JP2008101324A - Reinforcing method for building, reinforcing material, adhesive, and reinforcing structure - Google Patents

Reinforcing method for building, reinforcing material, adhesive, and reinforcing structure Download PDF

Info

Publication number
JP2008101324A
JP2008101324A JP2006266209A JP2006266209A JP2008101324A JP 2008101324 A JP2008101324 A JP 2008101324A JP 2006266209 A JP2006266209 A JP 2006266209A JP 2006266209 A JP2006266209 A JP 2006266209A JP 2008101324 A JP2008101324 A JP 2008101324A
Authority
JP
Japan
Prior art keywords
reinforcing
reinforcing material
fixing
fixing mechanism
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266209A
Other languages
Japanese (ja)
Inventor
Shunichi Igarashi
俊一 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Structural Quality Assurance Inc
Original Assignee
Structural Quality Assurance Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Structural Quality Assurance Inc filed Critical Structural Quality Assurance Inc
Priority to JP2006266209A priority Critical patent/JP2008101324A/en
Priority to PCT/JP2006/320011 priority patent/WO2007037535A1/en
Publication of JP2008101324A publication Critical patent/JP2008101324A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcing method for a building, a reinforcing material, an adhesive and a reinforcing structure, which are more excellent in performance, constructibility and cost than a conventional technology. <P>SOLUTION: Characteristically, the reinforcing material as a highly-bendable material, which exerts elasticity on an axis-of-member-direction tensile load and which makes rigidity against a load except the tensile load small enough to manually and easily cause visible deformation, is anchored to an object to be reinforced, which is to be attached to the member and periphery of the building, so as to reinforce the object to be reinforced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、構築物の補強方法、補強材、接着剤、ならびに補強構造に関するものである。   The present invention relates to a method for reinforcing a structure, a reinforcing material, an adhesive, and a reinforcing structure.

構築物が安全に機能する為には、壁、柱、梁などの構造部材が十分な強度と靭性を備えており、かつ、屋根ふき材、天井、内装材、外装材などの構築物の非構造部材、および広告塔、防音壁などの構築物の周囲に取り付けるものは、地震風等の外乱に対して、崩落、脱落等を生じないように補強する必要がある。2001年芸予地震体育館等、2003年十勝沖地震空港ターミナルビル、2005年宮城県沖地震スポーツ施設など、大規模空間の天井崩落被害が発生し、社会問題となっている。国土交通省は、2001年の地震被害後、大規模空間を持つ建築物の天井の崩落対策について技術的助言を公表し、2003年の地震後これを増補している(国住指第2402号)。構造部材については、各種構造について、合理的な設計指針、耐震診断基準が整備され、耐震補強は国家目標の一つとされている。   In order for the structure to function safely, structural members such as walls, columns, and beams have sufficient strength and toughness, and non-structural members of the structure such as roofing materials, ceilings, interior materials, and exterior materials It is necessary to reinforce those installed around structures such as advertising towers and soundproof walls so that they will not collapse or fall off against disturbances such as seismic winds. A large-scale space such as the 2001 Geiyo Earthquake Gymnasium, the 2003 Tokachi-oki Earthquake Airport Terminal Building, and the 2005 Miyagi-ken Oki Earthquake Sports Facility has been damaged, creating a social problem. The Ministry of Land, Infrastructure, Transport and Tourism published technical advice on measures to prevent the collapse of the ceiling of buildings with large spaces following the earthquake in 2001, and augmented this after the earthquake in 2003 (Kunijutsu No. 2402). ). For structural members, rational design guidelines and seismic diagnostic criteria have been established for various structures, and seismic reinforcement is one of the national goals.

建築学会では、非構造部材の耐震設計施工指針・同解説および耐震設計施工要領(2003年改定)を公表している。また、建築防災協会の既存鉄骨造体育館等の耐震改修の手引きと事例(2004年)の中で前記2地震の被害事例を踏まえた天井の崩落防止補強法を示している。天井と躯体のクリアランスをとること、斜めの振れ止めを設置することが対策の基本とされている。具体的には、棒状あるいはプレート状の金属製補強材を既存のつりボルト、ハンガー等の緊結材や野縁などのフレーム材に溶接等で設置する方法(ブレース補強)等が行われている。また、コンクリート、木質、鉄骨など各種構造部材の補強には、鉄板、金物、および炭素繊維、アラミド繊維、ガラス繊維などをエポキシ樹脂等で含浸させてFRP体(繊維補強プラスチック)とする所謂連続繊維補強などが用いられており、土木学会、建築学会でこれらの補強法に関する統一的な設計指針が作成されている。   The Architectural Institute of Japan has published the guidelines and explanations for earthquake-resistant design and construction of non-structural members and the guidelines for earthquake-resistant design and construction (revised in 2003). In addition, the guide for earthquake-resistant repair of the existing steel structure gymnasium of the Building Disaster Prevention Association and the example (2004) show the method for preventing and collapsing the ceiling based on the above two earthquake damage cases. Taking the clearance between the ceiling and the frame and installing an oblique steady rest are the basic measures. Specifically, a method of installing a bar-shaped or plate-shaped metal reinforcing material on an existing binding material such as a suspension bolt or a hanger or a frame material such as a field edge (brace reinforcement) is performed. In addition, for reinforcement of various structural members such as concrete, wood, and steel frames, so-called continuous fibers made of FRP bodies (fiber reinforced plastics) by impregnating steel sheets, hardware, and carbon fibers, aramid fibers, glass fibers, etc. with epoxy resin, etc. Reinforcement etc. are used, and the Japan Society of Civil Engineers and Architectural Institute has created a unified design guideline for these reinforcement methods.

しかし、上記従来方法は、既に建設された構築物に設置する場合に、加工、取り付け工事が困難なこと、金属は僅かな歪(降伏歪:鉄では0.2%から0.4%)で塑性変形を生ずるので、繰り返し振動に追随せず補強材が外れたり、損傷するという課題がある。また、構築物の架構や部材のせん断変形に対しては、補強を行ったとしても十分な靭性を与えることが困難であった。これを避けようとして、突発的な外力が作用しても、補強材が金属の弾性範囲内の変形しか生じないことを目標に設計すると、補強材の設計歪を金属の降伏歪以下に押さえる必要が生じ、補強構造に大きな剛性が要求される為、使用補強材料の量がかさむという課題がある。せん断破壊を避ける為に、部材や架構のせん断強度を曲げ強度より大きくする設計法が広く採用されているが、この方法では、せん断補強量が増える上、材料特性のばらつき、想定外の荷重状態などが原因して、実際には、せん断強度を上回る荷重が作用し、補強した部材がせん断破壊する可能性が残る課題がある。また、溶接を既存の構築物で行う場合には、火災等に備えて十分な養生を行う必要がある。また、プレート状の鉄等は、容易に折り曲げたりたたむことが出来ないので、狭い空間で携行取り付け作業すること困難である。さらに、既存の構築物においては、図面の寸法と現物の寸法に誤差があり、往々にして、補強材の長さ、形状を現場合わせする為、金属系の材料を用いた場合は電動機械による切断、穴あけなどを要する。炭素繊維などを用いた場合には、フィラメントを吸引すると有害であったり、樹脂含浸など複雑な工程を行なう必要がある。これらは、補強工事の期間、コストを増加させる要因である。
本発明は、従来技術に比べ、性能、施工性、コスト面で優れる構築物の補強方法、補強材、定着機構、接着剤、ならびに補強構造を提供することを目的とする。
However, when the above conventional method is installed in a structure that has already been constructed, it is difficult to process and attach, and the metal causes plastic deformation with a slight strain (yield strain: 0.2% to 0.4% for iron). However, there is a problem that the reinforcing material is detached or damaged without following the repeated vibration. In addition, it is difficult to give sufficient toughness to the structural frame and the shear deformation of the members even if reinforcement is performed. In order to avoid this, even if a sudden external force is applied, if the reinforcement is designed with the goal that the deformation only occurs within the elastic range of the metal, the design distortion of the reinforcement needs to be kept below the yield strain of the metal. As a result, a large rigidity is required for the reinforcing structure, which increases the amount of reinforcing material used. In order to avoid shear failure, a design method in which the shear strength of members and frames is made larger than the bending strength is widely adopted, but this method increases the amount of shear reinforcement, variation in material properties, and unexpected load conditions. In reality, there is a problem that a load exceeding the shear strength acts and the reinforced member may be sheared and destroyed. In addition, when welding is performed with an existing structure, it is necessary to perform sufficient curing in preparation for a fire or the like. In addition, since plate-like iron or the like cannot be easily folded or folded, it is difficult to carry and carry it in a narrow space. Furthermore, in existing structures, there is an error in the dimensions of the drawing and the actual dimensions, and the length and shape of the reinforcing material are often matched on-site, so when using metallic materials, cutting with an electric machine , Drilling is required. When carbon fiber or the like is used, it is harmful to suck the filament, or it is necessary to perform a complicated process such as resin impregnation. These are factors that increase costs during the period of reinforcement work.
An object of the present invention is to provide a method for reinforcing a structure, a reinforcing material, a fixing mechanism, an adhesive, and a reinforcing structure, which are superior in performance, workability, and cost as compared with the prior art.

本発明は、以上の課題を解決するもので、材軸方向の引張荷重に対して弾性であり、かつ、これ以外の荷重に対する剛性が、人力で容易に目に見える変形を生じさせ得る程小さい高屈曲性材である補強材を、構築物の部材および周囲に取りつけるものである補強対象物に定着して、該補強対象物を補強し、これらの破壊、破損、脱落等を防止することを特徴とする。該高屈曲性材には、一方向の材軸を有するもの、2方向の材軸を有するものを用いる。
ここで、構築物とは、建物等の建築物、橋梁等のインフラ関連施設、看板、広告塔等の設備などであり、産業、防災、生活等の関連施設として構築された物を指す。また、構築物の部材および周囲に取りつけるものとは、壁、床、梁、柱などの構造部材、天井、内装材、外装材などの非構造部材、防音壁、広告塔など構築物やその周囲に取り付けられるものなど、構築物を構成する要素、および構築物の周囲にあるものである。建築関係では、建築基準法施工令第39条第一項に記載されたものを含む。
材軸とは、前記高屈曲性材に固有の方向である。通常は、補強材を平面上に置いた場合に、材軸が、直線となるように製造する。この直線に沿って計った寸法を長さとし、材軸直交方向に計った寸法、即ち、厚さと幅が一定になるように製造する。2方向の材軸を有する2軸材料の場合は、通常、長さと幅方向を材軸とする。また、弾性とは、補強対象物の補強設計において、補強材に発生すると想定する歪の範囲内で、補強材の応力と歪の関係が、概ね比例的であること、即ち、歪の増減に比例して応力が増減すると扱えることを言う。引張荷重以外の荷重に対する剛性は、圧縮剛性、曲げ剛性、せん断剛性、ねじり剛性などである。本発明の高屈曲性材は、構築物の変形に対して、軸方向の引張抵抗力のみを発揮し、これ自体が、圧縮破壊、せん断破壊、曲げ破壊など引張破壊以外の破壊モードで破壊する可能性がほとんどなく、また、該高屈曲性材の伸び変形以外の変形が、構築物を損傷する可能性がほとんどない。即ち、周囲の部材や、これと前記高屈曲性材との間に設ける定着構造を材軸方向以外の補強材の変形により損傷することがない。さらに、繰り返し荷重に対して補強材に塑性歪を蓄積することがほとんどなく、繰り返し荷重に対する補強対象物の復元力の劣化が従来の補強法に比べて小さくなる。通常の地震や台風などの突発的な外力に対する補強設計では、設計限界歪は、0.1%〜3%程度までの値である。従って、前記高屈曲性材は、3%程度の引張歪までは、設計的に弾性であることが望ましい。また、想定外の変形に対する余裕度を確保する観点からは、5%、あるいは10%程度の引張歪にも弾性的な復元力を示すことが望ましい。
前記高屈曲性材は、軽量であることが望ましい。軽量であると、一箇所ないし数箇所の補強に必要な量の補強材を一人の作業員が携帯し、天井裏などの狭隘な場所で運搬し、設置することができる。一般的な補強対象物の補強に必要な補強材の補強箇所一箇所当たりの長さは、数メートルから十数メートルであることを考慮すると、前記補強材の単位長さ当たりの重量が、1kg/m以下であることが望ましい。前記補強材の厚さは、容易に補強対象物や既存の補強材の隙間を通すことが出来る程薄いことが望ましい。建物など通常の構築物および補強対象物には、1mmから10mm程度の隙間が既にあるか、容易に隙間を空けることができるので、補強材の厚さ、あるいは、隙間を通す時に引っかかる可能性のある部分の寸法は、この大きさ以下であれば良い。後述するように、前記補強材を本発明の定着機構で定着した場合の補強材の伝達応力は、補強材の厚さの平方根に反比例し、補強材の引張弾性率(ヤング率)に比例するので、前記補強材は厚さが薄くヤング率が大きい程効率が良いことになる。従って、上記の配慮と合わせて考え、厚さは、1mm〜3mm程度が望ましい。
The present invention solves the above-described problems, is elastic with respect to a tensile load in the axial direction of the material, and has a rigidity with respect to other loads that is small enough to easily cause visible deformation by human power. The reinforcing material, which is a highly flexible material, is fixed to the structural member and the reinforcing object to be attached to the periphery, and the reinforcing object is reinforced to prevent destruction, breakage, dropout, etc. And As the highly flexible material, one having a material axis in one direction and one having a material axis in two directions is used.
Here, the structure refers to a building such as a building, an infrastructure-related facility such as a bridge, equipment such as a signboard or an advertising tower, and the like, which is constructed as a related facility for industry, disaster prevention, daily life, or the like. In addition, structural members and those attached to the surroundings are structural members such as walls, floors, beams, and pillars, non-structural members such as ceilings, interior materials, and exterior materials, soundproof walls, and advertising towers. The elements that make up the construct, such as those that are, and those around the construct. For construction, it includes those listed in Article 39, Paragraph 1 of the Building Standards Act Construction Order.
The material axis is a direction specific to the highly flexible material. Usually, when a reinforcing material is placed on a flat surface, the material axis is manufactured to be a straight line. The dimension measured along this straight line is the length, and the dimension measured in the direction perpendicular to the material axis, that is, the thickness and width are made constant. In the case of a biaxial material having two-direction material axes, the length and width directions are usually used as material axes. In addition, the term “elasticity” means that the relationship between the stress and strain of the reinforcing material is generally proportional within the range of strain assumed to occur in the reinforcing material in the reinforcement design of the object to be reinforced, that is, to increase or decrease the strain. It can be handled when the stress increases or decreases in proportion. The rigidity with respect to loads other than the tensile load includes compression rigidity, bending rigidity, shear rigidity, torsion rigidity, and the like. The highly flexible material of the present invention exhibits only an axial tensile resistance against the deformation of the structure, and can itself break in a failure mode other than tensile failure such as compression failure, shear failure, and bending failure. And there is almost no possibility that deformation other than elongation deformation of the highly flexible material will damage the structure. That is, the surrounding member and the fixing structure provided between this and the highly flexible material are not damaged by the deformation of the reinforcing material other than the material axial direction. Furthermore, plastic strain hardly accumulates in the reinforcing material with respect to repeated loads, and the deterioration of the restoring force of the object to be reinforced with respect to repeated loads is smaller than in the conventional reinforcement method. In the reinforcement design against sudden external forces such as ordinary earthquakes and typhoons, the design limit strain is a value of about 0.1% to 3%. Therefore, it is desirable that the highly flexible material is elastic in design up to a tensile strain of about 3%. Further, from the viewpoint of securing a margin for unexpected deformation, it is desirable to exhibit an elastic restoring force even at a tensile strain of about 5% or 10%.
The highly flexible material is preferably lightweight. If it is lightweight, one worker can carry the amount of reinforcement necessary for reinforcement in one or several places, and it can be transported and installed in a confined space such as the ceiling. Considering that the length per reinforcement point of the reinforcing material necessary for reinforcement of a general reinforcing object is from several meters to several tens of meters, the weight per unit length of the reinforcing material is 1 kg. / M or less is desirable. It is desirable that the thickness of the reinforcing material is so thin that it can easily pass through the gap between the reinforcing object and the existing reinforcing material. Ordinary structures such as buildings and objects to be reinforced already have a gap of about 1 mm to 10 mm or can be easily opened, so there is a possibility of being caught when the thickness of the reinforcing material or through the gap The size of the portion may be less than this size. As will be described later, the transmission stress of the reinforcing material when the reinforcing material is fixed by the fixing mechanism of the present invention is inversely proportional to the square root of the thickness of the reinforcing material and proportional to the tensile modulus (Young's modulus) of the reinforcing material. Therefore, the thinner the reinforcing material is, the higher the Young's modulus is. Accordingly, considering the above consideration, the thickness is desirably about 1 mm to 3 mm.

本発明は、前記高屈曲性材を、構築物に直接接着剤で貼り付けたり、補強対象物あるいは、既存補強材の周囲の一面に貼り付けたり、いくつかの面に周回させて巻きつけた上で貼り付けて定着することより設置することを特徴とする。また、大きな定着強度を有する定着構造を必要とする場合には、前記補強材をらせん状に既存材に巻きつけて既存補強材との間および/あるいは本発明の補強材同士を接合することを特徴とする。
本発明は、補強対象や現場の作業環境、補強効果発現までの猶予時間などの条件に応じて、前記補強材に孔を空けてビスを用いる等の公知の機械的定着方法や、補強材同士をクリップなどで押し付ける公知の摩擦的方法を用いて補強材同士や補強対象物との靭性定着機構とすることを特徴とする。また、本発明の高屈曲性材を前記公知の定着方法のみを用いて定着する方法、あるいは、従来の補強材、補強法と併用することも本発明に含まれる。
In the present invention, the highly flexible material is directly affixed to a structure with an adhesive, is attached to a reinforcing object or one surface around an existing reinforcing material, or is wound around several surfaces. It is characterized in that it is installed by sticking with and fixing. When a fixing structure having a large fixing strength is required, the reinforcing material is wound around the existing material in a spiral shape and joined between the existing reinforcing material and / or the reinforcing materials of the present invention. Features.
According to the present invention, a known mechanical fixing method such as drilling a hole in the reinforcing material and using a screw depending on conditions such as a reinforcement object, a work environment in the field, a delay time until the reinforcing effect is expressed, It is characterized in that a toughness fixing mechanism between reinforcing members or objects to be reinforced is formed by using a known frictional method of pressing the material with a clip or the like. Further, the present invention includes a method of fixing the highly flexible material of the present invention using only the above-mentioned known fixing method, or a combination with a conventional reinforcing material and a reinforcing method.

