JP2008103272A - Highly efficient planar light source element using planar side face light source - Google Patents

Highly efficient planar light source element using planar side face light source Download PDF

Info

Publication number
JP2008103272A
JP2008103272A JP2006286775A JP2006286775A JP2008103272A JP 2008103272 A JP2008103272 A JP 2008103272A JP 2006286775 A JP2006286775 A JP 2006286775A JP 2006286775 A JP2006286775 A JP 2006286775A JP 2008103272 A JP2008103272 A JP 2008103272A
Authority
JP
Japan
Prior art keywords
light
light source
light guide
planar
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286775A
Other languages
Japanese (ja)
Inventor
Shunso Cho
俊相 趙
Yasushi Tanabe
裕史 田邊
Katsuya Fujisawa
克也 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006286775A priority Critical patent/JP2008103272A/en
Publication of JP2008103272A publication Critical patent/JP2008103272A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar light source that is highly efficient and environment-friendly by adhering the whole side of a light guide body having an emitting light control sheet to a planar side light source which uses electroluminescence (EL). <P>SOLUTION: By optically coupling the whole side of the light guide body into which light is made incident from at least one side face where the emitted light control sheet is installed with the planar side light source as the incident light by means of physical sticking or scientific adhesion, light loss caused by the total reflection of the emitted light from the light source to the side face of the light guide body is prevented, and the light from the light-emitting face of the light guide body can be taken out efficiently toward the front direction while brightness unevenness is made less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、パーソナルコンピュータ、携帯型端末機用モニタ、ビデオカメラ、テレビ受信機、カーナビゲーションシステムなどの直視型液晶表示装置に用いられる高効率、親環境性の面光源素子およびその製造方法に関する。   The present invention relates to a high-efficiency, environmentally friendly surface light source element used in a direct-view liquid crystal display device such as a personal computer, a monitor for a portable terminal, a video camera, a television receiver, a car navigation system, and a manufacturing method thereof.

液晶パネルに代表される透過型表示装置は、面状に光を発する面光源素子(バックライト)とドット状に画素が配置された表示パネルとで構成され、該表示パネルの各画素における光の透過率をコントロールすることによって文字および映像が表示される。利用される面光源素子としては、冷陰極管(CCFL)、反射板、レンズ等が組み合わされて出射光の輝度の分布が制御されるもの、冷陰極管が導光体の端面に設けられ、冷陰極管からの入射光が導光体の端面と垂直な面から出射されるもの、冷陰極管が導光体の下部に設けられたもの(直下型)などが挙げられる。冷陰極管を利用した面光源素子は、高輝度を必要とする液晶プロジェクタに主に用いられる。一方、導光体を利用した面光源素子は薄型化が可能であるため、直視型の液晶TV、パーソナルコンピュータのディスプレイなどに用いられることが多い。   A transmissive display device typified by a liquid crystal panel includes a surface light source element (backlight) that emits light in a planar shape and a display panel in which pixels are arranged in a dot shape. Characters and images are displayed by controlling the transmittance. As a surface light source element to be used, a cold cathode tube (CCFL), a reflector, a lens or the like is used to control the luminance distribution of emitted light, a cold cathode tube is provided on the end face of the light guide, The incident light from the cold cathode tube is emitted from a surface perpendicular to the end face of the light guide, and the cold cathode tube is provided at the lower part of the light guide (direct type). A surface light source element using a cold cathode tube is mainly used in a liquid crystal projector that requires high luminance. On the other hand, since a surface light source element using a light guide can be thinned, it is often used for a direct-view liquid crystal TV, a display of a personal computer, and the like.

液晶TV、ノートパソコン、携帯型端末機用モニタなどのディスプレイに用いられる面光源素子では、消費電力を軽減することおよび高輝度かつ低輝度ムラであることが要求されている。さらに、近年のディスプレイにおいては薄型化および環境への配慮が強く要求されている。従来の面光源素子では、一般に、導光体の裏面側に反射シートを設け、または導光体裏面にドットを印刷し、あるいは凹凸パターン成形(賦型)することによって、光源からの光を散乱させて光源の光取出し効率を向上させている。さらに、面光源素子の高輝度化を実現することは、冷陰極管などの光源を増やすことで可能であるが、この方法は消費電力の増加につながるため実用的ではない。そこで、図3に示すような導光体上に光を効率よく取出せる出射光制御シートが設けられた構成の面光源素子が提案されている(特許文献1、特許文献2等を参照)。この面光源素子によれば、光の全反射を利用しており、光の損失が少なく、高輝度化を実現することができるが、依然、冷陰極管(CCFL)の利用による光源の低体積化や環境への負荷低減また、冷陰極管から導光体のへの入射光損失低減には限界がある。   Surface light source elements used in displays such as liquid crystal TVs, notebook personal computers, and portable terminal monitors are required to reduce power consumption and to have high luminance and low luminance unevenness. Furthermore, recent displays are strongly required to be thin and consider the environment. Conventional surface light source elements generally scatter light from the light source by providing a reflective sheet on the back side of the light guide, printing dots on the back side of the light guide, or forming an uneven pattern (molding). This improves the light extraction efficiency of the light source. Furthermore, it is possible to increase the luminance of the surface light source element by increasing the number of light sources such as cold cathode fluorescent lamps, but this method is not practical because it leads to an increase in power consumption. Therefore, a surface light source element having a configuration in which an outgoing light control sheet capable of efficiently extracting light is provided on a light guide as shown in FIG. 3 has been proposed (see Patent Document 1, Patent Document 2, and the like). According to this surface light source element, total reflection of light is utilized, and there is little loss of light and high brightness can be realized. However, the volume of the light source is still reduced by using a cold cathode tube (CCFL). There is a limit to reducing the incident light loss from the cold cathode fluorescent lamp to the light guide body.

