JP2008101782A - Dynamic vibration absorber - Google Patents

Dynamic vibration absorber Download PDF

Info

Publication number
JP2008101782A
JP2008101782A JP2008000851A JP2008000851A JP2008101782A JP 2008101782 A JP2008101782 A JP 2008101782A JP 2008000851 A JP2008000851 A JP 2008000851A JP 2008000851 A JP2008000851 A JP 2008000851A JP 2008101782 A JP2008101782 A JP 2008101782A
Authority
JP
Japan
Prior art keywords
vibration absorber
dynamic vibration
damping
dynamic
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008000851A
Other languages
Japanese (ja)
Other versions
JP4349460B2 (en
Inventor
Kazuto Sedo
一登 背戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2008000851A priority Critical patent/JP4349460B2/en
Publication of JP2008101782A publication Critical patent/JP2008101782A/en
Application granted granted Critical
Publication of JP4349460B2 publication Critical patent/JP4349460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic vibration absorber having consistently stable vibration damping effects without being influenced by a parameter fluctuation of a vibration damped object or the dynamic vibration absorber itself. <P>SOLUTION: The dynamic vibration absorber 1 comprises a plurality of spring members 6a, 6b extending from a common supporting member 2, weights 7 mounted at tips of the spring members 6a, 6b, respectively, so as to be cantilevered and supported in a rockable manner, and a damping member 12 mounted for damping the rocking of the weights 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は橋梁、鉄橋、船舶、ビル、自動車等乗り物、各種産業機械などに構造部材として鉄鋼材料等金属材料を用いている各種構造物の振動および騒音防止を目的とした動吸振器に関するものである。   The present invention relates to a dynamic vibration absorber for the purpose of vibration and noise prevention of various structures using metal materials such as steel materials as structural members in bridges, iron bridges, ships, buildings, automobiles, and various industrial machines. is there.

鉄鋼材料は構造部材として優れているために、多くの構造物に用いられている。その反面、内部減衰が極めて小さいので振動や騒音の原因を作ることになるという問題も抱えている。例えば、鉄道の鉄橋は車両の通過時に騒音が発生し、その騒音の大きさは車両速度が速くなるに伴って増加するので、騒音レベルを基準以下に保つためにやむなく速度規制が取られている。先般の神戸大地震ではコンクリート製の橋脚が500メートルに渡って折損されて大きな話題になったが、市街地の騒音レベルを下げるためにコンクリート製が使われた結果、このようなことを引き起こしたとも考えられる。自動車の車室内を静粛にするには、エンジン振動や路面からの振動が車体で増幅されないようにする必要がある。そのために、高級車になるほど車体の壁面にパテを多量に張り付けている。この問題は車体の軽量化によって省エネルギー化を図ろうとすることに逆行している。   Since steel materials are excellent as structural members, they are used in many structures. On the other hand, since the internal damping is extremely small, there is also a problem that causes vibration and noise. For example, railway railway bridges generate noise when vehicles pass through, and the magnitude of the noise increases as the vehicle speed increases, so speed regulation is unavoidable to keep the noise level below the standard. . In the recent Kobe earthquake, concrete piers were broken over 500 meters and became a big topic. However, concrete was used to lower the noise level in the city area, and as a result, this was caused. Conceivable. In order to quiet the interior of an automobile, it is necessary to prevent engine vibration and vibration from the road surface from being amplified by the vehicle body. For this reason, the more expensive a car is, the more putty is put on the wall of the car body. This problem goes against trying to save energy by reducing the weight of the car body.

トラック等の通過によって生じる橋梁の振動は、地盤に伝達され地域住民の居住性を侵害し社会問題化している。この問題を解決するために、動吸振器を取り付けて橋梁の振動を抑制する試みも検討されている。しかし、橋梁上の車両重量は常に変動しており、それによって橋梁の固有振動数も変化する。動吸振器は、一定の固有振動数を持つ制振対象にとって有効な手段であるが、変動するものには有効性が甚だしく減少する。また、橋梁の置かれた温度環境は、夏場と冬場、日中と夜間に大きな差があるが、動吸振器は温度変化によって制振性能が大きく影響されると言った問題がある。各種産業機械についても、振動問題を解消するために動吸振器を代表とする制振器が使われてきたが、構造物の固有振動数や環境温度等の変化に応じることができないので、前述と同様な問題を起こす。   Bridge vibrations caused by the passing of trucks, etc. are transmitted to the ground and invade the habitability of local residents, creating a social problem. In order to solve this problem, an attempt to suppress vibration of the bridge by attaching a dynamic vibration absorber is also being studied. However, the vehicle weight on the bridge is constantly changing, and the natural frequency of the bridge changes accordingly. A dynamic vibration absorber is an effective means for a vibration control target having a certain natural frequency, but its effectiveness is greatly reduced for a variable object. In addition, the temperature environment where the bridge is placed varies greatly between summer and winter, daytime and nighttime, but dynamic vibration absorbers have the problem that the vibration control performance is greatly affected by temperature changes. For various industrial machines, vibration dampers, such as dynamic vibration absorbers, have been used to eliminate vibration problems, but they cannot respond to changes in the natural frequency or environmental temperature of structures. Cause similar problems.

以上、従来の技術をまとめて、振動・騒音を低減する方法を列挙すると次のようになる。   As described above, the conventional techniques are summarized and the methods for reducing vibration and noise are listed as follows.

(1)制振材料やコンクリートのような内部減衰の大きい構造材料を用いる。   (1) Use structural materials with large internal damping such as damping materials and concrete.

(2)ゴムやパテのような吸振材を構造部材の表面に張る。   (2) A vibration-absorbing material such as rubber or putty is stretched on the surface of the structural member.

(3)動吸振器等制振器を取り付けて構造部材の減衰を外部から付与する。   (3) A vibration damper such as a dynamic vibration absorber is attached to provide damping of the structural member from the outside.

しかしながら、項目(1)の方法は構造部材としての強度に問題があり、しかも鉄鋼材料に比べれば内部減衰が大きいが、振動問題を解決できるほど大きな減衰を得ることはできない。項目(2)は極めて経験的で、強引な方法であり、高い周波数には効果があるが低次モードの振動のような低い振動数の制振にはほとんど効果がないことが知られている。   However, the method of item (1) has a problem in strength as a structural member, and the internal damping is larger than that of steel materials, but it is not possible to obtain such a large damping that the vibration problem can be solved. Item (2) is an extremely empirical and aggressive method that is effective at high frequencies but is known to have little effect on damping low frequencies such as low-order mode vibrations. .

