JP2008099632A - Lactic acid bacterium having immunostimulatory activity/anti-allergic activity - Google Patents

Lactic acid bacterium having immunostimulatory activity/anti-allergic activity Download PDF

Info

Publication number
JP2008099632A
JP2008099632A JP2006286181A JP2006286181A JP2008099632A JP 2008099632 A JP2008099632 A JP 2008099632A JP 2006286181 A JP2006286181 A JP 2006286181A JP 2006286181 A JP2006286181 A JP 2006286181A JP 2008099632 A JP2008099632 A JP 2008099632A
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacteria
lactobacillus
strain
acid bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286181A
Other languages
Japanese (ja)
Inventor
Yoshinori Katakura
喜範 片倉
Sanetaka Shirahata
實隆 白畑
Teruichiro Teruya
輝一郎 照屋
Makiko Yamashita
万貴子 山下
Takayuki Matsumoto
貴之 松本
Takanori Hasegawa
隆則 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
NH Foods Ltd
Original Assignee
Kyushu University NUC
Nippon Meat Packers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nippon Meat Packers Inc filed Critical Kyushu University NUC
Priority to JP2006286181A priority Critical patent/JP2008099632A/en
Publication of JP2008099632A publication Critical patent/JP2008099632A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Cosmetics (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Fodder In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a lactic acid bacterium of the genus Lactobacillus that is useful for various uses such as food and beverage, feed, medicine, cosmetic, etc., and exhibits an immunologically high function. <P>SOLUTION: The lactic acid bacterium of the genus Lactobacillus has immunostimulatory activity/anti-allergic activity. The lactic acid bacterium is selected from the group consisting of Lactobacillus paracasei NHH2 strain (NITE P-262), Lactobacillus plantarum NHT4 strain (NITE P-264), Lactobacillus gasseri NHMT2 strain (NITE P-265) and Lactobacillus salivarius subsp. salivarius NHMF1 strain (NITE P-263). The composition having an immunostimulatory activity/anti-allergic activity comprises the lactic acid bacterium as an active ingredient. The food and beverage, the feed, the cosmetic or the medicine contains the lactic acid bacterium or the composition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、免疫賦活作用・抗アレルギー作用を有する乳酸菌に関し、詳しくは、免疫賦活作用・抗アレルギー作用を有し、新規なラクトバチルス属乳酸菌、およびその用途に関する。   The present invention relates to a lactic acid bacterium having an immunostimulatory action / antiallergic action, and more specifically to a novel Lactobacillus lactic acid bacterium having an immunostimulatory action / antiallergic action and use thereof.

乳酸菌は、糞便や各種発酵食品中に含まれており、ヨーグルト等の発酵食品として古くから利用されてきた。近年は各種の機能性食品の原料としての利用が進められており、中でも特にラクトバチルス属(Lactobacillus)乳酸菌は、プロバイオティクスの代表として位置づけられている。
特許文献1及び2には、各種の乳酸菌の菌体やその細胞質画分等が免疫賦活作用を有することが記載されている。また、特許文献3には、ラクトバチルス属乳酸菌の抗アレルギー剤としての用途が記載されている。しかし、これらの従来報告されている乳酸菌よりもより高い免疫賦活作用、抗アレルギー作用等の免疫機能を発揮する乳酸菌が求められていた。
Lactic acid bacteria are contained in feces and various fermented foods, and have been used for a long time as fermented foods such as yogurt. In recent years, utilization as a raw material for various functional foods has been promoted, and in particular, Lactobacillus lactic acid bacteria are positioned as representatives of probiotics.
Patent Documents 1 and 2 describe that the cells of various lactic acid bacteria and their cytoplasmic fractions have an immunostimulatory action. Patent Document 3 describes use of Lactobacillus lactic acid bacteria as an antiallergic agent. However, there has been a demand for lactic acid bacteria that exhibit higher immune functions such as an immunostimulatory action and an antiallergic action than these conventionally reported lactic acid bacteria.

特開平5−252900号公報JP-A-5-252900 特開平7−228536号公報JP-A-7-228536 特開2004−26729号公報Japanese Patent Laid-Open No. 2004-26729

本発明の目的は、飲食品、飼料、医薬品、化粧品等の各種用途に有用な、免疫学的に高い機能を発揮するラクトバチルス属乳酸菌を提供することにある。   An object of the present invention is to provide a Lactobacillus genus lactic acid bacterium that exhibits an immunologically high function and is useful for various uses such as foods and drinks, feeds, pharmaceuticals, and cosmetics.

本発明者らは上述の目的を達成するために鋭意検討を重ねた結果、従来報告されているラクトバチルス属乳酸菌よりも高い免疫賦活作用を有すると同時に、高い抗アレルギー作用をも有するラクトバチルス属乳酸菌を見出した。すなわち、ヒト糞便中から単離された新規なラクトバチルス属乳酸菌が、ヒト末梢血リンパ球に対し免疫賦活作用を発揮すること、およびヒト好塩基球に対し抗アレルギー作用を発揮することを確認した。本発明は係る知見に基づくものである。   As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention have a higher immunostimulatory effect than the conventionally reported Lactobacillus lactic acid bacteria and at the same time have a high antiallergic effect. I found lactic acid bacteria. That is, it was confirmed that a novel Lactobacillus lactic acid bacterium isolated from human feces exerted an immunostimulatory effect on human peripheral blood lymphocytes and an antiallergic effect on human basophils. . The present invention is based on such knowledge.