一方、図4に示すような点光源の発光ダイオード(LED)と導光体から構成される面光源素子が提案されている(特許文献3等を参照)。この面光源素子によれば、表示素子のサイズに応じて多数のLED光源を利用して輝度向上を図っているが、点光源であるため特にLED間における非発光領域の存在により面光源の輝度ムラを完全に無くすことは困難である。また、図5にはLED光源の発光面と導光体の入射端面とが光学的に密着された面光源素子が提案されている(特許文献4等を参照)。この面光源素子によれば、該点光源であるLEDの発光面と導光体を構成する材料との屈折率の差が0.1以下である媒介物質を介することにより点光源からの光の全反射を抑制し、導光体面内の明るさが均一な面光源素子を図っているが、点光源であるため上記の導光体出射面の輝度ムラの解決には至っていない。また、図6には導光体の厚みに対してストライプ状の電界発光素子(OLED)の発光面と導光体の入射端面とが光学的に密着された面光源素子が提案されている(特許文献5等を参照)。この面光源素子によれば、従来のCCFLを側面光源として用いた場合、技術的に困難であった1.5mm以下の導光体(1.0mm)の側面と、導光体側面の長手方向に沿った線状(ストライプ状、幅0.1mm)の発光面(OLED)を光学的に接着して薄型面状光源の提供を図っているが、入射光として利用される発光面が導光体の厚みより細いストライプ状であるため上記導光体の輝度向上および輝度ムラの解決には至っていない。   On the other hand, a surface light source element composed of a light emitting diode (LED) as a point light source and a light guide as shown in FIG. 4 has been proposed (see Patent Document 3 and the like). According to this surface light source element, the luminance is improved by using a large number of LED light sources according to the size of the display element. It is difficult to eliminate unevenness completely. Further, FIG. 5 proposes a surface light source element in which the light emitting surface of the LED light source and the incident end surface of the light guide are in optical contact (see Patent Document 4 and the like). According to this surface light source element, the light from the point light source is transmitted through the mediator whose refractive index difference between the light emitting surface of the LED that is the point light source and the material constituting the light guide is 0.1 or less. Although a surface light source element that suppresses total reflection and has a uniform brightness in the light guide surface is intended, it is a point light source, but has not yet solved the luminance unevenness of the light guide surface. FIG. 6 also proposes a surface light source element in which the light emitting surface of a stripe-shaped electroluminescent element (OLED) and the incident end face of the light guide are in optical contact with each other with respect to the thickness of the light guide ( (See Patent Document 5). According to this surface light source element, when a conventional CCFL is used as a side light source, the side surface of the light guide (1.0 mm) of 1.5 mm or less, which was technically difficult, and the longitudinal direction of the side surface of the light guide A light emitting surface (OLED) having a linear shape (stripe shape, width 0.1 mm) along the surface is optically bonded to provide a thin surface light source, but the light emitting surface used as incident light guides light. Since the stripe shape is thinner than the thickness of the body, the luminance of the light guide is not improved and the luminance unevenness is not solved.

特開平8−221013号公報JP-A-8-2221013 特開2001−307524号公報JP 2001-307524 A 特開2001−155524号公報JP 2001-155524 A 特開2005−38755号公報JP 2005-38755 A 特開10−050124号公報Japanese Patent Laid-Open No. 10-050124

近年、透過型表示素子の薄型化、低消費電力化および親環境化しようとする要望が強い。一方、EL光源は薄く、EL光源を表示素子のバックライトとして用いれば透過型表示素子等の薄型化を達成することができる。しかし、EL光源には輝度が低いという課題が存在する。一方、一つの面に複数凸部を有する出射光制御シートを配置した導光体からなる面光源素子では、出射光制御シートおよび導光体での光の全反射を利用して光を伝播しており、光の損失が少なく、高輝度化を実現することができる。しかし、導光体の種類によっては、所期の輝度が得られないことがあった。   In recent years, there has been a strong demand for reducing the thickness of a transmissive display element, reducing the power consumption, and improving the environment. On the other hand, the EL light source is thin, and if the EL light source is used as a backlight of the display element, a transmissive display element or the like can be thinned. However, the EL light source has a problem of low luminance. On the other hand, in a surface light source element composed of a light guide having an output light control sheet having a plurality of convex portions on one surface, light is propagated using total reflection of light at the output light control sheet and the light guide. Therefore, there is little loss of light and high brightness can be realized. However, the desired luminance may not be obtained depending on the type of the light guide.

本発明は、上記の課題に鑑みてなされたもので、側面EL光源からの入射光を導光体の正面方向に効率よく取出すことが可能な高効率かつ環境にやさしいの面状光源およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a highly efficient and environmentally friendly planar light source capable of efficiently extracting incident light from a side EL light source in the front direction of the light guide and its manufacture. It aims to provide a method.

上記の課題を解決する本発明の面光源素子は、光を正面方向に効率よく取り出せるため少なくとも一つの面に複数凹凸部を有する出射光制御シートを備えた導光体の少なくとも一つの側面全体と、エレクトロルミネッセンス(EL)素子を側面発光源とする面状の光源とが、光学的に結合されることを特徴とする。本発明によって、側面光源からの入射光が導光体の側面と全反射することによる光損失を防止し、出射面からの光を導光体の正面方向に効率よく取出せることが可能である。   The surface light source element of the present invention that solves the above-mentioned problems is the entire at least one side surface of the light guide including an outgoing light control sheet having a plurality of uneven portions on at least one surface in order to efficiently extract light in the front direction. A planar light source having an electroluminescence (EL) element as a side light source is optically coupled. According to the present invention, it is possible to prevent light loss due to total reflection of incident light from the side light source with the side surface of the light guide, and to efficiently extract light from the output surface in the front direction of the light guide. .

