜受光素子は、光電装置,エレクトロクロミック素子等の調光装置,太陽電池等の光起電力装置等に適用することができる。特に、本発明の実施形態となる有機薄膜受光素子は、車両の運転者の血液中のヘモグロビンの吸光度変化や人体から放出されるバイオフォトン(生物発光)と言った近赤外線領域の微弱光を検出する生体情報検出装置に適用することができる。また、本発明の実施形態となる有機薄膜受光素子は、車両のステアリング内部に埋め込まれ、運転者の素手から微弱光を検出する生体情報検出装置に適用することができる。
[Configuration of organic thin-film light receiving element]
Next, the structure of the organic thin-film light receiving element, which is an embodiment of the present invention that has been conceived based on the above knowledge, will be described. In addition, the organic thin film light receiving element which becomes embodiment of this invention is applicable to photovoltaic devices, such as light control apparatuses, such as a photoelectric device and an electrochromic element, a solar cell. In particular, the organic thin-film light receiving element according to an embodiment of the present invention detects changes in the absorbance of hemoglobin in the blood of a vehicle driver and weak light in the near infrared region such as biophotons (bioluminescence) emitted from the human body. The present invention can be applied to a living body information detecting apparatus. Moreover, the organic thin film light receiving element which becomes embodiment of this invention is embedded in the steering | stirring of a vehicle, and can be applied to the biometric information detection apparatus which detects weak light from a driver | operator's bare hand.

本発明の実施形態となる有機薄膜受光素子1は、図3に示すように、基板2と、基板2表面上に形成され、紫外線,可視光線,及び近赤外線のうちのいずれかの光に対して透過性を有する陽極3と、陽極3の表面上に形成された光導電性有機半導体層4と、光導電性有機半導体層4の表面上に形成された陰極5とを備え、直流電源6により陽極3と陰極5間に電圧を印加した状態において陽極3側から光が入射されるのに応じて光導電性有機半導体層4において光誘起電流が発生する構成となっている。   As shown in FIG. 3, an organic thin-film light receiving element 1 according to an embodiment of the present invention is formed on a surface of a substrate 2 and the substrate 2, and emits light of any one of ultraviolet rays, visible rays, and near infrared rays. A transparent anode 3, a photoconductive organic semiconductor layer 4 formed on the surface of the anode 3, and a cathode 5 formed on the surface of the photoconductive organic semiconductor layer 4. Thus, a photo-induced current is generated in the photoconductive organic semiconductor layer 4 in response to light incident from the anode 3 side in a state where a voltage is applied between the anode 3 and the cathode 5.

上記有機薄膜受光素子1では、光導電性有機半導体層4は、図4に示すように、光導電性有機半導体4aと、外部から電圧が印加されていない状態においても光導電性有機半導体層4内部に電場Eiを発生する強誘電性高分子樹脂材料4bにより形成されている。なお、本実施形態では、有機薄膜受光素子1は、基板2を介して光導電性有機半導体層4に光を入射させる構成であるとしたが、図5に示すように、陰極5を透明又は半透明の材料により形成し、陰極5側から光導電性有機半導体層4に光を入射させてもよい。また図6に示すように、光導電性有機半導体層4に強誘電性無機材料4cを含有させてもよい。   In the organic thin film light-receiving element 1, the photoconductive organic semiconductor layer 4 includes a photoconductive organic semiconductor 4a and a photoconductive organic semiconductor layer 4 even when no voltage is applied from the outside, as shown in FIG. It is formed of a ferroelectric polymer resin material 4b that generates an electric field Ei therein. In the present embodiment, the organic thin-film light receiving element 1 is configured to make light incident on the photoconductive organic semiconductor layer 4 through the substrate 2. However, as shown in FIG. It may be formed of a translucent material, and light may be incident on the photoconductive organic semiconductor layer 4 from the cathode 5 side. Further, as shown in FIG. 6, the photoconductive organic semiconductor layer 4 may contain a ferroelectric inorganic material 4c.

上記陽極3を形成する材料としては、ITO(酸化インジウム錫),SnO(酸化錫),ZnO(酸化亜鉛),FTO(フッ素ドープ酸化錫)等の無機系酸化物、又は導電性高分子(ポリピロールやPEDOT/PSS、カーボンナノチューブ分散体等)を例示することができる。また、両電極のいずれか一方、望ましくは陰極5は島状粒子形態を取りやすいAu,Ag,Pd,Pt等の材料により形成することが好ましい。これは、光電流倍増現象の主たる発現機構は、光導電性有機半導体層4と陰極5の界面近傍に存在する構造的トラップに、キャリヤである電子が捕捉されて蓄積され、その結果、光導電性有機半導体層4と陰極5の界面に電界が集中し、陰極5から電子が大量にトンネル注入されることに基づくが、この構造的トラップを積極的に形成させるためには、InやAl等の濡れ性の大きな材料ではなく、島状粒子形態を取りやすいAu,Ag,Pd,Pt等の材料により陰極5を形成することが望ましいためである。 Examples of the material for forming the anode 3 include inorganic oxides such as ITO (indium tin oxide), SnO 2 (tin oxide), ZnO (zinc oxide), and FTO (fluorine-doped tin oxide), or conductive polymers ( And polypyrrole, PEDOT / PSS, carbon nanotube dispersion, etc.). In addition, either one of the electrodes, preferably the cathode 5, is preferably formed of a material such as Au, Ag, Pd, or Pt that easily takes an island-like particle form. This is because the main manifestation mechanism of the photocurrent doubling phenomenon is that electrons serving as carriers are trapped and accumulated in structural traps existing in the vicinity of the interface between the photoconductive organic semiconductor layer 4 and the cathode 5, and as a result, photoconductive The electric field concentrates on the interface between the conductive organic semiconductor layer 4 and the cathode 5 and a large amount of electrons are tunnel-injected from the cathode 5. In order to positively form this structural trap, In, Al, etc. This is because it is desirable to form the cathode 5 with a material such as Au, Ag, Pd, or Pt that is easy to take the form of island-like particles, rather than a material with high wettability.

光導電性有機半導体層4と陰極5の界面に構造的トラップを形成させるための薄膜系製法としては、陰極5の材料を島状薄膜化できる方法であれば特に限定されることはなく、真空蒸着法,電子ビーム蒸着法,分子線エピタキシー法,クラスターイオンビーム法,イオンプレーティング法等の各種物理蒸着法(PVD)法や、ゾル・ゲル法,メッキ法,電気化学的方法,LB法等の各種の湿式薄膜形成法を適用することができる。   The thin film manufacturing method for forming a structural trap at the interface between the photoconductive organic semiconductor layer 4 and the cathode 5 is not particularly limited as long as it is a method capable of forming the material of the cathode 5 into an island-like thin film. Various physical vapor deposition (PVD) methods such as vapor deposition, electron beam vapor deposition, molecular beam epitaxy, cluster ion beam, ion plating, sol-gel method, plating method, electrochemical method, LB method, etc. The various wet thin film forming methods can be applied.

基板2及び陽極3を介して光導電性有機半導体層4に光を入射する場合、空気と基材2の界面、基材2と陽極3の界面、及び陽極3と光有機半導体層4の界面において、できるだけ光損失(反射、散乱等)を生じさせることなく、光導電性有機半導体層4に光を導くことが望ましい。そのためには、各界面での屈折率差を小さくすると共に、狙いとする微弱光に対する透過率が大きい材料を適用することが必要である。   When light is incident on the photoconductive organic semiconductor layer 4 via the substrate 2 and the anode 3, the interface between the air and the substrate 2, the interface between the substrate 2 and the anode 3, and the interface between the anode 3 and the photoorganic semiconductor layer 4 In this case, it is desirable to guide light to the photoconductive organic semiconductor layer 4 without causing light loss (reflection, scattering, etc.) as much as possible. For this purpose, it is necessary to reduce the difference in refractive index at each interface and to apply a material having a high transmittance with respect to the target weak light.

基板2を形成する材料としては、狙いとする光の波長域で光透過率が大きいものを用いることが望ましく、いずれの波長域でも光透過率が大きい材料としては、石英ガラスやポリエチレンテレフタレート等を例示することができる。また、陰極5を介して光導電性有機半導体層4に光が入射する場合も各界面での光損失を極力小さくする必要があり、特に陰極5の材料選択には注意を払う必要がある。このような陰極5用の材料としては、無機透明電極材ではITOやZnOを、また有機透明電極材ではPEDOT/PSS等を挙げることができる。   As a material for forming the substrate 2, it is desirable to use a material having a high light transmittance in a target light wavelength region. As a material having a large light transmittance in any wavelength region, quartz glass, polyethylene terephthalate, or the like can be used. It can be illustrated. Also, when light enters the photoconductive organic semiconductor layer 4 through the cathode 5, it is necessary to minimize the light loss at each interface, and in particular, care must be taken in selecting the material of the cathode 5. Examples of the material for the cathode 5 include ITO and ZnO for inorganic transparent electrode materials, and PEDOT / PSS for organic transparent electrode materials.