項目(3)は、制振器の最適設計法がよく知られている。これに基づいて動吸振器等を設計調整すれば低次振動モードから高次振動モードまで振動がよく抑制される。特に、動吸振器は制振器を代表し最も優れた制振性能を発揮するのでよく用いられる。しかし、次のような問題を抱えており、それが実用上の大きな障害となってきた。   For item (3), the optimum design method of the vibration damper is well known. If a dynamic vibration absorber or the like is designed and adjusted based on this, vibration is well suppressed from the low-order vibration mode to the high-order vibration mode. In particular, a dynamic vibration absorber is often used because it represents the vibration damper and exhibits the most excellent vibration damping performance. However, it has the following problems, which has become a major obstacle to practical use.

(a)制振対象の固有振動数の変化など、制振対象のパラメータ変動によって極端に制振効果が損なわれる。   (A) The damping effect is drastically impaired by parameter fluctuations of the damping target such as a change in the natural frequency of the damping target.

(b)動吸振器の減衰係数変化など、動吸振器のパラメータ変動によって制振効果が損なわれる。   (B) The vibration damping effect is impaired by fluctuations in parameters of the dynamic vibration absorber such as a change in the damping coefficient of the dynamic vibration absorber.

(c)動吸振器は小型に作ることが可能であるが、それでも目立たないように外部に取り付けることが難しい。   (C) Although the dynamic vibration absorber can be made small, it is still difficult to attach to the outside so as not to stand out.

(d)低周波数の振動を抑制するために設計した動吸振器は、高周波数の騒音の抑制にはあまり貢献しない。   (D) A dynamic vibration absorber designed to suppress low-frequency vibrations does not contribute much to suppression of high-frequency noise.

本発明に係る動吸振器は、共通の支持部材から複数のバネ部材を延出し、これらバネ部材の先端にそれぞれ重りを取り付けてこれら重りを揺動自在に片持ち支持すると共に、これら重りの揺動を減衰するための減衰部材を取り付けたものである。   The dynamic vibration absorber according to the present invention extends a plurality of spring members from a common support member, attaches weights to the tips of the spring members, supports the weights in a swingable manner, and swings the weights. A damping member for damping the movement is attached.

即ちこれは、単一の動吸振器を複数に分割し、そのそれぞれに最適な設計を施すことによって、制振対象や動吸振器自体のパラメータ変動の影響を減小すると共に、構成をコンパクトとし、しかも高次モードの騒音制御にも効果を発揮するものである。   In other words, by dividing a single dynamic vibration absorber into multiple parts and applying an optimal design to each of them, the influence of parameter fluctuations on the vibration suppression target and the dynamic vibration absorber itself can be reduced, and the structure can be made compact. In addition, it is also effective for high-order mode noise control.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1) 制振対象や動吸振器自体のパラメータ変動に影響を受けず、常に安定した制振効果を発揮できる。   (1) A stable vibration control effect can always be exhibited without being affected by parameter variations of the vibration control target or the dynamic vibration absorber itself.

(2) 高周波数の騒音抑制にも効果を発揮できる。   (2) It is also effective in suppressing high frequency noise.

(3) 小型化を達成できる。   (3) Miniaturization can be achieved.

以下、本発明の好適な実施の形態を添付図面に基づいて詳述する。   Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明に係る動吸振器の最小形態を成す2重動吸振器の構成例を示す。   FIG. 1 shows an example of the structure of a double dynamic vibration absorber that forms the minimum configuration of the dynamic vibration absorber according to the present invention.

図示するように、2重動吸振器1は、制振対象となる構造物Sに適当な手段(ボルト、接着剤等)にて固定される支持部材2を有し、支持部材2は分割可能な下部ブロック3及び上部ブロック4から構成される。これら下部ブロック3及び上部ブロック4は2本のボルト5で締結されるが、この締結に際して、ブロック3,4間、及び上部ブロック4とボルト5間にはそれぞれ板バネ6が挟まれて取り付けられる。上下の板バネ6は平行バネをなし、それら両端が支持部材2の両側にそれぞれ延出されて、上下の端部間に重りとしてのブロック部材7を配置させる。板バネ6の両端部には2つの長孔8が設けられ、これら長孔8にはボルト9が挿通され、ボルト9はブロック部材7を適当な位置にて固定する。このようにして、ブロック部材7は板バネ6の長手方向に沿って移動自在に取り付けられ、その位置調整が可能となる。特に板バネ6の、支持部材2から延出する左側延出部6a及び右側延出部6bは、互いの長さL1 ,L2 がそれぞれ異なっていて、ここでは左側延出部6aが右側延出部6bより長くなっている(L1 >L2 )。 As shown in the figure, the double dynamic vibration absorber 1 has a support member 2 fixed to the structure S to be controlled by an appropriate means (bolt, adhesive, etc.), and the support member 2 can be divided. The lower block 3 and the upper block 4 are formed. The lower block 3 and the upper block 4 are fastened with two bolts 5. At the time of fastening, the leaf springs 6 are sandwiched between the blocks 3 and 4 and between the upper block 4 and the bolts 5. . The upper and lower leaf springs 6 are parallel springs, and both ends thereof are extended to both sides of the support member 2, and a block member 7 as a weight is disposed between the upper and lower ends. Two long holes 8 are provided at both ends of the leaf spring 6, and bolts 9 are inserted into the long holes 8, and the bolts 9 fix the block member 7 at an appropriate position. In this way, the block member 7 is movably attached along the longitudinal direction of the leaf spring 6, and its position can be adjusted. In particular, the left extension 6a and the right extension 6b of the leaf spring 6 extending from the support member 2 have different lengths L 1 and L 2 , and here the left extension 6a is on the right. It is longer than the extending portion 6b (L 1 > L 2 ).

こうして、共通の支持部材2から、平行バネの略半分部分(左側延出部6a及び右側延出部6bの上下の組)がなす2つのバネ部材が延出され、これらバネ部材の先端にそれぞれ重りが取り付けられて、これら重りが揺動自在に片持ち支持されることになる。   Thus, the two spring members formed by the substantially half portions of the parallel spring (upper and lower sets of the left extension portion 6a and the right extension portion 6b) are extended from the common support member 2, and are respectively attached to the tips of these spring members. Weights are attached, and these weights are supported in a swingable manner.

上部ブロック4の両側面からは、上部ブロック4に貫通固定されたねじ付シャフト10が延出され、このねじ付シャフト10の先端部には調整ナット部材11が螺合して取り付けられている。調整ナット部材11はその先端部に減衰部材12を一体的に有している。減衰部材12は、シリコンゲル等の高分子材料等の減衰材より成っている。そして調整ナット部材11のシャフト10に沿った、或いは板バネ6の延出方向に沿った位置調整により、減衰部材12はブロック部材7に可変の押し付け力を与え、ブロック部材7の揺動を適宜減衰するようになっている。   From both side surfaces of the upper block 4, a threaded shaft 10 penetrating and fixed to the upper block 4 is extended, and an adjustment nut member 11 is screwed and attached to the tip of the threaded shaft 10. The adjustment nut member 11 integrally has a damping member 12 at its tip. The damping member 12 is made of a damping material such as a polymer material such as silicon gel. Then, by adjusting the position of the adjusting nut member 11 along the shaft 10 or along the extending direction of the leaf spring 6, the damping member 12 gives a variable pressing force to the block member 7, and the block member 7 is appropriately swung. Attenuates.