本発明は、前記高屈曲性材を補強対象物に定着する場合に、定着強度が下地の引張破壊強度より小さく、定着区間内で均質な、靭性定着機構を用いることにより、該定着が解除を開始するまでの補強材と下地間の相対変位、ならびに高屈曲性材の伝達応力を大きくすること、および、該定着区間内の下地に亀裂あるいは損傷が生じ、この近傍で、該高屈曲性材の定着が一部解除した後も、下地を破壊せず、周囲の靭性定着機構が定着力を発現し、定着を持続することを特徴とする。この特徴は、例えば、コンクリート製部材のせん断補強など、亀裂が生ずる箇所が予め特定できない場合などに有効である。ここで、下地は、補強対象物の表面の材料で、該定着機構が接する材料あり、躯体コンクリート、仕上げモルタル、木材、タイル、金属などである。靭性定着機構とは、この定着を解除させることに要するエネルギーが大きい定着機構を言う。
本発明は、前記定着機構の設計や性能評価を、定着機構の界面剥離エネルギー、即ち、単位面積の定着機構が解除することに要するエネルギー(単位は、[力]/[長さ]、例えば、N/mm)と平均定着力を用いて行うことを特徴とする。前記高屈曲性材の伝達応力は、定着機構の界面剥離エネルギー、前記高屈曲性材の引張弾性率(単に、ヤング率をいう)と厚さを用いて計算する。また、必要定着長、即ち、前記伝達応力を発揮する為に必要十分な定着長さは、伝達応力と平均定着力から計算する。また、本発明は、靭性定着機構の定着力、即ち、定着機構が下地と前記高屈曲性材の間に相対変位を生じた場合に発揮する単位面積当たりのせん断力が一定であると仮定して、定着長が必要定着長より小さい場合の前記高屈曲性材の最大伝達力を求めることを特徴とする。コンクリート、あるいは木材など、建設材料でもっとも一般的に用いられる材料の内、比較的脆弱な材料の引張破壊強度は、1〜3N/mm程度であるので、前記定着強度は、5N/mm以下が望ましい。さらに安全側には、1N/mm以下が望ましい。界面剥離エネルギーは大きいほど望ましいが、定着機構の構造、材質等により限界がある。
According to the present invention, when the highly flexible material is fixed to a reinforcing object, the fixing is released by using a tough fixing mechanism in which the fixing strength is smaller than the tensile fracture strength of the base and is uniform in the fixing section. Increase the relative displacement between the reinforcing material and the base until the start, and increase the transmission stress of the highly flexible material, and cracks or damage occurs in the substrate in the fixing section. Even after part of the fixing is released, the base is not destroyed, and the surrounding toughness fixing mechanism develops the fixing force and the fixing is continued. This feature is effective when, for example, a location where a crack occurs cannot be specified in advance, such as shear reinforcement of a concrete member. Here, the base is a material of the surface of the object to be reinforced, and is a material with which the fixing mechanism comes into contact, such as reinforced concrete, finished mortar, wood, tile, metal, and the like. The toughness fixing mechanism is a fixing mechanism that requires a large amount of energy to release the fixing.
In the present invention, the design and performance evaluation of the fixing mechanism are based on the interfacial peeling energy of the fixing mechanism, that is, the energy required for the fixing mechanism of the unit area to be released (unit: [force] / [length], for example, N / mm) and an average fixing force. The transmission stress of the highly flexible material is calculated using the interfacial peel energy of the fixing mechanism, the tensile elastic modulus (simply referred to as Young's modulus) and the thickness of the highly flexible material. The necessary fixing length, that is, the fixing length necessary and sufficient for exhibiting the transmission stress is calculated from the transmission stress and the average fixing force. Further, the present invention assumes that the fixing force of the toughness fixing mechanism, that is, the shearing force per unit area that is exerted when the fixing mechanism causes a relative displacement between the base and the highly flexible material is constant. Thus, the maximum transmission force of the highly flexible material when the fixing length is smaller than the required fixing length is obtained. Concrete or wood, among the most commonly used material in the construction material, the tensile fracture strength of relatively fragile material, so is about 1~3N / mm 2, the fixing strength is 5N / mm 2 The following is desirable. Further, on the safe side, 1 N / mm 2 or less is desirable. The higher the interfacial peeling energy, the better, but there is a limit depending on the structure and material of the fixing mechanism.

本発明は、前記定着機構の界面剥離エネルギーを平均定着力で割ったものが、定着機構が部分的に解除し始める補強材と部材間の相対変位、即ち、定着剥離限界相対変位となること、ならびに、定着区間内の下地に亀裂等が生じた場合には、これが、前記相対変位の2倍の幅になった場合に剥離が開始すると仮定し、前記定着機構を設計することを特徴とする。経験的に、構築物が地震等の突発的な外力に対して安全である為には、構築物に1mm〜2mm程度の亀裂、あるいは接合部の開きが生じても復元力を維持することが必要とされる。従って、前記定着機構は、この半分程度の部材補強材間の相対変位を生じても破壊しない靭性が必要であるので、定着強度を1N/mmとした場合には、少なくとも0.5N/mm程度の界面剥離エネルギーが必要である。また、定着強度を5N/mmとした場合には、少なくとも2.5N/mm程度の界面剥離エネルギーが必要である。
本発明は、前記亀裂が下地面内外方向に大きく変位する場合については、前記定着機構の下地面直交方向の定着力を用いて、補強効果を算定することを特徴とする。壁、柱、梁など通常の構造部材の補強設計においては、前記亀裂が大きく変位することは考えない。あるいは、設計限界で、大きな変位を生じないように補強材の剛性、定着機構の強度などを定める。しかし、崩落防止補強の設計においては、前記亀裂が有限な変位を生じることを許容する方法が考えられる。この場合には、崩落危険部位が面外方向に有限な変位を生じた状態で、補強材に関する力の釣り合いと歪変位関係を定式化して前記変位が許容値に収まるように補強材の厚さ、定着範囲などを計算する。この時、前記定着機構の下地面法線方向の定着力を用いる。
本発明は、部材の見かけの主歪と前記靭性定着機構を介して部材に定着された補強材の伝達応力が、一対一対応関係にあると仮定して補強後の部材の設計上必要な性質、即ち、復元力特性、強度、靭性等を計算することを特徴とする。ここで、見かけの主歪とは、部材の亀裂幅を亀裂間隔で除したものである。
In the present invention, the interfacial peeling energy of the fixing mechanism divided by the average fixing force becomes a relative displacement between the reinforcing material and the member at which the fixing mechanism starts partially releasing, that is, a fixing peeling limit relative displacement, In addition, in the case where a crack or the like is generated in the base in the fixing section, the fixing mechanism is designed on the assumption that the separation starts when the width becomes twice the relative displacement. . Empirically, in order for the structure to be safe against sudden external forces such as earthquakes, it is necessary to maintain the restoring force even if cracks of about 1 mm to 2 mm or opening of the joint occurs in the structure. Is done. Therefore, the fixing mechanism needs toughness that does not break even when a relative displacement between about half of the member reinforcing members is generated. Therefore, when the fixing strength is 1 N / mm 2 , the fixing mechanism is at least 0.5 N / mm. A degree of interfacial debonding energy is required. Further, when the fixing strength is 5 N / mm 2 , the interface peeling energy of at least about 2.5 N / mm is required.
The present invention is characterized in that, when the crack is largely displaced in the base surface inside and outside, the reinforcing effect is calculated using the fixing force in the direction perpendicular to the lower ground of the fixing mechanism. In the reinforcement design of ordinary structural members such as walls, columns, and beams, the cracks are not considered to be greatly displaced. Alternatively, the rigidity of the reinforcing material and the strength of the fixing mechanism are determined so as not to cause a large displacement at the design limit. However, in the design of the collapse prevention reinforcement, a method of allowing the crack to cause a finite displacement is conceivable. In this case, the thickness of the reinforcing material is set so that the displacement balance falls within the allowable range by formulating the force balance and strain displacement relationship with respect to the reinforcing material in a state where the landslide risk region has a finite displacement in the out-of-plane direction. Calculate the fixing range. At this time, the fixing force in the normal direction of the ground plane of the fixing mechanism is used.
The present invention assumes that there is a one-to-one correspondence between the apparent principal strain of the member and the transmission stress of the reinforcing member fixed to the member through the toughness fixing mechanism. That is, it is characterized by calculating restoring force characteristics, strength, toughness and the like. Here, the apparent main strain is obtained by dividing the crack width of the member by the crack interval.

以下に、数式によって、上記の内容を説明する。補強対象物の一部に、前記定着機構を介して、前記高屈曲性材が設置されているとする。前記高屈曲性材は、材軸方向の引張剛性のみを有するので、補強対象物の表面形状に追随することができる。また、補強対象物の張る空間を渡して設置することもできる。前記材軸上にX座標をとる。座標は、靭性定着機構が設けられた区間では、下地に沿う形状になるので、曲線座標となる。前記高屈曲性材が補強対象物の張る空間を渡る場合には、緩みの無いように設置することを基本とするので、ほぼ直線となる。一つの靭性定着機構が、連続して存在する場合と、2つの靭性定着機構が、前記高屈曲性材が空間を渡る部分を介して存在する場合の両方を考える。前記定着機構の力学的機能は、前記高屈曲性材と下地との相対変位に応じてこれと逆向きの抵抗力(定着力という)をそれぞれに及ぼすことである。前記高屈曲性材の引張荷重以外の剛性はもともと絶対的に小さいと仮定しているが、これに加えて、引張剛性も下地を含む補強対象物の剛性より小さいと仮定し、補強対象物が定着区間内で亀裂を伴うことなく変形した場合に生ずる相対変位は寡少であると考える。即ち、該相対変位は、補強対象物が変形し、前記高屈曲性材が伸び歪を生ずる場合に生ずると考える。   The above content will be described below using mathematical expressions. It is assumed that the highly flexible material is installed on a part of the object to be reinforced through the fixing mechanism. Since the highly flexible material has only the tensile rigidity in the material axis direction, it can follow the surface shape of the object to be reinforced. Moreover, it can also be installed across the space which a reinforcement target object stretches. An X coordinate is taken on the material axis. The coordinates are curved coordinates in the section where the toughness fixing mechanism is provided, because the coordinates are in the shape of the base. When the highly flexible material crosses the space where the object to be reinforced is stretched, it is basically installed so as not to be loosened, and thus becomes substantially straight. Consider both a case where one toughness fixing mechanism is continuously present and a case where two toughness fixing mechanisms are present via a portion across the space. The mechanical function of the fixing mechanism is to exert a resistance force (referred to as a fixing force) in the opposite direction depending on the relative displacement between the highly flexible material and the base. It is assumed that the rigidity of the highly flexible material other than the tensile load is originally small, but in addition to this, it is assumed that the tensile rigidity is also smaller than the rigidity of the reinforcing object including the base. It is considered that the relative displacement that occurs when deformation occurs without cracks in the fixing section is small. That is, the relative displacement is considered to occur when the object to be reinforced is deformed and the highly flexible material causes elongation strain.

前記座標に沿って、微小な幅

Figure 2008101324
の前記高屈曲性材と補強対象物および前記定着機構から成る帯状の領域を考える。座標が
Figure 2008101324
である点に、大きさδの相対変位が生じ、これに応じて下地と前記高屈曲性材との間に前記定着機構を介して材軸方向に定着力τが作用したとする。この相対変位と定着力によって、定着機構の点
Figure 2008101324
近傍の微小面積
Figure 2008101324
に対してなされる単位面積当たりの仕事
Figure 2008101324
は、式(10)で表すことができる。ただし、前記高屈曲性材の材軸引張方向以外の剛性は小さいとして、材軸方向以外の外力による仕事は無視している。
Figure 2008101324
補強対象物および前記高屈曲性材の変形前の相対変位はゼロであり、補強対象物は、前記高屈曲性材に比べて剛であると仮定しているので、前記高屈曲性材の変位は、前記相対変位に等しいと考えられる。即ち、前記高屈曲性材の歪εは、式(11)で書ける。
Figure 2008101324
式(11)を用いて、式(10)の積分を前記座標に関するものに変換する。
Figure 2008101324
ただし、区間[bond]は、仕事
Figure 2008101324
を計算する微小面積を含んで、相対変位がδからゼロ渡って変化する連続した区間であり、以下、定着区間と称する。また、定着機構は、該区間内では、前記積分変数の変換が工学的に妥当であると考えられる程度に均質であると仮定する。 A small width along the coordinates
Figure 2008101324
Consider a belt-like region composed of the highly flexible material, the object to be reinforced, and the fixing mechanism. Coordinates are
Figure 2008101324
To which point the, cause relative displacement magnitude [delta] 1, and acted fixing force τ is the wood-axis direction via the fixing mechanism between the high flexibility material as a base accordingly. Due to this relative displacement and fixing force, the fixing mechanism
Figure 2008101324
Near area
Figure 2008101324
Work per unit area made against
Figure 2008101324
Can be represented by Formula (10). However, work due to an external force other than the material axis direction is ignored, assuming that the rigidity of the highly flexible material other than the material axis tension direction is small.
Figure 2008101324
Since the relative displacement before deformation of the object to be reinforced and the highly flexible material is zero, and it is assumed that the object to be reinforced is more rigid than the highly flexible material, the displacement of the highly flexible material is Is considered to be equal to the relative displacement. That is, the strain ε of the highly flexible material can be expressed by the equation (11).
Figure 2008101324
Using Equation (11), the integral of Equation (10) is converted into that relating to the coordinates.
Figure 2008101324
However, the section [bond]
Figure 2008101324
Is a continuous section in which the relative displacement changes from δ 1 to zero, including a small area for calculating the following, and is hereinafter referred to as a fixing section. In addition, the fixing mechanism assumes that the conversion of the integral variable is homogeneous within the interval to the extent that it is considered to be engineeringly appropriate.

高屈曲性材の釣り合い式は、σを材軸方向応力、tを材軸直角方向の寸法(厚さ)として、

Figure 2008101324
ただし、定着力τ以外の荷重は小さいとして無視している。前記高屈曲性材は引張方向に弾性であるとしているので、ヤング率を
Figure 2008101324
とすれば、構成則は、
Figure 2008101324
式(13)と(14)より、
Figure 2008101324
式(10)と(11)、(13)より、
Figure 2008101324
即ち、定着機構に成される仕事は、定着区間[bond]内の前記高屈曲性材の歪エネルギーの増分となる。式(11)と(15)より、前記高屈曲性材の歪、前記相対変位、および定着力は直接関係付けられているので、仕事
Figure 2008101324
は、定着力の座標に関する平均値を
Figure 2008101324
を定着力と前記高屈曲性材の歪の座標に関する分布形状に関わる係数として、次のように表すことが出来る。
Figure 2008101324
定着力は、相対変位と逆向きであると仮定しているので、式(15)から、定着区間内では、高屈曲性材歪は単調増加あるいは減少であり、端部で最大値と最小値をとる。これを、それぞれ、ε、εとすれば、式(16)と(17)から、高屈曲性材の定着区間端部の最大歪εは、
Figure 2008101324
また、高屈曲性材によって伝達される最大応力(伝達応力という)は、(18)にヤング率を乗じて求められる。一般に亀裂の両側に定着区間があるので、亀裂幅は、相対変位δの2倍となると考えられ、これを
Figure 2008101324
とすれば、
Figure 2008101324
The balance formula of the highly flexible material is as follows: σ is the stress in the axial direction of the material, t is the dimension (thickness) in the direction perpendicular to the material axis,
Figure 2008101324
However, loads other than the fixing force τ are ignored because they are small. Since the highly flexible material is said to be elastic in the tensile direction,
Figure 2008101324
If so, the constitutive law is
Figure 2008101324
From equations (13) and (14),
Figure 2008101324
From equations (10), (11), and (13),
Figure 2008101324
That is, the work performed by the fixing mechanism is an increase in strain energy of the highly flexible material in the fixing section [bond]. From equations (11) and (15), the strain of the highly flexible material, the relative displacement, and the fixing force are directly related to each other.
Figure 2008101324
Is the average value for the fixing force coordinates
Figure 2008101324
Can be expressed as follows as a coefficient relating to the distribution shape relating to the coordinates of the fixing force and the strain of the highly flexible material.
Figure 2008101324
Since it is assumed that the fixing force is opposite to the relative displacement, from Equation (15), within the fixing section, the highly flexible material strain monotonously increases or decreases, and the maximum value and the minimum value at the end. Take. Assuming that these are ε 1 and ε 0 , respectively, the maximum strain ε 1 at the end of the fixing section of the highly flexible material is calculated from the equations (16) and (17).
Figure 2008101324
The maximum stress (transmitted stress) transmitted by the highly flexible material is obtained by multiplying (18) by the Young's modulus. In general, since there are fixing sections on both sides of the crack, the crack width is considered to be twice the relative displacement δ 1 ,
Figure 2008101324
given that,
Figure 2008101324