すなわち、本発明は以下の〔1〕〜〔4〕を提供するものである。
〔1〕 免疫賦活作用・抗アレルギー作用を有するラクトバチルス属乳酸菌。
〔2〕 ラクトバチルス・パラカゼイ NHH2株(NITE P−262)、ラクトバチルス・プランタラム NHT4株(NITE P−264)、ラクトバチルス・ガセリ NHMT2株(NITE P−265)、およびラクトバチルス・サリバリウス・サブスピーシーズ・サリバリウス NHMF1株(NITE P−263)からなる群から選択される〔1〕記載の乳酸菌。
〔3〕 〔1〕または〔2〕に記載の乳酸菌を有効成分として含有することを特徴とする、免疫賦活作用・抗アレルギー作用を有する組成物。
〔4〕 〔1〕または〔2〕に記載の乳酸菌、もしくは〔3〕記載の組成物を含有する、飲食品、飼料、化粧品または医薬品。
That is, the present invention provides the following [1] to [4].
[1] Lactobacillus genus lactic acid bacteria having immunostimulatory action and antiallergic action.
[2] Lactobacillus paracasei NHH2 strain (NITE P-262), Lactobacillus plantarum NHT4 strain (NITE P-264), Lactobacillus gasseri NHMT2 strain (NITE P-265), and Lactobacillus salivaius sub [1] The lactic acid bacterium according to [1], which is selected from the group consisting of species Salivarius NHMF1 strain (NITE P-263).
[3] A composition having an immunostimulatory action and an antiallergic action, comprising the lactic acid bacterium according to [1] or [2] as an active ingredient.
[4] A food, drink, feed, cosmetic or pharmaceutical comprising the lactic acid bacterium according to [1] or [2] or the composition according to [3].

本発明によれば、生体において高い免疫賦活作用・抗アレルギー作用を発揮するラクトバチルス属乳酸菌が提供される。係る乳酸菌は、飲食品、飼料、化粧品、医薬品等の各種用途において有用である。   ADVANTAGE OF THE INVENTION According to this invention, the Lactobacillus genus lactic acid bacteria which exhibit a high immunostimulatory action and antiallergic action in a living body are provided. Such lactic acid bacteria are useful in various applications such as foods and drinks, feeds, cosmetics, and pharmaceuticals.

本発明の乳酸菌は、免疫賦活作用・抗アレルギー作用を発揮する。免疫賦活作用(アジュバント作用)とは、生体の免疫機能を活性化する作用を意味する。具体的には、単核球等のリンパ球における、抗原感作後の抗原特異的抗体及びサイトカインの産生増強作用ならびに抗原未感作時のサイトカイン産生増強作用を意味する。ここで、サイトカインとは様々な種類があるが、炎症性サイトカインに分類されるものを挙げることができる。炎症性サイトカインとは、生体において炎症を引き起こす原因となるサイトカインを意味し、例えばTNF、IL−6、IL−1β、IL−8である。本発明において免疫賦活作用を有するという場合には、これらのうちの少なくとも1種類のサイトカインの産生を増強するものであればよい。   The lactic acid bacterium of the present invention exhibits an immunostimulatory action / antiallergic action. The immunostimulatory action (adjuvant action) means an action that activates the immune function of the living body. Specifically, it means an effect of enhancing production of antigen-specific antibodies and cytokines after antigen sensitization in lymphocytes such as mononuclear cells, and an effect of enhancing cytokine production when antigens are not sensitized. Here, there are various types of cytokines, and examples include those classified as inflammatory cytokines. Inflammatory cytokines mean cytokines that cause inflammation in a living body, such as TNF, IL-6, IL-1β, and IL-8. In the present invention, when it has an immunostimulatory effect, it may be anything that enhances the production of at least one of these cytokines.

一方、抗アレルギー作用とは、生体のアレルギー反応を抑制する作用を意味し、具体的には、好塩基球細胞等の免疫細胞におけるヒスタミンの細胞内蓄積抑制作用および細胞外放出抑制作用、並びに単核球等のリンパ球における抗原感作後及び抗原未感作時のサイトカインの産生増強作用を意味する。ここでいうサイトカインとしては、TH1サイトカインを挙げることができる。TH1サイトカインとは、TH1細胞が産生するサイトカインであり、例えばIL−12p70、IFNγである。 On the other hand, the antiallergic action means an action that suppresses the allergic reaction of the living body. Specifically, the action of suppressing the intracellular accumulation and extracellular release of histamine in immune cells such as basophil cells, and the simple action. It means an action to enhance cytokine production after sensitizing and non-sensitizing lymphocytes such as nuclei. Examples of the cytokine used herein include T H 1 cytokine. T H 1 cytokine is a cytokine produced by T H 1 cells, such as IL-12p70 and IFNγ.

本発明の乳酸菌は、免疫賦活作用と抗アレルギー作用の少なくとも一方を発揮するものであればよく、両方を発揮していてもよい。また、本発明の乳酸菌は、生菌体であっても死菌体であってもよい。死菌体は、生菌体を加熱(例えば、90〜120℃で20分〜1時間程度)、凍結乾燥等することにより調製され得る。   The lactic acid bacteria of this invention should just exhibit at least one of an immunostimulatory effect and an antiallergic effect, and may exhibit both. In addition, the lactic acid bacterium of the present invention may be a live cell or a dead cell. Dead cells can be prepared by heating (for example, about 20 minutes to 1 hour at 90 to 120 ° C.), lyophilization, or the like.

本発明の乳酸菌は、ラクトバチルス属に属する。ラクトバチルス属微生物としては、ラクトバチルス・パラカゼイ、ラクトバチルス・プランタラム、ラクトバチルス・ガセリ、ラクトバチルス・サリバリウス・サブスピーシーズ・サリバリウスを挙げることができる。   The lactic acid bacteria of the present invention belong to the genus Lactobacillus. Examples of Lactobacillus microorganisms include Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus gasseri, Lactobacillus salivarius, Subspecies salivarius.

本発明の乳酸菌は、ヒトをはじめとする各種哺乳類の糞便、発酵乳製品、漬物などから採取可能である。例えば、これらの適量をMRS培地等の培地に植え付けて(例えば、MRS培地の場合は37℃、48時間)培養後、培養液を常法により遠心分離等して集菌し、必要に応じて精製、凍結乾燥して得ることができる。   The lactic acid bacteria of the present invention can be collected from feces, fermented milk products, pickles and the like of various mammals including humans. For example, an appropriate amount of these is planted in a medium such as MRS medium (for example, 37 ° C. for 48 hours in the case of MRS medium), and the culture is collected by centrifugation, etc., by a conventional method. It can be obtained by purification and lyophilization.