〔有機薄膜受光素子の製造方法〕
上記有機薄膜受光素子1を製造する際は、始めに、石英ガラス等の基板2表面上にITO薄膜等の陽極3を形成する。次に、溶媒で溶かした強誘電性高分子樹脂であるPVDFと光導電性有機半導体であるペリレン微粒子数十[wet%]を混合分散,攪拌した後、スピンコート法等の湿式薄膜形成法により分散液を陽極3面上へ塗布,乾燥させることにより陽極3表面上に数百[nm]厚の光導電性有機半導体層4を形成する。そして最後に、真空蒸着法により光導電性有機半導体層4表面上に数十[Å]厚のAu薄膜を陰極5として形成する。なお、上記湿式薄膜形成法としては、使用する溶液系の種類や作製する素子の大きさ(面積)等を考慮し、各種公知の方法(スピンコート法,キャスティング法,ディップ法,バーコート法やグラビア印刷,スクリーン印刷、インクジェット法等の印刷技術)を適用することができる。
[Method of manufacturing organic thin film light receiving element]
When the organic thin film light receiving element 1 is manufactured, first, an anode 3 such as an ITO thin film is formed on the surface of a substrate 2 such as quartz glass. Next, PVDF, which is a ferroelectric polymer resin dissolved in a solvent, and several tens [wet%] of perylene fine particles, which is a photoconductive organic semiconductor, are mixed, dispersed, stirred, and then subjected to a wet thin film formation method such as a spin coating method. The dispersion liquid is applied onto the surface of the anode 3 and dried to form a photoconductive organic semiconductor layer 4 having a thickness of several hundreds [nm] on the surface of the anode 3. Finally, an Au thin film having a thickness of several tens [Å] is formed as the cathode 5 on the surface of the photoconductive organic semiconductor layer 4 by vacuum deposition. The wet thin film forming method includes various known methods (spin coating method, casting method, dipping method, bar coating method, etc.) in consideration of the type of solution system to be used and the size (area) of the element to be produced. Gravure printing, screen printing, printing techniques such as an ink jet method) can be applied.

〔応用例〕
上記有機薄膜受光素子1は例えば受発光素子に適用することができる。以下、上記有機薄膜受光素子1を受発光素子に適用する場合の有機薄膜受光素子1の好ましい実施の形態について説明する。一般に受発光素子は、高輝度の光(波長λ)を発光素子から被験体に照射し、被験体からの反射光を受光素子で検出するように構成されている。このような受発光素子では、被験体が均一な不透明体である場合は光学測定上の問題が生じることはないが、被験体が透明体である場合には光学測定上の問題が生じる。
[Application example]
The organic thin film light receiving element 1 can be applied to a light receiving and emitting element, for example. Hereinafter, a preferred embodiment of the organic thin film light receiving element 1 when the organic thin film light receiving element 1 is applied to a light receiving and emitting element will be described. In general, the light receiving / emitting element is configured to irradiate the subject with high-intensity light (wavelength λ) from the light emitting element and detect the reflected light from the subject with the light receiving element. In such a light emitting / receiving element, there is no problem in optical measurement when the subject is a uniform opaque body, but there is a problem in optical measurement when the subject is a transparent body.

具体的には、例えば人体の動脈血や蛍光物質が混在しているもの等、被験体が透明、且つ、複数の構成材料からなる複合体又は混合体である、構成材料や組成が傾斜構造や特異な組成分布を有する、又は構成材料がナノ微細構造(光の干渉や散乱・回折等が発現する)を有する材料である場合には、たとえ発光素子から高輝度な光を照射したとしても、その光が被験体において必ずしも強く反射されるとは限らない。このため、被験体が透明体である場合には、反射光成分に他の波長の光が重畳されることによって、狙いとする波長域の光のみを高感度で受光することができなくなる。   Specifically, for example, a subject is transparent and a composite or mixture of a plurality of constituent materials, such as a mixture of human arterial blood and fluorescent substances, etc. If the composition material is a material having a nano-structure (light interference, scattering, diffraction, etc.), even if it is irradiated with high-intensity light from the light-emitting element Light is not necessarily strongly reflected at the subject. For this reason, when the subject is a transparent body, light of other wavelengths is superimposed on the reflected light component, so that only the light in the target wavelength region cannot be received with high sensitivity.

本発明者らは、鋭意検討してきた結果、図7に示すように、光が入射される側の電極(図7に示す例では陽極3)と光導電性有機半導体層4の界面にπ共役系有機分子の超薄膜層を特定波長吸収層7として設けることにより、特定波長の光のみを受光し、さらには特定波長吸収層7の層厚を制御することにより光誘起電流を増倍可能であるということを知見した。すなわち特定波長吸収層7は、発光素子から出射される光のスペクトル(図8参照,ピーク波長λmax)と同等のスペクトルを持つ反射光のみを光導電性有機半導体層4側に透過し、反射光以外の波長域の光を吸収(フィルタリング)するものである。このような有機薄膜受光素子1によれば、反射光成分に他の波長の光が重畳されていたとしても、狙いとする波長域の光のみを高感度で検出することができる。 As a result of intensive studies, the present inventors have pi-conjugated at the interface between the electrode on which light is incident (the anode 3 in the example shown in FIG. 7) and the photoconductive organic semiconductor layer 4 as shown in FIG. By providing an ultra-thin layer of organic organic molecules as the specific wavelength absorption layer 7, it is possible to receive only light of a specific wavelength, and further to increase the photoinduced current by controlling the layer thickness of the specific wavelength absorption layer 7. I found out that there is. That is, the specific wavelength absorption layer 7 transmits only reflected light having a spectrum equivalent to the spectrum of the light emitted from the light emitting element (see FIG. 8, peak wavelength λ max ) to the photoconductive organic semiconductor layer 4 side, and reflects it. It absorbs (filters) light in a wavelength region other than light. According to such an organic thin film light receiving element 1, even if light of other wavelengths is superimposed on the reflected light component, only light in the target wavelength range can be detected with high sensitivity.

このようなフィルタ機能を発現させる方法として、複数の光学フィルタを組合せる方法が考えられるが、この方法を用いた場合には、(1)複数の光学フィルタの組合せによる光透過率の低下(被験体からの反射光が光学フィルタによって減衰し、受光素子への光強度が小さくなる),(2)光学フィルタ装着による受光素子の厚みや容量の増大,(3)光学フィルタを作製、装着することによるプロセス工数の増大,(4)プロセス工数の増大に伴うコストアップ等の問題が生じる。   As a method of developing such a filter function, a method of combining a plurality of optical filters can be considered. When this method is used, (1) a decrease in light transmittance due to a combination of a plurality of optical filters (testing) The light reflected from the body is attenuated by the optical filter and the light intensity to the light receiving element is reduced), (2) the thickness and capacity of the light receiving element are increased by mounting the optical filter, and (3) the optical filter is manufactured and mounted. (4) Increase in process man-hour due to the increase in process man-hour due to increase in process man-hour occurs.

上記特定波長吸収層7の形成方法は、ナノオーダの厚さの層を形成できれば特に限定されることはなく、真空蒸着や電子ビーム等の物理蒸着法を用いてπ共役系有機分子を蒸着するようにしても良いし、π共役系有機分子を溶媒希釈した溶液にし、その溶液をラングミュア・ブロジェット(LB)法,キャスティング法,スピンコート法,ディップ法等の各種ウェット法でその溶液を塗布するようにしてもよい。   The method for forming the specific wavelength absorption layer 7 is not particularly limited as long as a layer having a thickness on the order of nanometers can be formed, and π-conjugated organic molecules are deposited using physical vapor deposition such as vacuum deposition or electron beam. Alternatively, a solution in which π-conjugated organic molecules are diluted with a solvent is applied, and the solution is applied by various wet methods such as Langmuir-Blodget (LB) method, casting method, spin coating method, dip method, etc. You may do it.

π共役系有機分子とはπ結合を有する有機分子のことを意味する。π結合とはエチレン,アセチレン,ベンゼン,C60等の分子に見られる二重結合や三重結合が併せ持つ、分子の外側に大きく広がって非局在化している電子が作る化学結合を意味する。p結合に関与する電子(p電子)は、分子間に広がって存在できることにより、分子同士の相互作用を媒介し、電荷輸送能や磁性,光学機能等、多彩で有用な物性,機能の発現をもたらすことができ、前述したような特異な吸収スペクトルを有するものが多い。 The π-conjugated organic molecule means an organic molecule having a π bond. The π bonds means ethylene, acetylene, benzene, both double bonds or triple bonds found in molecules such as C 60, a chemical bond electrons make that delocalized largely spread on the outside of the molecule. The electrons involved in p-bonding (p-electrons) can exist between molecules, mediating the interaction between molecules, and exhibiting various useful physical properties and functions such as charge transport ability, magnetism, and optical functions. Many of them have a specific absorption spectrum as described above.

特定波長吸収層7として利用可能なπ共役系有機分子としては、発光素子から出射される光のスペクトルと同等のスペクトルを持つ反射光のみを光導電性有機半導体層4側に透過し、反射光以外の波長域の光を吸収するような吸収スペクトルを有するものであれば特に限定されず、フタロシアニン系,ナフタロシアニン系,クロロフィル系,メロシアニン系、アントラキノン系,キナクリドン系等の有機分子を例示することができる。但し、光導電性有機半導体層4側に透過させる光の波長域(以下、窓領域と表記)の制御性,特定吸収層7を形成する際の容易さ、特定吸収層7の長期安定性及び耐久性の点から、π共役系有機分子としては、フタロシアニン系,ナフタロシアニン系,クロロフィル系の有機分子を用いることが好ましい。   As the π-conjugated organic molecules that can be used as the specific wavelength absorption layer 7, only reflected light having a spectrum equivalent to the spectrum of light emitted from the light emitting element is transmitted to the photoconductive organic semiconductor layer 4 side, and the reflected light is transmitted. Any organic molecules such as phthalocyanines, naphthalocyanines, chlorophylls, merocyanines, anthraquinones, quinacridones, etc. may be used as long as they have an absorption spectrum that absorbs light in a wavelength range other than Can do. However, controllability of the wavelength range of light transmitted to the photoconductive organic semiconductor layer 4 side (hereinafter referred to as a window region), ease of forming the specific absorption layer 7, long-term stability of the specific absorption layer 7, and From the viewpoint of durability, it is preferable to use a phthalocyanine-based, naphthalocyanine-based, or chlorophyll-based organic molecule as the π-conjugated organic molecule.