上記導光体は出射光制御のため少なくとも一つの出射面に対して両面に複数の凸部(両面賦型)が設けられた導光体または、少なくとも一つの出射面に複数の凸部が設けられた出射光制御シートを備えた導光体が用いられ、導光体から該凸部の頂部に臨界角以上の角度で入射した光を該凸部によって光を取出すことを特徴とする。上記出射光制御シートの光源と対向する面とは反対側の面にも複数の凸部を設けても良い。   The light guide is provided with a plurality of convex portions (double-sided molding) on both sides with respect to at least one outgoing surface for outgoing light control, or a plurality of convex portions are provided on at least one outgoing surface. A light guide provided with the emitted light control sheet is used, and light incident on the top of the convex portion from the light guide at an angle greater than a critical angle is extracted by the convex portion. A plurality of convex portions may be provided on the surface opposite to the surface facing the light source of the emission light control sheet.

エレクトロルミネッセンス光源は発光層から発光した光のうち、発光層を覆う透明基材に対して臨界角以上で入射した光は空気層と全反射をおこして該透明基材から出射されない。本発明では、導光体の側面の全面とエレクトロルミネッセンス側面光源とを空気層を介せず光学的に接合することにより側面EL光源からの全反射を防止し導光体への入射効率を向上させ面光源素子の光取出し効率を向上させることができる。これによって面光源素子を高輝度化(導光体の正面方向に対する輝度を最大で30%程度向上)させることができる。   Of the light emitted from the light emitting layer, the electroluminescence light source is incident on the transparent substrate covering the light emitting layer at a critical angle or more, and is totally reflected from the air layer and is not emitted from the transparent substrate. In the present invention, the entire side surface of the light guide and the electroluminescent side light source are optically joined without an air layer, thereby preventing total reflection from the side EL light source and improving the incident efficiency to the light guide. Thus, the light extraction efficiency of the surface light source element can be improved. This can increase the luminance of the surface light source element (improve the luminance with respect to the front direction of the light guide by about 30% at the maximum).

本発明によれば、出射光制御部を有する両面賦形タイプおよび出射光制御シートを備えた導光体の側面の全面とエレクトロルミネッセンス(EL)素子の発光面を、空気層を介せず光学的に密着させることにより輝度ムラが発生せず、高効率かつ環境にやさしい面状光源を得ることができる。   According to the present invention, the entire side surface of the light guide including the double-sided shaped type having the outgoing light control unit and the outgoing light control sheet and the light emitting surface of the electroluminescence (EL) element are optically arranged without an air layer. The surface light source can be obtained with high efficiency and environment-friendliness without causing unevenness of brightness.

図1および図2を用いて本発明の原理を説明する。図2は透明ガラスなどに代表される透明基板5、ITOなどに代表される透明電極6、発光層7および金属層8で構成された一般的なエレクトロルミネッセンスを発光原理とする光源(EL光源1)の光線追跡概略断面図である。透明基板5の屈折率をn、出射側を空気とした場合、臨界角はθc=Sin−1(1/n)で得られる(ただし、空気の屈折率を1とする。)。透明基板5と空気との界面に達した光の中で、透明基板5への入射角が臨界角より小さい場合には、透明基板5と空気との界面で屈折して出射される(図2に示す光線L1)。臨界角より大きな角度で入射した光は、全反射により再度透明基板5内を伝搬する。この反射光はEL発光層7と金属電極8との界面で再度反射されるが、金属電極8の表面層が透明基板の表面と平行である場合には、透明基板5の表面と金属電極8の表面層とで多重反射を繰り返し、透明基板5から出射されることはない(図2に示す光線L2)。 The principle of the present invention will be described with reference to FIGS. FIG. 2 shows a light source (EL light source 1) having a general electroluminescence composed of a transparent substrate 5 typified by transparent glass, a transparent electrode 6 typified by ITO and the like, a light emitting layer 7 and a metal layer 8. FIG. When the refractive index of the transparent substrate 5 is n and the emission side is air, the critical angle is obtained by θc = Sin −1 (1 / n) (however, the refractive index of air is 1). In the light that reaches the interface between the transparent substrate 5 and air, when the incident angle to the transparent substrate 5 is smaller than the critical angle, the light is refracted and emitted at the interface between the transparent substrate 5 and air (FIG. 2). Light ray L1) shown in FIG. Light incident at an angle larger than the critical angle propagates again through the transparent substrate 5 by total reflection. This reflected light is reflected again at the interface between the EL light-emitting layer 7 and the metal electrode 8. When the surface layer of the metal electrode 8 is parallel to the surface of the transparent substrate, the surface of the transparent substrate 5 and the metal electrode 8 are reflected. Multiple reflections are repeated with the surface layer, and the light is not emitted from the transparent substrate 5 (light ray L2 shown in FIG. 2).

一方、点光源のLED側面光源を導光体と一体化した面光源素子の場合は用いる該LEDの個数を増やすことにより面光源の高輝度化は可能であるが、点光源であるため該LED間の暗所の存在により面光源の輝度ムラの発生と該LED個数の増加による消費電力の増大が懸念される。また、導光体側面の厚さより細い面状のストライプ状のEL光源を側面入射光とする面光源においても上記の問題の解決には困難である。本発明において面状側面光源として使用するEL光源のエレクトロルミネッセンス層を形成する材料としては有機物、無機物または有機/無機ハイブリッド物の何れでも良い。また、本発明は透明基板で覆われたEL光源内で起こる全反射によりEL光源内に閉じ込められる光を導光体側面の全面と密着または接着させることで取出すことが可能であるから、EL光源の構成の如何に関わらず利用することができる。   On the other hand, in the case of a surface light source element in which the LED side surface light source of the point light source is integrated with the light guide, it is possible to increase the brightness of the surface light source by increasing the number of the LEDs used. Due to the presence of a dark space between them, there is a concern about the occurrence of uneven brightness of the surface light source and an increase in power consumption due to an increase in the number of LEDs. In addition, it is difficult to solve the above problem even in a surface light source in which a planar stripe-shaped EL light source thinner than the thickness of the side surface of the light guide is used as side surface incident light. In the present invention, the material for forming the electroluminescent layer of the EL light source used as the planar side light source may be any of an organic material, an inorganic material, and an organic / inorganic hybrid material. Further, according to the present invention, light confined in the EL light source due to total reflection occurring in the EL light source covered with the transparent substrate can be taken out by adhering to or adhering to the entire surface of the light guide body. It can be used regardless of the configuration.