本発明者らは、免疫賦活作用・抗アレルギー作用を発揮するラクトバチルス属乳酸菌として、ラクトバチルス・パラカゼイ NHH2株、ラクトバチルス・プランタラム NHT4株、ラクトバチルス・ガセリ NHMT2株、ラクトバチルス・サリバリウス・サブスピーシーズ・サリバリウス NHMF1株を、天然物から単離し、細菌学的性状、16S−rDNAシーケンス等の結果から新たに同定した。   The present inventors are Lactobacillus paracasei NHH2 strain, Lactobacillus plantarum NHT4 strain, Lactobacillus gasseri NHMT2 strain, Lactobacillus salivarius subtilis as Lactobacillus lactic acid bacteria exhibiting immunostimulatory action and antiallergic action. The S. sarivarius NHMF1 strain was isolated from a natural product and newly identified from the results of bacteriological properties, 16S-rDNA sequence and the like.

すなわち、まずヒト糞便を適宜希釈し、変法LBS寒天培地(LBS寒天培地(Pancreatic Digest of Casein 10.0g、Yeast Extract 5.0g、Monopotassum Phosphate 6.0g、Ammonium Citrate 2.0g、Dextrose 20.0g、Polysorbate80 1.0g、Sodium Acetate Hydrate 25.0g、Magnesium Sulfate 0.575g、Manganese Sulfate 0.12g、Ferrous Sulfate 0.034g、Agar 15.0g)84g、Lab−lemco powder 8g、Sodium acetate・3H2O 15g、精製水 1000ml、Acetic acid 3.7ml)に塗沫した。変法LBS培地は、Acetic acid以外の各成分を加温しながら溶解した後、50℃まで冷やし、Acetic acidを加えて(pH4.3となる)平板として調製した。嫌気条件にて、37℃・72時間培養し、形成したコロニーより、NHH2株、NHT4株、NHMT2株、NHMF1株の4種を単離した。単離された各細菌の細菌学的性状を調べたところ、表1の通りであった。 Specifically, human feces were appropriately diluted, and modified LBS agar medium (LBS agar medium (Pancreatic Digest of Casein 10.0 g, Yeast Extract 5.0 g, Monopotassum Phosphate 6.0 g, Ammonium Citrate 2.0 g, 0.0 g, 2.0 g) , Polysorbate80 1.0g, Sodium Acetate Hydrate 25.0g , Magnesium Sulfate 0.575g, Manganese Sulfate 0.12g, Ferrous Sulfate 0.034g, Agar 15.0g) 84g, Lab-lemco powder 8g, Sodium acetate · 3H 2 O 15 g, purified water 1000 ml, acetic a cid (3.7 ml). The modified LBS medium was prepared as a flat plate by dissolving each component other than the acidic acid while heating and then cooling to 50 ° C. and adding the acidic acid (adjusted to pH 4.3). After culturing at 37 ° C. for 72 hours under anaerobic conditions, 4 types of NHH2, NHT4, NHMT2 and NHMF1 were isolated from the formed colonies. Table 1 shows the bacteriological properties of each isolated bacterium.

Figure 2008099632
Figure 2008099632

上記細菌学的性質のほか、16S−rDNAシーケンスその他の遺伝学的検討を行った結果から、最終的に以下の4種に分類された。   In addition to the above bacteriological properties, the results of 16S-rDNA sequence and other genetic studies were finally classified into the following four types.

1.ラクトバチルス・パラカゼイ NHH2株
NHH2株からDNAを抽出し、プライマー16S−27f(配列番号9)および16S−1525r(配列番号10)を用いて16S−rDNAシーケンスを行った。16S−rDNAシーケンスの手順及び条件は以下の通りである。まず、菌体からDNAを抽出し、16S−27f、16S−1525rプライマーを用い、PCRを実施した。PCRの条件は、94℃・2分、続いて、94℃・1分−50℃・1分−68℃・1分30秒を30サイクル、最後に68℃・7分とした。次に、得られるPCR産物をQIAquick PCR Purification Kit(QIAGEN社)を用いて精製した。そして、精製したDNAを鋳型に、16S−27f、16S−1525rの各プライマーを用い、BigDye(登録商標) Terminator v3.1 Cycle Sequencing Kit(Applied Biosystems社)を用いてPCRを行った。PCRの条件は、96℃・2分、続いて96℃・10秒−50℃・5秒−60℃・4分を30サイクルとした。このようにして得られるPCR産物を精製後、DNAシーケンサーにて配列を解読した。解読配列をBLASTNでホモロジー検索した。
1. Lactobacillus paracasei NHH2 strain DNA was extracted from the NHH2 strain, and 16S-rDNA sequencing was performed using primers 16S-27f (SEQ ID NO: 9) and 16S-1525r (SEQ ID NO: 10). The procedure and conditions of the 16S-rDNA sequence are as follows. First, DNA was extracted from the bacterial cells, and PCR was performed using 16S-27f and 16S-1525r primers. PCR conditions were 94 ° C. · 2 minutes, followed by 30 cycles of 94 ° C. · 1 minute−50 ° C. · 1 minute−68 ° C. · 1 minute 30 seconds, and finally 68 ° C. · 7 minutes. Next, the obtained PCR product was purified using QIAquick PCR Purification Kit (QIAGEN). Then, PCR was performed using BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) using purified DNA as a template and primers of 16S-27f and 16S-1525r. PCR conditions were 96 ° C. for 2 minutes, followed by 30 cycles of 96 ° C., 10 seconds-50 ° C., 5 seconds-60 ° C., 4 minutes. After purification of the PCR product thus obtained, the sequence was decoded with a DNA sequencer. The decoding sequence was homology searched with BLASTN.