ここで、詳しくは後述するが、2つのバネ部材はバネ定数k1,k2 、2つの重りはm1,m2 、2つの減衰材はc1,c2 と定義し、これらの値は最適同調、最適減衰を取るように設計する。本構造では、重りの取り付け位置によって最適同調、調整ナット部材11の位置調整によって最適減衰が得られるように、微少調整できるようになっている。   As will be described in detail later, the two spring members are defined as spring constants k1 and k2, the two weights are defined as m1 and m2, and the two damping materials are defined as c1 and c2. Design to take. In this structure, the fine tuning can be performed so that the optimum tuning can be obtained by adjusting the weight and the optimum damping can be obtained by adjusting the position of the adjusting nut member 11.

図2は、本発明に係る動吸振器の別の形態を成す4重動吸振器の構成例を示す。この4重動吸振器21においては、支持部材22をなす下部ブロック23及び上部ブロック24の間に、十字形に形成された板バネ25が、ボルト26によって挟持して固定されている。板バネ25の4つの延出部25aがバネ部材を形成し、これら延出部25aの先端部に、重りとしてのブロック部材27がそれぞれボルト28a、ナット28bで載置固定される。延出部25aの先端部には長孔28cが設けられ、これによってブロック部材26の位置は調整可能となる。4つの延出部25aの長さは、若干ではあるがそれぞれ異なっている。   FIG. 2 shows a configuration example of a quadruple dynamic vibration absorber that is another embodiment of the dynamic vibration absorber according to the present invention. In the quadruple vibration absorber 21, a leaf spring 25 formed in a cross shape is fixed between a lower block 23 and an upper block 24 constituting a support member 22 by a bolt 26. The four extending portions 25a of the leaf spring 25 form spring members, and block members 27 as weights are placed and fixed to the distal ends of these extending portions 25a by bolts 28a and nuts 28b, respectively. A long hole 28c is provided at the distal end of the extending portion 25a, whereby the position of the block member 26 can be adjusted. The lengths of the four extending portions 25a are slightly different from each other.

上部ブロック24の外側面、延出部25aの上面、及びブロック部材26の内側面が区画する隙間には、減衰部材29が圧縮挿入して取り付けられている。そして減衰部材29はその隙間を埋め尽くし、上部ブロック24及びブロック部材26の各上面に面一となっている。   A damping member 29 is compressed and inserted into a gap defined by the outer surface of the upper block 24, the upper surface of the extending portion 25a, and the inner surface of the block member 26. The attenuation member 29 fills up the gap and is flush with the upper surfaces of the upper block 24 and the block member 26.

このように、詳しくは後述するが、単一動吸振器と同等の重りを4等分に分割して分散配置することによって薄型でコンパクトな動吸振器が実現できる。重りを4分割してm1〜m4が定まれば、各バネ定数k1〜k4、及び減衰係数c1〜c4は後述の式(22),(29)によって決定される。   As described in detail later, a thin and compact dynamic vibration absorber can be realized by dividing the weight equivalent to the single dynamic vibration absorber into four equal parts and distributing them. If the weights are divided into four and m1 to m4 are determined, the spring constants k1 to k4 and the damping coefficients c1 to c4 are determined by equations (22) and (29) described later.

図3は、本発明に係る動吸振器の別の形態を成す8重動吸振器を示す。この8重動吸振器31においては、支持部材32が、前後に長い直方体状の上部ブロック33及び下部ブロック34により一体的に構成されている。上部ブロック33の両側面からは、それぞれ4枚の板バネ35が並列に配置されて延出されている。板バネ35の長さはそれぞれ異なっており、その各先端には重りとしてのブロック部材36が一体的に取り付けられている。板バネ35は、その両端が上部ブロック33及びブロック部材36の高さ中心位置に接続されており、板バネ35の上下の隙間に、減衰部材37が前記とは異なり一体的に固着されている。   FIG. 3 shows an eight-fold dynamic vibration absorber that is another embodiment of the dynamic vibration absorber according to the present invention. In the eight-fold vibration damper 31, the support member 32 is integrally formed by a rectangular parallelepiped upper block 33 and a lower block 34 that are long in the front-rear direction. Four leaf springs 35 are arranged in parallel and extend from both side surfaces of the upper block 33. The lengths of the leaf springs 35 are different from each other, and a block member 36 serving as a weight is integrally attached to each tip. Both ends of the leaf spring 35 are connected to the height center positions of the upper block 33 and the block member 36, and a damping member 37 is integrally fixed to the upper and lower gaps of the leaf spring 35 unlike the above. .

特にこの8重動吸振器31は、先の2重動吸振器を基本単位としてこれを4個取り付けたものである。これを2個にすれば4重動吸振器、3個にすれば6重動吸振器が構成される。   In particular, this eight-fold vibration absorber 31 has four of these attached as a basic unit. If the number is two, a quadruple dynamic vibration absorber is formed, and if the number is three, a six dynamic vibration absorber is formed.

図4は、本発明に係る動吸振器の別の形態を成す12重動吸振器を示す。この12重動吸振器41にあっては、支持部材42が短円柱状の上部ブロック43及び下部ブロック44により一体形成され、その上部ブロック43の側面から、長さが同一或いは相違の12枚の板バネ45がそれぞれ放射状に(上部ブロック43を中心とする半径方向に)等間隔で延出されている。そして各板バネ45の先端には重りとしてのブロック部材46が一体的に取り付けられている。さらに板バネ45の上下の隙間に、前記同様、減衰部材47が一体的に固着されている。   FIG. 4 shows a twelfth dynamic vibration absorber constituting another form of the dynamic vibration absorber according to the present invention. In the twelve double vibration damper 41, a support member 42 is integrally formed by a short columnar upper block 43 and a lower block 44. From the side surface of the upper block 43, twelve sheets having the same or different length are provided. The leaf springs 45 extend radially at equal intervals (in the radial direction with the upper block 43 as the center). A block member 46 as a weight is integrally attached to the tip of each leaf spring 45. Further, the damping member 47 is integrally fixed to the upper and lower gaps of the leaf spring 45 as described above.

このように、本発明に係る動吸振器は、バネ部材、重り及び減衰部材からなる一単位の動吸振器を複数有するマルチ動吸振器(複合動吸振器)である。   Thus, the dynamic vibration absorber according to the present invention is a multi-dynamic vibration absorber (combined dynamic vibration absorber) having a plurality of one unit of dynamic vibration absorbers including a spring member, a weight, and a damping member.