フタロシアニン系の有機分子は図9に示すような分子構造を有し、分子中央に金属原子Mを配している。ここで、金属原子Mの位置に金属が配位していないものを無金属フタロシアニン、各種金属が配位しているものを金属フタロシアニンと称する。この金属原子Mの種類を変えることにより、吸収スペクトルにおける窓領域を比較的任意に制御することができる。金属原子Mとしては、Cu,Zn,Ni,Pb,Pt,TiO,VO等を例示することができる。   The phthalocyanine-based organic molecule has a molecular structure as shown in FIG. 9, and a metal atom M is arranged at the center of the molecule. Here, those in which the metal is not coordinated at the position of the metal atom M are referred to as metal-free phthalocyanine, and those in which various metals are coordinated are referred to as metal phthalocyanine. By changing the type of the metal atom M, the window region in the absorption spectrum can be controlled relatively arbitrarily. Examples of the metal atom M include Cu, Zn, Ni, Pb, Pt, TiO, and VO.

図10,11はそれぞれ、銅フタロシアニン(CuPc)薄膜と無金属フタロシアン(HPc)薄膜の吸収スペクトルを示す。銅フタロシアニン薄膜の吸収スペクトルでは波長480〜560[nm]の波長領域(窓領域)において光の吸収率が小さくなるのに対して、無金属フタロシアニン薄膜の吸収スペクトルでは波長450〜550[nm]の波長領域(窓領域)において光の吸収率が小さくなる。このようにフタロシアニン薄膜では金属原子Mの種類を変化させることにより、不必要な特定波長の光を吸収させ、反射光として必要な波長の光を光導電性有機半導体層4側へ効率よく入射させることができる。 10 and 11 show absorption spectra of a copper phthalocyanine (CuPc) thin film and a metal-free phthalocyanine (H 2 Pc) thin film, respectively. In the absorption spectrum of the copper phthalocyanine thin film, the light absorption rate decreases in the wavelength region (window region) of the wavelength of 480 to 560 [nm], whereas in the absorption spectrum of the metal-free phthalocyanine thin film, the wavelength of 450 to 550 [nm]. In the wavelength region (window region), the light absorption rate becomes small. In this way, in the phthalocyanine thin film, by changing the kind of the metal atom M, light having an unnecessary specific wavelength is absorbed, and light having a wavelength necessary as reflected light is efficiently incident on the photoconductive organic semiconductor layer 4 side. be able to.

図12は、特定波長吸収層7として銅フタロシアニン薄膜を用い、銅フタロシアニン薄膜の厚さdの変化に伴う光誘起電流Jの変化をプロットした図を示す。図中の縦軸は、特定波長吸収層7を形成しなかった時の光誘起電流Jを1.0として規格化されている。図から明らかなように、光誘起電流Jは、特定波長吸収層7の厚さdが厚くなるのに伴い増大し、特定波長吸収層7の厚さdが3〜5[nm]程で約2倍になり極大を示す。また特定波長吸収層7の厚さdがさらに増大すると、光誘起電流Jは徐々に低下し、厚さ13[nm]付近において当初レベル(特定波長吸収層が無しの場合)の光誘起電流値となる。そして特定波長吸収層7の厚さdがさらに増大して20[nm]付近になると、当初レベルの70%程度に低下する。   FIG. 12 shows a graph plotting changes in the photoinduced current J accompanying changes in the thickness d of the copper phthalocyanine thin film using a copper phthalocyanine thin film as the specific wavelength absorption layer 7. The vertical axis in the figure is normalized with the photoinduced current J when the specific wavelength absorption layer 7 is not formed being 1.0. As is clear from the figure, the photoinduced current J increases as the thickness d of the specific wavelength absorption layer 7 increases, and is about 3 to 5 nm when the thickness d of the specific wavelength absorption layer 7 is about 3 to 5 nm. Doubled to show maximum. Further, when the thickness d of the specific wavelength absorption layer 7 further increases, the photoinduced current J gradually decreases, and the photoinduced current value at the initial level (in the case where there is no specific wavelength absorption layer) in the vicinity of the thickness 13 [nm]. It becomes. When the thickness d of the specific wavelength absorption layer 7 further increases and reaches around 20 [nm], it decreases to about 70% of the initial level.

この原因は明らかではないが、銅フタロシアニン薄膜の厚さが増大すると、銅フタロシアニン薄膜の広範な波長域での光吸収がより顕著となり、スペクトルの窓領域から入射する光キャリヤが減じられるので、発生する光キャリヤ数も低下したと考えられる。以上のことから、特定波長吸収層7の厚さdをナノオーダレベルで制御することにより、光誘起電流Jを最大にできることが明らかになった。但し、特定波長吸収層7の厚さdは、使用するπ共役系有機分子の種類や、光導電性有機半導体層4の厚さとの相対的な関係により異なるため、必ずしも一義的には決定できない。   The reason for this is not clear, but as the thickness of the copper phthalocyanine thin film increases, light absorption in a wide wavelength range of the copper phthalocyanine thin film becomes more prominent, and light carriers incident from the window region of the spectrum are reduced. It is thought that the number of optical carriers to be reduced also decreased. From the above, it has been clarified that the photoinduced current J can be maximized by controlling the thickness d of the specific wavelength absorption layer 7 at the nano-order level. However, the thickness d of the specific wavelength absorption layer 7 differs depending on the type of the π-conjugated organic molecule used and the relative relationship with the thickness of the photoconductive organic semiconductor layer 4, and therefore cannot be uniquely determined. .

[実施例]
以下、本発明に係る有機薄膜受光素子を実施例に基づいて具体的に説明する。
[Example]
Hereinafter, the organic thin film light receiving element according to the present invention will be described in detail based on examples.

〔実施例1〕
実施例1では、始めに、強誘電性高分子樹脂ポリフッ化ビニリデン(PVDF,呉羽製)と溶媒テトラヒドロフラン(THF)とからなる溶液中に光導電性有機半導体としてペリレン顔料(高純度化学製,平均粒径20[nm])を20[wet%]混合することにより分散液を調製した。次に、陽極としてのITO膜(膜厚100[nm])付きの石英ガラスを用意し、スピンコート法によりITO膜表面上に分散液を塗布,乾燥させて膜厚500[nm]の光導電性有機半導体層を形成した。そして最後に、真空蒸着法により光導電性有機半導体層上にAu薄膜(膜厚200[nm])を陰極として形成し、実施例1の有機薄膜受光素子を得た。
[Example 1]
In Example 1, first, a perylene pigment (manufactured by Koyo Chemical Co., Ltd., average) was used as a photoconductive organic semiconductor in a solution comprising a ferroelectric polymer resin polyvinylidene fluoride (PVDF, Kureha) and a solvent tetrahydrofuran (THF). A dispersion was prepared by mixing 20 [wet%] with a particle size of 20 [nm]. Next, a quartz glass with an ITO film (film thickness 100 [nm]) as an anode is prepared, and a dispersion liquid is applied on the surface of the ITO film by a spin coating method and dried to provide a photoconductive film having a film thickness of 500 [nm]. An organic semiconductor layer was formed. Finally, an Au thin film (thickness: 200 [nm]) was formed as a cathode on the photoconductive organic semiconductor layer by vacuum vapor deposition to obtain an organic thin film light receiving element of Example 1.

〔実施例2〕
実施例2では、実施例1の有機薄膜受光素子をクライオスタット内にセットし、真空度10−3[Torr],温度80[℃],印加電場10[V/cm]で2時間保持した。その後、クライオスタット内に液体窒素を導入して有機薄膜受光素子を急冷し、電場の印加を停止することにより分極処理を行い、実施例2の有機薄膜受光素子を得た。
[Example 2]
In Example 2, the organic thin-film light receiving element of Example 1 was set in a cryostat, and held for 2 hours at a vacuum degree of 10 −3 [Torr], a temperature of 80 [° C.], and an applied electric field of 10 7 [V / cm]. Thereafter, liquid nitrogen was introduced into the cryostat to quench the organic thin film light receiving element, and the polarization treatment was performed by stopping the application of the electric field to obtain the organic thin film light receiving element of Example 2.

〔実施例3〕
実施例3では、ペリレン顔料の代わりにオキサジアゾール顔料(高純度化学製、平均粒径32[nm])を40[wet%]混合した以外は実施例2と同じ処理を行うことにより実施例3の有機薄膜受光素子を得た。
Example 3
In Example 3, the same treatment as in Example 2 was performed except that 40 [wet%] of an oxadiazole pigment (manufactured by high-purity chemical, average particle size 32 [nm]) was mixed instead of the perylene pigment. 3 organic thin film light receiving elements were obtained.