図1はEL光源の上記透明基板4の光出射面と、出射光制御シート3を備えた導光体の側面に接着して得られる本発明の面光源素子の概略図である。EL側面光源の透明基板4に対向する面、つまり出射光制御のため上下に複数の凸部が形成されている導光体あるいは、複数の凸部が形成されている出射光制御シート3が備えられた導光体の光入射面はEL光源1の透明基板4の出射面と接着して一体化されている。図1に示すEL光源1の発光層6から生じた光は、透明基板4内を伝搬して光出射面に達する。   FIG. 1 is a schematic view of a surface light source element of the present invention obtained by adhering to a light emitting surface of the transparent substrate 4 of an EL light source and a side surface of a light guide provided with an emitted light control sheet 3. A surface of the EL side light source that faces the transparent substrate 4, that is, a light guide body in which a plurality of convex portions are formed on the top and bottom for controlling emitted light, or an output light control sheet 3 in which a plurality of convex portions are formed. The light incident surface of the light guide is adhered and integrated with the exit surface of the transparent substrate 4 of the EL light source 1. The light generated from the light emitting layer 6 of the EL light source 1 shown in FIG. 1 propagates through the transparent substrate 4 and reaches the light emitting surface.

該凸部パターンの断面形状は、直線、曲線のいずれで構成されていてもよい。曲線で構成される場合には放物線、楕円、またはこれらの曲線を組み合わせて構成されることが望ましい。なお、出射光制御板の入射面側に設けられる凸部の形状および出射面側に設けられる凸部の形状を変化させることによって、面状光源素子の出射面に対して斜め方向に輝度のピークを向けることが可能である。   The cross-sectional shape of the convex pattern may be constituted by either a straight line or a curved line. In the case of a curved line, a parabola, an ellipse, or a combination of these curves is desirable. It should be noted that by changing the shape of the convex portion provided on the incident surface side of the outgoing light control plate and the shape of the convex portion provided on the outgoing surface side, the luminance peak is oblique to the outgoing surface of the planar light source element. Can be directed.

本発明において出射光制御部に設けられる上記複数の凸部(マイクロプリズムアレイ)は周期性を有していなくても良いが、1次元あるいは2次元の周期構造をなしていてもよい。出射光制御板に設けられる上記複数の凸部が周期性を有する場合には、凸部の周期(ピッチ)に対する凸部の高さの割合が1/3から2の範囲にあることが望ましい。この範囲より小さくなると凸部壁面での屈折、反射が起こり難くなることがあり、この範囲よりも大きくなると、凸部の密着部以外からのEL出射光が該凸部で屈折されることがあるからである。また、該周期は10μmから5cmの範囲にあることが望ましい。該凸部が1次元パターンである場合には凸部の溝方向に対して直交する方向のみの角度分布を制御することができるが、該凸部が2次元パターンの場合には両方向の角度分布を制御することが可能である。   In the present invention, the plurality of convex portions (microprism array) provided in the outgoing light control unit may not have periodicity, but may have a one-dimensional or two-dimensional periodic structure. When the plurality of convex portions provided on the outgoing light control plate have periodicity, it is desirable that the ratio of the height of the convex portion to the period (pitch) of the convex portion is in the range of 1/3 to 2. If it is smaller than this range, refraction and reflection at the convex wall surface may be difficult to occur, and if it is larger than this range, EL emitted light from other than the close contact portion of the convex portion may be refracted by the convex portion. Because. The period is preferably in the range of 10 μm to 5 cm. When the convex portion is a one-dimensional pattern, the angular distribution only in the direction orthogonal to the groove direction of the convex portion can be controlled. However, when the convex portion is a two-dimensional pattern, the angular distribution in both directions is controlled. Can be controlled.

出射光制御板の光源に対向する面と、当該面とは反対側の面(出射面)とに共に1次元パターンの凸部を設ける場合、該1次元パターンの凸部が互いに直交する方向に設けられていることが望ましい。当該出射面にも凸部を設けることによって、EL光源からの光を取出すばかりでなく、面状光源素子からの出射光の角度分布の制御を行う機能を出射光制御板に持たせることができる。この出射光制御板の出射面側に設けられた凸部がプリズムアレイをなすように構成することで高輝度化が図られる。   When providing a convex portion of a one-dimensional pattern on both the surface facing the light source of the outgoing light control plate and the surface opposite to the surface (exit surface), the convex portions of the one-dimensional pattern are in a direction perpendicular to each other It is desirable to be provided. By providing a convex portion on the exit surface, the exit light control plate can have a function of controlling the angular distribution of the exit light from the planar light source element as well as taking out the light from the EL light source. . Brightness can be increased by configuring the projections provided on the exit surface side of the exit light control plate to form a prism array.