16S−rDNAシーケンスの結果、配列番号1および配列番号2に記載の塩基配列からなる16S−rDNA(配列番号1:NHH2−forward、配列番号2:NHH2−reverse)を得た。係る塩基配列と、各種ラクトバチルス属乳酸菌の16SrDNAとの相同性検索を行った結果、ラクトバチルス・カゼイ(L.casei)、ラクトバチルス・パラカゼイ(L.paracasei)及びラクトバチルス・ラムノサス(L.rhamnosus)の3種の可能性があると考えた。そのため、L.J.H.Ward and M.J.Timmins;Letters in Applied Microbiology 1999,29,90−92に準拠して、これらの3種のラクトバチルス菌のそれぞれに特異的なプライマーを用いたPCRを行い、増幅の程度を確認した。PCRは、L.paracasei検出用プライマー(配列番号13及び配列番号14)、L.casei検出用プライマー(配列番号15及び配列番号16)、L.rhamnosus検出用プライマー(配列番号17及び配列番号18)を用いて、次の組成の反応液を用いた:5Xbuffer(promega) 10μl、NTPs 4μl、MgCl2 4μl、template 1μl、Primer 1μl each、Taq polymerase 0.1μl、滅菌DW to 50μl。PCR条件は、94℃・3分、次に45℃・45秒−72℃・1分のサイクルを1回、続いて94℃・45秒−45℃・45秒−72℃・1分のサイクルを30回、更に続いて94℃・45秒、45℃・45秒、72℃・5分とした。 As a result of the 16S-rDNA sequence, 16S-rDNA (SEQ ID NO: 1: NHH2-forward, SEQ ID NO: 2: NHH2-reverse) consisting of the base sequences described in SEQ ID NO: 1 and SEQ ID NO: 2 was obtained. As a result of homology search between such a base sequence and 16S rDNA of various Lactobacillus lactic acid bacteria, L. casei, L. paracasei, and L. rhamnosus (L. rhamnosus) I thought there were three possibilities. Therefore, L. J. et al. H. Ward and M.M. J. et al. Based on Timemins; Letters in Applied Microbiology 1999, 29, 90-92, PCR using primers specific to each of these three types of Lactobacillus was performed to confirm the degree of amplification. PCR is performed by L. paracasei detection primers (SEQ ID NO: 13 and SEQ ID NO: 14), L. casei detection primer (SEQ ID NO: 15 and SEQ ID NO: 16), L. Using the rhamnosus detection primers (SEQ ID NO: 17 and SEQ ID NO: 18), a reaction solution having the following composition was used: 5X buffer (promega) 10 μl, NTPs 4 μl, MgCl 2 4 μl, template 1 μl, Primer 1 μl each, Taq poly 0 .1 μl, sterile DW to 50 μl. PCR conditions are 94 ° C for 3 minutes, then 45 ° C for 45 seconds-72 ° C for 1 minute, followed by a cycle of 94 ° C for 45 seconds-45 ° C for 45 seconds-72 ° C for 1 minute. For 30 times, followed by 94 ° C. for 45 seconds, 45 ° C. for 45 seconds, and 72 ° C. for 5 minutes.

その結果、ラクトバチルス・パラカゼイ(L.paracasei)に特異的プライマーの場合にのみ増幅を確認したことから、本菌株をラクトバチルス・パラカゼイの一種として特定した。   As a result, since amplification was confirmed only in the case of a primer specific for L. paracasei, this strain was identified as a kind of Lactobacillus paracasei.

ラクトバチルス・パラカゼイ NHH2株は、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2−5−8)に2006年9月26日付けで寄託済みであり、その受託番号は、NITE P−262である。   Lactobacillus paracasei NHH2 strain has been deposited on September 26, 2006 at the Japan Patent Evaluation Microorganism Depositary Center for Product Evaluation Technology (2-5-8, Kazusa Kamashi, Kisarazu, Chiba, Japan) The accession number is NITE P-262.

2.ラクトバチルス・プランタラム NHT4株
NHT4株からDNAを抽出し、上述のNHH2株と同様に16S−rDNAシーケンスを行ったところ、配列番号7および配列番号8に記載の塩基配列からなる16S−rDNA(配列番号7:NHT4−forward、配列番号8:NHT4−reverse)を得た。係る塩基配列と、各種ラクトバチルス属乳酸菌の16S−rDNAとの相同性検索を行った。その結果、ラクトバチルス・プランタラム(L.plantarum)と同定された。
2. Lactobacillus plantarum NHT4 strain DNA was extracted from the NHT4 strain and subjected to 16S-rDNA sequencing in the same manner as the NHH2 strain described above. No. 7: NHT4-forward, SEQ ID NO. 8: NHT4-reverse). A homology search was performed between the nucleotide sequence and 16S-rDNA of various Lactobacillus lactic acid bacteria. As a result, it was identified as L. plantarum (L. plantarum).

ラクトバチルス・プランタラム NHT4株は、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2−5−8)に2006年9月26日付けで寄託済みであり、その受託番号は、NITE P−264である。   Lactobacillus plantarum NHT4 strain has been deposited on September 26, 2006 at the Japan Patent Evaluation Microorganism Depositary Center (2-5-8 Kazusa-Kamashita, Kisarazu-shi, Chiba, Japan) The accession number is NITE P-264.

3.ラクトバチルス・ガセリ NHMT2株
NHMT2株からDNAを抽出し、上述のNHH2株と同様に16S−rDNAシーケンスを行ったところ、配列番号3および配列番号4に記載の塩基配列からなる16S−rDNA(配列番号3:NHMT2−forward、配列番号4:NHMT2−reverse)を得た。係る塩基配列と、各種ラクトバチルス属乳酸菌の16S−rDNAとの相同性検索を行った。その結果、ラクトバチルス・ガセリ(L.gasseri)と同定された。
3. Lactobacillus gasseri NHMT2 strain DNA was extracted from the NHMT2 strain and subjected to 16S-rDNA sequencing in the same manner as the NHH2 strain described above. As a result, 16S-rDNA consisting of the base sequences described in SEQ ID NO: 3 and SEQ ID NO: 4 (SEQ ID NO: 3: NHMT2-forward, SEQ ID NO: 4: NHMT2- reverse). A homology search was performed between the nucleotide sequence and 16S-rDNA of various Lactobacillus lactic acid bacteria. As a result, it was identified as Lactobacillus gasseri (L. gasseri).