さて次に、以上の形態に代表される本発明のマルチ動吸振器に関して、その基本構成とこれを最適設計するための解析法について示す。   Now, the basic configuration of the multi-vibration absorber of the present invention represented by the above embodiment and an analysis method for optimally designing the same will be described.

(a)マルチ動吸振器の解析と変位振幅比制振対象物にマルチ動吸振器を設置した力学モデルを図5に示す。ここで、MおよびKは制振対象物の1自由度モデルの質量とバネ定数、mi, ki, ciはi番目の動吸振器の質量、バネ定数、減衰係数である。本モデルでは構造物の減衰は非常に小さなもので無視できるものとして考える。この力学モデルより導き出される運動方程式を次に示す。但し、x は制振対象の変位、xi、fiはi 番目の動吸振器の変位と制振対象に作用する力、fin は制振対象に作用する外力である。(i= 1,2,3,.....,n)   (A) Analysis of a multi-vibration absorber and a dynamic model in which a multi-vibration absorber is installed on a displacement amplitude ratio damping object is shown in FIG. Here, M and K are the mass and spring constant of the one-degree-of-freedom model of the object to be controlled, and mi, ki, and ci are the mass, spring constant, and damping coefficient of the i-th dynamic vibration absorber. In this model, the damping of the structure is considered to be negligible and negligible. The equation of motion derived from this dynamic model is shown below. Where x is the displacement of the vibration suppression object, xi and fi are the displacement of the i th dynamic vibration absorber and the force acting on the vibration suppression object, and fin is the external force acting on the vibration suppression object. (I = 1,2,3, ....., n)

Figure 2008101782
Figure 2008101782

ただし、   However,

Figure 2008101782
Figure 2008101782

とする。   And

次に、この振動系において、   Next, in this vibration system,

Figure 2008101782
Figure 2008101782

とおく。ただし、X 、Xi、F は、x 、xi、fiの複素振幅を表している。これらを式(3)に代入すると、   far. However, X, Xi, and F represent the complex amplitude of x, xi, and fi. Substituting these into equation (3) gives

Figure 2008101782
Figure 2008101782

また、   Also,

Figure 2008101782
Figure 2008101782

の関係より、   From the relationship

Figure 2008101782
Figure 2008101782

したがって、   Therefore,

Figure 2008101782
Figure 2008101782

となる。これを式(1)に代入すると、   It becomes. Substituting this into equation (1) gives

Figure 2008101782
Figure 2008101782

外力fin と主振動系のばね定数K の比fin/K を静たわみXst と定義すると、変位振幅比X/Xst は次のように表わせる。




If the ratio fin / K between the external force fin and the spring constant K of the main vibration system is defined as the static deflection Xst, the displacement amplitude ratio X / Xst can be expressed as follows.




Figure 2008101782
Figure 2008101782

ここで、以下に示す無次元数を導入する。   Here, the dimensionless numbers shown below are introduced.

Figure 2008101782
Figure 2008101782

λは強制振動数比、μは質量比、γは固有振動数比、ζは減衰率である。したがって、変位振幅比は、   λ is a forced frequency ratio, μ is a mass ratio, γ is a natural frequency ratio, and ζ is a damping rate. Therefore, the displacement amplitude ratio is

Figure 2008101782
Figure 2008101782

ただし、   However,

Figure 2008101782
Figure 2008101782

また、変位振幅比の大きさは、

The magnitude of the displacement amplitude ratio is

Figure 2008101782
Figure 2008101782

となる。   It becomes.

(b)マルチ動吸振器の最適調整条件複合動吸振器の最適調整の目的は主振動系の最大変位振幅比|X/Xst |max をいかに小さくするかにある。その方法として、動吸振器の設置数が一つまたは二つの場合、定点理論を適用することができる。定点理論とは次のようなものである。   (B) Optimum adjustment condition for multi-vibration absorber The purpose of optimum adjustment of the compound dynamic absorber is to reduce the maximum displacement amplitude ratio | X / Xst | max of the main vibration system. As the method, when the number of installed dynamic vibration absorbers is one or two, the fixed point theory can be applied. Fixed point theory is as follows.

動吸振器のばね定数を一定値にし、減衰係数を変化させると、変位振幅曲線上に減衰係数の値には関係しない定点が複数個存在する。そこで次のような方法を用いる。   When the spring constant of the dynamic vibration absorber is set to a constant value and the attenuation coefficient is changed, there are a plurality of fixed points that are not related to the value of the attenuation coefficient on the displacement amplitude curve. Therefore, the following method is used.

(1)これらの定点の高さをそろえる(最適同調)
(2)これらの定点の付近に極大値がくるようにする(最適減衰)
これら二つの方法で最適調整を行うものが定点理論である。
(1) Align the heights of these fixed points (optimal tuning)
(2) Make local maximum values near these fixed points (optimum attenuation)
A fixed point theory is one in which optimum adjustment is performed by these two methods.

しかし、動吸振器の設置数が3つ以上になってしまうと、前述のような定点は存在しなくなり、定点理論による最適調整は望めない。   However, if the number of installed dynamic vibration absorbers is 3 or more, the fixed points as described above do not exist, and optimal adjustment based on the fixed point theory cannot be expected.

そこで、主振動系にn個の動吸振器を取付けた場合の変位振幅曲線をμ1 …μnは一定値とし、γ1 …γn、ζ1 …ζnを変化させたところ、次のようなことがわかった。(1)多くて( n+1) 個の極大値とn個の極小値が存在する。 Therefore, when the displacement amplitude curve when n dynamic vibration absorbers are attached to the main vibration system, μ 1 ... Μn is a constant value and γ 1 ... Γn and ζ 1 . I understood. (1) There are at most (n + 1) maximum values and n minimum values.

(2)n個の極小値の場所(x座標)はそれぞれに対応したn個の1/γ1 …1/γnの影響を大きく受ける。 (2) The location (x coordinate) of n local minimum values is greatly affected by n 1 / γ 1 .

(3)ある極小値とその両隣に位置する極大値との高さ(y座標)の差はそれぞれに対応したn個のζ1 …ζnの影響を大きく受ける。 (3) The difference in height (y coordinate) between a certain minimum value and the maximum value located on both sides thereof is greatly affected by n ζ 1 .

ここで、極大値付近をピーク、極小値付近をノッチと呼ぶことにし、(1)、(2)、(3)をどのように利用し、最適同調、最適減衰にまで導いたのかを以下に示す。 Here, the vicinity of the maximum value is called a peak, and the vicinity of the minimum value is called a notch, and how (1), (2), and (3) are used to lead to optimum tuning and optimum attenuation is described below. Show.