上記出射光制御の表面の凸部は、熱プレス法、紫外線硬化による2P法、熱硬化による2P法、雌金型を用いた射出成形法等によって形成することができる。出射光制御板の作製に用いるスタンパは、例えばガラス基板上にネガ型あるいはポジ型の感光性樹脂をコーティングし、この感光性樹脂を、フォトマスクを介して露光し、現像後に電鋳を行うことにより作製することができる。出射光制御板は板状である必要はなく、シート状であってもよい。板状およびシート状の何れでも量産性に富むため、安価で大量に製造することが可能である。また該出射光制御板の凸部のパターンは1次元ばかりでなく、2次元的に配置されていても良い。出射光制御板の光出射面にもマイクロレンズアレイが設けられていても良い。   The convex portions on the surface of the emission light control can be formed by a hot press method, a 2P method by ultraviolet curing, a 2P method by thermal curing, an injection molding method using a female mold, or the like. For example, a stamper used for producing an outgoing light control plate is obtained by coating a negative or positive photosensitive resin on a glass substrate, exposing the photosensitive resin through a photomask, and performing electroforming after development. Can be produced. The outgoing light control plate does not have to be plate-shaped and may be sheet-shaped. Since both the plate shape and the sheet shape are rich in mass productivity, they can be manufactured in large quantities at a low cost. Moreover, the pattern of the convex part of the emitted light control plate may be arranged not only one-dimensionally but also two-dimensionally. A microlens array may also be provided on the light exit surface of the exit light control plate.

導光体の成形に用いる樹脂としては、アクリル樹脂の外にポリカーボネート樹脂、ポリスチレン樹脂等の透明性に優れるものが挙げられる。導光体は、パネルソーおよびNCフライス盤を用いた切削加工により成形することができる。この場合、例えば、パネルソーを用いて基準寸法より両端で数mm大きく切断した後、NCフライス盤でコンパックス刃を用いて粗切削を行い、さらにNCフライス盤でダイヤモンド刃を用いて精密切削を行えば良い。   Examples of the resin used for forming the light guide include those having excellent transparency such as polycarbonate resin and polystyrene resin in addition to the acrylic resin. The light guide can be formed by cutting using a panel saw and an NC milling machine. In this case, for example, after cutting a few millimeters larger than the reference dimension using a panel saw, rough cutting is performed using a Compaqs blade on an NC milling machine, and further precision cutting is performed using a diamond blade on the NC milling machine. .

本発明で用いられる出射光制御シートの上記凸部は、例えばアクリル板をプレス成形することによって作製される。また、TACフィルム、アクリルフィルム、PETフィルム、PCフィルムなどの透明性を有するフィルム上に紫外線硬化樹脂を塗布し、雌金型をこれに押し付けて紫外線(UV)を照射することにより紫外線硬化樹脂を硬化させた後、雌金型から成形物を剥離することによっても作製することができる。透明樹脂を用いて射出成形することによっても出射光制御シートを備えた導光体を作製することができる。上記の出射光制御シートの凸部先端と導光体との密着部は、導光体から出射光制御シートに光を取り込むため光学的に結合している必要があり、そのような密着は、紫外線硬化型接着剤、ホットメルト接着剤等の接着剤、粘着材および両面テープなどのうち、透明性に優れるものを選択して用いること、あるいは、溶融圧着法などの直接接合法を用いることで実現できる。   The said convex part of the emitted light control sheet used by this invention is produced by press-molding an acrylic board, for example. In addition, an ultraviolet curable resin is applied on a transparent film such as a TAC film, an acrylic film, a PET film, a PC film, and the ultraviolet curable resin is irradiated by irradiating ultraviolet rays (UV) by pressing a female mold against the film. It can also be produced by peeling the molded product from the female mold after curing. A light guide provided with an outgoing light control sheet can also be produced by injection molding using a transparent resin. The contact portion between the projection tip of the outgoing light control sheet and the light guide body needs to be optically coupled to take light from the light guide body into the outgoing light control sheet. By selecting and using UV curable adhesives, adhesives such as hot melt adhesives, pressure sensitive adhesives and double-sided tapes, or by using a direct bonding method such as a melt pressure bonding method realizable.

上記の側面EL光源の透明基板と導光体の側面の全面との密着は、EL光源からの出射光を透明基板から導光体の側面に光を取り込むため光学的に結合している必要があり、そのような密着法としては、物理的、化学的な接着が考えられる。紫外線硬化型接着剤、ホットメルト接着剤等の接着剤、ポリビニルアルコールなどの粘着材および両面テープなどのうち、透明性に優れるものを選択して用いること、あるいは、溶融圧着法などの直接接合法を用いることで実現できる。または、紫外線(UV)硬化型の接着剤を用いて接着することができる。   The close contact between the transparent substrate of the side EL light source and the entire side surface of the light guide needs to be optically coupled in order to capture the light emitted from the EL light source from the transparent substrate to the side of the light guide. There is a physical and chemical adhesion as such an adhesion method. Of the adhesives such as UV curable adhesives, hot melt adhesives, adhesive materials such as polyvinyl alcohol, and double-sided tapes, select one with excellent transparency, or use a direct bonding method such as a melt pressure bonding method. This can be realized by using Alternatively, bonding can be performed using an ultraviolet (UV) curable adhesive.

上記の通り説明した面光源素子は液晶用バックライト、広告用バックライト、室内照明、標識等に利用できる。特に、上記の通り説明した面光源素子をバックライトとして用い、その出射面に透過型表示素子を設けることで、表示装置を構成することができる。この透過型表示素子としては、STN、TFT、MINIなどの液晶パネルが挙げられる。   The surface light source elements described above can be used for liquid crystal backlights, advertising backlights, room lighting, signs, and the like. In particular, a display device can be configured by using the surface light source element described above as a backlight and providing a transmissive display element on the emission surface. Examples of the transmissive display element include liquid crystal panels such as STN, TFT, and MINI.