ラクトバチルス・ガセリ NHMT2株は、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2−5−8)に2006年9月26日付けで寄託済みであり、その受託番号は、NITE P−265である。   Lactobacillus gasseri NHMT2 strain has been deposited on September 26, 2006 at the Japan Patent Evaluation Microorganism Depositary Center for Product Evaluation Technology (2-5-8, Kazusa Kamashi, Kisarazu, Chiba, Japan) The accession number is NITE P-265.

4.ラクトバチルス・サリバリウス・サブスピーシーズ・サリバリウス NHMF1株
NHMF1株からDNAを抽出し、上述のNHH2株と同様に16S−rDNAシーケンスを行ったところ、配列番号5および配列番号6に記載の塩基配列からなる16S−rDNA(配列番号5:NHMF1−forward、配列番号6:NHMF1−reverse)を得た。係る塩基配列と、各種ラクトバチルス属乳酸菌の16S−rDNAとの相同性検索を行った。その結果、ラクトバチルス・サリバリウス(L.salivarius)に分類されるものと推測された。しかし、サリシン(糖)代謝性を日本ビオメリュー社製の「api50CH」キットを用いて該キットに添付の説明書に準じて確認したところ、サリシン代謝陰性であったことから、ラクトバチルス・サリバリウス サブスピーシーズ・サリバリウス(L.salivarius subsp.salivarius)と同定した。
4). Lactobacillus salivarius subspecies salivarius NHMF1 strain DNA was extracted from the NHMF1 strain and subjected to 16S-rDNA sequencing in the same manner as the NHH2 strain described above. As a result, 16S consisting of the nucleotide sequences set forth in SEQ ID NO: 5 and SEQ ID NO: 6 -RDNA (SEQ ID NO: 5: NHMF1-forward, SEQ ID NO: 6: NHMF1-reverse) was obtained. A homology search was performed between the nucleotide sequence and 16S-rDNA of various Lactobacillus lactic acid bacteria. As a result, it was inferred to be classified into L. salivarius. However, when the salicin (sugar) metabolism was confirmed using the “api50CH” kit manufactured by Biomelieu Japan, according to the instructions attached to the kit, it was negative for salicin metabolism. Therefore, Lactobacillus salivarius subspecies Identified as L. salivarius subsp. Salivarius.

ラクトバチルス・サリバリウス・サブスピーシーズ・サリバリウス NHMF1株は、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2−5−8)に2006年9月26日付けで寄託済みであり、その受託番号は、NITE P−263である。   Lactobacillus salivarius sub-species salivarius NHMF1 strain is dated September 26, 2006 at the Japan Institute for Product Evaluation Technology Patent Microorganism Depositary Center (2-5-8 Kazusa Kamashita, Kisarazu, Chiba, Japan) It has been deposited and its deposit number is NITE P-263.

本発明の乳酸菌は、免疫賦活作用・抗アレルギー作用を発揮する本発明の組成物の有効成分として利用することができる。本発明の組成物において、上記本発明の乳酸菌の存在形態は、有効成分としての作用を発揮することを条件として、用途に応じて定めることができる。例えば、生菌体および死菌体であってもよいし、培地を含む状態の培養物や培養物の精製品であってもよい。   The lactic acid bacteria of the present invention can be used as an active ingredient of the composition of the present invention that exhibits an immunostimulatory action / antiallergic action. In the composition of the present invention, the form of the lactic acid bacterium of the present invention can be determined according to the application on the condition that it exhibits the action as an active ingredient. For example, live cells and dead cells may be used, or a culture containing a culture medium or a purified product of the culture may be used.

本発明の組成物においては、上述の乳酸菌を、本発明の乳酸菌の発揮する免疫賦活作用、抗アレルギー作用を損なわずに、乳酸菌と共に組成物を構成することのできる他の成分と組み合わせる。このような他の成分としては、本発明の乳酸菌の機能の維持、増殖のための栄養成分等(例えば、炭素原源、窒素源、ビタミン、ミネラル類等)を挙げることができる。   In the composition of the present invention, the above-mentioned lactic acid bacteria are combined with other components that can constitute the composition together with the lactic acid bacteria without impairing the immunostimulatory action and antiallergic action exhibited by the lactic acid bacteria of the present invention. Examples of such other components include nutrient components for maintaining and growing the function of the lactic acid bacteria of the present invention (for example, carbon source, nitrogen source, vitamins, minerals, etc.).

このような本発明の乳酸菌はそのまま、或いは上述のように本発明の組成物の形で、飲食品、飼料、化粧品、医薬品等またはそれらの原料として利用することができる。この場合、本発明の組成物や乳酸菌は、各用途に応じた他の成分、例えば経口的に摂取される用途の場合、たんぱく質、脂質、炭水化物、食物繊維、ビタミンなどと組み合わせて用いることができる。また適当な担体、例えば賦形剤、希釈剤、充填剤、増量剤、結合剤、崩壊剤、表面活性剤、滑剤などと組み合わせて用いることもできる。特に医薬品の場合には上述の担体のうち薬理学的に許容される担体と共に用いられることが一般的である。また、必要に応じて着色剤、保存剤、安定化剤、香料、甘味料等を添加することもできる。   Such a lactic acid bacterium of the present invention can be used as it is or in the form of the composition of the present invention as described above, as a food or drink, feed, cosmetics, pharmaceutical or the like or as a raw material thereof. In this case, the composition and lactic acid bacteria of the present invention can be used in combination with other components according to each use, for example, in the case of use taken orally, in combination with protein, lipid, carbohydrate, dietary fiber, vitamin and the like. . It can also be used in combination with an appropriate carrier such as an excipient, diluent, filler, extender, binder, disintegrant, surfactant, lubricant and the like. Particularly in the case of pharmaceuticals, it is generally used with a pharmacologically acceptable carrier among the above-mentioned carriers. Moreover, a coloring agent, a preservative, a stabilizer, a fragrance | flavor, a sweetener, etc. can also be added as needed.