定着機構の解除限界を規定する条件は、相対変位の最大値、最大定着力など各種が考えられる。ここでは、定着機構に成された仕事

Figure 2008101324
を用いて、これが規準値
Figure 2008101324
(界面剥離エネルギー)を超えた時に定着機構の解除(剥離)が起こると仮定する。この場合、前記高屈曲性材の伝達応力の最大値
Figure 2008101324
は、定着機構の解除限界の高屈曲性材応力であり、式(17)で、
Figure 2008101324
とし、式(18)に代入し、ヤング率を乗ずれば、
Figure 2008101324
ただし、
Figure 2008101324
は、定着区間端部の高屈曲性材応力である。また、剥離限界亀裂幅
Figure 2008101324
と界面剥離エネルギーの関係は、式(17)に、亀裂の両側に大きさが等しい相対変位δが生ずると仮定して、
Figure 2008101324
を代入し、添え字Aを付して、
Figure 2008101324
定着力が、下地の破壊強度を超えない限りは、定着機構が一部解除しても、定着区間が広がる余地があれば、上記のモデルが成り立つ。従って、式(17)、(20)と(21)に総括される上記の推論は、定着力τが下地の引張破壊強度より小さい靭性定着機構を用いても、界面剥離エネルギー
Figure 2008101324
を大きくすることにより、定着解除が開始するまでの前記相対変位、即ち、定着剥離限界相対変位
Figure 2008101324
、剥離限界亀裂幅
Figure 2008101324
、ならびに応力増分、即ち、剥離限界伝達応力
Figure 2008101324
を大きくできることを示している。
定着区間[bond]の大きさを知ることは本発明の補強の設計において重要である。式(13)を定着区間[bond]で積分し、この区間の平均定着力を
Figure 2008101324
とすれば、
Figure 2008101324
ただし、式(22)の左辺は、定着区間の座標に沿って計った長さである。また、前記高屈曲性材の厚さtは、一定としている。従って、必要定着長
Figure 2008101324
を前記高屈曲性材が前記定着機構の剥離限界で伝達する応力に対する定着区間の長さとすれば、これは、式(22)
Figure 2008101324
とすれば、安全側(大きめ)に評価できる。
Figure 2008101324
ここで、定着機構の定着力は、剥離限界までは相対変位に関わらず一定であると仮定すると、定着機構の長さが式(23)に示す値より、短い場合には、定着機構の長さに比例するとして剥離限界応力が計算できる。
定着区間の長さ(定着長
Figure 2008101324
)が前記必要定着長より長い場合には、伝達応力は増加しないが、亀裂近傍で剥離しても、定着区間が亀裂から遠ざかる方向に拡大できるので、定着が完全に解除する下地の亀裂幅は大きくなる。これを、完全剥離限界亀裂幅
Figure 2008101324
とすれば、剥離した区間の前記高屈曲性材には、定着力が作用していないことを考慮し、次のように、計算できる。
Figure 2008101324
補強対象物の変形と前記高屈曲性材および前記靭性定着機構の力学的挙動の関係は、このように単純に数式で記述できるので、構築物の部材に前記高屈曲性材を定着して補強した場合の補強後の力学的性能は、この部材の準拠する設計指針の設計式にこの関係を反映させて容易に計算することができる。特に、前記高屈曲性材の歪変位関係、前記定着機構の構成則ともに区分的に単調であるので、適合性のある構造計算が可能になる点は、降伏歪が小さい鉄を用いた補強が、適合性を無視した強度計算式を用いざるを得ないことに比較して大きな利点である。 Various conditions such as the maximum relative displacement and the maximum fixing force are conceivable as conditions for defining the release limit of the fixing mechanism. Here is the work done by the fusing mechanism
Figure 2008101324
This is the reference value
Figure 2008101324
It is assumed that the fixing mechanism is released (peeled) when (interfacial peel energy) is exceeded. In this case, the maximum value of the transfer stress of the highly flexible material
Figure 2008101324
Is the highly flexible material stress at the release limit of the fixing mechanism,
Figure 2008101324
And substituting into equation (18) and multiplying by Young's modulus,
Figure 2008101324
However,
Figure 2008101324
Is the highly flexible material stress at the end of the fixing zone. Also, peeling limit crack width
Figure 2008101324
Assuming that the relative displacement δ 1 having the same magnitude occurs on both sides of the crack in the equation (17),
Figure 2008101324
And subscript A,
Figure 2008101324
As long as the fixing force does not exceed the breaking strength of the ground, the above model holds if there is room for the fixing section to be widened even if the fixing mechanism is partially released. Therefore, the above reasoning summarized by the equations (17), (20) and (21) shows that the interfacial debonding energy is obtained even when a tough fixing mechanism having a fixing force τ smaller than the tensile fracture strength of the base is used.
Figure 2008101324
To increase the relative displacement until the fixing release starts, that is, the fixing peeling limit relative displacement.
Figure 2008101324
, Peeling limit crack width
Figure 2008101324
, As well as stress increments, i.e. peel limit transmission stress
Figure 2008101324
It is shown that can be increased.
Knowing the size of the anchoring section [bond] is important in the reinforcement design of the present invention. Equation (13) is integrated over the fixing section [bond], and the average fixing power of this section is calculated.
Figure 2008101324
given that,
Figure 2008101324
However, the left side of Equation (22) is the length measured along the coordinates of the fixing section. Further, the thickness t of the highly flexible material is constant. Therefore, the required fixing length
Figure 2008101324
Is the length of the fixing section with respect to the stress transmitted by the highly flexible material at the peeling limit of the fixing mechanism, this is expressed by the equation (22).
Figure 2008101324
Then, it can be evaluated on the safe side (larger).
Figure 2008101324
Here, assuming that the fixing force of the fixing mechanism is constant regardless of the relative displacement until the peeling limit, when the length of the fixing mechanism is shorter than the value shown in Expression (23), the length of the fixing mechanism The peeling limit stress can be calculated as proportional to the thickness.
Length of fixing section (fixing length
Figure 2008101324
) Is longer than the necessary fixing length, the transmission stress does not increase. However, even if peeling near the crack, the fixing section can be expanded away from the crack. growing. This is the complete peel limit crack width
Figure 2008101324
Then, considering that the fixing force does not act on the highly flexible material in the peeled section, it can be calculated as follows.
Figure 2008101324
Since the relationship between the deformation of the object to be reinforced and the mechanical behavior of the high-flexibility material and the toughness fixing mechanism can be simply expressed in this way, the high-flexibility material is fixed and reinforced on the members of the structure. The mechanical performance after reinforcement in the case can be easily calculated by reflecting this relationship in the design formula of the design guideline to which this member conforms. In particular, since the strain displacement relationship of the highly flexible material and the constitutive law of the fixing mechanism are both monotonically monotonous, it is possible to perform structural calculations that are compatible with reinforcement using iron with low yield strain. This is a great advantage compared to the necessity to use a strength calculation formula ignoring compatibility.

通常の補強設計では、前記亀裂幅は、部材の寸法に比べて小さいと仮定している。即ち、設計限界状態で、1mm程度、余裕を見ても5mm程度である。また、面外方向の変位も同程度であると仮定し、補強材軸方向以外の剛性が小さいことを考慮し、補強材と下地が剥離している区間でも、補強材軸方向と下地面の接線方向が一致するとして設計計算を行って設計上問題ないと考えられる。しかし、崩落防止補強設計においては、有限な大きさの亀裂変位を考慮する場合がある。例えば、天井スラブの一部が崩落することを防止する設計では、必ずしも、前記変位を数ミリに抑える必要がない場合がある。この場合は、補強材が下地から剥離している区間においては、前記補強材軸方向と下地面の接線方向が異なることを考慮して補強設計を行う。簡単の為に、下地面を平面とし、補強材はこの平面全体に接着してあるとする。崩落危険部位が、下地面外(法線)方向に一様に変位したとする。この変位によって、定着機構には、補強材を介して、下地面外方向に引き剥がし力が作用し、剥離境界が線状の領域となる。次の関係が満たされるまで、前記変位と前記領域(剥離境界線)が拡大する。

Figure 2008101324
ただし、
Figure 2008101324
は、崩落危険部位の変位
Figure 2008101324
によって、剥離境界線の長さ
Figure 2008101324
の部分に作用する面外方向引き剥がし力(以下、崩落荷重という)、
Figure 2008101324
は、面外方向の単位長さ当たりの定着機構の定着力であり、定着機構の性能試験によって定める値である。一般にこれは、補強材軸(定着力の方向)と下地面の成す角θの関数になると考えられるが、通常は、θ=90°の場合について試験を行う。前述した定着力τは、厳密にはθ=0°の場合の値であると言える。また、崩落危険部位と剥離境界線の間の補強材には材軸方向に歪εと張力
Figure 2008101324
が発生し、この面外方向成分
Figure 2008101324
が崩落荷重とつり合うまで、前記危険部位の変位が増大する。補強材が下地から剥離している区間における補強材軸と下地面の成す角をθ、前記境界線と前記危険部位の距離を
Figure 2008101324
とすれば、
Figure 2008101324
Figure 2008101324
以上より、
Figure 2008101324
従って、設計は、崩落危険部位の形状と重量を仮定し、式(25)を満足するような剥離限界線が、定着範囲の中に収まるように定着範囲を定め、前記距離
Figure 2008101324
を計算し、補強材厚さt、引張弾性率(ヤング率)
Figure 2008101324
を適宜に選定し、前記危険部位の変位
Figure 2008101324
が許容値以内に収まることを式(28)によって、また、下地面に平行な方向については、式(10)から、式(24)で照査することをもって行える。
コンクリート製柱や壁などのように、定着区間内に亀裂を伴って変形する部材の変形性能は、補強材の伝達応力
Figure 2008101324
と部材の見かけの主歪が一対一対応関係にあることを用いて計算することができる。ここで、見かけの主歪
Figure 2008101324
とは、式(29)に示すように、亀裂直角方向の亀裂幅
Figure 2008101324
を亀裂間隔
Figure 2008101324
で除したものであり、亀裂間隔程度の大きさの領域の亀裂を含めた部材の変位を表す量であると定義する。
Figure 2008101324
前記領域内で亀裂が平行な2枚の平面で表せるとすれば、補強材軸方向の亀裂幅
Figure 2008101324
と亀裂直交方向の亀裂幅
Figure 2008101324
の関係は、亀裂と補強材軸の角度
Figure 2008101324
の三角関数で表される。従って、式(19)、(21)の関係を
Figure 2008101324
で書き直して、補強材歪と見かけの主歪の一対一対応関係が得られる。
Figure 2008101324
ただし、
Figure 2008101324
は、相対亀裂間隔と称するもので、亀裂間隔の補強材軸方向成分を式(23)で定義した必要定着長で除したものである。また、剥離限界歪
Figure 2008101324
は、式(20)でσ=0として得られる剥離限界応力を補強材ヤング率
Figure 2008101324
で除した値である。
Figure 2008101324
式(30)の補強材歪に補強材のヤング率を乗ずれば補強材伝達応力が得られる。ただし、補強材歪は、剥離限界歪
Figure 2008101324
を超えないので、補強材が伝達できる応力には限界がある。この他、下地材および躯体が伝達できる応力でも補強材伝達応力が制限され場合があるので、式(30)の成立する見かけの主歪の範囲は、個別に検討する必要がある。式(30)の関係は、概ね見かけの主歪と補強材歪が比例すると近時することができるので、部材の荷重変形関係の計算式を単純化することができる。 In normal reinforcement design, it is assumed that the crack width is small compared to the dimensions of the member. That is, it is about 1 mm in the design limit state, and is about 5 mm even if there is a margin. Also, assuming that the displacement in the out-of-plane direction is about the same, considering that the rigidity other than in the reinforcing material axial direction is small, even in the section where the reinforcing material and the base are separated, the reinforcing material axial direction and the base surface It is considered that there is no problem in design by performing design calculation assuming that the tangential directions coincide. However, in the collapse prevention reinforcement design, there is a case where a finite size crack displacement is considered. For example, in a design that prevents a part of the ceiling slab from collapsing, the displacement may not necessarily be suppressed to several millimeters. In this case, in the section where the reinforcing material is peeled off from the base, the reinforcing design is performed considering that the axial direction of the reinforcing material is different from the tangential direction of the base surface. For simplicity, it is assumed that the base surface is a flat surface and the reinforcing material is bonded to the entire flat surface. Assume that the collapse risk part is uniformly displaced in the direction outside the base surface (normal line). Due to this displacement, a peeling force acts on the fixing mechanism through the reinforcing material in the outward direction of the base surface, and the peeling boundary becomes a linear region. The displacement and the region (peeling boundary) expand until the following relationship is satisfied.
Figure 2008101324
However,
Figure 2008101324
Is the displacement of the critical area
Figure 2008101324
Depending on the length of the separation boundary
Figure 2008101324
Out-of-plane direction peeling force (hereinafter referred to as collapse load) acting on the part of
Figure 2008101324
Is the fixing force of the fixing mechanism per unit length in the out-of-plane direction, and is a value determined by a performance test of the fixing mechanism. Generally, this is considered to be a function of the angle θ formed by the reinforcing material axis (fixing force direction) and the base surface. Usually, the test is performed for θ = 90 °. Strictly speaking, the fixing force τ described above can be said to be a value when θ = 0 °. In addition, the reinforcing material between the collapse risk part and the separation boundary line has strain ε and tension in the material axis direction.
Figure 2008101324
This out-of-plane direction component
Figure 2008101324
Until the load balances with the collapse load, the displacement of the dangerous part increases. The angle between the reinforcing material axis and the ground surface in the section where the reinforcing material is peeled from the ground is θ, and the distance between the boundary line and the dangerous part is
Figure 2008101324
given that,
Figure 2008101324
Figure 2008101324
From the above,
Figure 2008101324
Accordingly, the design assumes the shape and weight of the collapse risk region, determines the fixing range so that the peeling limit line satisfying the equation (25) is within the fixing range, and the distance
Figure 2008101324
Calculate the reinforcement thickness t, tensile modulus (Young's modulus)
Figure 2008101324
Is appropriately selected, and the displacement of the dangerous part
Figure 2008101324
Can be kept within the allowable value by the equation (28), and the direction parallel to the base surface can be checked by the equation (10) to the equation (24).
The deformation performance of members that deform with cracks in the anchoring section, such as concrete columns and walls, depends on the transfer stress of the reinforcement.
Figure 2008101324
And the apparent main strain of the member has a one-to-one correspondence relationship. Where the apparent principal distortion
Figure 2008101324
Is the crack width in the direction perpendicular to the crack, as shown in equation (29).
Figure 2008101324
The crack spacing
Figure 2008101324
It is defined as an amount representing the displacement of a member including a crack in a region having a size about the crack interval.
Figure 2008101324
If the crack can be expressed by two parallel planes in the region, the crack width in the axial direction of the reinforcing material
Figure 2008101324
And crack width perpendicular to crack
Figure 2008101324
The relationship between the crack and the angle of the reinforcement axis
Figure 2008101324
It is expressed by the trigonometric function. Therefore, the relationship between equations (19) and (21) is
Figure 2008101324
To obtain a one-to-one correspondence relationship between the reinforcing material strain and the apparent main strain.
Figure 2008101324
However,
Figure 2008101324
Is referred to as a relative crack interval, and is obtained by dividing the axial component of the reinforcing member in the crack interval by the necessary fixing length defined by equation (23). Also, peeling limit strain
Figure 2008101324
Is the separation modulus stress obtained as σ 0 = 0 in Equation (20), and the Young's modulus of the reinforcing material
Figure 2008101324
The value divided by.
Figure 2008101324
Reinforcement transmission stress can be obtained by multiplying the reinforcement distortion of the formula (30) by the Young's modulus of the reinforcement. However, the reinforcing material strain is the separation limit strain
Figure 2008101324
The stress that can be transmitted by the reinforcing material is limited. In addition, since the reinforcing material transmission stress may be limited even by the stress that can be transmitted by the base material and the housing, the apparent main strain range in which the equation (30) is established needs to be individually examined. Since the relationship of the equation (30) can be approximated when the apparent main strain and the reinforcing material strain are approximately proportional, it is possible to simplify the calculation formula of the load deformation relationship of the members.

異形鉄筋による機械的定着、エポキシ樹脂などを用いた接着など、従来の定着機構の設計や試験において、これが破壊する時には、補強対象物を破壊すること、所謂「材破」が、良い定着機構であるとされており、実際に観測されていた。しかし、このような定着機構では、定着機構が破壊することが補強効果を失うことに直結する結果、靭性に乏しい定着機構になり、補強自体の靭性も損なわれる。一方、本発明の靭性定着機構は、定着強度を、下地の引張破壊強度より小さく抑え、定着機構が一部解除しても、これを補うように周囲の定着機構が動員されるメカニズムをつくることを特徴としている。
本発明の高屈曲性材は、式(16)と(17)、および(30)に示すように、構築物の亀裂等をともなう変形に応じて前記定着機構を介して弾性歪エネルギーを蓄える性質がある。即ち、構築物が一部破壊するような変形に対して弾性的な復元力を付与する効果がある。特に、亀裂近傍で前記定着機構が一部解除し、補強材と補強対象物表面で相対変位が生じた以降も、周囲の定着機構が動員されて補強効果を持続する性質がある。具体的な補強後の構築物の強度や靭性は、式(10)から(31)までに示した補強材と定着機構のモデルを補強対象構築物の設計計算で通常用いられている力学モデルに組み入れて容易に計算することができる。また、詳細な計算が必要とされる場合には、有限要素解析等の手段で数値解析を行って補強後の構築物の耐力、変形性能等の諸性質を計算することができる。
本発明は、前記高屈曲性材の屈曲性に富んでおり、形状に対する追随性に優れる特徴を生かして、これを構築物の任意の場所に多様な形状で設置し、安全性と性能を向上することを特徴とする。設置場所としては、架構、補強対象物表面、補強対象物間の接合部、非構造部材や付属物などがある。形状としては、線状、螺旋状、蛇腹状、格子状、のり巻き状などがある。構築物の安全性と性能向上は、具体的には、損傷制御、倒壊防止、生存空間確保、崩落防止などの目的である。
In the design and testing of conventional fixing mechanisms such as mechanical fixing with deformed reinforcing bars, adhesion using epoxy resin, etc., when this breaks, destroying the object to be reinforced, so-called “material breakage” is a good fixing mechanism It was supposed to be, and it was actually observed. However, in such a fixing mechanism, the destruction of the fixing mechanism directly leads to the loss of the reinforcing effect. As a result, the fixing mechanism has poor toughness, and the toughness of the reinforcement itself is also impaired. On the other hand, the toughness fixing mechanism of the present invention makes the fixing strength smaller than the tensile fracture strength of the base, and creates a mechanism in which the surrounding fixing mechanism is mobilized to compensate for this even if the fixing mechanism is partially released. It is characterized by.
The highly flexible material of the present invention has a property of accumulating elastic strain energy via the fixing mechanism in accordance with deformation accompanied by cracks in the structure as shown in equations (16), (17), and (30). is there. That is, there is an effect of giving an elastic restoring force to a deformation that partially destroys the structure. In particular, even after the fixing mechanism is partially released in the vicinity of the crack and relative displacement occurs between the reinforcing material and the surface of the object to be reinforced, the surrounding fixing mechanism is mobilized to maintain the reinforcing effect. Specifically, the strength and toughness of the structure after reinforcement are obtained by incorporating the reinforcing material and anchorage mechanism models shown in Equations (10) to (31) into the mechanical model normally used in the design calculation of the structure to be reinforced. It can be easily calculated. Further, when detailed calculation is required, various properties such as proof stress and deformation performance of the reinforced structure can be calculated by performing numerical analysis by means such as finite element analysis.
The present invention is rich in the flexibility of the highly flexible material, and takes advantage of its excellent conformability to the shape to install it in various shapes at any location of the structure to improve safety and performance. It is characterized by that. The installation location includes a frame, the surface of the object to be reinforced, a joint between the objects to be reinforced, a non-structural member and an accessory. Examples of the shape include a line shape, a spiral shape, a bellows shape, a lattice shape, and a winding shape. More specifically, the safety and performance improvement of the structure is the purpose of damage control, collapse prevention, securing a living space, preventing collapse.

まず、本発明の実施の形態に用いられる補強材について説明する。
本補強材は、高屈曲性を有するベルト材またはシート材である高屈曲性材である。即ち、手で容易に90度以上の角度まで、曲げ伸ばしすることができ、塑性化せず元の形状に復する性質がある。これにより、携行運搬が容易になり、補強対象物の表面形状に合わせて設置し定着することができる。また、引張剛性以外は小さく、ひねったり、ねじったりすることができる。この高屈曲性材を用いれば、容易にらせん状などの形状的に強靭な定着構造を作ることができる。さらに、補強対象物の原寸に合わせて補強材設置位置や定着位置を微妙に変更するフレキシブルな工事が可能である。また、本補強材は、裁ち鋏により人力で容易に切断できる。これにより、現場での寸法合わせなど、フレキシブルな作業が一層容易になる。
First, the reinforcing material used in the embodiment of the present invention will be described.
The reinforcing material is a highly flexible material that is a highly flexible belt material or sheet material. That is, it can be easily bent and stretched to an angle of 90 degrees or more by hand, and has the property of returning to its original shape without being plasticized. Thereby, carrying and carrying becomes easy, and it can be installed and fixed according to the surface shape of the object to be reinforced. Moreover, except for the tensile rigidity, it is small and can be twisted or twisted. By using this highly flexible material, it is possible to easily make a fixing structure that is strong in shape such as a spiral. Furthermore, flexible construction is possible in which the reinforcing material installation position and the fixing position are slightly changed according to the original size of the object to be reinforced. In addition, the reinforcing material can be easily cut by human power with a scribe. This makes it easier to perform flexible work such as on-site dimension matching.