最適同調条件とは、「( n+1) 個のピークの高さをそろえること」と定義する。そのための評価関数として、( n+1) 個のピークの高さの平均と、各ピークの高さとの差を2乗し足し合わせたものを考えた。これをIとする。   The optimum tuning condition is defined as “aligning heights of (n + 1) peaks”. As an evaluation function for that purpose, a value obtained by squaring and adding the difference between the average height of (n + 1) peaks and the height of each peak was considered. This is I.

Figure 2008101782
Figure 2008101782

つまり、1/γ1 …1/γnを変化させ、このIを最小にすることが最適同調となる。 That is, the optimum tuning is to change 1 / γ 1 ... 1 / γn and minimize I.

最適減衰条件とは、「( n+1) 個のピークの高さの平均を最小にすること」と定義する。そのための評価関数として条件どおりに、( n+1) 個のピークの高さの平均を考えた。これをJとする。   The optimum attenuation condition is defined as “minimizing the average height of (n + 1) peaks”. As an evaluation function for that purpose, the average height of (n + 1) peaks was considered according to the conditions. This is J.

Figure 2008101782
Figure 2008101782

つまり、ζ1 …ζnを変化させ、このJを最小にすることが最適減衰となる。 That is, the optimum attenuation is obtained by changing ζ 1 .

以上の2つの式(20)、(21)を満足する数値解を作成したプログラムによって計算する。   Calculation is performed by a program that creates a numerical solution that satisfies the above two equations (20) and (21).

(c)最適設計図表と実用近似式一例として、図6に計算による数値解析を行なって求めた4重動吸振器の最適設計図表を示す。4重動吸振器の質量比μ4 をパラメータとし、動吸振器の最適な固有振動数比1/γ1 、1/γ2 、1/γ3 、1/γ4 、減衰率ζ1 、ζ2 、ζ3 、ζ4 およびその時の最大変位振幅比|X/Xst |max を示してある。 (C) As an example of the optimum design chart and the practical approximation formula, FIG. 6 shows an optimum design chart of the quadruple vibration damper obtained by performing numerical analysis by calculation. 4 and the mass ratio mu 4 parameters of ponderomotive vibration absorber, the optimum natural frequency ratio of the dynamic vibration reducer 1 / γ 1, 1 / γ 2, 1 / γ 3, 1 / γ 4, damping factor zeta 1, zeta 2 , ζ 3 , ζ 4 and the maximum displacement amplitude ratio | X / Xst | max at that time are shown.

動吸振器を設計する場合、質量比を設定し、この図表から固有振動数比、減衰率を読み取れば良い。しかし、実際の使用においては不便である。そこで、以下に示す実用近似式を提案する。   When designing a dynamic vibration absorber, it is only necessary to set the mass ratio and read the natural frequency ratio and damping rate from this chart. However, it is inconvenient in actual use. Therefore, the following practical approximation formula is proposed.

Figure 2008101782
Figure 2008101782

図6のプロット点は計算によって求められた値であり、各近似式とも図表の特性をよく近似していることがわかる。   The plot points in FIG. 6 are values obtained by calculation, and it can be seen that each approximate expression well approximates the characteristics of the chart.

次に、上記方法によって最適設計されたマルチ動吸振器の制振効果について説明する。   Next, the damping effect of the multi-dynamic vibration absorber optimally designed by the above method will be described.

(a)マルチ動吸振器の制振効果動吸振器の合計の質量比が0.1 となる場合について制振効果を示す。   (A) Damping effect of multi-vibration absorber The damping effect is shown when the total mass ratio of the dynamic absorber is 0.1.

なお、単一動吸振器と比較するために各動吸振器の質量比は以下のように定め、2重動吸振器および複合動吸振器の合計の質量比はすべて同じとした。   In addition, in order to compare with a single dynamic vibration absorber, the mass ratio of each dynamic vibration absorber was determined as follows, and the total mass ratio of the double dynamic vibration absorber and the combined dynamic vibration absorber was all the same.

単一動吸振器(S.D.A) μ1 =0.1
2重動吸振器(D.D.A) μ2 =μ1 /2 (=0.05)
4重動吸振器(4.D.A) μ4 =μ1 /4 (=0.025)
6重動吸振器(6.D.A) μ6 =μ1 /6 (=0.0167)
8重動吸振器(8.D.A) μ8 =μ1 /8 (=0.0125)
各重動吸振器について最適調整法により求めた場合の変位振幅曲線を図7に示
す。また、同一条件の下でのインパルス応答を図8に示す。
Single dynamic vibration absorber (SDA) μ 1 = 0.1
2 ponderomotive vibration absorber (DDA) μ 2 = μ 1 /2 (= 0.05)
4 ponderomotive vibration absorber (4.DA) μ 4 = μ 1 /4 (= 0.025)
6 ponderomotive vibration absorber (6.DA) μ 6 = μ 1 /6 (= 0.0167)
8 ponderomotive vibration absorber (8.DA) μ 8 = μ 1 /8 (= 0.0125)
FIG. 7 shows a displacement amplitude curve obtained by the optimum adjustment method for each heavy vibration absorber. Moreover, the impulse response under the same conditions is shown in FIG.

その結果、4重、6重、8重動吸振器は2重動吸振器よりも最大変位振幅比がそれぞれ9.3 %、12.5%、13.7%ほど抑えられている。また、動吸振器は制振対象の振動に励起され、振動するために、図8の最初の1周期目の波には複合動吸振器の効果は表れていないが2周期目の振動波形には複合動吸振器の効果が表れている。明らかに4重、8重動吸振器にすることによって2周期目の波形の振幅は小さくなっており、速やかに振動が抑えられていることがわかる。これにより、本発明のマルチ動吸振器が高い制振効果を発揮するのが分かる。   As a result, the maximum displacement amplitude ratios of the quadruple, sixfold, and eightfold vibration absorbers are suppressed by about 9.3%, 12.5%, and 13.7%, respectively, compared with the double motion vibration absorber. Further, since the dynamic vibration absorber is excited and vibrated by the vibration to be controlled, the effect of the composite dynamic vibration absorber does not appear in the first period wave in FIG. Shows the effect of the combined dynamic vibration absorber. Obviously, the amplitude of the waveform in the second period is reduced by using a quadruple or quintuple dynamic vibration absorber, and it can be seen that vibration is quickly suppressed. Thereby, it turns out that the multi dynamic vibration absorber of this invention exhibits the high damping effect.

(b)減衰係数の変動に対する効果動吸振器の構成要素のなかで最も使用環境の影響を受けやすいのが減衰要素(ダンパ)である。現在、ダンピング材としてオイルや磁気、ゲル材を用いたものなどがある。   (B) Effect on fluctuation of damping coefficient Among the components of the dynamic vibration absorber, the damping element (damper) is most susceptible to the use environment. Currently, there are materials using oil, magnetism and gel materials as damping materials.