飲食品としては、例えば、発酵乳、乳酸菌飲料、健康食品、パン・菓子等の乳酸菌含有食品、清涼飲料、食品添加物、漬物、ハム・ソーセージ等の食肉加工製品が挙げられる。飼料としては例えば、実験動物、家畜、ペット、展示用動物等の動物用飼料が挙げられる。医薬品の製剤形態も特に限定されない。経口投与に適する形態としては例えば液剤、カプセル剤、顆粒剤、錠剤、丸剤、散剤等の形態が挙げられる。また、軟膏等外用薬の形態であってもよい。化粧品としては、例えば化粧水、クリーム、乳液、洗顔料等が挙げられる。   Examples of the foods and drinks include fermented milk, lactic acid bacteria beverages, health foods, lactic acid bacteria-containing foods such as bread and confectionery, soft drinks, food additives, pickles, and meat processed products such as hams and sausages. Examples of the feed include animal feeds such as laboratory animals, livestock, pets, and display animals. The form of pharmaceutical preparation is not particularly limited. Examples of forms suitable for oral administration include forms such as liquids, capsules, granules, tablets, pills and powders. Moreover, the form of external medicines, such as an ointment, may be sufficient. As cosmetics, for example, lotion, cream, milky lotion, face wash and the like can be mentioned.

本発明の飲食品、飼料、化粧品、医薬品における上記本発明の乳酸菌又は組成物の配合割合は、利用する乳酸菌の種類、形態、適用者の状況(年齢、健康状態、体格等)により調整され一般化することは困難であるが、通常、1日の乳酸菌摂取量に換算して10mg/日〜10g/日となるような範囲とすることができる。   The blending ratio of the lactic acid bacterium of the present invention or the composition in the food, drink, cosmetics, and pharmaceuticals of the present invention is generally adjusted according to the type, form, and situation (age, health condition, physique, etc.) of the lactic acid bacterium used. Although it is difficult to make it, it can usually be in a range of 10 mg / day to 10 g / day in terms of daily lactic acid bacteria intake.

以下、本発明を実施例により詳細に説明する。
〔試薬〕
ヒトインターロイキン−2(IL−2)はGenzyme社(Cambridge,MA)、ヒトインターロイキン−4(IL−4)はPEPRO TECH社(Rocky Hill,NJ)より購入した。L−ロイシル−L−ロイシンメチルエステル(L−leucyl−L−leucine methyl ester:LLME)はBACHEM(Torrance,CA)、ムラミルジペプチド(MDP)はCHEMICON(Temecula,CA)より購入した。
Hereinafter, the present invention will be described in detail with reference to examples.
〔reagent〕
Human interleukin-2 (IL-2) was purchased from Genzyme (Cambridge, MA) and human interleukin-4 (IL-4) from PEPRO TECH (Rocky Hill, NJ). L-Leucyl-L-leucine methyl ester (LLME) was purchased from BACHEM (Torrance, CA), and muramyl dipeptide (MDP) was purchased from CHEMICON (Temecula, CA).

〔乳酸菌〕
L31:ラクトバチルス・パラカゼイ(Lactobacillus paracasei) NHH2株(NITE P−262)
L32:ラクトバチルス・プランタラム(Lactobacillus plantarum) NHT4株(NITE P−264)
L33:ラクトバチルス・ガセリ(Lactobacillus gasseri) NHMT2株(NITE P−265)
L34:ラクトバチルス・サリバリウス・サブスピーシーズ・サリバリウス(Lactobacillus salivarius subsp.sallivarius) NHMF1株(NITE P−263)
以下の実施例では、上記4種の菌をそれぞれL31、L32,L33,L34の略称で表記することがある。
[Lactic acid bacteria]
L31: Lactobacillus paracasei NHH2 strain (NITE P-262)
L32: Lactobacillus plantarum NHT4 strain (NITE P-264)
L33: Lactobacillus gasseri NHMT2 strain (NITE P-265)
L34: Lactobacillus salivarius subsp. Salivarius (Lactobacillus salivarius subsp. Salrivarius) NHMF1 strain (NITE P-263)
In the following examples, the above four types of bacteria may be represented by abbreviations L31, L32, L33, and L34, respectively.

実施例1 〔乳酸菌の免疫賦活作用(1)乳酸菌の抗原特異的抗体産生増強効果〕
体外免疫によるヒト末梢血リンパ球の抗原感作時に、凍結乾燥した乳酸菌の加熱死菌体を共存させることで、抗原感作が増強され、抗原特異的抗体産性細胞が増加されるかをELISPOT法により検証した。
Example 1 [Immune Stimulating Action of Lactic Acid Bacteria (1) Effect of Enhancement of Antigen-Specific Antibody Production of Lactic Acid Bacteria]
When sensitizing human peripheral blood lymphocytes by in vitro immunization, the presence of freeze-dried heat-killed lactic acid bacteria can enhance antigen sensitization and increase antigen-specific antibody-producing cells. It was verified by the law.