前記ベルト材およびシート材の曲げ剛性、せん断剛性、および圧縮剛性は、設計計算上無視できるほど小さい。木質、コンクリート、鉄骨などを主たる材料とする構築物の現行の設計指針の強度評価式や靭性等の評価式に、該補強材の伝達応力を反映する項を加えて容易に補強後の構築物の強度、靭性等の性能を計算することができる。
本補強材は、1%以上の引張歪に対して、さらに5%以上の引張歪に対して、特に10%以上の引張歪に対して弾性(歪の増加に対して比例的に応力を増加させる性質)を有する。一般に、木質、コンクリート等の構築物や部材、さらに補強材の設計歪は、0.1%から3%程度まであり、大概は1%未満であるので、1%以上の歪に対して設計的に弾性であれば、殆どの場合の設計歪まで弾性的な材料として設計することができる。ざらに、5%、あるいは10%以上の歪まで弾性であれば、設計歪を3%としたときでも、設計歪の1.5倍以上、あるいは3倍以上の歪を生じても弾性的に抵抗力を発揮する材料と考えられる。即ち、1%以上の歪まで設計的に弾性であれば、設計歪を1%以下とするという設計範疇を定めても、設計不能になったり、材料的に不経済な設計になることがほとんどない。さらに、5%あるいは、10%以上の歪まで弾性を有すれば、設計歪より大きな歪を受けた場合でも設計で用いたモデルに従って弾性的に挙動するので、安定した補強効果を発揮することが出来るといえる。地震等の突発的な外力そのものも、また、これによる構造物の応答も設計の想定を超える可能性が無いわけでなく、本発明の補強材は、想定外の地震に対しても補強効果を連続的に増加させて発揮する点で従来の補強材より優れるものである。
本補強材は、一枚の厚さが0.5mmから10mm程度である。通常の構築物の補強に必要な高屈曲性材一枚当りの引張剛性、即ち、厚さとヤング率の積

Figure 2008101324
は、10000N/mmから、50000N/mm程度である。厚さが、前記範囲未満であると、設計的に必要な剛性を得る為に大きなヤング率を用いる必要が生じ、繊維系の材料を用いた場合には、アラミド繊維やカーボン繊維に代表されるいわゆる高機能繊維を選択する必要が生じ、補強材の価格が高価になる。また、金属を用いた場合は、単位長さ当たりの重量が増加するとともに、高屈曲性が得がたくなる。厚さが、前記範囲を超えると、容易に補強対象物の隙間を通すことができず、設置や定着工事において、補強材の寸法調整、あるいは、補強対象物を、削ったり、ずらしたり、付け替えたりする作業が必要になる場合があるからである。設計的に10mm以上の前記補強材の厚さに相当する強度あるいは剛性が必要な場合には、本補強材を何枚か並べるか、何枚か重ねて用いればよい。 The bending rigidity, shearing rigidity, and compression rigidity of the belt material and the sheet material are negligibly small in the design calculation. The strength of the structure after reinforcement is easily added by adding a term that reflects the transmission stress of the reinforcing material to the strength evaluation formula and toughness evaluation formula of the current design guideline of the structure mainly composed of wood, concrete, steel frame, etc. The toughness and other performance can be calculated.
This reinforcement is elastic for 1% or more tensile strain, further 5% or more, especially 10% or more, and increases the stress in proportion to the increase in strain. Property). In general, the design strains of structures and components such as wood and concrete, as well as reinforcing materials, range from 0.1% to 3% and are generally less than 1%, so they are elastic in design against strains of 1% or more. If so, it can be designed as an elastic material up to the design strain in most cases. If the strain is elastic up to 5% or 10%, even if the design strain is 3%, it will be elastic even if the strain is 1.5 times or more than the design strain. It is considered a material that exhibits resistance. In other words, if the design is elastic up to a strain of 1% or more, even if the design category of design strain of 1% or less is established, it is almost impossible to design or the design is uneconomical. Absent. Furthermore, if it has elasticity up to a strain of 5% or more than 10%, it will behave elastically according to the model used in the design even when it receives a strain larger than the design strain, so it can exhibit a stable reinforcement effect I can say that. The sudden external force itself such as an earthquake and the response of the structure is not necessarily beyond the design assumptions. The reinforcing material of the present invention has a reinforcing effect against an unexpected earthquake. It is superior to conventional reinforcing materials in that it is continuously increased and exerted.
The thickness of this reinforcing material is about 0.5 mm to 10 mm. Tensile stiffness per piece of highly flexible material required for normal structural reinforcement, i.e. product of thickness and Young's modulus
Figure 2008101324
Is about 10,000 N / mm to about 50,000 N / mm. When the thickness is less than the above range, it is necessary to use a large Young's modulus in order to obtain design-required rigidity. When a fiber-based material is used, it is represented by aramid fiber or carbon fiber. It becomes necessary to select so-called high-performance fibers, and the price of the reinforcing material becomes expensive. Further, when a metal is used, the weight per unit length increases and high flexibility becomes difficult to obtain. If the thickness exceeds the above range, the gap between the objects to be reinforced cannot be easily passed, and the size of the reinforcing material is adjusted or the object to be reinforced is shaved, shifted, or replaced during installation or fixing work. This is because it may be necessary to perform such work. When the strength or rigidity corresponding to the thickness of the reinforcing material of 10 mm or more is required in design, several reinforcing materials may be arranged or used in layers.

一箇所ないし数箇所の補強に必要な本補強材の重量は、人が携行し手で取り付け作業を容易に行える程度の重さ以下である。一般に、補強対象物を補強することに必要な補強材の、補強箇所一箇所当たりの長さは、補強対象物の形状、構築物との位置関係および補強材に要求される剛性、強度と補強材が保有する剛性、強度の関係などの設計条件で決まる。一般的な構築物と補強対象物の寸法を考えると、前記必要長さは、3m〜15m程度となる。柱の周囲に補強材をらせん状に設置する場合などに総延長が100mを超える長さが必要になる場合があるが、この場合には、補強対象部分を10個前後の区間に分けることで、一区間当たり、上記の長さで補強することができる。従って、本補強材の重量は、1m当たり1kg以下であることが、運搬携行を容易とする観点からは、好ましい。単位長さ当たりの重量が、1kg/mを超えると、3m〜15mで3kg〜15kgとなる。これ以上の重量になると運搬・設置作業を狭い場所で人力で行うことに支障をきたす。本補強材は、1m当たり0.1kg〜0.4kg程度である。
本補強材は、ロール状に巻かれて、保管、運搬されるもので、裁ち鋏により人力で容易に切断できる。これにより、現場での寸法調整作業が容易になる。
本補強材は、設計限界歪(通常ベルト材で1%、シート材で2%程度としている)でのヤング率(有効ヤング率という)を設計計算上主要な補強材の定数としており、これを製品規格値としている。このことにより、補強効果を製造段階で保証することが可能になる。
高屈曲性材の例としては、ポリエステル、ナイロン等の繊維を織り成したベルト材あるいは、布状の織物(シート材)がある。ポリエステルベルトは、厚さが、1mm程度から5mm程度、幅は30mm〜100mm程度の各種があり、10%以上の引張歪に対してまでも、比例的に応力が増加するので、設計計算上弾性を有するとして扱える。また、シート材は、厚さ0.5mmから2mm程度、幅1m程度のものが補強に好適である。鉄は、0.2%〜0.4%以上の歪を受けると降伏し、塑性歪を残すのでこれ以上の設計歪が発生する場合は、一定の応力(降伏応力)を発生するものとして扱われ、弾性体としては扱われない。また、前記の厚さと幅のポリエステルベルトの単位長さ当たりの重量は、0.05kg/mから0.3kg/mの範囲である。シート材の単位長さ当たりの重量は、0.5kg/m程度である。ただし、織物は、織成しただけであると、構造的な永久伸び歪を生じ易いので、これを抑える織成法、後処理法を用いて製造することが望ましい。また、式(20)などに示すように、補強設計において、補強材の伝達応力を計算する場合に、補強材の引張弾性率(ヤング率)を用いるので、これが規格値を満足するように製品検査を行う必要がある。本発明の高屈曲性材の例であるポリエステルベルトの中には、厚さは、2.5mm、3mm、4mm、5mmの各種であり、前記ヤング率4500N/mmで同じであるものが含まれる。これらの材料を重ねて互いに前記靭性定着機構で定着して用いることで、初期値11250N/mmから、2250N/mmきざみの各種の引張剛性が得られることが実験的にも確かめられている。これは、設計計算で必要とされる引張剛性を内輪にして、2250N/mm以内の幅で設計引張剛性を割り付けられることであり、材料の消費量を合理的に削減することができる。
The weight of the present reinforcing material required for reinforcing one or several places is not more than a weight that can be carried by a person and easily attached by hand. In general, the length of the reinforcing material required to reinforce the object to be reinforced is the length of the reinforcing object, the shape of the object to be reinforced, the positional relationship with the structure, and the rigidity, strength and reinforcing material required for the reinforcing material. Is determined by the design conditions such as the relationship between rigidity and strength. Considering the dimensions of the general structure and the object to be reinforced, the required length is about 3 m to 15 m. When the reinforcing material is installed around the pillar in a spiral shape, the total length may need to exceed 100m. In this case, the reinforcement target part can be divided into about 10 sections. It can be reinforced with the above length per section. Therefore, the weight of the reinforcing material is preferably 1 kg or less per 1 m from the viewpoint of easy transportation. When the weight per unit length exceeds 1 kg / m, 3 to 15 kg becomes 3 to 15 kg. If it exceeds this weight, it will hinder manual transportation and installation work in a small space. This reinforcing material is about 0.1 kg to 0.4 kg per meter.
The reinforcing material is wound in a roll shape, stored and transported, and can be easily cut manually by a wrench. This facilitates dimensional adjustment work on site.
This reinforcing material uses the Young's modulus (referred to as effective Young's modulus) at the design limit strain (usually about 1% for the belt material and about 2% for the sheet material) as the constant of the main reinforcing material in the design calculation. Product standard value. This makes it possible to guarantee the reinforcing effect at the manufacturing stage.
Examples of the highly flexible material include a belt material woven with fibers such as polyester and nylon, or a cloth-like woven fabric (sheet material). Polyester belts have various thicknesses of about 1 mm to 5 mm and widths of about 30 mm to 100 mm. Since the stress increases proportionally even to a tensile strain of 10% or more, it is elastic in design calculations. Can be treated as having Further, the sheet material having a thickness of about 0.5 mm to 2 mm and a width of about 1 m is suitable for reinforcement. Iron yields when it receives a strain of 0.2% to 0.4% or more, and plastic strain remains. Therefore, if more design strain occurs, it is treated as a constant stress (yield stress), and elastic body. It is not treated as. Further, the weight per unit length of the polyester belt having the thickness and width is in the range of 0.05 kg / m to 0.3 kg / m. The weight per unit length of the sheet material is about 0.5 kg / m. However, if the woven fabric is only woven, it tends to cause structural permanent elongation strain. Therefore, it is desirable to manufacture the woven fabric using a weaving method or a post-processing method for suppressing this. In addition, as shown in equation (20) and the like, in the reinforcement design, when calculating the transmission stress of the reinforcing material, the tensile elastic modulus (Young's modulus) of the reinforcing material is used, so that the product satisfies the standard value. Inspection is necessary. Among the polyester belts that are examples of the highly flexible material of the present invention, various thicknesses of 2.5 mm, 3 mm, 4 mm, and 5 mm are included, and those having the same Young's modulus of 4500 N / mm 2 are included. It is. It has also been experimentally confirmed that by using these materials stacked and fixed to each other by the toughness fixing mechanism, various tensile stiffnesses in increments of 2250 N / mm can be obtained from the initial value of 11250 N / mm. This means that the design tensile rigidity can be assigned within a width of 2250 N / mm with the tensile rigidity required in the design calculation as the inner ring, and the amount of material consumption can be reduced reasonably.

次に、本発明の靭性定着機構の例を説明する。本例の補強材は、接着剤によって補強対象物に定着される。本例で用いる接着剤は、ウレタン系一液性無溶剤接着剤である。これは、作業性がよく、人間に対して害が少ない。接着剤は、界面剥離エネルギーと定着強度(平均定着力)を製品規格値としている。これは、設計計算において、式(20)および(23)に示すように、補強材伝達応力を決定する主要な要素であり、これを製品規格値とすることで、接着剤を用いた本例の定着機構の解除限界を製造段階で保証することができる。ただし、設計においては、前記限界を、接着作業が、現場で行われることを考慮した係数で割り引くことを行っている。また、機械的な定着も用いられる。例えば、木質構造に対しては、前記補強材を釘打ちで定着してもよい。この場合は、定着区間)が均質な定着機構になるように、該区間全長に渡り細かいピッチで均等に打つことが望ましい。例えば、釘を用いる場合に、釘一本当たりの定着力は、100Nから200N程度になるので、10mm間隔から15mm間隔の格子状に均等に打ち付けて定着すると単位面積当たりの定着力が、0.4N/mmから2N/mm程度になり、木材やコンクリートなどの下地の引張破壊強度を超えない範囲に収めることが可能になる。この他の機械的定着機構を用いた場合でも、前述したように、平均せん断力が5N/mm以下になることが望ましい。機械的定着機構の設置間隔が荒すぎると補強材に局部的な応力集中が生ずるので、均質性が損なわれる。また、これが細かすぎると、設置に手間が掛かる上、個々の機械的定着機構同士が物理的に干渉して設置に支障を来たす。以上から、設置間隔は、5mmから50mm程度とすることが望ましい。また、螺旋構造で補強する場合には、巻き始めと巻き終わりで補強材同士を接合することとしているが、これには、接着による接合の他に、補強材同士をクリップで接合するなどの機械的な定着方法を行うことができる。この場合も、補強材軸方向に多数箇所に渡って細かく止めることで、均質な定着機構を定着区間に渡って確保し、補強の強度と靭性を向上させることが望ましい。
105mm角長さ310mmの杉材を2本つき合わせた接合部を跨いで、厚さ2.5mm、幅100mm、長さ300mm、有効ヤング率(規格値)4500N/mmのポリエステルベルトを、定着長150mmづつで、対抗面に2枚貼り付けた試験体の引張試験を行った。定着は、直径1.2mm、打ち込み長さ16mmの釘を10mm間隔の格子状に打ち込んだもので、多数の機械的定着機構により形成される本発明の靭性定着機構の例である。釘打領域は、接合部と補強材端部から、それぞれ5mm入った幅90mm、長さ140mmの領域が4つになる。前記杉材が互いに離れるように荷重を掛けて接合部の開きと荷重の関係を計測したところ、最大荷重約30kN,剥離限界変位約10mmの結果を得た。これから、平均定着力は、約1N/mm、界面剥離エネルギーは、約5N/mmと計算される。許容応力度法による木造設計指針から、直径1.2mmの釘の許容接合強度を計算すると一本当たり約43Nとなり、単位面積当たりに換算すれば、0.4N/mmとなる。実測された前記平均定着力約1N/mmは、これの2倍程度であるが、通常の最大強度と許容値との比であると言える。
補強材同士接合に、多数の機械的定着機構により形成される本発明の靭性定着機構を用いる例として、厚さ4mm、幅65mm、長さ800mm、有効ヤング率(規格値)4500N/mmのポリエステルベルトを、400mmの重ね長で、2枚貼り付けた試験体の引張試験を行った。定着は、ベルト同士をMAX社製ホチキスHD−12N/17で止めたものである。針は、マックス針1213FA−H(針断面0.7mm角、幅13mm、足長さ13mm)を用いて、長さ方向に20mm間隔、幅方向に10mm間隔で、長さ400mm、幅65mmの重ね部分全域に格子状に打ち込んだ。ベルトの両端に引張荷重をかけて、荷重と端部の変位の関係を計測したところ、最大荷重約12kN、最大変位約15mmを得た。これは、平均定着強度約0.5N/mm、界面剥離エネルギー約3.5N/mmに相当する。
Next, an example of the toughness fixing mechanism of the present invention will be described. The reinforcing material of this example is fixed to the object to be reinforced by an adhesive. The adhesive used in this example is a urethane-based one-component solventless adhesive. This is good workability and less harmful to humans. The adhesive uses the interface peeling energy and the fixing strength (average fixing force) as the product standard values. This is a main factor for determining the reinforcing material transmission stress in the design calculation as shown in the equations (20) and (23). By using this as the product standard value, this example using an adhesive is used. The release limit of the fixing mechanism can be guaranteed at the manufacturing stage. However, in the design, the limit is discounted by a factor considering that the bonding work is performed on site. Mechanical fixing is also used. For example, for a wooden structure, the reinforcing material may be fixed by nailing. In this case, it is desirable to strike uniformly at a fine pitch over the entire length of the section so that the fixing section is a uniform fixing mechanism. For example, when a nail is used, the fixing force per nail is about 100 N to 200 N. Therefore, when the nail is fixed by striking evenly in a grid shape with an interval of 10 mm to 15 mm, the fixing force per unit area is 0. It becomes about 4 N / mm 2 to 2 N / mm 2 , and can be within a range not exceeding the tensile fracture strength of the base such as wood or concrete. Even when another mechanical fixing mechanism is used, as described above, it is desirable that the average shear force is 5 N / mm 2 or less. If the installation interval of the mechanical fixing mechanism is too rough, local stress concentration occurs in the reinforcing material, so that homogeneity is impaired. On the other hand, if this is too fine, it takes time to install, and the mechanical fixing mechanisms physically interfere with each other, thereby hindering the installation. From the above, it is desirable that the installation interval is about 5 mm to 50 mm. In addition, when reinforcing with a spiral structure, the reinforcing materials are joined at the start and end of winding, but this includes machines such as joining the reinforcing materials with clips in addition to joining by bonding. Fixing method can be performed. In this case as well, it is desirable to secure a uniform fixing mechanism over the fixing section by finely stopping it at a large number of locations in the axial direction of the reinforcing material, thereby improving the strength and toughness of the reinforcement.
A polyester belt with a thickness of 2.5 mm, a width of 100 mm, a length of 300 mm, and an effective Young's modulus (standard value) of 4500 N / mm 2 is fixed across a joint where two cedars of 105 mm in length and 310 mm are joined together. Tensile tests were performed on test specimens each having a length of 150 mm and affixed to two opposing surfaces. Fixing is an example of the tough fixing mechanism of the present invention formed by a number of mechanical fixing mechanisms, in which nails having a diameter of 1.2 mm and a driving length of 16 mm are driven into a grid pattern with an interval of 10 mm. The nailing area has four areas each having a width of 90 mm and a length of 140 mm, each including 5 mm from the joint and the end of the reinforcing material. A load was applied so that the cedars were separated from each other, and the relationship between the opening of the joint and the load was measured. As a result, a maximum load of about 30 kN and a separation limit displacement of about 10 mm were obtained. From this, the average fixing force is calculated to be about 1 N / mm 2 , and the interfacial peel energy is calculated to be about 5 N / mm. If the allowable joint strength of a nail having a diameter of 1.2 mm is calculated from a wooden design guideline based on the allowable stress method, it will be about 43 N per piece, and 0.4 N / mm 2 when converted to unit area. The actually measured average fixing force of about 1 N / mm 2 is about twice this, but it can be said that it is the ratio between the normal maximum strength and the allowable value.
As an example of using the toughness fixing mechanism of the present invention formed by a number of mechanical fixing mechanisms for joining reinforcement members, the thickness is 4 mm, the width is 65 mm, the length is 800 mm, and the effective Young's modulus (standard value) is 4500 N / mm 2 . A tensile test was performed on a test body in which two polyester belts were attached to each other with an overlap length of 400 mm. The fixing is performed by fixing the belts with a stapler HD-12N / 17 manufactured by MAX. The needle is a max needle 1213FA-H (needle cross section 0.7 mm square, width 13 mm, foot length 13 mm), with a length of 20 mm and a width of 10 mm, a length of 400 mm and a width of 65 mm. The entire area was driven in a grid pattern. When a tensile load was applied to both ends of the belt and the relationship between the load and the displacement of the end portion was measured, a maximum load of about 12 kN and a maximum displacement of about 15 mm were obtained. This corresponds to an average fixing strength of about 0.5 N / mm 2 and an interfacial peel energy of about 3.5 N / mm.