〔実施例4〕
実施例4では、始めに、強誘電性高分子樹脂ポリフッ化ビニリデン(PVDF,呉羽製)と溶媒テトラヒドロフラン(THF)とからなる溶液中に光導電性有機半導体としてペリレン顔料(高純度化学製,平均粒径20[nm])を20[wet%]混合することにより分散液を調製した。次に、陰極としてのAu薄膜(膜厚100[nm])付きの石英ガラスを用意し、スピンコート法によりAu薄膜面上に分散液を塗布,乾燥させて膜厚500[nm]の光導電性有機半導体層を形成した。そして最後に、スパッタ法により光導電性有機半導体層上にITO薄膜(膜厚200[nm])を陽極として形成し、実施例4の有機薄膜受光素子を得た。
Example 4
In Example 4, first, a perylene pigment (manufactured by Koyo Chemical Co., Ltd., averaged) as a photoconductive organic semiconductor in a solution comprising a ferroelectric polymer resin polyvinylidene fluoride (PVDF, manufactured by Kureha) and a solvent tetrahydrofuran (THF). A dispersion was prepared by mixing 20 [wet%] with a particle size of 20 [nm]. Next, a quartz glass with an Au thin film (film thickness 100 [nm]) as a cathode is prepared, and a dispersion liquid is applied on the surface of the Au thin film by a spin coating method and dried to provide a photoconductive film having a film thickness of 500 [nm]. An organic semiconductor layer was formed. Finally, an ITO thin film (film thickness 200 [nm]) was formed as an anode on the photoconductive organic semiconductor layer by sputtering to obtain an organic thin film light receiving element of Example 4.

〔実施例5〕
実施例5では、始めに、強誘電性高分子樹脂ポリフッ化ビニリデン(PVDF,呉羽製)と溶媒テトラヒドロフラン(THF)とからなる溶液中に光導電性有機半導体としてオキサジアゾール顔料(高純度化学製、平均粒径32[nm])を40[wet%]混合することにより分散液を調製した。次に、陰極としてのAu薄膜(膜厚100[nm])付きの石英ガラスを用意し、スピンコート法によりAu薄膜面上に分散液を塗布,乾燥させて膜厚500[nm]の光導電性有機半導体層を形成した。次に、スパッタ法により光導電性有機半導体層上にITO薄膜(膜厚200[nm])を陽極として形成した。次に、有機薄膜受光素子をクライオスタット内にセットし、真空度10−3[Torr],温度80[℃],印加電場10[V/cm]で2時間保持した。その後、クライオスタットに液体窒素を導入して有機薄膜受光素子を急冷し、電場の印加を停止することにより分極処理を行い、実施例5の有機薄膜受光素子を得た。
Example 5
In Example 5, first, an oxadiazole pigment (manufactured by Koyo Chemical Co., Ltd.) as a photoconductive organic semiconductor in a solution comprising a ferroelectric polymer resin polyvinylidene fluoride (PVDF, manufactured by Kureha) and a solvent tetrahydrofuran (THF). The dispersion was prepared by mixing 40 [wet%] with an average particle size of 32 [nm]. Next, a quartz glass with an Au thin film (film thickness 100 [nm]) as a cathode is prepared, and a dispersion liquid is applied on the surface of the Au thin film by a spin coating method and dried to provide a photoconductive film having a film thickness of 500 [nm]. An organic semiconductor layer was formed. Next, an ITO thin film (film thickness 200 [nm]) was formed as an anode on the photoconductive organic semiconductor layer by sputtering. Next, the organic thin film light receiving element was set in a cryostat, and held at a vacuum degree of 10 −3 [Torr], a temperature of 80 [° C.], and an applied electric field of 10 7 [V / cm] for 2 hours. Thereafter, liquid nitrogen was introduced into the cryostat to quench the organic thin film light receiving element, and the polarization treatment was performed by stopping the application of the electric field, whereby the organic thin film light receiving element of Example 5 was obtained.

〔実施例6〕
実施例6では、始めに、強誘電性高分子樹脂ポリフッ化ビニリデン(PVDF,呉羽製)と溶媒テトラヒドロフラン(THF)とからなる溶液中に、光導電性有機半導体としてペリレン顔料(高純度化学製,平均粒径20[nm])を20[wet%],無機強誘電性材料としてBaTiO微粒子を10[wet%]混合することにより分散液を調製した。次に、陽極としてのITO膜(膜厚100[nm])付きの石英ガラスを用意し、スピンコート法によりITO膜表面上に分散液を塗布,乾燥させて膜厚700[nm]の光導電性有機半導体層を形成した。次に、真空蒸着法により光導電性有機半導体層上にAu薄膜(膜厚200[nm])を陰極として形成した。次に、有機薄膜受光素子をクライオスタット内にセットし、真空度10−3[Torr],温度80[℃],印加電場10[V/cm]で2時間保持した。その後、クライオスタットに液体窒素を導入して有機薄膜受光素子を急冷し、電場の印加を停止することにより、分極処理をおこない、実施例6の有機薄膜受光素子を得た。
Example 6
In Example 6, first, a perylene pigment (manufactured by Koyo Chemical Co., Ltd.) was used as a photoconductive organic semiconductor in a solution comprising a ferroelectric polymer resin polyvinylidene fluoride (PVDF, Kureha) and a solvent tetrahydrofuran (THF). A dispersion was prepared by mixing 20 [wet%] with an average particle size of 20 [nm]) and 10 [wet%] BaTiO 3 fine particles as an inorganic ferroelectric material. Next, a quartz glass with an ITO film (film thickness 100 [nm]) as an anode is prepared, and a dispersion liquid is applied on the surface of the ITO film by a spin coat method and dried to provide a photoconductive film having a film thickness of 700 [nm]. An organic semiconductor layer was formed. Next, an Au thin film (film thickness 200 [nm]) was formed as a cathode on the photoconductive organic semiconductor layer by a vacuum deposition method. Next, the organic thin film light receiving element was set in a cryostat, and held at a vacuum degree of 10 −3 [Torr], a temperature of 80 [° C.], and an applied electric field of 10 7 [V / cm] for 2 hours. Thereafter, liquid nitrogen was introduced into the cryostat to quench the organic thin film light receiving element, and the application of the electric field was stopped to perform polarization treatment, whereby the organic thin film light receiving element of Example 6 was obtained.

〔比較例1〕
比較例1では、始めに、ポリカーボネート(三菱化学製)と溶媒キシレンとからなる溶液中に光導電性有機半導体としてペリレン顔料(高純度化学製,平均粒径20[nm])を20[wet%]混合することにより分散液を調製した。次に、陽極としてのITO膜(膜厚100[nm])付きの石英ガラスを用意し、スピンコート法によりITO膜表面上に分散液を塗布,乾燥させて膜厚500[nm]の光導電性有機半導体層を形成した。そして最後に、真空蒸着法により光導電性有機半導体層上にAu薄膜(膜厚200[nm])を陰極として形成し、比較例1の有機薄膜受光素子を得た。
[Comparative Example 1]
In Comparative Example 1, first, 20 [wet%] of a perylene pigment (manufactured by High Purity Chemical, average particle size 20 [nm]) as a photoconductive organic semiconductor in a solution made of polycarbonate (manufactured by Mitsubishi Chemical) and a solvent xylene. A dispersion was prepared by mixing. Next, a quartz glass with an ITO film (film thickness 100 [nm]) as an anode is prepared, and a dispersion liquid is applied on the surface of the ITO film by a spin coating method and dried to provide a photoconductive film having a film thickness of 500 [nm]. An organic semiconductor layer was formed. Finally, an Au thin film (film thickness 200 [nm]) was formed as a cathode on the photoconductive organic semiconductor layer by a vacuum evaporation method, and an organic thin film light receiving element of Comparative Example 1 was obtained.

〔比較例2〕
比較例2では、始めに、ポリカーボネート(三菱化学製)と溶媒キシレンとからなる溶液中に光導電性有機半導体としてペリレン顔料(高純度化学製,平均粒径20[nm])を20[wet%]混合することにより分散液を調製した。次に、陰極としてのAu薄膜(膜厚100[nm])付きの石英ガラスを用意し、スピンコート法によりAu薄膜面上に分散液を塗布,乾燥させて膜厚500[nm]の光導電性有機半導体層を形成した。そして最後に、スパッタ法により光導電性有機半導体層上にITO薄膜(膜厚200[nm])を陽極として形成し、比較例2の有機薄膜受光素子を得た。
[Comparative Example 2]
In Comparative Example 2, first, 20 [wet%] of a perylene pigment (manufactured by high purity chemical, average particle size 20 [nm]) as a photoconductive organic semiconductor in a solution composed of polycarbonate (Mitsubishi Chemical) and a solvent xylene. A dispersion was prepared by mixing. Next, a quartz glass with an Au thin film (film thickness 100 [nm]) as a cathode is prepared, and a dispersion liquid is applied on the surface of the Au thin film by a spin coating method and dried to provide a photoconductive film having a film thickness of 500 [nm]. An organic semiconductor layer was formed. Finally, an ITO thin film (film thickness 200 [nm]) was formed as an anode on the photoconductive organic semiconductor layer by sputtering, and an organic thin film light receiving element of Comparative Example 2 was obtained.

〔比較例3〕
比較例3では、始めに、強誘電性高分子樹脂ポリフッ化ビニリデン(PVDF,呉羽製)と溶媒テトラヒドロフラン(THF)とからなる溶液中に、光導電性有機半導体としてペリレン顔料(高純度化学製,平均粒径20[nm])を20[wet%],無機強誘電性材料としてBaTiO微粒子を10[wet%]混合することにより分散液を調製した。次に、陽極としてのITO膜(膜厚100[nm])付きの石英ガラスを用意し、スピンコート法によりITO膜表面上に分散液を塗布,乾燥させて膜厚700[nm]の光導電性有機半導体層を形成した。そして最後に、光導電性有機半導体層上にAu薄膜(膜厚200[nm])を陰極として真空蒸着法により形成し、比較例3の有機薄膜受光素子を得た。
[Comparative Example 3]
In Comparative Example 3, first, a perylene pigment (manufactured by Koyo Chemical Co., Ltd.) was used as a photoconductive organic semiconductor in a solution comprising a ferroelectric polymer resin polyvinylidene fluoride (PVDF, Kureha) and a solvent tetrahydrofuran (THF). A dispersion was prepared by mixing 20 [wet%] with an average particle size of 20 [nm]) and 10 [wet%] BaTiO 3 fine particles as an inorganic ferroelectric material. Next, a quartz glass with an ITO film (film thickness 100 [nm]) as an anode is prepared, and a dispersion liquid is applied on the surface of the ITO film by a spin coat method and dried to provide a photoconductive film having a film thickness of 700 [nm]. An organic semiconductor layer was formed. Finally, an Au thin film (film thickness 200 [nm]) was formed as a cathode on the photoconductive organic semiconductor layer by a vacuum deposition method, and an organic thin film light receiving element of Comparative Example 3 was obtained.