<実施例1>
以下、実施例により本発明をより詳細に説明する。導光体として反射面にドットが印刷されたクラレ社製PMMA導光体(50mm(L)x50mm(W)x5mm(t))を使用した。該導光体側面中、側面光源を密着させる側面を除いてAl反射膜付きフィルムテープを貼り、反射面にはキモト製リフレクションフィルムを配置し、出射光面にはキモト製拡散シート、3M社製プリズムシートを配置した。側面光として用いたエレクトロルミネッセンス光源は透明電極ITO付透明基板(ガラス)上に市販のTPD(トリフェニルアミン系ホール輸送材料)、Alq3(8−アルミニウムキノリノール、電子輸送性発光材料)を蒸着法により積層(膜厚は500nm)した後、Al電極を蒸着法により製膜(膜厚は1000nm)し、グローブボックス中でガラスキャップを用いて封止を行い、導光体の厚さと同じ面積の側面光源(発光面積が50mm(L)x5mm(W))を得た。得られたEL光源の透明基板と導光体の光入射面側の接着にはクラレ社製ポリビニルアルコールの水溶液を接着剤として用い、導光体の光入射面に適量滴下した後、EL光源の透明基板側とを接着(光学的結合)させ1時間室温にて放置した。面状光源の評価は、EL光源専用の輝度-電圧-電流(L-V-I)測定装置を利用して、まずEL光源に電界を印加して一定の輝度が得られるように電流密度を設定した後、一定輝度を入射光として導光体中央からの出射光の正面輝度と導光体の出射場所による輝度ムラを測定した。
<Example 1>
Hereinafter, the present invention will be described in more detail with reference to examples. As the light guide, a PMMA light guide (50 mm (L) × 50 mm (W) × 5 mm (t)) manufactured by Kuraray Co., Ltd. having dots printed on the reflection surface was used. A film tape with an Al reflective film is applied to the side of the light guide except for the side where the side light source is in close contact, a reflection film made by Kimoto is placed on the reflective surface, and a diffusion sheet made by Kimoto is made on the outgoing light surface. A prism sheet was placed. The electroluminescence light source used as side light is a TPD (triphenylamine-based hole transport material) and Alq3 (8-aluminum quinolinol, electron transporting light-emitting material) on a transparent substrate (glass) with a transparent electrode ITO by vapor deposition. After laminating (film thickness is 500 nm), an Al electrode is formed by vapor deposition (film thickness is 1000 nm) and sealed with a glass cap in a glove box, and the side surface has the same area as the thickness of the light guide. A light source (light emitting area 50 mm (L) × 5 mm (W)) was obtained. For adhesion of the transparent substrate of the obtained EL light source and the light incident surface side of the light guide, an appropriate amount of an aqueous solution of polyvinyl alcohol manufactured by Kuraray Co., Ltd. was used as an adhesive, and after dropping an appropriate amount on the light incident surface of the light guide, The transparent substrate side was bonded (optically bonded) and left at room temperature for 1 hour. The evaluation of the planar light source uses a luminance-voltage-current (LVI) measuring device dedicated to the EL light source, and first sets the current density so that a certain luminance can be obtained by applying an electric field to the EL light source, The front luminance of the outgoing light from the center of the light guide and the luminance unevenness due to the exit location of the light guide were measured with constant luminance as incident light.

<実施例2>
導光体としてクラレ社製のPMMA導光体(50mm(L)x50mm(W)x5mm(t))を使用した。出射光制御シートとしてはPETフィルム(厚さが125μm)に導光体からの出射光を制御する複数の凸部をパターンニングしたクラレ社製のOPフィルム(ミラブライト)を用いて出射光制御シートの凸部と導光体の片面とを紫外線硬化樹脂を約10μmの厚さになるように塗布し、紫外線硬化樹脂面とアクリル導光体とをラミネーターで貼り合わせた後、高圧水銀ランプから発生させる微弱な紫外線をPETフィルム側から照射し、(120mJ)、半硬化状態の紫外線硬化樹脂層を得る。これにより、凸部が紫外線硬化樹脂層に埋没することを防ぎ、該凸部の先端のみを点接着させることができる。そして、PETフィルムを剥離して導光板の上に接着剤が塗布された状態を得る。その上から出射光制御シートを押つけ(圧力29419.95Pa)、ラミネーターを用いて貼り付ける。最後に出射光制御シート側から高圧水銀ランプから発せられる紫外線を照射し(2.0J)、紫外線硬化樹脂を完全に硬化して、OPフィルム付き導光体を得た。該導光体側面中、側面光源を接着させる側面を除いてAl反射膜付きフィルムテープを貼り、反射面にはキモト製リフレクションフィルムを配置した。側面EL光源の作製と導光体との接着法、得られた面光源の評価法は実施例1と同じ方法により評価を行った。
<Example 2>
A PMMA light guide (50 mm (L) x 50 mm (W) x 5 mm (t)) manufactured by Kuraray Co., Ltd. was used as the light guide. As the outgoing light control sheet, an outgoing light control sheet using an OP film (Mirabu light) manufactured by Kuraray Co., Ltd., in which a plurality of convex portions for controlling the outgoing light from the light guide is patterned on a PET film (thickness: 125 μm). Generated from a high-pressure mercury lamp after applying UV curable resin to the thickness of about 10μm on the convex portion of the light guide and one side of the light guide, and bonding the UV curable resin surface and the acrylic light guide with a laminator A weak ultraviolet ray to be irradiated is irradiated from the PET film side (120 mJ) to obtain a semi-cured ultraviolet curable resin layer. Thereby, it can prevent that a convex part is embed | buried in an ultraviolet curable resin layer, and can make only the front-end | tip of this convex part point-bond. Then, the PET film is peeled off to obtain a state where an adhesive is applied on the light guide plate. The outgoing light control sheet is pressed from above (pressure 29419.95 Pa) and pasted using a laminator. Finally, ultraviolet rays emitted from a high-pressure mercury lamp were irradiated from the outgoing light control sheet side (2.0 J), and the ultraviolet curable resin was completely cured to obtain a light guide with an OP film. A film tape with an Al reflective film was attached to the side surface of the light guide except for the side surface to which the side light source was bonded, and a reflection film made by Kimoto was placed on the reflective surface. The method for producing the side EL light source and the method for bonding the light guide and the method for evaluating the obtained surface light source were evaluated in the same manner as in Example 1.