動吸振器の減衰係数c の変動は減衰率ζの変化として示す。最適調整された減衰率を0.2 倍から3.0 倍まで変化させた場合の変位振幅曲線を比較する。最適調整されている各動吸振器を主振動系に設置し、4重動吸振器を例にして、その減衰率ζが変化した場合の変位振幅曲線を図9に示す。   The fluctuation of the damping coefficient c of the dynamic vibration absorber is shown as a change in the damping rate ζ. Compare the displacement amplitude curves when the optimally adjusted attenuation rate is varied from 0.2 times to 3.0 times. FIG. 9 shows a displacement amplitude curve when each dynamic vibration absorber that is optimally adjusted is installed in the main vibration system, and the damping rate ζ is changed by taking a quadruple vibration vibration absorber as an example.

これらの各曲線の最大変位振幅比の変化と動吸振器の減衰率ζの変化率との関係を図10に示す。   FIG. 10 shows the relationship between the change in the maximum displacement amplitude ratio of each curve and the change rate of the damping rate ζ of the dynamic vibration absorber.

この結果、単一および2重動吸振器より、動吸振器をさらに複数個有する複合動吸振器の方が減衰係数c の変動の影響を受けにくくできることが明らかになった。特に注目すべきは、マルチ動吸振器は減衰率をあらかじめ最適値よりも多めに定めておけば、例えば1.2 程度に与えておけば、減衰の変動に対して極めて影響を受けにくい状態が作れることが分かった。   As a result, it has been clarified that a composite dynamic vibration absorber having a plurality of dynamic vibration absorbers can be less affected by fluctuations in the damping coefficient c than single and double dynamic vibration absorbers. Particularly noteworthy is that the multi-vibration absorber can be made extremely insensitive to fluctuations in attenuation if the damping rate is set to a value larger than the optimum value in advance. I understood.

(c)固有振動数の変動に対する効果固有振動数Ω(=√(K/M) )の変動は主振動系のばね定数K の変化とする。ばね定数K を0.7 倍から1.4 倍まで変化させた時の変位振幅曲線を比較する。図11は4重動吸振器の例について調べたものである。さらに、単一動吸振器と比較して2重、4重、6重、8重動吸振器の固有振動数の変動に対する最大変位振幅比の変化を調べたものを図12に示す。この場合は、マルチ動吸振器がよい領域はバネ定数が0.9 以上、1.1 以下となっており、それを越えると単一動吸振器の方が良い結果があられている。しかし、この問題は重要ではない。これは、バネ定数に変動が見込まれる場合は、あらかじめ変動を見越して各動吸振器の固有振動数を上下にシフトする設計法によって容易に解決できる。   (C) Effect on natural frequency fluctuation The fluctuation of the natural frequency Ω (= √ (K / M)) is a change of the spring constant K of the main vibration system. Compare the displacement amplitude curves when the spring constant K is changed from 0.7 times to 1.4 times. FIG. 11 shows an example of a quadruple vibration damper. Further, FIG. 12 shows the change of the maximum displacement amplitude ratio with respect to the fluctuation of the natural frequency of the double, quadruple, six-fold, and eight-fold dynamic vibration absorbers as compared with the single dynamic vibration absorber. In this case, the region where the multi-vibration absorber is good has a spring constant of 0.9 or more and 1.1 or less, and beyond that, the single-vibration absorber gives better results. But this issue is not important. This can be easily solved by a design method in which the natural frequency of each dynamic vibration absorber is shifted up and down in anticipation of the fluctuation when the spring constant is expected to fluctuate.

図13はバネ定数を上下に5%だけシフトした場合の各重動吸振器の固有振動数の変動に対する最大変位振幅比の変化を調べたものである。最適値付近の最大振幅比は増加するものの、広い変動幅の範囲で最大振幅比が低く押さえられていることが分かる。   FIG. 13 shows changes in the maximum displacement amplitude ratio with respect to fluctuations in the natural frequency of each heavy vibration absorber when the spring constant is shifted up and down by 5%. Although the maximum amplitude ratio near the optimum value increases, it can be seen that the maximum amplitude ratio is kept low over a wide range of fluctuation.

以上により、(b)の結果も含めて、本発明のマルチ動吸振器が、制振対象や動吸振器自体のパラメータ変動に影響を受けず、常に安定した制振効果を発揮できることが理解される。   From the above, it is understood that the multi-dynamic vibration absorber of the present invention including the result of (b) can always exhibit a stable vibration-damping effect without being affected by parameter variations of the vibration-damping target or the dynamic vibration absorber itself. The

(d)騒音の制御効果最後に、試作した4重動吸振器を平板に取り付けその平板から放射される音の比較を図14に示す。図中、黒く塗りつぶしたところが動吸振器取り付けによってピークが減少したところである。特に、人間の耳に敏感な1KHzから4KHzにおいて大幅に共振ピークが減少していることが分かる。これは4重動吸振器のもたらすフードダンパー的効果によるもので、この結果により本発明のマルチ動吸振器が騒音境域にも有効なことが確認された。   (D) Noise control effect Finally, a prototype quadruple vibration damper is mounted on a flat plate and a comparison of the sound emitted from the flat plate is shown in FIG. In the figure, the blackened portion is where the peak is reduced due to the installation of the dynamic vibration absorber. In particular, it can be seen that the resonance peak is greatly reduced from 1 KHz to 4 KHz, which is sensitive to the human ear. This is due to the hood damper effect brought about by the quadruple vibration absorber, and it was confirmed from this result that the multi-vibration absorber of the present invention is also effective in a noise boundary.

以上述べたように、本発明に係るマルチ動吸振器は、個々の動吸振器を最適化して常に安定した制振効果を生ずるものである。そしてスペース上の制約が許せば、部材の数を増やしてさらにマルチ化することが可能である。特にかかる形態によると、扁平・薄型でコンパクトな動吸振器を実現でき、構造物に目立たぬよう取り付けることが可能となる。なお動吸振器をケーシング内に収容する等は任意である。   As described above, the multi-dynamic vibration absorber according to the present invention optimizes each dynamic vibration absorber and always produces a stable vibration damping effect. If space restrictions allow, the number of members can be increased to further increase the number of members. In particular, according to such a form, a flat, thin and compact dynamic vibration absorber can be realized, and it can be attached to a structure so as to be inconspicuous. It is optional to accommodate the dynamic vibration absorber in the casing.

特に、一般の動吸振器は、制振対象の等価質量が極端に大きい場合、重りの質量も大きくなって大型化し、設置場所の制限を受け易くなってしまう。本発明の動吸振器は、単一の動吸振器を複数に分割したものであり、これによって構成要素としてのバネ部材、重り及び減衰部材を小さくし、小型化を達成できる。   In particular, when the equivalent mass to be damped is extremely large, a general dynamic vibration absorber becomes large due to a large weight mass, and is easily limited by the installation location. The dynamic vibration absorber of the present invention is obtained by dividing a single dynamic vibration absorber into a plurality of parts, thereby reducing the size of the spring member, weight, and damping member as constituent elements.