〔内部電場の測定〕
上記実施例1〜6及び比較例1〜3の有機薄膜受光素子それぞれについて、暗状態での陽極と陰極間の開放端電圧Vocを測定し、測定された開放端電圧Vocから内部電場Eiを算出した。算出結果を以下の表1に示す。
[Measurement of internal electric field]
For each of the organic thin-film light receiving elements of Examples 1 to 6 and Comparative Examples 1 to 3, the open-circuit voltage Voc between the anode and the cathode in the dark state is measured, and the internal electric field Ei is calculated from the measured open-circuit voltage Voc. did. The calculation results are shown in Table 1 below.

〔光誘起電流の測定〕
上記実施例1〜6及び比較例1〜3の有機薄膜受光素子それぞれに外部電場10[V/cm〕を印加し、光透過性を有する電極側から単色光(波長λ:670[nm])を照射した際の光誘起電流Jを測定した。測定結果を以下の表1に示す。

Figure 2008103670
(Measurement of photoinduced current)
An external electric field of 10 6 [V / cm] was applied to each of the organic thin film light receiving elements of Examples 1 to 6 and Comparative Examples 1 to 3, and monochromatic light (wavelength λ: 670 [nm]) from the electrode side having optical transparency. ) Was measured. The measurement results are shown in Table 1 below.
Figure 2008103670

〔検討〕
表1から明らかなように、実施例1〜6の有機薄膜受光素子における開放端電圧Voc及び光誘起電流Jは、比較例1〜3の有機薄膜受光素子における開放端電圧Voc及び光誘起電流Jと比較して大きい値を示す。また、実施例1〜6の有機薄膜受光素子における内部電場は、比較例1〜3の有機薄膜受光素子における内部電場と比較して大きい値を示す。このことから、外部から電圧が印加されていない状態においても電場を発生する内部電場発生体を光導電性有機半導体層内部に含有させることにより、微弱光を低電圧で検出できることが知見される。
〔Consideration〕
As is apparent from Table 1, the open-circuit voltage Voc and the photoinduced current J in the organic thin film light receiving elements of Examples 1 to 6 are the open circuit voltage Voc and the photoinduced current J in the organic thin film light receiving elements of Comparative Examples 1 to 3. A large value is shown in comparison with. Moreover, the internal electric field in the organic thin film light receiving element of Examples 1-6 shows a large value compared with the internal electric field in the organic thin film light receiving element of Comparative Examples 1-3. From this, it is found that weak light can be detected at a low voltage by including an internal electric field generator that generates an electric field even when no voltage is applied from the outside, inside the photoconductive organic semiconductor layer.

〔有機薄膜受発光素子の構成〕
次に、上記知見に基づき想到された、本発明の実施形態となる有機薄膜受発光素子の構成について説明する。
[Configuration of organic thin film light emitting / receiving element]
Next, the structure of the organic thin film light emitting / receiving element according to the embodiment of the present invention conceived based on the above knowledge will be described.

本発明の実施形態となる有機薄膜受発光素子10は、図13に示すように、上記有機薄膜受光素子1と、有機薄膜発光素子11と、有機薄膜受光素子1と有機薄膜発光素子12とが被検体14との対向面側に配置された樹脂フィルム等のフレキシブル基板12とを備える。図13に示す例では、フレキシブル基板12の同一面内に有機薄膜受光素子1と有機薄膜発光素子11を配置したが、フレキシブル基板12が光透過性を有するものである場合、図14に示すように有機薄膜受光素子1を反対面内に配置するようにしてもよい。図13,図14に示す例では、有機薄膜受光素子1と有機薄膜発光素子11を一組として例示したが、特にこれに限定されることはなく、1つの有機薄膜受光素子1と複数の有機薄膜発光素子11の組み合わせでもよいし、逆に複数の有機薄膜受光素子1と1つの有機薄膜発光素子11の組み合わせでもよい。   As shown in FIG. 13, the organic thin film light receiving / emitting element 10 according to the embodiment of the present invention includes the organic thin film light receiving element 1, the organic thin film light emitting element 11, the organic thin film light receiving element 1, and the organic thin film light emitting element 12. And a flexible substrate 12 such as a resin film disposed on the surface facing the subject 14. In the example shown in FIG. 13, the organic thin film light receiving element 1 and the organic thin film light emitting element 11 are arranged on the same surface of the flexible substrate 12, but when the flexible substrate 12 has light transmittance, as shown in FIG. 14. Alternatively, the organic thin film light receiving element 1 may be disposed in the opposite surface. In the example shown in FIGS. 13 and 14, the organic thin film light receiving element 1 and the organic thin film light emitting element 11 are exemplified as one set. However, the present invention is not particularly limited thereto, and one organic thin film light receiving element 1 and a plurality of organic thin film light receiving elements 1 are combined. A combination of the thin film light emitting elements 11 may be used, or a combination of a plurality of organic thin film light receiving elements 1 and one organic thin film light emitting element 11 may be used.

このような有機薄膜受発光素子10によれば、血液中のヘモグロビンの吸光度変化や人体から放出されるバイオフォトン(生物発光)と言った微弱光を検出する生体情報検出装置、より具体的には脈拍センサー等を実現できる。特に有機薄膜受発光素子10を曲面形状を有するステアリングの表皮に配置することにより、ドライバーの素手からの微弱光を低電圧、且つ、高精度に検出できる脈拍センサーを実現できる。   According to such an organic thin film light emitting / receiving element 10, a biological information detecting device that detects a change in absorbance of hemoglobin in blood and a weak light such as biophoton (bioluminescence) emitted from a human body, more specifically, A pulse sensor can be realized. In particular, by arranging the organic thin film light emitting / receiving element 10 on the skin of the steering wheel having a curved surface shape, a pulse sensor that can detect weak light from the driver's bare hands with high accuracy with low voltage can be realized.

この有機薄膜受発光素子10を製造する際は、始めに、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリイミド(PI)等のフレキシブル基板12の一方又は両方の表面に第1の電極層を形成し、その上に有機薄膜発光素子11であれば有機発光層を、有機薄膜受光素子1であれば光導電性有機半導体層を形成する。そして形成された両層の表面上に第2の電極層を形成した後、防湿と保護を兼ねた樹脂組成物を印刷等でコートしたり、カバーレイフィルムで貼り付けることにより有機薄膜受発光素子10を製造することができる。   When the organic thin film light emitting / receiving element 10 is manufactured, first, the first electrode layer is formed on one or both surfaces of the flexible substrate 12 such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI) or the like. In the case of the organic thin film light emitting element 11, an organic light emitting layer is formed, and in the case of the organic thin film light receiving element 1, a photoconductive organic semiconductor layer is formed thereon. And after forming the 2nd electrode layer on the surface of both formed layers, it coats the resin composition which served as moisture-proof and protection by printing etc., or is stuck with a coverlay film, and is an organic thin film light emitting and receiving element 10 can be manufactured.

有機薄膜受光素子1と有機薄膜発光素子12共に湿度や酸素による劣化を防止するため、一連の製造工程は不活性ガス中で実施することが好ましい。有機薄膜受光素子1と有機薄膜発光素子12を印刷プロセスにより形成する場合には、有機薄膜受光素子1と有機薄膜発光素子12を大面積で形成できるので、低コスト化が可能である。また有機薄膜受光素子1と有機薄膜発光素子12はフレキシブル素子であるので、曲面形状体や複雑な3次元形状体へも配置することができる。   In order to prevent the organic thin film light receiving element 1 and the organic thin film light emitting element 12 from deteriorating due to humidity or oxygen, it is preferable to carry out a series of manufacturing steps in an inert gas. When the organic thin film light receiving element 1 and the organic thin film light emitting element 12 are formed by a printing process, the organic thin film light receiving element 1 and the organic thin film light emitting element 12 can be formed in a large area, so that the cost can be reduced. Further, since the organic thin film light receiving element 1 and the organic thin film light emitting element 12 are flexible elements, they can be arranged on a curved surface shape or a complicated three-dimensional shape.

[実施例]
以下、本発明に係る有機薄膜受発光素子を実施例に基づいて具体的に説明する。
[Example]
Hereinafter, the organic thin film light emitting and receiving element according to the present invention will be described in detail based on examples.

〔実施例7〕
実施例7では、始めに、陽極としての透明電極ITO(膜厚100[nm])付きの厚さ250[μm]のポリエチレンテレフタレート(PET)フィルムを基材として用意した。そして以下に示す方法により有機薄膜受光素子と有機薄膜発光素子を形成することにより、実施例7の有機薄膜受発光素子を得た。
Example 7
In Example 7, a polyethylene terephthalate (PET) film having a thickness of 250 [μm] with a transparent electrode ITO (film thickness 100 [nm]) as an anode was first prepared as a base material. And the organic thin film light receiving element and the organic thin film light emitting element were formed with the method shown below, and the organic thin film light receiving and emitting element of Example 7 was obtained.