次に、本発明の施工作業の例を示す。図20は、本例の補強の施工フロー図である。作業は、次の手順に従って行う。
1)設置位置墨だし
設計図書に示された本例の高屈曲性材(以下、補強材という)の層数と範囲に従って、下地に補強材設置の基準となる墨出しを行う。
2)補強材準備
本例の補強材を所要の寸法に切断し、部材周囲に仮置き準備する。螺旋まき等部材を周回させる設置法の場合には、仮に周回させてもよい(仮巻きという)。
3)接着剤塗布
下地の補強材設置範囲に全体に接着剤を塗布する。ただし、貼り始めの起点には、必要に応じ、接着剤は塗布せず構造用両面テープを貼る。
4)補強材貼り始め
補強材設置開始位置から補強材を下地表面に貼り付ける。螺旋巻き法で設置する場合は、部材軸直角方向に一周水平に貼り付け、一部材辺長分重ねた後、一周で補強材幅を巻きつける角度で螺旋状に巻きつける。のり巻き法の場合には、部材軸直角方向に一周水平に貼り付け、一辺長重ねて止める。何れの場合も、補強材同士が重なる部分には、全て接着剤を塗布する。また、貼りつけ時には、人力で張力を加えて緩み、たるみの無いように注意する。
5)補強材一般部貼りつけ
短冊貼りの場合は、補強材を片押しで貼り付ける。螺旋巻きの場合は、部材周囲一周で、補強材幅を巻きつける角度で螺旋状に巻きつけ貼り付ける。のり巻きの場合には、棒部材軸直角方向に一周水平に貼り付け、三辺長重ねて貼り付けて止める。何れの場合も、補強材同士が重なる部分には、全て接着剤を塗布する。また、貼りつけ時には、人力で張力を加えて緩み、たるみの無いように注意する。
6)補強材貼り終わり
短冊貼りの場合は、補強材を全長片押しで貼り付けて貼り終わる。貼り終わりは、下地表面に予め設置しておいた構造用両面テープあるいは、ホチキス、釘などで固定する。螺旋巻きの場合は、ある部材辺上で、巻き終わり基準線とベルト端との距離がベルト幅の4分の1以下になった場合には、次の辺の巻き終わり基準線に向けて螺旋状に巻き、この辺から始めて、棒部材軸直角方向に一周水平に貼り付け、一辺長重ねて貼り付けた後、補強材を切断し、巻き終わりとする。のり巻きの場合には、棒部材軸直角方向に一周水平に貼り付け、三辺長重ねて切断し、巻き終わりとする。貼り終わりは、補強材の上から養生テープなどで押さえ、接着剤が硬化するまでの間の剥がれを防ぐ。何れの場合も、補強材同士が重なる部分には、全て接着剤を塗布する。また、貼り付け時には、人力で張力を加えて緩み、たるみの無いように注意して巻きつける。
7)仕上げ
耐候性や美観等を考慮し、施工場所に適した仕上げ方法を選定して仕上げを行う。移設した設備等を所定の箇所に復旧する。
Next, an example of the construction work of the present invention will be shown. FIG. 20 is a construction flow diagram of reinforcement in this example. Work according to the following procedure.
1) Installation position marking In accordance with the number of layers and the range of the highly flexible material (hereinafter referred to as reinforcing material) of this example shown in the design document, marking is performed as a reference for setting the reinforcing material on the base.
2) Reinforcing material preparation The reinforcing material of this example is cut into required dimensions, and temporarily placed around the member. In the case of an installation method in which a member such as a spiral winding is circulated, it may be temporarily circulated (referred to as temporary winding).
3) Adhesive application Adhesive is applied to the entire area where the reinforcing material is installed. However, if necessary, a double-sided adhesive tape is applied to the starting point of application without applying an adhesive.
4) Start applying the reinforcing material Affix the reinforcing material to the ground surface from the position where the reinforcing material is placed. When installing by the spiral winding method, it is attached horizontally in one direction in the direction perpendicular to the member axis, overlapped by one member side length, and then wound spirally at an angle to wind the reinforcing material width in one turn. In the case of the winding method, it is attached horizontally in one direction in a direction perpendicular to the member axis, and is overlapped with one side and stopped. In any case, the adhesive is applied to all the portions where the reinforcing materials overlap. Also, when attaching, be careful not to loosen it by applying tension with human power and to make it slack.
5) Affixing the general part of the reinforcing material In the case of sticking a strip, the reinforcing material is applied with one push. In the case of spiral winding, it is wound around and pasted around the member at an angle to wind the reinforcing material width. In the case of glue winding, it is stuck horizontally in one direction in the direction perpendicular to the bar member axis, and is stuck on three sides. In any case, the adhesive is applied to all the portions where the reinforcing materials overlap. Also, when attaching, be careful not to loosen it by applying tension with human power and to make it slack.
6) Finishing sticking of the reinforcing material In the case of sticking the strip, the reinforcing material is pasted by pressing the full length one-sidedly. The pasting is fixed with a double-sided structural tape, a staple, a nail or the like that has been previously set on the base surface. In the case of spiral winding, when the distance between the winding end reference line and the belt end on a certain member side is less than one-fourth of the belt width, the spiral is directed toward the winding end reference line of the next side. Starting from this side, it sticks horizontally around the rod member axis perpendicular direction, and after one side is overlapped and pasted, the reinforcing material is cut to finish the winding. In the case of glue winding, it is pasted horizontally in the direction perpendicular to the bar member axis, and is cut by overlapping the three sides to make the end of winding. At the end of the sticking, press on the reinforcing material with a curing tape to prevent peeling until the adhesive is cured. In any case, the adhesive is applied to all the portions where the reinforcing materials overlap. Also, when applying the tape, take care not to sag and loosen it by applying manual tension.
7) Finishing Finishing by selecting a finishing method suitable for the construction site in consideration of weather resistance and aesthetics. Restore the relocated facilities to the specified location.

次に、補強対象物の一例である天井について、本発明を実施した例を説明する。図1は、天井に本発明を適用した場合の斜視図、図2は、断面図である。また、図3〜5は、図1に示した本発明の高屈曲性材の定着部分の拡大図である。天井板10は、野縁12、野縁受14、吊ボルト16、ハンガー18、横つなぎ20などの既存補強構造で梁24あるいは母屋26に緊結されている。従来は、図6〜8に示した方法で、金属を用いて補強している。地震等の突発的な外力による天井災害は、前記既存補強構造の水平方向の剛性や強度、あるいは壁面などとの間のクリアランスが不足し、地震動等の外乱による天井の振動で前記補強構造の一部あるいは全部が破壊することが原因であるとされ、斜め方向に補強材(ブレース材)を配すること(図6)、野縁と野縁受の間に補強金物を設置し、補強ビスで固定すること(図7)、ハンガーが開かないようにビス(M4)で固定すること(図8)などの方法が従来は用いられている。
本例は、これら従来法に代えて、上記した特徴を有する本発明の補強材(以下、SRF補強材、あるいは単に補強材と称する)を用いて本発明の接着剤により定着して設置する方法である。例えば、図1および2に符号30で示したように、横つなぎと横つなぎあるいは、野縁受の間にブレース補強として、また符号32で示したように、野縁と野縁受を緊結補強するクリップとして、さらに符号34で示したように、ハンガーが開かないようにする外れ止めとして実施される。図3では、補強材30aと野縁受14の間、および、補強材30aが重なる部分に接着剤を塗布して接着する。図4では、補強材32と野縁受14、野縁12の間、および、補強材32が重なる部分に接着剤を塗布して接着する。図5では、ハンガー18と補強材34の間を接着面とする。なお、接着剤は、後述する例に示すような設計計算で得られる必要定着長以上の長さに渡って接着すればよく、必ずしも上記の補強材間あるいは補強材と補強対象物間すべての部分で接着する必要はない。例えば、横向き面と上向き面のみを接着する方法も可能であり、下向き面の困難な接着作業を省くことが可能である。
Next, the example which implemented this invention about the ceiling which is an example of a reinforcement target object is demonstrated. FIG. 1 is a perspective view when the present invention is applied to a ceiling, and FIG. 2 is a cross-sectional view. 3 to 5 are enlarged views of the fixing portion of the highly flexible material of the present invention shown in FIG. The ceiling board 10 is fastened to the beam 24 or the main building 26 with existing reinforcement structures such as the field edge 12, the field edge receiver 14, the suspension bolt 16, the hanger 18, and the horizontal tether 20. Conventionally, the metal is reinforced by the method shown in FIGS. Ceiling disasters caused by sudden external forces such as earthquakes may cause a lack of horizontal rigidity and strength of the existing reinforcement structure or clearance between the walls and the like. It is said that the part or the whole is destroyed, and the reinforcement material (brace material) is arranged diagonally (Fig. 6), the reinforcement hardware is installed between the field edge and the field edge, and the reinforcement screw is used. Methods such as fixing (FIG. 7) and fixing with a screw (M4) so as not to open the hanger (FIG. 8) are conventionally used.
In this example, instead of these conventional methods, the reinforcing material of the present invention having the above-described characteristics (hereinafter referred to as SRF reinforcing material, or simply referred to as the reinforcing material) is fixed and installed by the adhesive of the present invention. It is. For example, as shown by reference numeral 30 in FIGS. 1 and 2, as a brace reinforcement between a horizontal joint and a horizontal joint, or a field bridge, and as shown by a numeral 32, the field edge and the field edge are tightly reinforced. Further, as shown by reference numeral 34, the clip is implemented as a stopper that prevents the hanger from opening. In FIG. 3, an adhesive is applied and bonded between the reinforcing member 30 a and the field edge receiver 14, and a portion where the reinforcing member 30 a overlaps. In FIG. 4, an adhesive is applied and bonded between the reinforcing material 32 and the field edge receiver 14, the field edge 12, and a portion where the reinforcing material 32 overlaps. In FIG. 5, the space between the hanger 18 and the reinforcing material 34 is an adhesive surface. The adhesive only needs to be bonded over a length longer than the necessary fixing length obtained by design calculation as shown in the example described later, and not necessarily all the parts between the reinforcing material or between the reinforcing material and the object to be reinforced. It is not necessary to bond with. For example, a method of adhering only the laterally facing surface and the upwardly facing surface is possible, and it is possible to omit a difficult adhering operation for the downwardly facing surface.

図3は、上記したようにSRF補強材をブレース30として設置する場合の定着部30a(図1のAの部分)の詳細図である。SRF補強材は屈曲性に富んでいるので図のように野縁受14にらせん状に巻きつけて補強材同士および補強材と野縁受14の間に接着剤を塗布して定着する。
図4は、上記したようにSRF補強材をクリップ32(図1のBの部分)として設置した場合の詳細図であり、(A)は斜視図、(B)は(A)図のB矢視図である。SRF補強材は、屈曲性に富んでいるので、図示のように、野縁12と野縁受14の一方に巻き付けた後たすき掛け状態として他方に延ばし、その後この他方に巻き付けて補強材と野縁12および野縁受14の間に接着剤を塗布して定着する。
図5は、上記したようにSRF補強材を外れ止め34(図1のCの部分)として設置した場合の詳細図であり、(A)は斜視図、(B)は(A)図のB矢視図である。SRF補強材は、屈曲性に富んでいるので、図示のように、ハンガー18の周りにかけ回して補強材とハンガー18の間に接着剤を塗布して定着する。
3 is a detailed view of the fixing portion 30a (portion A in FIG. 1) when the SRF reinforcing material is installed as the brace 30 as described above. Since the SRF reinforcing material is rich in flexibility, it is wound around the field receiver 14 in a spiral manner, and an adhesive is applied between the reinforcing materials and between the reinforcing material and the field receiver 14 as shown in the figure.
4 is a detailed view when the SRF reinforcing material is installed as the clip 32 (part B in FIG. 1) as described above, (A) is a perspective view, and (B) is an arrow B in FIG. FIG. Since the SRF reinforcement is rich in flexibility, as shown in the figure, it is wound around one of the field edge 12 and the field edge receiver 14 and then stretched to the other, and then wound around the other to be reinforced with the reinforcement material and the field edge. An adhesive is applied between the edge 12 and the field edge receiver 14 and fixed.
FIGS. 5A and 5B are detailed views when the SRF reinforcing material is installed as the detachment stopper 34 (part C in FIG. 1) as described above, where FIG. 5A is a perspective view and FIG. 5B is B in FIG. It is an arrow view. Since the SRF reinforcing material is rich in flexibility, it is wound around the hanger 18 and an adhesive is applied between the reinforcing material and the hanger 18 and fixed as shown in the figure.

以下に、上記の例の補強材の設計方法を示す。
以下の例では、補強材として、厚さ2.5mm幅50mmのポリエステル製ベルト(ベルト状SRF補強材)を、接着剤として、ポリウレタン系無溶剤一液性接着剤(SRF接着剤)を用いた。表1と表2に補強材と接着剤の製品規格値を掲げた。
Below, the design method of the reinforcing material of said example is shown.
In the following examples, a polyester belt (belt-shaped SRF reinforcing material) having a thickness of 2.5 mm and a width of 50 mm was used as the reinforcing material, and a polyurethane-based solventless one-component adhesive (SRF adhesive) was used as the adhesive. Tables 1 and 2 list product specification values of the reinforcing material and the adhesive.

Figure 2008101324
Figure 2008101324

Figure 2008101324
ここで、有効ヤング率とは、設計限界歪(本例では、1%歪)時の割線弾性係数である。また、界面剥離エネルギーとは、接着が剥離する時に要する単位面積当たりエネルギーであり、接着強度の指標である。
Figure 2008101324
Here, the effective Young's modulus is a secant elastic modulus at the design limit strain (1% strain in this example). Further, the interfacial peeling energy is energy per unit area required when adhesion is peeled, and is an index of adhesive strength.

設計は、補強構造の変形による補強材の変形、補強材の破断、補強材の定着部の破壊をそれぞれ、設計限界状態として行う。ここで、補強構造とは、補強材と補強対象物で作る構造であり、外力に対して抵抗力(復元力)を生じながら変形する単位をいう。本例では、図2に一点鎖線で示した横つなぎと野縁受と補強材で作る辺長a,bの長方形を補強構造として設計検討を行う。以下、奥行き方向に関しては、巨視的な均一性を仮定し、平面問題として設計計算を行う。また、補強構造の鉛直方向の変形は無いと考えている。
まず、補強構造の変形に関する設計を説明する。図2の横つなぎと野縁受の間で角度γのせん断変形(横つなぎと野縁受間の相対水平変位を両者の鉛直距離(a)で叙した値)が生じた場合に補強材に生ずる伸び歪

Figure 2008101324
は、幾何学的条件から、式(1)で表される。
Figure 2008101324
ただし、aとbは、それぞれ、補強材の設置位置の水平間距離と鉛直間距離である(図−2)。また、補強材張力
Figure 2008101324
の水平方向の成分をPとし、補強材のヤング率を
Figure 2008101324
とすれば、せん断変形角γとの間には、次の関係があり、補強材による前記補強構造の補強材が伸びる方向へのせん断剛性Gが求まる。
Figure 2008101324
ただし、
Figure 2008101324
は、有効ヤング率に厚さを乗じたもので、単位幅、単位歪当たりの補強材張力を表す係数で、張力係数と呼ぶ。また、
Figure 2008101324
は、補強材の幅と本数、βは、補強材が水平となす角
Figure 2008101324
である。
表−1の補強材の規格値を(2)式に代入して補強材の効果による該補強構造(横つなぎと野縁受間)のせん断変形と荷重の関係を計算することができる。例えば、SRF250
Figure 2008101324
を柱と45度を成す
Figure 2008101324
ように、天井板の面積
Figure 2008101324
当たり、3本
Figure 2008101324
を設置した場合には、式(2)から、
Figure 2008101324
を得る。今、天井板等の重量が1m当たり
Figure 2008101324
であるとして、水平震度
Figure 2008101324
、応答倍率
Figure 2008101324
とすれば、天井板の面積
Figure 2008101324
当たりの水平荷重は、
Figure 2008101324
ただし、gは、重力加速度である。式(3)と(4)から、変形角が次のように計算される。
Figure 2008101324
天井の屋根に対する相対振動による本例の補強構造のせん断変形角γを例えば300分の1に抑えることを設計範疇とするならば、上記の本数で良いことになる。 In the design, deformation of the reinforcing material due to deformation of the reinforcing structure, breakage of the reinforcing material, and destruction of the fixing portion of the reinforcing material are performed as design limit states. Here, the reinforcing structure is a structure made of a reinforcing material and an object to be reinforced, and refers to a unit that deforms while generating a resistance force (restoring force) against an external force. In this example, a design study is performed using a rectangular structure having side lengths a and b formed by a horizontal joint, a field edge receiver, and a reinforcing material shown by a one-dot chain line in FIG. Hereinafter, with respect to the depth direction, assuming a macroscopic uniformity, design calculation is performed as a plane problem. Further, it is considered that there is no vertical deformation of the reinforcing structure.
First, the design related to the deformation of the reinforcing structure will be described. When the shear deformation of the angle γ between the horizontal joint and the field receiver in Fig. 2 (the value obtained by expressing the relative horizontal displacement between the horizontal joint and the field receiver in terms of the vertical distance (a) between them) Resulting elongation strain
Figure 2008101324
Is expressed by Equation (1) from the geometrical condition.
Figure 2008101324
However, a and b are the horizontal distance and vertical distance of the installation position of a reinforcing material, respectively (FIG. 2). Also, reinforcement tension
Figure 2008101324
The horizontal component of P is P, and the Young's modulus of the reinforcing material is
Figure 2008101324
Then, there is the following relationship with the shear deformation angle γ, and the shear rigidity G in the direction in which the reinforcing material of the reinforcing structure is extended by the reinforcing material is obtained.
Figure 2008101324
However,
Figure 2008101324
Is obtained by multiplying the effective Young's modulus by the thickness, and is a coefficient representing the reinforcing material tension per unit width and unit strain, and is called a tension coefficient. Also,
Figure 2008101324
Is the width and number of reinforcements, β is the angle between the reinforcements and the horizontal
Figure 2008101324
It is.
By substituting the standard value of the reinforcing material in Table 1 into the equation (2), the relationship between the shear deformation and the load of the reinforcing structure (between the horizontal joint and the edge receiving member) due to the effect of the reinforcing material can be calculated. For example, SRF250
Figure 2008101324
45 degrees with the pillar
Figure 2008101324
So that the area of the ceiling board
Figure 2008101324
Three per hit
Figure 2008101324
From the formula (2),
Figure 2008101324
Get. Now, the weight of ceiling boards, etc. per 1 m 2
Figure 2008101324
As the horizontal seismic intensity
Figure 2008101324
, Response magnification
Figure 2008101324
If so, the area of the ceiling board
Figure 2008101324
The horizontal load per hit is
Figure 2008101324
However, g is a gravitational acceleration. From equations (3) and (4), the deformation angle is calculated as follows.
Figure 2008101324
If the design category is to suppress the shear deformation angle γ of the reinforcing structure of this example by relative vibration to the roof of the ceiling to 1/300, for example, the above number is sufficient.