また、従来の単一動吸振器は、構造物の固有振動数に基づいて制振設計されているが、これだと例えば橋梁にて車両通過による質量変化がある場合等、固有振動数が変化すると制振効果が著しく悪化してしまう。本発明のマルチ動吸振器は、全体としては構造物の固有振動数に基づいて制振設計されているものの、個々の動吸振器が異なる固有振動数を有しており、構造物の固有振動数変化に対応していずれかの動吸振器が作用し、その固有振動数変化を吸収して、広範な振動数領域で高い制振効果を発揮するものである。   In addition, the conventional single dynamic vibration absorber is designed to be damped based on the natural frequency of the structure, but if this occurs, the natural frequency changes, for example, when there is a mass change due to vehicle passage on a bridge. The damping effect will be significantly worsened. Although the multi-vibration absorber of the present invention is designed to be damped based on the natural frequency of the structure as a whole, each dynamic vibration absorber has a different natural frequency, and the natural vibration of the structure. One of the dynamic vibration absorbers acts in response to the number change, absorbs the natural frequency change, and exhibits a high damping effect in a wide frequency range.

そのための構成として、かかるマルチ動吸振器では、板バネの長さを不等長としたり、重りの位置を変えられるようにして、ばね定数延いては固有振動数を個々に別の値を与えるようにしている。また、2重動吸振器1にあっては減衰部材12の押し付け力を可変とし、4重動吸振器21にあっては重りの位置調整により減衰部材29の圧縮状態を可変とし、他のマルチ動吸振器31,41では減衰部材37,47のサイズを変えることによって、減衰係数を個々に別の値としている。特に2重、4重動吸振器1,21にあっては、重りの位置変化に合わせて減衰係数も変化することになる。   As a configuration for this, in such a multi-vibration absorber, the length of the leaf spring is made unequal, or the position of the weight can be changed, so that the spring constant and the natural frequency are individually given different values. I am doing so. In the double vibration damper 1, the pressing force of the damping member 12 is variable, and in the four vibration damper 21, the compression state of the attenuation member 29 is variable by adjusting the position of the weight. In the dynamic vibration absorbers 31 and 41, the damping coefficients 37 and 47 are changed so that the damping coefficients are individually set to different values. In particular, in the double and quadruple dynamic vibration absorbers 1 and 21, the damping coefficient also changes in accordance with the change in the weight position.

そして、本発明の動吸振器は、振動に伴う騒音の減小にも効果を発揮する。さらに、板材料や壁材料等は場所により振動状態にばらつきがあるが、これに本発明の動吸振器を適用すれば、そのばらつきをも吸収して効果的に振動、騒音を低減できる。   And the dynamic vibration absorber of this invention exhibits an effect also in the reduction of the noise accompanying vibration. Furthermore, the vibration state of the plate material or wall material varies depending on the location. If the dynamic vibration absorber of the present invention is applied to this, the variation can be absorbed and vibration and noise can be effectively reduced.

加えて、本発明の動吸振器は、従来の磁気ダンパ等を用いた動吸振器に比べ軽量、安価に製作でき、バネ定数や重りの質量、減衰係数等の値も容易に変更、調整できるメリットがある。   In addition, the dynamic vibration absorber of the present invention can be manufactured lighter and cheaper than a conventional dynamic vibration absorber using a magnetic damper or the like, and the values of the spring constant, weight mass, damping coefficient, etc. can be easily changed and adjusted. There are benefits.

本発明に係る動吸振器の実施の形態を示し、(a)は平面図、(b)は正面図である。Embodiment of the dynamic vibration damper which concerns on this invention is shown, (a) is a top view, (b) is a front view. 本発明に係る動吸振器の別の形態を示し、(a)は平面図、(b)は正面図である。The other form of the dynamic vibration damper which concerns on this invention is shown, (a) is a top view, (b) is a front view. 本発明に係る動吸振器の別の形態を示し、(a)は平面図、(b)は正面図である。The other form of the dynamic vibration damper which concerns on this invention is shown, (a) is a top view, (b) is a front view. 本発明に係る動吸振器の別の形態を示し、(a)は平面図、(b)はA−A断面図である。The other form of the dynamic vibration damper which concerns on this invention is shown, (a) is a top view, (b) is AA sectional drawing. 本発明に係る動吸振器の力学モデルを示す図である。It is a figure which shows the dynamic model of the dynamic vibration damper which concerns on this invention. 4重動吸振器の最適設計図表である。It is an optimal design chart of a quadruple dynamic vibration absorber. 最適設計値における各動吸振器の比較を示すグラフである。It is a graph which shows the comparison of each dynamic vibration damper in an optimal design value. 最適設計値におけるインパルス応答を示すグラフである。It is a graph which shows the impulse response in an optimal design value. 減衰率を変化させた場合の変位振幅曲線を示すグラフである。It is a graph which shows the displacement amplitude curve at the time of changing an attenuation factor. 図9の各曲線の最大変位振幅比の変化と動吸振器の減衰率の変化率との関係を示すグラフである。It is a graph which shows the relationship between the change of the maximum displacement amplitude ratio of each curve of FIG. 9, and the change rate of the attenuation factor of a dynamic vibration absorber. ばね定数を変化させた場合の変位振幅曲線を示すグラフである。It is a graph which shows the displacement amplitude curve at the time of changing a spring constant. 単一動吸振器と比較して2重、4重、6重、8重動吸振器の固有振動数の変動に対する最大変位振幅比の変化を示すグラフである。It is a graph which shows the change of the maximum displacement amplitude ratio with respect to the fluctuation | variation of the natural frequency of a double, quadruple, sixfold, and eightfold dynamic vibration absorber compared with a single dynamic vibration absorber. バネ定数を上下に5%だけシフトした場合の各重動吸振器の固有振動数の変動に対する最大変位振幅比の変化を示すグラフである。It is a graph which shows the change of the maximum displacement amplitude ratio with respect to the fluctuation | variation of the natural frequency of each heavy dynamic vibration absorber when a spring constant is shifted only 5% up and down. 4重動吸振器を平板に取り付けた際の放射音の比較を示すグラフである。It is a graph which shows the comparison of the radiated sound at the time of attaching a quadruple vibration damper to a flat plate.