(1)有機薄膜受光素子
始めに、陽極表面上に特定波長吸収層として銅フタロシアニン(CuPc)薄膜を真空蒸着法で5[nm]厚に形成した。次に、強誘電性高分子樹脂ポリフッ化ビニリデン(PVDF、呉羽製)と溶媒テトラヒドロフラン(THF)とからなる溶液中に光導電性有機半導体としてペリレン顔料(高純度化学製,平均粒径20[nm])を20[wet%]混合した分散液を特定波長吸収層表面上にスピンコート法により塗布・乾燥させて膜厚500[nm]の光導電性有機半導体層4を形成した。そして、光導電性有機半導体層4上に真空蒸着法により陰極としてAu薄膜(膜厚200[nm])を形成することにより有機薄膜受光素子を形成した。
(1) Organic thin film light receiving element First, a copper phthalocyanine (CuPc) thin film was formed on the anode surface as a specific wavelength absorption layer to a thickness of 5 [nm] by vacuum deposition. Next, a perylene pigment (manufactured by High Purity Chemical, average particle size of 20 [nm] as a photoconductive organic semiconductor in a solution comprising a ferroelectric polymer resin polyvinylidene fluoride (PVDF, manufactured by Kureha) and a solvent tetrahydrofuran (THF). ] Was mixed on the surface of the specific wavelength absorption layer by a spin coat method and dried to form a photoconductive organic semiconductor layer 4 having a thickness of 500 [nm]. And the organic thin film light receiving element was formed by forming Au thin film (film thickness 200 [nm]) as a cathode on the photoconductive organic-semiconductor layer 4 by a vacuum evaporation method.

(2)有機薄膜発光素子
始めに、陽極表面上に、ポリフェニレンビニレン(PPV)をスピンコート法で100nm厚に形成した。そして陰極としてAg/Mg薄膜を真空蒸着法により形成することにより有機薄膜発光素子を形成した。
(2) Organic thin-film light-emitting element First, polyphenylene vinylene (PPV) was formed on the anode surface to a thickness of 100 nm by spin coating. Then, an organic thin film light emitting device was formed by forming an Ag / Mg thin film as a cathode by a vacuum deposition method.

〔実施例8〕
実施例8では、特定波長吸収層として厚さ5[nm]の無金属フタロシアニン(HPc)薄膜を形成した以外は実施例7と同じ処理を行うことにより、実施例8の有機薄膜受発光素子を得た。
Example 8
In Example 8, the organic thin film light receiving and emitting of Example 8 was performed by performing the same treatment as Example 7 except that a metal-free phthalocyanine (H 2 Pc) thin film having a thickness of 5 nm was formed as the specific wavelength absorption layer. An element was obtained.

〔実施例9〕
実施例9では、特定波長吸収層として厚さ3[nm]のニッケルフタロシアニン(NiPc)薄膜を形成した点とペリレンの含有量を30[wet%]とした点以外は実施例7と同じ処理を行うことにより、実施例9の有機薄膜受発光素子を得た。
Example 9
In Example 9, the same treatment as in Example 7 was performed except that a nickel phthalocyanine (NiPc) thin film having a thickness of 3 [nm] was formed as the specific wavelength absorption layer and the content of perylene was set to 30 [wet%]. By performing, the organic thin film light emitting / receiving element of Example 9 was obtained.

〔実施例10〕
実施例10では、特定波長吸収層として厚さ8[nm]のナフタロシアニン(CuPc)薄膜を形成した以外は実施例7と同じ処理を行うことにより、実施例10の有機薄膜受発光素子を得た。
Example 10
In Example 10, an organic thin film light emitting / receiving element of Example 10 was obtained by performing the same treatment as in Example 7 except that a naphthalocyanine (CuPc) thin film having a thickness of 8 [nm] was formed as the specific wavelength absorption layer. It was.

〔実施例11〕
実施例11では、特定波長吸収層として厚さ6[nm]のナフタロシアニン(CuPc)薄膜を形成した点とペリレンの含有量を15[wet%]とした点以外は実施例7と同じ処理を行うことにより、実施例11の有機薄膜受発光素子を得た。
Example 11
In Example 11, the same treatment as in Example 7 was performed except that a naphthalocyanine (CuPc) thin film with a thickness of 6 [nm] was formed as the specific wavelength absorption layer and the content of perylene was 15 [wet%]. By performing, the organic thin film light emitting / receiving element of Example 11 was obtained.

〔比較例4〕
比較例4では、特定波長吸収層を形成しなかった以外は実施例7と同じ処理を行うことにより、比較例4の有機薄膜受発光素子を得た。
[Comparative Example 4]
In Comparative Example 4, an organic thin film light emitting / receiving element of Comparative Example 4 was obtained by performing the same treatment as in Example 7 except that the specific wavelength absorption layer was not formed.

〔比較例5〕
比較例5では、強誘電性高分子樹脂ポリフッ化ビニリデン(PVDF、呉羽製)と溶媒テトラヒドロフラン(THF)とからなる溶液中にオキサジアゾール顔料(高純度化学製、平均粒径32[nm])を15[wet%]混合した以外は比較例4と同じ処理を行うことにより、比較例5の有機薄膜受発光素子を得た。
[Comparative Example 5]
In Comparative Example 5, an oxadiazole pigment (manufactured by Koyo Chemical Co., average particle size 32 [nm]) in a solution comprising a ferroelectric polymer resin polyvinylidene fluoride (PVDF, manufactured by Kureha) and a solvent tetrahydrofuran (THF). The organic thin film light emitting / receiving element of Comparative Example 5 was obtained by performing the same treatment as Comparative Example 4 except that 15 [wet%] was mixed.

〔評価〕
実施例7〜11及び比較例1,2の有機薄膜受発光素子それぞれについて、(1)有機薄膜発光素子から出射される光のスペクトルピーク波長、(2)有機薄膜受光素子の最大受光感度スペクトルピーク波長、(3)有機薄膜発光素子から発光輝度1000[cd/m]で被験体(アルミニウム板)へ出射された際の有機薄膜受光素子における光誘起電流(特定波長吸収層が設けられていない時の光誘起電流を1.0として)を計測した。なお、光誘起電流は、有機薄膜受光素子に外部電場を10[V/cm]印加した状態で光透過性を有する基材側から照射することにより評価した。評価結果を以下の表2に示す。

Figure 2008103670
[Evaluation]
For each of the organic thin film light emitting / receiving elements of Examples 7 to 11 and Comparative Examples 1 and 2, (1) the spectral peak wavelength of light emitted from the organic thin film light emitting element, and (2) the maximum light receiving sensitivity spectral peak of the organic thin film light receiving element. (3) Light-induced current in the organic thin-film light-receiving element when the organic thin-film light-emitting element is emitted from the organic thin-film light-emitting element to the subject (aluminum plate) with an emission luminance of 1000 [cd / m 2 ] (no specific wavelength absorption layer is provided) The photoinduced current at the time was set to 1.0). The photoinduced current was evaluated by irradiating the organic thin film light receiving element from the side of the light-transmitting substrate with an external electric field of 10 6 [V / cm] applied. The evaluation results are shown in Table 2 below.
Figure 2008103670

〔検討〕
表2から明らかなように、実施例7〜11の有機薄膜受光素子における光誘起電流Jは、比較例4,5の有機薄膜受光素子における光誘起電流Jと比較して大きい値を示す。このことから、光が入射される側の電極と光導電性有機半導体層の界面に特定波長吸収層を設け、さらには特定波長吸収層の層厚を制御することにより、特定波長の光のみを受光し、さらには光誘起電流を増倍可能であるということが知見される。
〔Consideration〕
As is clear from Table 2, the photoinduced current J in the organic thin film light receiving elements of Examples 7 to 11 is larger than the photoinduced current J in the organic thin film light receiving elements of Comparative Examples 4 and 5. Therefore, by providing a specific wavelength absorption layer at the interface between the electrode on which light is incident and the photoconductive organic semiconductor layer, and controlling the layer thickness of the specific wavelength absorption layer, only light of a specific wavelength can be obtained. It is found that the light can be received and the photo-induced current can be multiplied.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。このように、この実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. As described above, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

光導電性有機半導体層内部の電場を説明するための模式図である。It is a schematic diagram for demonstrating the electric field inside a photoconductive organic-semiconductor layer. 内部電場が存在する場合と存在しない場合それぞれの場合について、陽極と陰極間に電圧が印加された際に発生する外部電場と微弱光の入射により発現する光誘起電流の関係を測定した結果を示す。The results of measuring the relationship between the external electric field generated when a voltage is applied between the anode and the cathode and the photoinduced current developed by the incidence of faint light in each case where the internal electric field exists and does not exist are shown. . 本発明の実施形態となる有機薄膜受光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the organic thin film light receiving element used as embodiment of this invention. 図3に示す光導電性有機半導体層の内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of the photoconductive organic-semiconductor layer shown in FIG. 図3に示す有機薄膜受光素子の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the organic thin film light receiving element shown in FIG. 図4に示す光導電性有機半導体層の応用例の内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of the application example of the photoconductive organic-semiconductor layer shown in FIG. 図3に示す有機薄膜受光素子の応用例の構成を示す断面図である。It is sectional drawing which shows the structure of the application example of the organic thin film light receiving element shown in FIG. 発光素子から出射される発光スペクトルの一例を示す波形図である。It is a wave form diagram which shows an example of the emission spectrum radiate | emitted from a light emitting element. フタロシアニン系の有機分子の分子構造を示す図である。It is a figure which shows the molecular structure of a phthalocyanine-type organic molecule. 銅フタロシアニン薄膜の吸収スペクトルを示す波形図である。It is a wave form diagram which shows the absorption spectrum of a copper phthalocyanine thin film. 無金属フタロシアン薄膜の吸収スペクトルを示す波形図である。It is a wave form diagram which shows the absorption spectrum of a metal free phthalocyanine thin film. 銅フタロシアニン薄膜の厚さの変化に伴う光誘起電流の変化を示す図である。It is a figure which shows the change of the photoinduced current accompanying the change of the thickness of a copper phthalocyanine thin film. 本発明の実施形態となる有機薄膜受発光素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the organic thin film light emitting / receiving element used as embodiment of this invention. 図13に示す有機薄膜受発光素子の応用例の構成を示す模式図である。It is a schematic diagram which shows the structure of the application example of the organic thin film light emitting / receiving element shown in FIG.