(ヒト末梢血リンパ球の分離)
ヘパリン入り真空採血管を用いて健常人から採血し、等量のPBSで希釈し、よく混和した。あらかじめ50ml遠心管にリンパ球分離液(Lymphocyte Separation Medium:LSM,Organon Teknika,Durham,NC)を15ml分注し、その上に希釈した血液25mlをLSMと血液の境界面を乱さないように静かに重層した。続いて、室温にて、400×gで30分間遠心した。LSMと血漿の境界に白い帯状に浮遊する末梢血単核球層(T細胞、B細胞、NK細胞および単球)を、パスツールピペットを用いて、血清でコーティングした50ml遠心管に回収した。回収した単核球懸濁液の3倍以上のERDF培地(Invitrogen,Carlsbad,CA)を加え、よく混和し、200×gで5分間遠心した。得られた細胞のペレットをERDF培地に再懸濁し、200×gで5分間遠心した。この洗浄操作を血小板の混入がなくなるまで2〜3回繰り返した。
(Separation of human peripheral blood lymphocytes)
Blood was collected from a healthy person using a vacuum blood collection tube containing heparin, diluted with an equal volume of PBS, and mixed well. Lymphocyte Separation Medium (LSM, Organon Teknika, Durham, NC) is dispensed in advance in a 50 ml centrifuge tube, and 25 ml of diluted blood is gently added so as not to disturb the interface between LSM and blood. Layered. Subsequently, it was centrifuged at 400 × g for 30 minutes at room temperature. Peripheral blood mononuclear cell layers (T cells, B cells, NK cells and monocytes) floating in a white band at the boundary between LSM and plasma were collected using a Pasteur pipette in a 50 ml centrifuge tube coated with serum. Three times more ERDF medium (Invitrogen, Carlsbad, CA) of the collected mononuclear cell suspension was added, mixed well, and centrifuged at 200 × g for 5 minutes. The resulting cell pellet was resuspended in ERDF medium and centrifuged at 200 × g for 5 minutes. This washing operation was repeated 2-3 times until there was no platelet contamination.

なお、細胞数の計測は自動血球計数装置F−520(Sysmex,Hyogo,Japan)にて行った。
また、採血はヘルシンキ合意および九州大学大学院農学研究院等倫理審査委員会の定める指針に基づき、ドナーの同意のもと行った。
The number of cells was measured with an automatic blood cell counter F-520 (Sysmex, Hygo, Japan).
In addition, blood collection was performed with the consent of the donor based on the Helsinki Accord and guidelines established by the Kyushu University Graduate School of Agricultural Research Ethics Committee.

(L−Leucyl−L−leucine methyl ester(LLME)処理)
1×107cells/mlの細胞密度になるように末梢血単核球をERDF培地に懸濁した後、終濃度が0.25mMになるようにLLMEを添加し、時折攪拌しながら室温で20分間処理した。処理した細胞をERDF培地で3回洗浄し、LLMEを十分に除去した後、体外免疫に用いた。
(L-Leucyl-L-leucine methyl ester (LLME) processing)
After suspending peripheral blood mononuclear cells in ERDF medium to a cell density of 1 × 10 7 cells / ml, LLME is added to a final concentration of 0.25 mM, and 20 times at room temperature with occasional stirring. Treated for minutes. The treated cells were washed 3 times with ERDF medium, and after removing LLME sufficiently, they were used for in vitro immunization.

(体外免疫によるヒト末梢血リンパ球の抗原感作と乳酸菌処理)
抗原感作は、末梢血単核球を1穴あたり5×106cells/mlになるように48穴プレートに播種し、IL−2(1または10U/ml)、IL−4(1または10ng/ml)、2−メルカプトエタノール(50μM)および抗原としてβ−ラクトグロブリン(β−LG;10μg/ml)を添加して行った。この方法で抗原感作を行ったものをコントロール(Ctrl)とした。この際、Dp+Kと明記した画分においては、ポジティブコントロールとして、1μMCpG−D(ggTGCATCGATGCAGGGGggG(配列番号11),Sigma Genosys(Hokkaido,Japan)大文字はphosphodiester、小文字はphosphorothioate−modified backbones)を抗原、サイトカイン類とともに添加し、3日後に1μM CpG−K(tcgagcgrrcrcC(配列番号12),Sigma Genosys)をさらに添加し培養を行ったものを用いた。
(In vitro immunization of human peripheral blood lymphocytes and lactic acid bacteria treatment)
For antigen sensitization, peripheral blood mononuclear cells were seeded in a 48-well plate at 5 × 10 6 cells / ml per well, and IL-2 (1 or 10 U / ml), IL-4 (1 or 10 ng) / Ml), 2-mercaptoethanol (50 μM) and β-lactoglobulin (β-LG; 10 μg / ml) as an antigen. A control (Ctrl) was subjected to antigen sensitization by this method. At this time, in the fraction specified as Dp + K, as a positive control, 1 μMCpG-D (ggTGCATCATGATGAGGGGGG (SEQ ID NO: 11), Sigma Genosys (Hokaido, Japan) uppercase letters are phosphodiester, lowercase letters are phosphodioxides, After 3 days, 1 μM CpG-K (tcgagcgrrcrcC (SEQ ID NO: 12), Sigma Genosys) was further added and cultured.

なお、すべての培養には37℃、5% CO2条件下、10%非働化ウシ胎児血清(Fetal Bovine Serum:FBS,TRACE SCIENTIFIC,Melbourne,Australia)、ペニシリン(100U/ml:MEIJI SEIKA,Tokyo,Japan)、ストレプトマイシン(100μg/ml:MEIJI SEIKA)を含むERDF培地を用いた。 All cultures were carried out under conditions of 37 ° C. and 5% CO 2 , 10% inactivated fetal bovine serum (Fetal Bovine Serum: FBS, TRACE SCIENTIFIC, Melbourn, Australia), penicillin (100 U / ml: MEIJI SEIKA, Tokyo, Japan), ERDF medium containing streptomycin (100 μg / ml: MEIJI SEIKA) was used.