<比較例1>
上記実施例1と比較するため、実施例1記載の導光体とEL側面光源を用いて、導光体の光入射側面とEL光源の透明基板とを完全接着(光学的結合)せず接触させることによって面状光源を得た。得られた面光源の評価法は実施例1と同じ方法により評価を行った。
<Comparative Example 1>
For comparison with Example 1 above, using the light guide described in Example 1 and the EL side light source, contact the light incident side of the light guide and the transparent substrate of the EL light source without complete adhesion (optical coupling). A planar light source was obtained. The evaluation method of the obtained surface light source was evaluated by the same method as in Example 1.

<比較例2>
上記実施例2と比較するため、実施例2記載の導光体とEL側面光源を用いて、導光体の光入射側面とEL光源の透明基板とを完全接着せず接触させることによって面光源を得た。得られた面光源の評価法は実施例1と同じ方法により評価を行った。
<Comparative example 2>
For comparison with Example 2, the surface light source is obtained by using the light guide described in Example 2 and the EL side light source and bringing the light incident side of the light guide into contact with the transparent substrate of the EL light source without completely bonding them. Got. The evaluation method of the obtained surface light source was evaluated by the same method as in Example 1.

上記の実施例1と比較例1にEL側面光源のついて、および実施例2と比較例2について、面光源の中央正面輝度を測定して比較した結果を表1に示す。   Table 1 shows the results of measuring and comparing the center front luminance of the surface light source for the EL side light source in Example 1 and Comparative Example 1, and in Example 2 and Comparative Example 2.

以上の結果から、EL側面光源の透明基板と導光体側面とをPVA水溶液の接着剤を用いて完全に接着(光学的結合)させた面光源の中央正面輝度の方が(実施例1、2)、EL側面光源の透明基板と導光体側面とを接触させた面光源(比較例1、2)の正面輝度より80%以上向上することが分かった。また、導光体の輝度ムラについては側面EL光源と導光体との接着方法にかかわらず側面光源が面状光源であるため測定場所による輝度ムラは3%未満であり、殆ど認められなかった。   From the above results, the central front luminance of the surface light source in which the transparent substrate of the EL side light source and the light guide side surface are completely bonded (optically coupled) using an adhesive of an aqueous PVA solution (Example 1, 2) It was found that the front luminance of the surface light source (Comparative Examples 1 and 2) in which the transparent substrate of the EL side light source was in contact with the light guide side surface was improved by 80% or more. In addition, as for the luminance unevenness of the light guide, since the side light source is a planar light source regardless of the bonding method between the side EL light source and the light guide, the luminance unevenness due to the measurement place was less than 3% and was hardly recognized. .

<比較例3>
上記実施例2と比較するため、実施例2に記載の導光体側面と側面光源として導光体側面の25%の発光面積(50mm(L)x5mm(W))を有するストライプ状のEL光源とし、上記実施例2と同一入射光量(全光束)を有する面状光源を作製した。側面EL光源の作製と導光体との接着法、得られた面状光源の評価法は実施例1と同じ方法により評価を行った。以上の結果から、導光体の出射側正面輝度については実施例2導光体の80%に止まることが分かった。また、導光体の輝度ムラについては測定場所による輝度ムラは10%以上と大きいことが分かった。
<Comparative Example 3>
For comparison with the second embodiment, the stripe-shaped EL light source having a light emitting area (50 mm (L) × 5 mm (W)) of 25% of the side surface of the light guide as a side light source and a side light source described in the second embodiment. A planar light source having the same amount of incident light (total luminous flux) as in Example 2 was prepared. The method for producing the side surface EL light source and the method for bonding the light guide and the method for evaluating the obtained surface light source were evaluated in the same manner as in Example 1. From the above results, it was found that the emission-side front luminance of the light guide is only 80% of the light guide of Example 2. It was also found that the luminance unevenness of the light guide was large as 10% or more depending on the measurement location.

本発明の面光源素子の概略構成斜視図である。It is a schematic structure perspective view of the surface light source element of this invention. ELを用いた従来の面光源素子における光線追跡図である。It is a ray tracing figure in the conventional surface light source element using EL. 従来の面光源素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional surface light source element. 従来の面光源素子の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the conventional surface light source element. 従来の面光源素子の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the conventional surface light source element. 従来の面光源素子の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional surface light source element.

符号の説明Explanation of symbols

1 エレクトロルミネッセンス(EL)側面光源
2 接着層
3 導光体
4 出射光制御シート
5 透明基板
6 透明電極
7 EL発光層
8 電極層
9 導光体出射面
10 陰極線管蛍光灯光源(CCFL)
11 リフレクタ
12 光源(LED)
13、14 上下凸凹部
DESCRIPTION OF SYMBOLS 1 Electroluminescence (EL) side light source 2 Adhesive layer 3 Light guide 4 Emission light control sheet 5 Transparent substrate 6 Transparent electrode 7 EL light emitting layer 8 Electrode layer 9 Light guide emission surface 10 Cathode-ray tube fluorescent lamp light source (CCFL)
11 Reflector 12 Light source (LED)
13, 14 Up and down convex recess

Claims (5)