符号の説明Explanation of symbols

1,2重動吸振器
2,22,32,42 支持部材
6,25,35,45 板バネ(バネ部材)
6a 左側延出部(バネ部材)
6b 右側延出部(バネ部材)
7,27,36,46 ブロック部材(重り)
12,29,37,47 減衰部材
21 4重動吸振器
25a 延出部(バネ部材)
31 8重動吸振器
41 12重動吸振器
1, 2, double vibration absorber 2, 22, 32, 42 Support member 6, 25, 35, 45 Leaf spring (spring member)
6a Left extension (spring member)
6b Right-hand extension (spring member)
7, 27, 36, 46 Block member (weight)
12, 29, 37, 47 Damping member 21 Quadruple vibration absorber 25a Extension part (spring member)
31 8 double vibration absorber 41 12 double vibration absorber

Claims (7)

共通の支持部材から複数のバネ部材を延出し、これらバネ部材の先端にそれぞれ重りを取り付けてこれら重りを揺動自在に片持ち支持すると共に、これら重りの揺動を減衰するための減衰部材を取り付けたことを特徴とする動吸振器。    A plurality of spring members are extended from a common support member, weights are attached to the tips of the spring members, and the weights are cantilevered in a swingable manner, and a damping member for attenuating the swing of the weights is provided. A dynamic vibration absorber characterized by being attached. 上記重りが上記バネ部材に沿って移動可能に取り付けられた請求項1記載の動吸振器。   The dynamic vibration absorber according to claim 1, wherein the weight is attached so as to be movable along the spring member. 上記減衰部材が上記バネ部材の延出方向に沿って移動可能に取り付けられて上記重りに可変の押し付け力を与える請求項1又は2記載の動吸振器。   The dynamic vibration absorber according to claim 1 or 2, wherein the damping member is attached so as to be movable along the extending direction of the spring member to give a variable pressing force to the weight. 上記減衰部材が、上記支持部材、上記バネ部材及び上記重りに一体的に固着された請求項1記載の動吸振器。   The dynamic vibration absorber according to claim 1, wherein the damping member is integrally fixed to the support member, the spring member, and the weight. 上記バネ部材が上記支持部材を中心とする半径方向に延出された請求項1乃至4いずれかに記載の動吸振器。   The dynamic vibration absorber according to claim 1, wherein the spring member extends in a radial direction centering on the support member. 上記バネ部材が上記支持部材の両側にそれぞれ並列配置された請求項1乃至4いずれかに記載の動吸振器。   The dynamic vibration absorber according to any one of claims 1 to 4, wherein the spring members are arranged in parallel on both sides of the support member. 少なくとも1つの重りに対する固有振動数、或いは少なくとも1つの重りに対する上記減衰部材による減衰係数が、他の重りに対して異なる請求項1乃至6いずれかに記載の動吸振器。   The dynamic vibration absorber according to any one of claims 1 to 6, wherein a natural frequency for at least one weight or a damping coefficient by the damping member for at least one weight is different from that for other weights.
JP2008000851A 2008-01-07 2008-01-07 Dynamic vibration absorber Expired - Lifetime JP4349460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000851A JP4349460B2 (en) 2008-01-07 2008-01-07 Dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000851A JP4349460B2 (en) 2008-01-07 2008-01-07 Dynamic vibration absorber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004111614A Division JP4255124B2 (en) 2004-04-05 2004-04-05 Dynamic vibration absorber

Publications (2)

Publication Number Publication Date
JP2008101782A true JP2008101782A (en) 2008-05-01
JP4349460B2 JP4349460B2 (en) 2009-10-21

Family

ID=39436249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000851A Expired - Lifetime JP4349460B2 (en) 2008-01-07 2008-01-07 Dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JP4349460B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527604A (en) * 2011-08-18 2014-10-16 エーエスエム エネルギー−ウント シュヴィングングステヒニック ミトゥシュ ゲーエムベーハー Temperature independent vibration damper
JP2021531193A (en) * 2018-07-27 2021-11-18 レオナルド・エッセ・ピ・ア Helicopter kit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194049A (en) * 1986-02-18 1987-08-26 Nippon Kokan Kk <Nkk> Vibration absorbing device
JPH0526294A (en) * 1991-07-24 1993-02-02 Oiles Ind Co Ltd Dynamic vibration absorbing device
JPH0544772A (en) * 1991-08-12 1993-02-23 Kobe Steel Ltd Vibration controller
JPH0552237A (en) * 1991-08-20 1993-03-02 Kobe Steel Ltd Vibration controling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194049A (en) * 1986-02-18 1987-08-26 Nippon Kokan Kk <Nkk> Vibration absorbing device
JPH0526294A (en) * 1991-07-24 1993-02-02 Oiles Ind Co Ltd Dynamic vibration absorbing device
JPH0544772A (en) * 1991-08-12 1993-02-23 Kobe Steel Ltd Vibration controller
JPH0552237A (en) * 1991-08-20 1993-03-02 Kobe Steel Ltd Vibration controling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527604A (en) * 2011-08-18 2014-10-16 エーエスエム エネルギー−ウント シュヴィングングステヒニック ミトゥシュ ゲーエムベーハー Temperature independent vibration damper
JP2021531193A (en) * 2018-07-27 2021-11-18 レオナルド・エッセ・ピ・ア Helicopter kit
JP7284168B2 (en) 2018-07-27 2023-05-30 レオナルド・エッセ・ピ・ア helicopter kit

Also Published As

Publication number Publication date
JP4349460B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP6669648B2 (en) Self-tuning mass damper and system including the same
CN202117195U (en) Vibration absorber with multiple natural frequencies
Zilletti Feedback control unit with an inerter proof-mass electrodynamic actuator
US20140008162A1 (en) Vibration damping device
JP4124835B2 (en) Design method of multiple dynamic vibration absorber
JP4255124B2 (en) Dynamic vibration absorber
Sun et al. A novel kind of active resonator absorber and the simulation on its control effort
JP2017538079A (en) Adaptive pendulum damper with vertical spring mechanism
JPH05339910A (en) Variable damper device for bridge
Wierschem et al. Numerical study of nonlinear energy sinks for seismic response reduction
JP4349460B2 (en) Dynamic vibration absorber
Du et al. Control of internal resonances in vibration isolators using passive and hybrid dynamic vibration absorbers
CN110502787B (en) Optimal design method for quasi-zero stiffness shock absorber
KR101166258B1 (en) Vibration control device of construction structure
Jia et al. Vibration control of variable thickness plates with embedded acoustic black holes and dynamic vibration absorbers
CN113199916A (en) Magneto-rheological semi-active suspension damping force constraint linear segmented control method
Seto et al. Vibration control for house structures beyond 3 story using adjustable pendulum-type controller under ground excitation like traffic vibrations or earthquakes
JP3163862B2 (en) Vibration absorber
Wang et al. Force feedback control method of active tuned mass damper
JPH06117485A (en) Frequency coping type vibration damper
Li Evaluation of the lever‐type active tuned mass damper for structures
JPH0711810A (en) Controlling method for active mass damper
JP2847225B2 (en) Anti-resonance type active dynamic vibration absorber
Li et al. Semiactive variable stiffness control for parametric vibration of cables
JP6710086B2 (en) Vibration control equipment for building structures

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term