符号の説明Explanation of symbols

1:有機薄膜受光素子
2:基板
3:陽極
4:光導電性有機半導体層
4a:光導電性有機半導体
4b:強誘電性高分子樹脂材料
5:陰極
6:直流電源
7:特定波長吸収層
1: Organic thin-film light receiving element 2: Substrate 3: Anode 4: Photoconductive organic semiconductor layer 4a: Photoconductive organic semiconductor 4b: Ferroelectric polymer resin material 5: Cathode 6: DC power supply 7: Specific wavelength absorption layer

Claims (19)

陽極と陰極により挟持された光導電性有機半導体層を備え、陽極と陰極の少なくとも一方が紫外線、可視光線、及び近赤外線のうちのいずれかの光に対し透過性を有し、陽極と陰極間に電圧を印加した状態で前記いずれかの光が照射されるのに応じて前記光導電性有機半導体層において光誘起電流を発生する有機薄膜受光素子であって、前記光導電性有機半導体層が陽極と陰極間に電圧が印加されていない状態において電場を発生する内部電場発生体を含有することを特徴とする有機薄膜受光素子。   Provided with a photoconductive organic semiconductor layer sandwiched between an anode and a cathode, wherein at least one of the anode and the cathode is transmissive to any one of ultraviolet light, visible light, and near infrared light, and between the anode and the cathode An organic thin film light-receiving element that generates a photo-induced current in the photoconductive organic semiconductor layer in response to irradiation of any of the light with a voltage applied to the photoconductive organic semiconductor layer, wherein the photoconductive organic semiconductor layer is An organic thin-film light-receiving element comprising an internal electric field generator that generates an electric field when no voltage is applied between an anode and a cathode. 請求項1に記載の有機薄膜受光素子において、光が照射される側に位置する前記陽極又は前記陰極と前記光導電性有機半導体層の界面に特定波長の光を吸収する吸収層を備えることを特徴とする有機薄膜受光素子。   2. The organic thin film light-receiving element according to claim 1, further comprising an absorption layer that absorbs light of a specific wavelength at an interface between the anode or the cathode and the photoconductive organic semiconductor layer located on a light irradiation side. An organic thin film light receiving element. 請求項2に記載の有機薄膜受光素子において、前記光吸収層がπ共役系有機分子を含むことを特徴とする有機薄膜受光素子。   The organic thin film light receiving element according to claim 2, wherein the light absorption layer contains a π-conjugated organic molecule. 請求項3に記載の有機薄膜受光素子において、前記π共役系有機分子はフタロシアニン系及びナフタロシアニン系からなる群の中から選択される少なくとも一種の有機分子であることを特徴とする有機薄膜受光素子。   4. The organic thin film light receiving element according to claim 3, wherein the π-conjugated organic molecule is at least one organic molecule selected from the group consisting of phthalocyanine and naphthalocyanine. . 請求項1乃至請求項4のうち、いずれか1項に記載の有機薄膜受光素子において、前記内部電場発生体が強誘電性高分子材料により形成されていることを特徴とする有機薄膜受光素子。   5. The organic thin film light receiving element according to claim 1, wherein the internal electric field generator is formed of a ferroelectric polymer material. 6. 請求項1乃至請求項4のうち、いずれか1項に記載の有機薄膜受光素子において、前記内部電場発生体が強誘電性高分子材料と強誘電性無機材料により形成されていることを特徴とする有機薄膜受光素子。   5. The organic thin film light receiving element according to claim 1, wherein the internal electric field generator is formed of a ferroelectric polymer material and a ferroelectric inorganic material. Organic thin-film light receiving element. 請求項5又は請求項6に記載の有機薄膜受光素子において、前記強誘電性高分子材料及び/又は前記強誘電性無機材料の電気双極子が分極処理により電極面に対し垂直に向くように調製されていることを特徴とする有機薄膜受光素子。   The organic thin film light receiving element according to claim 5 or 6, wherein the ferroelectric polymer material and / or the electric dipole of the ferroelectric inorganic material is prepared to be perpendicular to the electrode surface by polarization treatment. An organic thin-film light receiving element characterized by being made. 請求項5乃至請求項7のうち、いずれか1項に記載の有機薄膜受光素子において、前記強誘電性高分子材料はポリフッ化ビニリデン若しくはポリフッ化ビニリデン共重合体、又はこれらの複合体であることを特徴とする有機薄膜受光素子。   8. The organic thin film light receiving element according to claim 5, wherein the ferroelectric polymer material is polyvinylidene fluoride, a polyvinylidene fluoride copolymer, or a composite thereof. An organic thin film light receiving element characterized by 請求項5乃至請求項8のうち、いずれか1項に記載の有機薄膜受光素子において、前記光導電性有機半導体層は強誘電性高分子材料を光導電性有機半導体材料に分散させることにより形成されたものであることを特徴とする有機薄膜受光素子。   9. The organic thin film light-receiving element according to claim 5, wherein the photoconductive organic semiconductor layer is formed by dispersing a ferroelectric polymer material in the photoconductive organic semiconductor material. Organic thin-film light receiving element, characterized by being made. 請求項6乃至請求項9のうち、いずれか1項に記載の有機薄膜受光素子において、前記強誘電性無機材料はペロブスカイト型の結晶構造を有する材料であることを特徴とする有機薄膜受光素子。   10. The organic thin film light receiving element according to claim 6, wherein the ferroelectric inorganic material is a material having a perovskite crystal structure. 請求項1乃至請求項10のうち、いずれか1項に記載の有機薄膜受光素子において、前記光導電性有機半導体層はオキサジアゾール誘導体、トリアゾール誘導体、シロール誘導体、ペリリン誘導体、ナフタレン誘導体、及びフラーレン誘導体からなる誘導体群の中から選択された一つの誘導体又は選択された一つの誘導体を含む混合物であることを特徴とする有機薄膜受光素子。   11. The organic thin film light-receiving element according to claim 1, wherein the photoconductive organic semiconductor layer includes an oxadiazole derivative, a triazole derivative, a silole derivative, a periline derivative, a naphthalene derivative, and a fullerene. An organic thin-film light-receiving element, which is one derivative selected from a derivative group consisting of derivatives or a mixture containing one selected derivative. 請求項1乃至請求項11のうち、いずれか1項に記載の有機薄膜受光素子の製造方法であって、基板上に第1の電極層を形成する工程と、湿式成形法により第1の電極層上に光導電性有機半導体層を形成する工程と、光導電性有機半導体層上に第2の電極層を形成する工程とを有することを特徴とする有機薄膜受光素子の製造方法。   12. The method of manufacturing an organic thin film light receiving element according to claim 1, wherein a step of forming a first electrode layer on a substrate, and a first electrode by a wet molding method. A method for manufacturing an organic thin film light-receiving element, comprising: a step of forming a photoconductive organic semiconductor layer on a layer; and a step of forming a second electrode layer on the photoconductive organic semiconductor layer. 請求項12に記載の有機薄膜受光素子の製造方法であって、第1の電極層上に特定波長の光を吸収する吸収層を形成する工程を有し、前記光導電性有機半導体層を吸収層上に形成することを特徴とする有機薄膜受光素子の製造方法。   13. The method of manufacturing an organic thin film light receiving element according to claim 12, comprising a step of forming an absorption layer that absorbs light of a specific wavelength on the first electrode layer, and absorbing the photoconductive organic semiconductor layer. A method for producing an organic thin film light-receiving element, comprising: forming on a layer. 請求項1乃至請求項11のうち、いずれか1項に記載の有機薄膜受光素子と、紫外線、可視光線、及び近赤外線のうちのいずれかの光を発光する有機薄膜発光素子と、有機薄膜受光素子と有機薄膜発光素子が配置されるフレキシブル基板とを備え、前記有機薄膜発光素子は被験体に光を照射し、前記有機薄膜受光素子は被験体からの反射光を受光することを特徴とする有機薄膜受発光素子。   The organic thin film light receiving element according to any one of claims 1 to 11, an organic thin film light emitting element that emits light of ultraviolet light, visible light, or near infrared light, and organic thin film light receiving. The organic thin film light emitting element irradiates a subject with light, and the organic thin film light receiving element receives reflected light from the subject. Organic thin film light emitting / receiving element. 請求項14に記載の有機薄膜受発光素子において、前記有機薄膜発光素子は、前記吸収層が光を吸収する波長領域外の波長領域にピーク位置を有するスペクトル光を発光することを特徴とする有機薄膜受発光素子。   15. The organic thin film light emitting / receiving element according to claim 14, wherein the organic thin film light emitting element emits spectral light having a peak position in a wavelength region outside the wavelength region where the absorption layer absorbs light. Thin film light emitting / receiving element. 請求項14又は請求項15に記載の有機薄膜受発光素子において、前記有機薄膜発光素子は、第1及び第2の電極により挟持された有機発光層を備える有機エレクトロルミネッセンス素子であることを特徴とする有機薄膜受発光素子。   16. The organic thin film light emitting / receiving element according to claim 14 or 15, wherein the organic thin film light emitting element is an organic electroluminescence element comprising an organic light emitting layer sandwiched between first and second electrodes. Organic thin film light emitting / receiving element. 請求項16に記載の有機薄膜受発光素子の製造方法であって、前記フレキシブル基板上に少なくとも2つの電極を形成する工程と、前記電極上に前記光導電性有機半導体層と前記有機発光層を形成する工程と、光導電性有機半導体層と有機発光層の表面上に電極を形成する工程とを有することを特徴とする有機薄膜受発光素子の製造方法。   17. The method of manufacturing an organic thin film light emitting / receiving element according to claim 16, wherein the step of forming at least two electrodes on the flexible substrate, and the photoconductive organic semiconductor layer and the organic light emitting layer on the electrodes. A method of manufacturing an organic thin film light emitting / receiving element, comprising: a step of forming; and a step of forming an electrode on the surface of the photoconductive organic semiconductor layer and the organic light emitting layer. 請求項1乃至請求項11のうち、いずれか1項に記載の有機薄膜受光素子を利用して人体の皮膚から脈拍を検出することを特徴とする脈拍センサ。   A pulse sensor characterized by detecting a pulse from the skin of a human body using the organic thin film light-receiving element according to any one of claims 1 to 11. 請求項14乃至請求項16のうち、いずれか1項に記載の有機薄膜受発光素子を利用して人体の皮膚から脈拍を検出することを特徴とする脈拍センサ。   A pulse sensor that detects a pulse from the skin of a human body using the organic thin film light emitting and receiving element according to any one of claims 14 to 16.
JP2007158649A 2006-09-22 2007-06-15 Organic thin film photodetector, manufacturing method thereof, organic thin film light receiving/emitting element, manufacturing method thereof, and pulse sensor Pending JP2008103670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158649A JP2008103670A (en) 2006-09-22 2007-06-15 Organic thin film photodetector, manufacturing method thereof, organic thin film light receiving/emitting element, manufacturing method thereof, and pulse sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006257684 2006-09-22
JP2007158649A JP2008103670A (en) 2006-09-22 2007-06-15 Organic thin film photodetector, manufacturing method thereof, organic thin film light receiving/emitting element, manufacturing method thereof, and pulse sensor