一次光源と、該一次光源からの光を導光する導光体と、該導光体の少なくとも一つの面に複数の凹凸部を有する出射光制御シートとを備えており、該導光体の少なくとも一つの側面全体と、エレクトロルミネッセンス素子(以下、EL素子と称することがある。)を側面発光源とする面状光源とが、光学的に結合されることを特徴とする面状光源素子。   A primary light source, a light guide that guides light from the primary light source, and an outgoing light control sheet having a plurality of uneven portions on at least one surface of the light guide, A planar light source element, wherein at least one entire side surface and a planar light source having an electroluminescence element (hereinafter sometimes referred to as an EL element) as a side light source are optically coupled. 前記導光体の少なくとも一つの側面全体と前記側面光源とを光学的に結合させる方法として、該側面光源の全反射、散乱などを防ぐために空気層を介さず熱融着などによる物理的方法あるいは、側面光源の基板よりも屈折率は高く、導光体よりは低い屈折率を有する接着材などを用いる化学的方法で密着層または接着層を設けることを特徴とする請求項1に記載の面状光源素子。   As a method of optically coupling at least one side surface of the light guide and the side light source, a physical method by heat fusion or the like without using an air layer in order to prevent total reflection and scattering of the side light source, or 2. The surface according to claim 1, wherein the adhesion layer or the adhesion layer is provided by a chemical method using an adhesive having a refractive index higher than that of the substrate of the side light source and lower than that of the light guide. Light source element. 前記導光体において、少なくとも一つの方向に出射面を有し、外光から内部伝搬光の拡散反射または正反射機能を有する複数の凹凸部が設けられた透明部材からなる請求項1または2に記載の面状光源素子。   The said light guide body consists of a transparent member which has an output surface in at least one direction and is provided with a plurality of concave and convex portions having a function of diffuse reflection or regular reflection of internal propagation light from external light. The planar light source element described. 前記側面光源として有機材料、無機材料または、有機/無機ハイブリッド材料を発光層として用いたエレクトロルミネッセンス素子を発光源とする請求項1〜3のいずれか1項に記載の面状光源素子。   The planar light source element according to any one of claims 1 to 3, wherein an electroluminescent element using an organic material, an inorganic material, or an organic / inorganic hybrid material as a light emitting layer is used as the side light source. 前記側面光源として出射光が透明基板側から取出されるボトムエミッション型または透明電極側から取出されるトップエミッション型のエレクトロルミネッセンスを発光源とする請求項1〜6のいずれか1項に記載の面状光源素子。   The surface according to any one of claims 1 to 6, wherein a light emission source is a bottom emission type in which emitted light is extracted from the transparent substrate side or a top emission type electroluminescence extracted from the transparent electrode side as the side light source. Light source element.
JP2006286775A 2006-10-20 2006-10-20 Highly efficient planar light source element using planar side face light source Pending JP2008103272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286775A JP2008103272A (en) 2006-10-20 2006-10-20 Highly efficient planar light source element using planar side face light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286775A JP2008103272A (en) 2006-10-20 2006-10-20 Highly efficient planar light source element using planar side face light source

Publications (1)

Publication Number Publication Date
JP2008103272A true JP2008103272A (en) 2008-05-01

Family

ID=39437438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286775A Pending JP2008103272A (en) 2006-10-20 2006-10-20 Highly efficient planar light source element using planar side face light source

Country Status (1)

Country Link
JP (1) JP2008103272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130087372A (en) * 2010-04-06 2013-08-06 오와이 실리도미아 Laminate structure with embedded cavities and related method of manufacture
JP5482796B2 (en) * 2009-10-15 2014-05-07 コニカミノルタ株式会社 Sheet illumination device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482796B2 (en) * 2009-10-15 2014-05-07 コニカミノルタ株式会社 Sheet illumination device
KR20130087372A (en) * 2010-04-06 2013-08-06 오와이 실리도미아 Laminate structure with embedded cavities and related method of manufacture
KR102236599B1 (en) * 2010-04-06 2021-04-07 닛토덴코 가부시키가이샤 Laminate structure with embedded cavities and related method of manufacture
KR20210038999A (en) * 2010-04-06 2021-04-08 닛토덴코 가부시키가이샤 Laminate structure with embedded cavities and related method of manufacture
KR102270684B1 (en) * 2010-04-06 2021-07-01 닛토덴코 가부시키가이샤 Laminate structure with embedded cavities and related method of manufacture
US11692685B2 (en) 2010-04-06 2023-07-04 Nitto Denko Corporation Laminate structure with embedded cavities and related method of manufacture

Similar Documents

Publication Publication Date Title
US8432527B2 (en) Light guide device
TW202004079A (en) Optical device
KR101343106B1 (en) Backlight assembly, liquid crystal display and manufacturing method of the light guide plate
TWI542910B (en) Light guides and producing method thereof and display device
WO2011065052A1 (en) Planar lighting device and display device having same
US8496371B2 (en) Backlight module
JP2010123569A (en) Backlight assembly using flexible light guide film and liquid crystal display module including the same
TW201418628A (en) Light source module and manufacturing method thereof
KR20030085590A (en) Frontlit touch panel
JP2009043565A (en) Light guide plate, planar light unit, and display device
JP2009058846A (en) Liquid crystal display device
JP2009150981A (en) Optical sheet, backlight unit and display device
JP2009070709A (en) Liquid crystal display
JP5428313B2 (en) Light uniform element and backlight unit and display device using the same
JP2012238431A (en) Edge-light type backlight unit, and liquid crystal module using the same
JP2010218693A (en) Light guide plate for point-like light source
JP2010243982A (en) Light uniformizing element, backlight unit, and display
WO2010095305A1 (en) Illuminating device, surface light source, and liquid crystal display device
TW201215965A (en) Edge lighting back light module
JP2009117205A (en) Surface light source device, and image display device
JP5098575B2 (en) Optical sheet, backlight unit and display device
JP2010218839A (en) El element, backlight device for liquid crystal display, lighting system, electronic signboard device, display device, and light extraction film
CN207318773U (en) Backlight module of liquid crystal display
JP2008103272A (en) Highly efficient planar light source element using planar side face light source
US20180341051A1 (en) Led light-incident method of edge-lit backlight module