次に、補強材破断に関する検討を行う。補強材の破断伸びの製品規格値

Figure 2008101324
は、10%である。式(5)で得られたせん断歪γと設置条件
Figure 2008101324
を式(1)に代入して、補強材歪は、次のように計算される。
Figure 2008101324
この値は、前記規格値10%より遥かに小さく補強材は、破断しないと判断される。
次に、定着は、補強材と野縁受、横つなぎ等の間を接着剤SRF20を用いて設計計算で求めた必要定着長以上の長さに渡って接着することによって行なうとして、定着部破壊に関する検討を行う。
一般に、十分長い定着長をもって、平らな物体表面に貼り付けた扁平な弾性補強材が接着面に平行な力を受けて、接着剥離する限界の歪(剥離限界歪)は、次式で表される。
Figure 2008101324
表−1、表−2に示した補強材と接着剤の製品規格値を式(7)に代入して、
Figure 2008101324
補強材に発生する歪は、式(6)より計算されており、式(8)の剥離限界歪より小さいので、定着長さを十分とれば、定着部での接着剥離は生じないと判断される。このときに必要な定着長は、式(9)で表され、表−1と表−2の製品規格値を代入すると、149mmであると計算される。
Figure 2008101324
従って、補強材を野縁受等の既存材を周回するように設置して、149mm以上の定着長(接着された部分の長さ)をとるようにすれば、1.33%の補強材歪まで定着破壊を起こさない定着構造とすることができる(図3)。これは、式(6)で計算した発生歪0.14%より遥かに大きく、想定外の振動にも対応する設計となる。また、式(6)の発生歪0.14%を、式(9)に1.33%に替えて代入すると、
Figure 2008101324
を得るので、この値にしかるべく安全率(例えば2)を乗じた長さを定着長さとすることで、周回状の巻きつけを行わない設計、例えば横つなぎや野縁受の横面と上面に16mm以上接着することによる定着も可能である。母屋、梁等に定着する場合は、この方法が施工的に好適である。 Next, the reinforcement material breakage is examined. Product standard value of breaking elongation of reinforcing material
Figure 2008101324
Is 10%. Shear strain γ obtained by equation (5) and installation conditions
Figure 2008101324
Is substituted into equation (1), and the reinforcement strain is calculated as follows.
Figure 2008101324
This value is much smaller than the standard value of 10%, and it is determined that the reinforcing material does not break.
Next, it is assumed that fixing is performed by bonding between the reinforcing material and the field edge holder, the horizontal joint, etc., using the adhesive SRF20 over a length longer than the required fixing length obtained by the design calculation. Study about.
In general, the limit strain (peeling limit strain) at which a flat elastic reinforcing material affixed to a flat object surface with a sufficiently long fixing length receives a force parallel to the adhesive surface and peels off (removal limit strain) is expressed by the following equation. The
Figure 2008101324
Substituting the product standard values of the reinforcing material and the adhesive shown in Table-1 and Table-2 into Equation (7),
Figure 2008101324
The strain generated in the reinforcing material is calculated from the equation (6) and is smaller than the separation limit strain of the equation (8). Therefore, if the fixing length is sufficient, it is determined that the adhesion peeling at the fixing portion does not occur. The The fixing length required at this time is expressed by Expression (9), and is calculated to be 149 mm when the product standard values in Tables 1 and 2 are substituted.
Figure 2008101324
Therefore, if the reinforcing material is installed so as to wrap around the existing material such as a field ledge and the fixing length (the length of the bonded part) of 149 mm or more is taken, the fixing material distortion is fixed to 1.33%. A fixing structure that does not cause destruction can be obtained (FIG. 3). This is much larger than the generated strain of 0.14% calculated by the equation (6), and it is designed to cope with unexpected vibrations. Also, substituting the generated strain of 0.14% in equation (6) for 1.33% in equation (9),
Figure 2008101324
Therefore, the length obtained by multiplying this value by a safety factor (for example, 2) is set as the fixing length, so that the winding is not performed, for example, the horizontal and upper surfaces of the horizontal connection and the field receiver It is possible to fix by adhering 16mm or more. This method is preferable in terms of construction when it is fixed on a main building, a beam, or the like.

図4および図5の方法に関しても、本例と同様に設計計算を行うことができる。即ち、補強材に作用する荷重と伸びの関係、即ち、補強構造の剛性は、補強材の設置された幾何学条件と周辺の既存の補強材および構築物の部材の関係から計算できる。また、補強構造ひいては補強材に作用する荷重は、地震時構築物の作用荷重から計算できる。以下は、本例と同様に補強材破断と定着破壊に対する検討を行えばよい。このとき、本発明の補強材は、曲げ剛性、せん断剛性、圧縮剛性を有しないので、引っ張り荷重のみを弾性的に伝達する紐材として扱って構造モデルを構築し、構造計算を行うことができる。
なお、定着構造は、本例の接着に限らず、補強材に孔をあけてピンやビスを用いて周囲の材料に機械的に定着したり、クリップを用いて補強材同士を止める摩擦的な機構を用いたり、これらを併用してよい。これら従来型の定着構造の強度等については、公知の設計計算法に従って求めることができる。また、機械的定着機構を細かいピッチで設置した場合には、前述した接着剤を用いた場合と同様に界面剥離エネルギーと平均定着強度で評価することができる。
本例で計算した定着構造の剥離限界歪1.33%は、平らな面に補強材を接着した場合の界面剥離エネルギーの試験値から得られた値である。らせん状に巻きつけた場合にように、補強材に作用する引っ張り荷重によって、接着面に形状的な拘束圧が生ずる場合には、この値よりも大きな界面剥離エネルギーが計測されるので、これより大きな定着構造破壊限界歪を取ることが可能である。本例の補強材は、10%程度まで弾性的な復元力を生ずるので、螺旋状の定着構造を用いて大きな定着強度が得られることに対応して、設計限界歪を本例よりも大きくとる(最大10%まで)ことが可能である。フラットバーやアングルなど圧縮剛性や曲げ剛性のある補強材を用いた場合には、大地震時に、補強構造の変形によって補強材に圧縮力が作用する結果、補強材が座屈や抜けを生じて補強効果を失うばかりか、該補強材が飛び出して周囲の部材を破壊する危険性がある。本発明の補強材は、引っ張り剛性以外の剛性が設計上無視できるほど小さく、この問題がない。
なお、本例は、非構造部材を取り上げたが、本例の計算式で明らかなように、補強材の数(式中の記号m)を増やすことで、さらに大きな剛性と強度を得ることができる。本発明は、非構造部材に限らず、より大きな補強材の剛性や強度が要求される構造部材の補強にも用いることができる。
Regarding the methods of FIGS. 4 and 5, design calculation can be performed in the same manner as in this example. That is, the relationship between the load acting on the reinforcing material and the elongation, that is, the rigidity of the reinforcing structure, can be calculated from the relationship between the geometric conditions where the reinforcing material is installed and the existing existing reinforcing material and the members of the structure. Further, the load acting on the reinforcing structure and hence the reinforcing material can be calculated from the acting load of the earthquake structure. In the following, it is only necessary to examine the reinforcing material breakage and the fixing breakage as in this example. At this time, since the reinforcing material of the present invention does not have bending rigidity, shear rigidity, or compression rigidity, it can be treated as a string material that elastically transmits only a tensile load, and a structural model can be constructed and a structure calculation can be performed. .
In addition, the fixing structure is not limited to the adhesion of this example, but a hole is formed in the reinforcing material and the pin is fixed to the surrounding material mechanically using a pin or screw, or the reinforcing material is frictionally stopped using a clip. You may use a mechanism or may use these together. The strength and the like of these conventional fixing structures can be determined according to a known design calculation method. In addition, when the mechanical fixing mechanism is installed at a fine pitch, the evaluation can be made by the interfacial peeling energy and the average fixing strength as in the case of using the adhesive described above.
The peeling limit strain 1.33% of the fixing structure calculated in this example is a value obtained from the test value of the interfacial peeling energy when a reinforcing material is bonded to a flat surface. When a constraining pressure is generated on the adhesive surface due to the tensile load acting on the reinforcing material, as in the case of winding in a spiral shape, the interfacial debonding energy greater than this value is measured. It is possible to take a large fixing structure fracture limit strain. Since the reinforcing material of this example generates an elastic restoring force up to about 10%, the design limit strain is made larger than that of this example corresponding to the fact that a large fixing strength can be obtained by using a helical fixing structure. (Up to 10%) is possible. When a reinforcing material with compression rigidity or bending rigidity such as a flat bar or angle is used, as a result of the compression force acting on the reinforcing material due to deformation of the reinforcing structure during a large earthquake, the reinforcing material may buckle or come off. In addition to losing the reinforcing effect, there is a risk that the reinforcing material jumps out and destroys surrounding members. The reinforcing material of the present invention has such a small rigidity as to be negligible in terms of design other than the tensile rigidity, and does not have this problem.
In this example, non-structural members are taken up, but as is clear from the calculation formula of this example, by increasing the number of reinforcements (symbol m in the formula), greater rigidity and strength can be obtained. it can. The present invention can be used not only for non-structural members but also for reinforcing structural members that require greater rigidity and strength of the reinforcing material.

次に、鉄筋コンクリート壁に本発明を適用した例を示す。図9と表3は、壁にSRF補強材を接着剤で貼り付ける各種の補強形式を示す。この例では、補強した壁の強度は、建築学会の靭性保証型設計指針のトラス・アーチ理論に基づくせん断強度式に補強材の伝達応力

Figure 2008101324
を拘束型では剥離限界歪時の応力、非拘束型では、コンクリートの圧縮終局歪時(
Figure 2008101324
=0.003)として壁補強鉄筋と同様に算入する方法で計算している。靭性は、前記せん断強度と平面保持等を仮定した曲げ強度計算値からせん断余裕度を計算して、建築防災協会の耐震診断基準に示されたせん断余裕度と靭性の関係式から計算している。 Next, the example which applied this invention to the reinforced concrete wall is shown. FIG. 9 and Table 3 show various types of reinforcement in which an SRF reinforcement is attached to the wall with an adhesive. In this example, the strength of the reinforced wall is determined by the shear strength formula based on the truss arch theory of the Architectural Institute's toughness-guaranteed design guidelines.
Figure 2008101324
In the constrained type, the stress at the time of ultimate strain in the unconstrained type,
Figure 2008101324
= 0.003) is calculated in the same way as for wall reinforcing bars. The toughness is calculated from the relationship between the shear margin and the toughness shown in the earthquake resistance diagnostic standard of the Building Disaster Prevention Association by calculating the shear margin from the bending strength calculation value assuming the shear strength and plane retention. .

Figure 2008101324
Figure 2008101324

さらに、鉄筋コンクリート柱に本発明を適用した例を示す。図10は、柱にSRF補強材を接着剤で貼り付ける補強形式の内螺旋構造を用いる例を示す。この例では、補強した柱の強度は、建築学会の靭性保証型設計指針のトラス・アーチ理論に基づくせん断強度式に補強材の伝達応力を剥離限界歪時の応力として、補強鉄筋と同様に算入する方法で計算している。靭性は、曲げ柱については、前記せん断強度と平面保持等を仮定した曲げ強度計算値からせん断余裕度を計算して、建築防災協会の耐震診断基準に示されたせん断余裕度と靭性の関係式から計算している。せん断柱の靭性については、終局変形角を式(21)以下に示すように、せん断塊の変形と補強材伝達応力の幾何学的関係をモデル化して、計算する方法を採っている。ただし、

Figure 2008101324
は、せん断柱の終局時変形角(部材内のり)であり、
Figure 2008101324
は、柱断面せい、
Figure 2008101324
は、柱内のり高さ、
Figure 2008101324
は、終局時のせん断塊の対角歪で、式(34)で計算する補強材の剥離限界歪とする。
Figure 2008101324
は、補強材有効ヤング率、
Figure 2008101324
は、靭性定着機構の接着層の界面剥離エネルギー、
Figure 2008101324
は、補強材厚さである。ここで、部材を切るせん断ひび割れを対角線とする部材の部分をせん断塊と称する。
Figure 2008101324
Figure 2008101324
ただし、
Figure 2008101324
本発明の補強によって、せん断柱対しても、曲げ柱に匹敵する大きな靭性が得られることが実験で確かめられている。図11には、実験で実測された終局変形角(強度が最大値の80%に低下する変形角)と式(32)から(34)で計算した前記変形角を比較して示す。ただし、図11で、2002−2等の番号は実験番号をしめす。また、
Figure 2008101324
、τ(単位mm)等は、上記に説明した通りである。 Furthermore, the example which applied this invention to the reinforced concrete pillar is shown. FIG. 10 shows an example of using a reinforcing inner spiral structure in which an SRF reinforcing material is attached to a column with an adhesive. In this example, the strength of the reinforced column is included in the shear strength formula based on the truss arch theory of the toughness-guaranteed design guideline of the Architectural Institute of Japan. It is calculated by the method. As for toughness, for bending columns, calculate the shear margin from the bending strength calculation value assuming the shear strength and flat surface retention, etc. Calculated from As for the toughness of the shear column, the ultimate deformation angle is calculated by modeling the geometric relationship between the deformation of the shear mass and the transmission stress of the reinforcing material as shown in the following equation (21). However,
Figure 2008101324
Is the ultimate deformation angle of the shear column (in-member glue),
Figure 2008101324
Is due to the column cross section,
Figure 2008101324
Is the height inside the pillar,
Figure 2008101324
Is the diagonal strain of the shear mass at the end, and is defined as the separation limit strain of the reinforcing material calculated by Equation (34).
Figure 2008101324
Is the effective Young's modulus of the reinforcing material,
Figure 2008101324
Is the interfacial peeling energy of the adhesive layer of the toughness fixing mechanism,
Figure 2008101324
Is the thickness of the reinforcement. Here, the part of the member whose diagonal is the shear crack that cuts the member is called a shear mass.
Figure 2008101324
Figure 2008101324
However,
Figure 2008101324
It has been experimentally confirmed that the toughness comparable to that of a bending column can be obtained even with a shear column by the reinforcement of the present invention. FIG. 11 shows a comparison between the final deformation angle actually measured in the experiment (the deformation angle at which the strength is reduced to 80% of the maximum value) and the deformation angle calculated by equations (32) to (34). However, in FIG. 11, numbers such as 2002-2 indicate experiment numbers. Also,
Figure 2008101324
, Τ (unit: mm) and the like are as described above.

さらに、木造に本発明を適用した例を示す。図12〜図19は、の基礎土台柱接合部SRF補強材を接着剤で貼り付ける「短冊貼り」と呼ぶ補強形式を用いる手順の例を示す。以下に、手順を説明する。
1 仕上げ材の仮撤去、部材の検査
(1) 図12に示すように、補強対象箇所の仕上げ材を仮撤去する。
(2) 図13に示すように、対象部材が腐食・劣化していないか目視・触診にて検査する。異常が見つかった場合は設計監理者に報告し、その判断を仰ぎ、必要に応じて劣化部分を交換する。図14に、劣化部交換と補強法の例をしめす。
2 下地処理
(1) 接着範囲の部材表面の汚れ(接着に支障となるような塵埃・油等)がある場合はブラシ等で取り除く。ブラシ等で取り除くことができない汚れ・表面劣化がある場合は紙やすり等で新しい表面を削り出す。
(2) 部材と部材の境界部の段差を計測し、段差が4mm以上である場合は、図15に示すように、木板でテーパーを作成し段差が滑らかになるように取り付ける。
(3) 図16に示すように、接着範囲に印をつける。
3 接着剤の塗布
図17に示すように、接着範囲に接着剤を塗布する。塗布量の目安は800g/m2以上とし、専用くし目ヘラを用いて厚さ0.5mm厚程度で均一に塗布する。(専用のくし目へらで伸ばすことにより接着剤が適量となる。)
4 貼り付け
(1) 図18に示すように、貼り始め端をステープラーで仮固定して、ベルトがたるまないように引っ張りながら貼り付ける。貼り始め端と同じように貼り終え端をステープラー又は釘で固定する。
(2) 木材とベルトがよく接着するように手で押して馴染ませる。
(3) 図19に示すように、木片をあてて木槌またはゴムハンマーでたたき密着させる。
この例では、補強した接合部の基準耐力(強度)は、式(35)〜(37)で計算できる。

Figure 2008101324
Figure 2008101324
ただし、
Figure 2008101324
ここで、
Figure 2008101324
は、定着長が必要定着長以上の場合の短冊貼りの基準耐力、
Figure 2008101324
は、定着長が必要定着長以下の場合の短冊貼りの基準耐力、
Figure 2008101324
は、補強材幅、θは、補強材軸と接合面(亀裂)の成す角、
Figure 2008101324
は、補強材定着長さ、
Figure 2008101324
は、必要定着長、tは、補強材厚さ、
Figure 2008101324
は、補強材有効ヤング率、
Figure 2008101324
は、界面剥離エネルギー、
Figure 2008101324
は、平均接着強度である。なお、係数0.478は、「木造軸組工法住宅の許容応力度設計」に記載された方法に従って、本例の方法で補強した接合部の荷重変形関係の形状が放物線形状になることから求めている。また、必要定着長とは、前述したように、補強材が剥離限界強度を発揮することに必要十分な定着長である。また、実験から、接着層に作用するせん断力τは、定着区間内では、座標軸に対して等分布になること、即ち、補強材歪が線形に変化することが認められており、これを用いて、必要定着長より定着長が短い場合の接合強度の計算式(36)が得られている。 Furthermore, the example which applied this invention to wooden construction is shown. 12 to 19 show an example of a procedure using a reinforcement type called “strip sticking” in which the foundation foundation column joint SRF reinforcing material is pasted with an adhesive. The procedure will be described below.
1 Temporary removal of finishing materials, inspection of parts
(1) As shown in FIG. 12, the finishing material at the location to be reinforced is temporarily removed.
(2) As shown in FIG. 13, the target member is inspected visually or by palpation for corrosion or deterioration. If any abnormalities are found, report them to the design supervisor, ask for their judgment, and replace the deteriorated parts as necessary. FIG. 14 shows an example of replacement of a deteriorated portion and a reinforcing method.
2 Ground treatment
(1) Remove any dirt (oil, etc. that may interfere with adhesion) on the surface of the member in the adhesion area with a brush. If there is dirt or surface deterioration that cannot be removed with a brush, a new surface is scraped off with sandpaper.
(2) Measure the step at the boundary between the members, and if the step is 4 mm or more, as shown in FIG. 15, create a taper with a wooden board and attach it so that the step is smooth.
(3) Mark the adhesion area as shown in FIG.
3 Application of adhesive As shown in FIG. 17, an adhesive is applied to the bonding range. The amount of coating should be 800g / m 2 or more, and apply evenly with a thickness of about 0.5mm using a special comb eye spatula. (An appropriate amount of adhesive can be obtained by extending with a special comb spatula.)
4 Paste
(1) As shown in FIG. 18, the sticking start end is temporarily fixed with a stapler, and the belt is stuck while pulling so that the belt does not sag. In the same way as the application start end, the application end is fixed with a stapler or a nail.
(2) Push the hand to make it adhere well to the wood and belt.
(3) As shown in FIG. 19, a piece of wood is applied and knocked into close contact with a mallet or rubber hammer.
In this example, the standard proof stress (strength) of the reinforced joint can be calculated by equations (35) to (37).
Figure 2008101324
Figure 2008101324
However,
Figure 2008101324
here,
Figure 2008101324
Is the standard proof strength of strips when the fixing length is longer than the required fixing length,
Figure 2008101324
Is the standard proof strength for sticking strips when the fixing length is less than the required fixing length,
Figure 2008101324
Is the width of the reinforcing material, θ is the angle formed by the reinforcing material shaft and the joint surface (crack),
Figure 2008101324
Is the fixing length of the reinforcing material,
Figure 2008101324
Is the required fixing length, t is the thickness of the reinforcing material,
Figure 2008101324
Is the effective Young's modulus of the reinforcing material,
Figure 2008101324
Is the interfacial debonding energy,
Figure 2008101324
Is the average bond strength. The coefficient 0.478 is obtained from the fact that the shape of the load deformation relationship of the joint reinforced by the method of this example is a parabolic shape according to the method described in “Allowable stress design of a wooden frame construction method house”. . Further, the necessary fixing length is a fixing length necessary and sufficient for the reinforcing material to exhibit the peeling limit strength as described above. In addition, it has been confirmed from experiments that the shearing force τ acting on the adhesive layer is evenly distributed with respect to the coordinate axis in the fixing section, that is, the strain of the reinforcing material changes linearly. Thus, the calculation formula (36) of the bonding strength when the fixing length is shorter than the necessary fixing length is obtained.