Publications (1)

Publication Number Publication Date
JP2008103670A true JP2008103670A (en) 2008-05-01

Family

ID=39437744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158649A Pending JP2008103670A (en) 2006-09-22 2007-06-15 Organic thin film photodetector, manufacturing method thereof, organic thin film light receiving/emitting element, manufacturing method thereof, and pulse sensor

Country Status (1)

Country Link
JP (1) JP2008103670A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010060421A1 (en) * 2008-11-30 2010-06-03 Brandenburgische Technische Universität Solar cell having local electrostatic fields in the photoactive region
CN103107214A (en) * 2011-11-11 2013-05-15 中国科学院电工研究所 Nanometer dipole solar cell and preparation method thereof
CN104720784A (en) * 2013-12-20 2015-06-24 纳米新能源(唐山)有限责任公司 Vibration sensor and production method thereof
JP2015188475A (en) * 2014-03-27 2015-11-02 浜松ホトニクス株式会社 Probe for biomedical measurement and biomedical measurement device
JP2016000205A (en) * 2015-07-01 2016-01-07 セイコーエプソン株式会社 Biological body sensor and biological body information detector
JP2016157763A (en) * 2015-02-24 2016-09-01 大阪瓦斯株式会社 Perovskite type solar battery and method for manufacturing the same
JP2017506426A (en) * 2013-11-05 2017-03-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Detector array for vein recognition technology
EP3157061A1 (en) * 2015-10-16 2017-04-19 Fundacio Privada Institut Catala de Nanociencia I Nanotecnologia (ICN2) Photodiode with intense photovoltage or photocurrents
JP2019136498A (en) * 2018-02-05 2019-08-22 三星電子株式会社Samsung Electronics Co.,Ltd. Heart beat sensors, heart beat sensor-embedded near-infrared organic image sensors and smart phones comprising the same, as well as wearable heart beat sensors, and angiographic devices
JP2020039000A (en) * 2014-07-16 2020-03-12 三星電子株式会社Samsung Electronics Co.,Ltd. Organic photoelectric element, image sensor, and electronic device
CN112436092A (en) * 2020-11-27 2021-03-02 华东师范大学 Double-end photoelectric artificial synapse device and preparation method and application thereof
CN112687792A (en) * 2020-12-18 2021-04-20 华东师范大学 Light-stimulated artificial synapse device at two ends and preparation method and application thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010060421A1 (en) * 2008-11-30 2010-06-03 Brandenburgische Technische Universität Solar cell having local electrostatic fields in the photoactive region
CN103107214A (en) * 2011-11-11 2013-05-15 中国科学院电工研究所 Nanometer dipole solar cell and preparation method thereof
JP2017506426A (en) * 2013-11-05 2017-03-02 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Detector array for vein recognition technology
CN104720784A (en) * 2013-12-20 2015-06-24 纳米新能源(唐山)有限责任公司 Vibration sensor and production method thereof
US10238290B2 (en) 2014-03-27 2019-03-26 Hamamatsu Photonics K.K. Probe for bioinstrumentation and bioinstrumentation device
JP2015188475A (en) * 2014-03-27 2015-11-02 浜松ホトニクス株式会社 Probe for biomedical measurement and biomedical measurement device
JP2020039000A (en) * 2014-07-16 2020-03-12 三星電子株式会社Samsung Electronics Co.,Ltd. Organic photoelectric element, image sensor, and electronic device
JP2016157763A (en) * 2015-02-24 2016-09-01 大阪瓦斯株式会社 Perovskite type solar battery and method for manufacturing the same
JP2016000205A (en) * 2015-07-01 2016-01-07 セイコーエプソン株式会社 Biological body sensor and biological body information detector
EP3157061A1 (en) * 2015-10-16 2017-04-19 Fundacio Privada Institut Catala de Nanociencia I Nanotecnologia (ICN2) Photodiode with intense photovoltage or photocurrents
JP2019136498A (en) * 2018-02-05 2019-08-22 三星電子株式会社Samsung Electronics Co.,Ltd. Heart beat sensors, heart beat sensor-embedded near-infrared organic image sensors and smart phones comprising the same, as well as wearable heart beat sensors, and angiographic devices
JP7235518B2 (en) 2018-02-05 2023-03-08 三星電子株式会社 Heartbeat sensor, near-infrared organic image sensor incorporating heartbeat sensor, smart phone including the same, wearable heartbeat sensor, angiography device
CN112436092A (en) * 2020-11-27 2021-03-02 华东师范大学 Double-end photoelectric artificial synapse device and preparation method and application thereof
CN112436092B (en) * 2020-11-27 2023-01-31 华东师范大学 Double-end photoelectric artificial synapse device and preparation method and application thereof
CN112687792A (en) * 2020-12-18 2021-04-20 华东师范大学 Light-stimulated artificial synapse device at two ends and preparation method and application thereof
CN112687792B (en) * 2020-12-18 2023-04-07 华东师范大学 Light-stimulated artificial synapse device at two ends and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2008103670A (en) Organic thin film photodetector, manufacturing method thereof, organic thin film light receiving/emitting element, manufacturing method thereof, and pulse sensor
Chow et al. Organic photodetectors for next‐generation wearable electronics
Xu et al. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives
Li et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system
Kielar et al. Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications
Sutherland et al. Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering
Peumans et al. Efficient, high-bandwidth organic multilayer photodetectors
US10367103B2 (en) Photoelectric conversion element
Arca et al. Interface trap states in organic photodiodes
CN101345291B (en) Organic polymer thin film ultraviolet detector and preparation method thereof
US20170243698A1 (en) Photoelectric conversion element
US20180075977A1 (en) Self-powered ghz solution-processed hybrid perovskite photodetectors
US20100163737A1 (en) Radiation detector, method of manufacturing radiation detector, and method of manufacturing supporting substrate
CN104103343A (en) Transparent conductive film and electric device
JP2008135657A (en) Photoelectric conversion element, manufacturing method thereof, and radiograph detector
US11879795B2 (en) Mechanoluminescent devices, articles, and methods
JP2009032983A (en) Organic thin film light receiving device, organic thin film light emitting/receiving device using the same organic thin film light receiving device, pulse sensor using the same organic thin film light emitting/receiving device, and vehicle where the same pulse sensor is disposed in steering
Shi et al. High performance flexible organic photomultiplication photodetector based on an ultra-thin silver film transparent electrode
Martínez‐Goyeneche et al. Narrowband monolithic perovskite–perovskite tandem photodetectors
Gao et al. Hybrid Interfacial Engineering: An Enabling Strategy for Highly Sensitive and Stable Perovskite Quantum Dots/Organic Heterojunction Phototransistors
Eynaud et al. Towards efficient NFA-based selective near-infrared organic photodetectors: impact of thermal annealing of polymer blends
JP3426211B2 (en) High-speed response photocurrent multiplier
US6878960B2 (en) Multiplication device comprising resin-dispersed organic semiconductor film and method for producing the same
JP2005136315A (en) Organic solar cell
JP2011124507A (en) Organic thin film solar battery module