さらに、崩落防止に適用した例を述べる。コンクリート製スラブや梁などの部材の崩落危険部位を囲んで、健全な部材表面にSRF補強材を接着し、崩落防止あるいは緊結補強を行う場合の必要定着長と必要厚さは、式(38)以下で計算できる。これは、崩落危険部位が、前記部材表面上の閉曲線と厚さ方向の寸法Hで現される剛体であると仮定し、これが面外方向に一様な変位

Figure 2008101324
を生じた場合について、剥離境界線が前記閉曲線と相似形に拡大すると仮定し、式(25)から式(28)に述べたモデルを具体化して求められている。

面外方向補強:
Figure 2008101324
Figure 2008101324
ただし、
Figure 2008101324
:面外方向補強接着強度 [N/mm]
Figure 2008101324
:危険部位の面外方向補強の寸法 [mm]
Figure 2008101324
:危険部位の図心から周囲までの距離(各方向)[mm]
Figure 2008101324
:面外方向必要定着長(危険部位の図心から補強材端部までの距離[mm]
γ:危険部位の単位体積重量 [N/mm3]
Figure 2008101324
:面外方向補強設計震度 [無次元]
Figure 2008101324
:面外方向補強の補強材必要厚さ [mm]
Figure 2008101324
:面外方向補強許容変位 [mm]
Figure 2008101324
:面内方向補強荷重に対する必要定着長さ [mm]
Figure 2008101324
:剥離限界張力に対する必要定着長さ [mm]
Figure 2008101324
:補強材有効ヤング率 [N/mm2]
Figure 2008101324
:界面剥離エネルギー [N/mm]
例えば、面外方向の崩落危険部が、コンクリートで、H=200mm,
Figure 2008101324
=500mm、γ=2.4×10-5N/mm3 であるとし、設計震度
Figure 2008101324
=1.0、許容変位
Figure 2008101324
=200mmとする。補強材は、SRFT-1:
Figure 2008101324
=280N/mm2
Figure 2008101324
=0.9mm、接着剤は、SRF20:
Figure 2008101324
=0.7N/mm2
Figure 2008101324
=0.7N/mm2
Figure 2008101324
=1N/mm を用いたとする。式(38)と式(39)より計算した必要定着範囲と厚さは、それぞれ、
Figure 2008101324
=1200mm、
Figure 2008101324
=0.74mmとなる。従って、一層貼ることで十分であると計算される。なお補強材歪は、式(27)より、4.1%であると計算され、式(8)に上記の物性値を代入して計算した面内方向の剥離限界歪(6.7%)以下である。また、崩落変位を50mm以下に抑える場合には、補強材として、SRF2100:
Figure 2008101324
=4500N/mm2,
Figure 2008101324
=2.5mm、を用いることとして計算すると、必要厚さは、2.9mmであると計算される。従って、SRF2100を縦横にそれぞれ1層づつ計2層貼ることとする。なお、SRFT-1は、縦横両方向に有効ヤング率を持つ2軸織物であるが、SRF2100は、一軸補強材である。SRF2100を縦横に貼った場合の面外方向の崩落防止効果は、縦横それぞれの方向について、危険部位の変位に対して張力で抵抗するので、それぞれの方向の効果を累加できると考えた。 Furthermore, an example applied to collapse prevention will be described. The necessary fixing length and required thickness when the SRF reinforcement material is adhered to the surface of a sound member to prevent collapse or tight reinforcement is enclosed by the concrete slab or beam. It can be calculated as follows. This assumes that the collapse risk region is a rigid body represented by a closed curve on the surface of the member and a dimension H in the thickness direction, and this is a uniform displacement in the out-of-plane direction.
Figure 2008101324
Assuming that the separation boundary line expands in a similar shape to the closed curve, the model described in the equations (25) to (28) is obtained in detail.

Out-of-plane reinforcement:
Figure 2008101324
Figure 2008101324
However,
Figure 2008101324
: Out-of-plane reinforcing adhesive strength [N / mm]
Figure 2008101324
: Dimension of out-of-plane reinforcement of dangerous part [mm]
Figure 2008101324
: Distance from the centroid of the dangerous part to the surrounding area (each direction) [mm]
Figure 2008101324
: Required fixing length in the out-of-plane direction (distance from the centroid of the hazardous area to the end of the reinforcement [mm]
γ: Unit volume weight of dangerous part [N / mm 3 ]
Figure 2008101324
: Out-of-plane reinforcement design seismic intensity [Dimensionless]
Figure 2008101324
: Thickness necessary for reinforcement for out-of-plane reinforcement [mm]
Figure 2008101324
: Out-of-plane reinforcement allowable displacement [mm]
Figure 2008101324
: Required fixing length for in-plane reinforcing load [mm]
Figure 2008101324
: Necessary fixing length with respect to peeling limit tension [mm]
Figure 2008101324
: Effective Young's modulus of reinforcing material [N / mm 2 ]
Figure 2008101324
: Interfacial peeling energy [N / mm]
For example, the danger of collapsing in the out-of-plane direction is concrete, H = 200mm,
Figure 2008101324
Design seismic intensity assuming 500mm, γ = 2.4 × 10 -5 N / mm 3
Figure 2008101324
= 1.0, allowable displacement
Figure 2008101324
= 200mm. Reinforcing material is SRFT-1:
Figure 2008101324
= 280N / mm 2
Figure 2008101324
= 0.9mm, the adhesive is SRF20:
Figure 2008101324
= 0.7N / mm 2
Figure 2008101324
= 0.7N / mm 2
Figure 2008101324
Suppose that = 1 N / mm. The necessary fixing range and thickness calculated from the equations (38) and (39) are respectively
Figure 2008101324
= 1200mm,
Figure 2008101324
= 0.74mm. Therefore, it is calculated that it is sufficient to apply one layer. The reinforcing material strain is calculated to be 4.1% from the equation (27) and is equal to or less than the in-plane peel limit strain (6.7%) calculated by substituting the above physical property values into the equation (8). In addition, when suppressing the collapse displacement to 50 mm or less, as a reinforcing material, SRF2100:
Figure 2008101324
= 4500N / mm 2 ,
Figure 2008101324
= 2.5mm, the required thickness is calculated to be 2.9mm. Therefore, a total of two layers of SRF2100, one layer each in length and width, will be applied. SRFT-1 is a biaxial woven fabric having an effective Young's modulus in both the vertical and horizontal directions, while SRF2100 is a uniaxial reinforcing material. The anti-collapse prevention effect when SRF2100 is applied vertically and horizontally resists the displacement of the dangerous part in both the vertical and horizontal directions, so we considered that the effects in each direction can be accumulated.

発明の効果
本発明は、従来法に比べ、性能、施工性、環境性、コスト面で優れる。即ち、屈曲性の高い補強材を用いているので、既存の補強材や下地材に自在に定着することができる。塑性歪をほとんど生じない補強材を用いているので、繰り返し変形を受けても塑性化により形状が歪み、自ら破壊したり、周囲の材料を破壊することがない。従来の補強構造は、変形や外力が、補強材や定着機構の剥離限界を超えると復元力が頭打ちになり不安定になる課題があったが、本発明は、剥離限界を超えても周囲の定着機構が動員され補強効果を安定的に持続することができる。0.2%程度の歪で塑性化する鉄を用いる補強と異なり、少なくとも設計限界歪まで本発明の補強材張力は弾性的に増加し、これに応じて復元力が増加するので、設計変形を受けても、剛性低下が少なく、変形に大きな復元力を生ずる安定した補強構造とすることができる。本発明の方法は、屈曲性の高い軽量な補強材を用いているので、天井、外壁際、使用中の部屋内など作業スペースの限られた場所においても、人力で補強材と接着剤を運搬し、補強材を手持ち鋏(裁ち鋏)で適宜の長さに切断し、接着等を行うことで補強工事を完了することができる。さらに、溶接、電動切断機による切断、電動工具による穴あけなどが不要であるので、火花による周辺材料の損傷や火災の発生などの危険性がないことが利点である。また、災害発生後の応急対策においては、電気等が使えない場合が多く、手作業で動力機械を用いない本発明の方法は有効である。本発明の補強材、接着剤は、溶剤を使用しておらず、炭素繊維やアラミド繊維のようにフィラメントを吸引すると呼吸器に障害を生ずる恐れのある材料を用いていないので、補強工事とその後の供用期間において、臭気、粉塵、有毒ガスなどによる健康被害を生じないことが特徴である。壁など面状の部材の補強に本発明の方法を用いることで、片面から補強材を接着することで強度と靭性を増加させることが可能になった。これは、従来法に比べ、補強による構築物の使用性、デザインの変更、工事期間、費用を大幅に低減する。
Effect of the Invention The present invention is superior in performance, workability, environmental performance, and cost compared to the conventional method. That is, since a highly flexible reinforcing material is used, it can be freely fixed to an existing reinforcing material or base material. Since a reinforcing material that hardly causes plastic strain is used, even if it undergoes repeated deformation, the shape is distorted by plasticization, and it does not break itself or destroy surrounding materials. The conventional reinforcing structure has a problem that when the deformation or external force exceeds the peeling limit of the reinforcing material or the fixing mechanism, the restoring force reaches a peak and becomes unstable. The fixing mechanism is mobilized and the reinforcing effect can be stably maintained. Unlike reinforcement using iron that plasticizes at a strain of about 0.2%, the reinforcement tension of the present invention elastically increases at least up to the design limit strain, and the restoring force increases accordingly. However, it is possible to provide a stable reinforcing structure in which a reduction in rigidity is small and a large restoring force is generated in the deformation. Since the method of the present invention uses a highly flexible and lightweight reinforcement material, the reinforcement material and the adhesive are transported manually even in places where the work space is limited such as the ceiling, the outer wall, or in the room in use. Then, the reinforcing work can be completed by cutting the reinforcing material into a suitable length with a hand-held scissors (cutting scissors) and performing adhesion or the like. Furthermore, since welding, cutting with an electric cutting machine, drilling with an electric tool, etc. are unnecessary, there is an advantage that there is no risk of damage to surrounding materials due to sparks or the occurrence of a fire. Also, in emergency measures after the occurrence of a disaster, there are many cases where electricity or the like cannot be used, and the method of the present invention in which no power machine is used manually is effective. Since the reinforcing material and adhesive of the present invention do not use a solvent and do not use a material such as carbon fiber or aramid fiber that may cause damage to the respiratory organs when sucking filaments, It is characterized by no health hazards caused by odor, dust, toxic gas, etc. during the service period. By using the method of the present invention to reinforce a planar member such as a wall, it becomes possible to increase strength and toughness by adhering a reinforcing material from one side. This significantly reduces the usability of the structure, the design changes, the construction period, and the cost due to the reinforcement compared to the conventional method.

本発明の方法は、短時間に効果的に構築物の補強を行うことを低コストで環境影響をほとんど伴わずに実現する方法であり、地震や台風などの突発的な外乱による構築物の部材や周囲に取り付けるものの、破壊や脱落による人的被害、物的被害、施設運営の支障の発生を未然に防ぐ方法、構造、材料、設計法を提供するものである。従来法に比べ、高い補強効果を発揮する上、補強に要する材料と労力を縮減する点で、また、補強工事や、災害に伴って生ずる廃棄物の量を減ずることができる点で、産業上極めて有用である。   The method of the present invention is a method for realizing the reinforcement of a structure effectively in a short time at a low cost with almost no environmental impact, and the members and surroundings of the structure due to sudden disturbances such as earthquakes and typhoons. Although it is attached to, it provides methods, structures, materials, and design methods to prevent human damage, physical damage, and facility operation from occurring due to destruction or dropout. Compared to the conventional method, it provides a high reinforcement effect, reduces the materials and labor required for reinforcement, and reduces the amount of waste generated due to reinforcement work and disasters. Very useful.

本発明の実施形態による補強方法を施した補強構造の斜視図である。It is a perspective view of the reinforcement structure which gave the reinforcement method by embodiment of this invention. 図1に示した補強構造の断面図である。It is sectional drawing of the reinforcement structure shown in FIG. SRF補強材をブレースとして設置する場合の定着部(図1のAの部分)の詳細図である。FIG. 2 is a detailed view of a fixing portion (portion A in FIG. 1) when an SRF reinforcing material is installed as a brace. SRF補強材をクリップ(図1のBの部分)として設置した場合の詳細図であり、(A)は斜視図、(B)は(A)図のB矢視図である。It is detail drawing at the time of installing an SRF reinforcing material as a clip (part B of Drawing 1), (A) is a perspective view and (B) is a B arrow line view of (A) figure. SRF補強材を外れ止め34(図1のCの部分)として設置した場合の詳細図であり、(A)は斜視図、(B)は(A)図のB矢視図である。It is a detailed view at the time of installing the SRF reinforcing material as the detents 34 (part C of FIG. 1), (A) is a perspective view, (B) is a B arrow view of (A) figure. 従来の補強方法を説明するための図である。It is a figure for demonstrating the conventional reinforcement method. 従来の補強方法を説明するための図である。It is a figure for demonstrating the conventional reinforcement method. 従来の補強方法を説明するための図である。It is a figure for demonstrating the conventional reinforcement method. 本発明の実施形態による補強方法を施した壁補強の斜視図である。It is a perspective view of the wall reinforcement which gave the reinforcement method by embodiment of this invention. 本発明の実施形態による柱補強方法を示した斜視図である。It is the perspective view which showed the column reinforcement method by embodiment of this invention. 本発明の実施形態による柱補強方法を施した柱の終局変形角の計算値と実測値のグラフである。It is a graph of the calculated value and measured value of the ultimate deformation angle of the column which gave the column reinforcement method by embodiment of this invention. 本発明の実施形態による木造補強方法の内、仕上げ撤去を示した斜視図である。It is the perspective view which showed finishing removal among the wooden reinforcement methods by embodiment of this invention. 本発明の実施形態による木造補強方法の内、劣化部のある箇所を示した斜視図である。It is the perspective view which showed the location with a degradation part among the wooden reinforcement methods by embodiment of this invention. 本発明の実施形態による木造補強方法の内、劣化部を撤去し、新材と置換し、これを短冊貼り、のり巻きおよび箱型貼りで補強する方法を示した斜視図である。It is the perspective view which showed the method of removing the degradation part among the wooden reinforcement methods by embodiment of this invention, replacing with new material, and reinforcing this by sticking a strip, pasting and box-type sticking. 本発明の実施形態による木造補強方法の内、テーパー設置を示した斜視図である。It is the perspective view which showed taper installation among the wooden reinforcement methods by embodiment of this invention. 本発明の実施形態による木造補強方法の内、補強位置墨だしを示した斜視図である。It is the perspective view which showed the reinforcement position marking out of the wooden reinforcement methods by embodiment of this invention. 本発明の実施形態による木造補強方法の内、接着剤塗布を示した斜視図である。It is the perspective view which showed adhesive application among the wooden reinforcement methods by embodiment of this invention. 本発明の実施形態による木造補強方法の内、補強材貼り付けを示した斜視図である。It is the perspective view which showed reinforcement sticking among the wooden reinforcement methods by embodiment of this invention. 本発明の実施形態による木造補強方法の内、補強材貼り付け後の密着法を示した斜視図である。It is the perspective view which showed the contact | adherence method after sticking a reinforcing material among the wooden reinforcement methods by embodiment of this invention. 本発明の実施形態による補強工事のフロー図である。It is a flowchart of the reinforcement construction by embodiment of this invention.

符号の説明Explanation of symbols

10 天井板
12 野縁
14 野縁受
16 吊りボルト
18 ハンガー
20 横つなぎ
24 梁
26 母屋
28 屋根

DESCRIPTION OF SYMBOLS 10 Ceiling board 12 Field edge 14 Field edge receiver 16 Suspension bolt 18 Hanger 20 Horizontal connection 24 Beam 26 Purlin 28 Roof

Claims (54)

材軸方向の引張荷重に対して弾性であり、かつ、これ以外の荷重に対する剛性が、人力で容易に目に見える変形を生じさせ得る程小さい高屈曲性材である補強材を、構築物の部材および周囲に取りつけるものである補強対象物に定着し、該補強対象物を補強することを特徴とする構築物の補強方法。   A reinforcing material that is a highly flexible material that is elastic with respect to a tensile load in the direction of the axis of the material and that has a rigidity against other loads that is so small that it can easily cause visible deformation by human power. And a reinforcing method for a structure, wherein the reinforcing object is fixed to a reinforcing object to be attached to the periphery and the reinforcing object is reinforced. 定着強度が、前記補強材が接する補強対象物の下地の引張破壊強度より小さく、かつ、均質な、靭性定着機構を用いて前記補強材を定着することにより、該定着が解除を開始するまでの補強材と補強対象物の下地間の相対変位を大きくすることを特徴とする請求項1に記載の補強方法。   The fixing strength is smaller than the tensile fracture strength of the base of the object to be reinforced to be in contact with the reinforcing material, and the fixing material is fixed using a homogeneous toughness fixing mechanism until the fixing starts to be released. The reinforcing method according to claim 1, wherein the relative displacement between the reinforcing material and the base of the object to be reinforced is increased. 前記補強材は、5%以上の引張歪に対して弾性を有することを特徴とする請求項1または2に記載の補強方法。   The reinforcing method according to claim 1, wherein the reinforcing material has elasticity against a tensile strain of 5% or more. 前記補強材は、10%以上の引張歪に対して弾性を有することを特徴とする請求項1または2に記載の補強方法。   The reinforcing method according to claim 1, wherein the reinforcing material has elasticity against a tensile strain of 10% or more. 前記補強材が、引張弾性係数を製品規格値とする織成体であることを特徴とする請求項1〜4のいずれかに記載の補強方法。   The reinforcing method according to claim 1, wherein the reinforcing material is a woven body having a tensile elastic modulus as a product standard value. 前記補強材の厚さが0.5mmから10mmであることを特徴とする請求項1〜5のいずれかに記載の補強方法。   The reinforcing method according to claim 1, wherein a thickness of the reinforcing material is 0.5 mm to 10 mm. 前記定着機構が、界面剥離エネルギーを製品規格値とする一液性無溶剤接着剤を用いて形成される接着層であることを特徴とする請求項2〜6のいずれかに記載の補強方法。   The reinforcing method according to any one of claims 2 to 6, wherein the fixing mechanism is an adhesive layer formed using a one-component solventless adhesive having an interface peeling energy as a product standard value. 前記定着機構の解除限界亀裂幅が2mm以上であることを特徴とする請求項2〜7のいずれかに記載の補強方法。   The reinforcing method according to claim 2, wherein a release limit crack width of the fixing mechanism is 2 mm or more. 前記定着機構の界面剥離エネルギーを平均定着強度で除したものが、1mm以上であることを特徴とする請求項2〜8のいずれかに記載の補強方法。   The reinforcing method according to claim 2, wherein a value obtained by dividing the interfacial peeling energy of the fixing mechanism by the average fixing strength is 1 mm or more. 前記補強材をらせん状に巻きつけることにより設置することを特徴とする請求項1〜9のいずれかに記載の補強方法。   The reinforcing method according to any one of claims 1 to 9, wherein the reinforcing material is installed by being wound in a spiral shape. 前記補強材の引張剛性が、補強対象物の引張剛性より小さいことを特徴とする請求項1〜10のいずれかに記載の補強方法。   The reinforcing method according to claim 1, wherein the reinforcing member has a tensile rigidity smaller than that of the object to be reinforced. 前記定着強度が、5N/mmより小さいことを特徴とする請求項1〜11のいずれかに記載の補強方法。 The reinforcing method according to claim 1, wherein the fixing strength is less than 5 N / mm 2 . 前記相対変位が、1mm以上であることを特徴とする請求項1〜12のいずれかに記載の補強方法。   The reinforcing method according to claim 1, wherein the relative displacement is 1 mm or more. 前記靭性定着機構が、多数の機械的定着機構を補強材軸方向に並べて設置することにより形成され、該定着機構の剥離強度が補強対象物の引張破壊強度より小さく、かつ、均質であることを特徴とする請求項1〜13のいずれかに記載の補強方法。   The toughness fixing mechanism is formed by arranging a large number of mechanical fixing mechanisms in the axial direction of the reinforcing material, and the peeling strength of the fixing mechanism is smaller than the tensile fracture strength of the object to be reinforced and is homogeneous. The reinforcing method according to any one of claims 1 to 13, characterized in that: 前記機械的定着機構設置間隔が5mm〜50mmであることを特徴とする請求項14に記載の補強方法。   The reinforcing method according to claim 14, wherein the mechanical fixing mechanism installation interval is 5 mm to 50 mm. 請求項1〜15のいずれかに記載の補強方法で、補強したことを特徴とする構築物。   A structure reinforced by the reinforcing method according to claim 1. 構築物の部材および周囲に取りつけるものである補強対象物に定着し、該補強対象物を補強する補強材であって、材軸方向の引張荷重に対して弾性であり、かつ、これ以外の荷重に対する剛性が、人力で容易に目に見える変形を生じさせ得る程小さい高屈曲性材で構成されていることを特徴とする補強材。   A reinforcing material that is fixed to a reinforcing object that is to be attached to a member of the structure and surroundings, and that reinforces the reinforcing object, is elastic with respect to a tensile load in the axial direction of the material, and against other loads A reinforcing material characterized in that it is composed of a highly flexible material whose rigidity is such that it can be easily deformed by human power. 定着強度が、該補強材が接する補強対象物の下地の引張破壊強度より小さく、かつ、均質な、靭性定着機構を用いて補強対象物に定着されるものであり、該定着が解除を開始するまでの該補強材と補強対象物の下地間の相対変位が大きくされるようになっていることを特徴とする請求項17に記載の補強材。   The fixing strength is smaller than the tensile fracture strength of the base of the reinforcing object that is in contact with the reinforcing material, and is fixed to the reinforcing object using a homogeneous toughness fixing mechanism, and the fixing starts to be released. The reinforcing material according to claim 17, wherein a relative displacement between the reinforcing material and the base of the object to be reinforced is increased. 5%以上の引張歪に対して弾性を有することを特徴とする請求項17または18に記載の補強材。   The reinforcing material according to claim 17 or 18, which has elasticity against a tensile strain of 5% or more. 10%以上の引張歪に対して弾性を有することを特徴とする請求項17または18に記載の補強材。   The reinforcing material according to claim 17 or 18, which has elasticity against a tensile strain of 10% or more. 引張弾性係数を製品規格値とする織成体であることを特徴とする請求項17〜20のいずれかに記載の補強材。   The reinforcing material according to any one of claims 17 to 20, wherein the reinforcing material has a tensile elastic modulus as a product standard value. 厚さが0.5mmから10mmであることを特徴とする請求項17〜21のいずれかに記載の補強材。   The reinforcing material according to any one of claims 17 to 21, wherein the thickness is 0.5 mm to 10 mm. 補強対象物にらせん状に巻きつけられることにより設置または定着されることを特徴とする請求項17〜22のいずれかに記載の補強材。   The reinforcing material according to any one of claims 17 to 22, wherein the reinforcing material is installed or fixed by being spirally wound around an object to be reinforced. 引張剛性が、補強対象物の引張剛性より小さいことを特徴とする請求項17〜23のいずれかに記載の補強材。   The reinforcing material according to any one of claims 17 to 23, wherein the tensile rigidity is smaller than the tensile rigidity of the object to be reinforced. 前記定着強度が、5N/mmより小さいことを特徴とする請求項17〜24のいずれかに記載の補強材。 The fixing strength, reinforcing material according to any one of claims 17-24, characterized in that less than 5N / mm 2. 前記相対変位が、1mm以上であることを特徴とする請求項18〜25のいずれかに記載の補強材。   The reinforcing material according to any one of claims 18 to 25, wherein the relative displacement is 1 mm or more. 構築物の部材および周囲に取りつけるものである補強対象物に補強材を定着するための靭性定着機構であって、定着強度が、前記補強材が接する補強対象物の下地の引張破壊強度より小さく、かつ、均質であり、定着が解除を開始するまでの補強材と補強対象物の下地間の相対変位を大きくすることができることを特徴とする靭性定着機構。   A toughness fixing mechanism for fixing a reinforcing material to a member of a structure and a reinforcing object to be attached to the surroundings, wherein the fixing strength is smaller than the tensile fracture strength of the ground of the reinforcing object in contact with the reinforcing material, and A toughness fixing mechanism that is homogeneous and can increase the relative displacement between the reinforcing material and the base of the object to be reinforced until fixing starts to be released. 界面剥離エネルギーを製品規格値とする一液性無溶剤接着剤を用いて形成される接着層であることを特徴とする請求項27に記載の靭性定着機構。   28. The toughness fixing mechanism according to claim 27, wherein the toughness fixing mechanism is an adhesive layer formed using a one-component solventless adhesive having an interface peeling energy as a product standard value. 解除限界亀裂幅が2mm以上であることを特徴とする請求項27または28に記載の靭性定着機構。   The toughness fixing mechanism according to claim 27 or 28, wherein a release limit crack width is 2 mm or more. 該靭性定着機構の界面剥離エネルギーを平均定着強度で除したものが、1mm以上であることを特徴とする請求項27〜29のいずれかに記載の靭性定着機構。   The toughness fixing mechanism according to any one of claims 27 to 29, wherein a value obtained by dividing the interfacial peeling energy of the toughness fixing mechanism by the average fixing strength is 1 mm or more. 前記定着強度が、5N/mmより小さいことを特徴とする請求項27〜30のいずれかに記載の靭性定着機構。 31. A toughness fixing mechanism according to claim 27, wherein the fixing strength is less than 5 N / mm < 2 >. 前記相対変位が、1mm以上であることを特徴とする請求項27〜31のいずれかに記載の靭性定着機構。   32. The toughness fixing mechanism according to claim 27, wherein the relative displacement is 1 mm or more. 多数の機械的定着機構を補強材軸方向に並べて設置することにより形成され、該定着機構の剥離強度が補強対象物の引張破壊強度より小さく、かつ、均質であることを特徴とする請求項27〜32のいずれかに記載の靭性定着機構。   28. It is formed by arranging a large number of mechanical fixing mechanisms side by side in the axial direction of the reinforcing material, and the peel strength of the fixing mechanism is smaller than the tensile fracture strength of the object to be reinforced and homogeneous. The toughness fixing mechanism according to any one of -32. 前記機械的定着機構設置間隔が5mm〜50mmであることを特徴とする請求項33に記載の靭性定着機構。   The toughness fixing mechanism according to claim 33, wherein the mechanical fixing mechanism installation interval is 5 mm to 50 mm. 構築物の部材および周囲に取りつけるものである補強対象物に補強材を定着するための靭性定着機構を構成する接着層を形成するための接着剤であって、界面剥離エネルギーを製品規格値とする一液性無溶剤接着剤であることを特徴とする接着剤。   An adhesive for forming an adhesive layer that constitutes a toughness fixing mechanism for fixing a reinforcing material to a reinforcing member to be attached to a member of a structure and its surroundings. An adhesive, which is a liquid solventless adhesive. 請求項17〜26のいずれかに記載の補強材で補強したことを特徴とする構築物。   A structure reinforced with the reinforcing material according to any one of claims 17 to 26. 請求項17〜26のいずれかに記載の補強材と請求項33に記載の接着剤で補強したことを特徴とする構築物。   A structure reinforced with the reinforcing material according to any one of claims 17 to 26 and the adhesive according to claim 33. 請求項17〜26のいずれかに記載の補強材と請求項27〜34のいずれかに記載の靭性定着機構で補強したことを特徴とする構築物。   A structure reinforced by the reinforcing material according to any one of claims 17 to 26 and the toughness fixing mechanism according to any one of claims 27 to 34. 材軸方向の引張荷重に対して弾性であり、かつ、これ以外の荷重に対する剛性が、人力で容易に目に見える変形を生じさせ得る程小さい高屈曲性材である補強材を、構築物の部材および周囲に取りつけるものである補強対象物に定着し、該補強対象物を補強したことを特徴とする構築物の補強構造。   A reinforcing material that is a highly flexible material that is elastic with respect to a tensile load in the direction of the axis of the material and that has a rigidity against other loads that is so small that it can easily cause visible deformation by human power. And a reinforcing structure for a structure, wherein the reinforcing object is fixed to a reinforcing object to be attached to the periphery and the reinforcing object is reinforced. 定着強度が、前記補強材が接する補強対象物の下地の引張破壊強度より小さく、かつ、均質な、靭性定着機構を用いて前記補強材を定着することにより、該定着が解除を開始するまでの補強材と補強対象物の下地間の相対変位を大きくすることを特徴とする請求項39に記載の補強構造。   The fixing strength is smaller than the tensile fracture strength of the base of the object to be reinforced to be in contact with the reinforcing material, and the fixing material is fixed using a homogeneous toughness fixing mechanism until the fixing starts to be released. The reinforcing structure according to claim 39, wherein a relative displacement between the reinforcing material and the base of the reinforcing object is increased. 前記補強材は、5%以上の引張歪に対して弾性を有することを特徴とする請求項39または40に記載の補強構造。   The reinforcing structure according to claim 39 or 40, wherein the reinforcing material has elasticity against a tensile strain of 5% or more. 前記補強材は、10%以上の引張歪に対して弾性を有することを特徴とする請求項39または40に記載の補強構造。   The reinforcing structure according to claim 39 or 40, wherein the reinforcing material has elasticity against a tensile strain of 10% or more. 前記補強材が、引張弾性係数を製品規格値とする織成体であることを特徴とする請求項39〜42のいずれかに記載の補強構造。   The reinforcing structure according to any one of claims 39 to 42, wherein the reinforcing material is a woven body having a tensile elastic modulus as a product standard value. 前記補強材の厚さが0.5mmから10mmであることを特徴とする請求項39〜43のいずれかに記載の補強構造。   44. The reinforcing structure according to claim 39, wherein the reinforcing material has a thickness of 0.5 mm to 10 mm. 前記靭性定着機構が、界面剥離エネルギーを製品規格値とする一液性無溶剤接着剤を用いて形成される接着層であることを特徴とする請求項40〜44のいずれかに記載の補強構造。   45. The reinforcing structure according to any one of claims 40 to 44, wherein the toughness fixing mechanism is an adhesive layer formed using a one-component solventless adhesive having an interface peeling energy as a product standard value. . 前記靭性定着機構の解除限界亀裂幅が2mm以上であることを特徴とする請求項40〜45のいずれかに記載の補強構造。   The reinforcing structure according to any one of claims 40 to 45, wherein a release limit crack width of the toughness fixing mechanism is 2 mm or more. 前記靭性定着機構の界面剥離エネルギーを平均定着強度で除したものが、1mm以上であることを特徴とする請求項40〜46のいずれかに記載の補強構造。   47. The reinforcing structure according to claim 40, wherein a value obtained by dividing the interfacial peeling energy of the toughness fixing mechanism by the average fixing strength is 1 mm or more. 前記補強材をらせん状に巻きつけることにより設置することを特徴とする請求項39〜47のいずれかに記載の補強構造。   The reinforcing structure according to any one of claims 39 to 47, wherein the reinforcing member is installed by being spirally wound. 前記補強材の引張剛性が、補強対象物の引張剛性より小さいことを特徴とする請求項39〜48のいずれかに記載の補強構造。   The reinforcing structure according to any one of claims 39 to 48, wherein the reinforcing member has a tensile rigidity smaller than that of the object to be reinforced. 前記定着強度が、5N/mmより小さいことを特徴とする請求項39〜49のいずれかに記載の補強構造。 Reinforcing structure according to any one of claims 39 to 49 wherein the fixing strength, characterized in that less than 5N / mm 2. 前記相対変位が、1mm以上であることを特徴とする請求項40〜50のいずれかに記載の補強構造。   The reinforcing structure according to any one of claims 40 to 50, wherein the relative displacement is 1 mm or more. 前記靭性定着機構が、多数の機械的定着機構を補強材軸方向に並べて設置することにより形成され、該定着機構の剥離強度が補強対象物の引張破壊強度より小さく、かつ、均質であることを特徴とする請求項40〜51のいずれかに記載の補強構造。   The toughness fixing mechanism is formed by arranging a large number of mechanical fixing mechanisms in the axial direction of the reinforcing material, and the peeling strength of the fixing mechanism is smaller than the tensile fracture strength of the object to be reinforced and is homogeneous. 52. The reinforcing structure according to any one of claims 40 to 51, wherein: 前記機械的定着機構設置間隔が5mm〜50mmであることを特徴とする請求項52に記載の補強構造。   53. The reinforcing structure according to claim 52, wherein the mechanical fixing mechanism installation interval is 5 mm to 50 mm. 請求項39〜53のいずれかに記載の補強構造で、補強したことを特徴とする構築物。
A structure reinforced with the reinforcing structure according to any one of claims 39 to 53.
JP2006266209A 2005-09-30 2006-09-29 Reinforcing method for building, reinforcing material, adhesive, and reinforcing structure Pending JP2008101324A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006266209A JP2008101324A (en) 2005-09-30 2006-09-29 Reinforcing method for building, reinforcing material, adhesive, and reinforcing structure
PCT/JP2006/320011 WO2007037535A1 (en) 2005-09-30 2006-09-29 Reinforcement method, reinforcement material, adhesive agent, and reinforcement structure for construction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005288873 2005-09-30
JP2006257967 2006-09-22
JP2006266209A JP2008101324A (en) 2005-09-30 2006-09-29 Reinforcing method for building, reinforcing material, adhesive, and reinforcing structure

Publications (1)

Publication Number Publication Date
JP2008101324A true JP2008101324A (en) 2008-05-01

Family

ID=37899935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266209A Pending JP2008101324A (en) 2005-09-30 2006-09-29 Reinforcing method for building, reinforcing material, adhesive, and reinforcing structure

Country Status (2)

Country Link
JP (1) JP2008101324A (en)
WO (1) WO2007037535A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075286A (en) * 2009-09-29 2011-04-14 Daipura Uintesu Kk Method and device for measuring surface adhesion strength
JP2014080803A (en) * 2012-10-17 2014-05-08 Shimizu Corp Seismic diagnosis system for suspended ceiling
JP2016079327A (en) * 2014-10-20 2016-05-16 構造品質保証研究所株式会社 High-toughness adhesive, method for reinforcing member of structure using the same, earthquake-resistant member of structure, earthquake-resistant structure, and method for designing structure
JP2018071137A (en) * 2016-10-27 2018-05-10 清水建設株式会社 Hanging ceiling reinforcement structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088973B (en) * 2015-08-11 2017-08-11 交通运输部公路科学研究所 A kind of method reinforced to Hollow Slab Beam Bridge
CN105088976B (en) * 2015-08-14 2016-12-21 青岛玉兰祥商务服务有限公司 A kind of can fast cooling and for bridge automatically clear up attending device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003027417A1 (en) * 2001-09-25 2003-04-03 Structural Quality Assurance, Inc. Reinforcement material and reinforcement structure of structure and method of designing reinforcement material
JP2003221930A (en) * 1999-12-27 2003-08-08 Structural Quality Assurance Inc Reinforcing material for structure and combination of the material and adhesive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221930A (en) * 1999-12-27 2003-08-08 Structural Quality Assurance Inc Reinforcing material for structure and combination of the material and adhesive
WO2003027417A1 (en) * 2001-09-25 2003-04-03 Structural Quality Assurance, Inc. Reinforcement material and reinforcement structure of structure and method of designing reinforcement material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075286A (en) * 2009-09-29 2011-04-14 Daipura Uintesu Kk Method and device for measuring surface adhesion strength
JP2014080803A (en) * 2012-10-17 2014-05-08 Shimizu Corp Seismic diagnosis system for suspended ceiling
JP2016079327A (en) * 2014-10-20 2016-05-16 構造品質保証研究所株式会社 High-toughness adhesive, method for reinforcing member of structure using the same, earthquake-resistant member of structure, earthquake-resistant structure, and method for designing structure
JP2018071137A (en) * 2016-10-27 2018-05-10 清水建設株式会社 Hanging ceiling reinforcement structure

Also Published As

Publication number Publication date
WO2007037535A9 (en) 2007-05-31
WO2007037535A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP2008101324A (en) Reinforcing method for building, reinforcing material, adhesive, and reinforcing structure
Orton Development of a CFRP system to provide continuity in existing reinforced concrete buildings vulnerable to progressive collapse
JP5291867B2 (en) Toughness reinforcement method for reinforced concrete columnar structures using carbon fiber
JP4926509B2 (en) Reinforcement structure for steel structure pillar / beam joints
WO1999014453A1 (en) Structure for reinforcing concrete member and reinforcing method
WO2001048337A1 (en) Building reinforcing method, material, and structure
US20120047841A1 (en) System and method for increasing the shear strength of a framed structure
Ehsani et al. Fiber composites: An economical alternative for retrofitting earthquake-damaged precast-concrete walls
JP2012526936A (en) Flexible material
JP6655128B2 (en) Composite plate reinforcement structure and construction method
KR20160120114A (en) Fiber Reinforced Concrete Structure With End Slip Prevention
JP4647340B2 (en) Reinforcement method for existing foundation with single bar arrangement for low-rise housing
JP4647338B2 (en) Reinforcement method around the perforated part after the construction of single reinforcement foundation for low-rise housing
Hopkins et al. Large-scale tests of seismically enhanced planar walls for residential construction
US20050252142A1 (en) Anchorage system for structural reinforcement of fiber reinforced plastic materials and the like
JP2006102738A (en) Method for maintaining steel structure preventively
JP4242300B2 (en) Reinforcement method of concrete structure using continuous fiber sheet
JP2014074264A (en) Aseismic/insulation-coated reinforced-concrete structure and structure employing the same
JP2013159951A (en) Structure and method for reinforcing the same
Neagoe Concrete beams reinforced with CFRP laminates
JP2022165931A (en) Reinforcement structure for concrete columnar body
JPH11152907A (en) Bending reinforcing construction and method for concrete member
JP5291390B2 (en) Earthquake-resistant structure, construction method of earthquake-resistant structure, and building
CA2463363C (en) Anchorage system for structural reinforcement of fiber reinforced plastic materials and the like
JP2007113346A (en) Shearing reinforcement method for concrete structure using braid-like carbon fiber

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214