また、乳酸菌L31,L32,L34処理は、抗原感作時に、1または10μg/mlの凍結乾燥した乳酸菌の加熱死菌体を加え、6〜8日間培養することにより行った。乳酸菌の加熱死菌体は、培養後ミリQ水で2回洗浄した各菌株を、100℃、30分加熱処理後、凍結乾燥して調製したものを用いた。   In addition, lactic acid bacteria L31, L32, and L34 were treated by adding 1 or 10 μg / ml of lyophilized lactic acid bacteria heated and killed at the time of antigen sensitization and culturing for 6 to 8 days. As the heat-killed cells of lactic acid bacteria, those prepared by lyophilizing each strain washed twice with milli-Q water after culturing at 100 ° C. for 30 minutes were used.

(抗原特異的抗体産生細胞の検出(ELISPOT法))
抗原特異的抗体産生細胞の存在は、ELISPOT(enzyme−linked immunosorbent spot assay)法により確認した。
まず、96穴セルロース膜底プレート(MultiScreen−HA;Millipore Bedford,MA)の各穴にPBSで希釈した抗原(10μg/ml)を100μlずつ分注し、4℃で一晩静置し抗原を膜上に吸着させた。非吸着の抗原を除去するためPBCを各穴に200μlずつ分注し、3分間静置した後、吸引除去した。この洗浄操作を3回繰り返した。
(Detection of antigen-specific antibody-producing cells (ELISPOT method))
The presence of antigen-specific antibody-producing cells was confirmed by ELISPOT (enzyme-linked immunosorbent spot assay) method.
First, 100 μl of antigen (10 μg / ml) diluted with PBS was dispensed into each well of a 96-well cellulose membrane bottom plate (MultiScreen-HA; Millipore Bedford, Mass.), And allowed to stand overnight at 4 ° C. Adsorbed on top. In order to remove the non-adsorbed antigen, 200 μl of PBC was dispensed into each well, allowed to stand for 3 minutes, and then removed by suction. This washing operation was repeated three times.

次に、非特異的抗体の吸着を防ぐために1%フィッシュゼラチン(FG)−PBSを各穴に200μlずつ分注し、37℃で2時間静置し、ブロッキングを行った。前述の洗浄操作を3回行った後、細胞の調製を行った。すなわち、体外免疫開始から6日目の細胞を1.5mlチューブに回収し、細胞数の計測を行った後、6,000rpmで1分遠心し、上清を回収した。残った細胞ペレットは、IL−2(1U/ml)、IL−4(1ng/ml)、2−メルカプトエタノール(50mM)を含む新しい10%FBS含有ERDFに、細胞濃度が1×106cells/mlになるように調整した。これを各穴に100μlずつ分注し、37℃、5% CO2条件下で20時間培養した。培養終了後、細胞液を吸引除去し、前述の洗浄操作を3回行った。 Next, in order to prevent non-specific antibody adsorption, 200 μl of 1% fish gelatin (FG) -PBS was dispensed into each well and allowed to stand at 37 ° C. for 2 hours for blocking. After performing the above washing operation three times, cells were prepared. That is, the cells on the 6th day from the start of in vitro immunization were collected in a 1.5 ml tube, the number of cells was measured, and then centrifuged at 6,000 rpm for 1 minute to collect the supernatant. The remaining cell pellet was added to ERDF containing 10% FBS containing IL-2 (1 U / ml), IL-4 (1 ng / ml) and 2-mercaptoethanol (50 mM) at a cell concentration of 1 × 10 6 cells / cell. Adjusted to ml. 100 μl of this was dispensed into each well and cultured at 37 ° C. under 5% CO 2 for 20 hours. After completion of the culture, the cell solution was removed by suction, and the above washing operation was performed three times.

次に、1% FG−PBSで10,000倍に希釈したペルオキシダーゼ(POD)標識抗ヒトIgM抗体(ELISA用2次抗体と同じ)を各穴に100μlずつ分注し、37℃で2時間反応させた。TPBSで前述と同様の洗浄操作を3回行った後、基質液TrueBlue Peroxidase Substrate(KPL,Gaithersburg,MD)を各穴に50μlずつ分注し、37℃で反応させ、抗原特異的抗体産生細胞を青色のスポットとして検出した。反応が十分に進んだところで、脱イオン水を用いて各穴を洗浄し、反応を停止させた。遮光した状態で十分に乾燥させた後、MELIPUNCH Kit(Millipore)を用いてセルロース膜を打ち抜き、透明なシールに挟み込んで固定した。これをスキャナー画像としてコンピューターに取り込み、取り込んだ画像を、画像解析ソフトImageJで解析し、スポット数の数値化を行った。   Next, 100 μl of peroxidase (POD) -labeled anti-human IgM antibody (same as the secondary antibody for ELISA) diluted 10,000-fold with 1% FG-PBS was dispensed into each well and reacted at 37 ° C. for 2 hours. I let you. After performing the same washing operation with TPBS three times as described above, the substrate solution TrueBlue Peroxidase Substrate (KPL, Gaithersburg, MD) was dispensed into each well in a volume of 50 μl, reacted at 37 ° C., and the antigen-specific antibody-producing cells were reacted. Detected as a blue spot. When the reaction was sufficiently advanced, each hole was washed with deionized water to stop the reaction. After sufficiently drying in a light-shielded state, the cellulose film was punched out using MELIPUNCH Kit (Millipore) and fixed by being sandwiched between transparent seals. This was captured in a computer as a scanner image, and the captured image was analyzed with image analysis software ImageJ to digitize the number of spots.

図1に、β−LG特異的抗体産生細胞および非特異的結合抗体産生細胞のスポット画像及びスポット数を示す。図1中、「β−LG」は、β−LG特異的抗体産生細胞に相当するスポット画像及びスポット数である。一方、「FG」は、ブロッキング試薬であるFGに特異的な抗体を産生する細胞、つまり非特異的に結合する抗体を産生する細胞に相当するスポット画像及びスポット数である。なお、図1中の1または10の数値は添加した乳酸菌の加熱死菌体濃度(μg/ml)を表す。図1から、L31、L32、L34に、有意な抗原特異的抗体産生増強効果が認められた。   FIG. 1 shows spot images and the number of spots of β-LG-specific antibody-producing cells and non-specifically bound antibody-producing cells. In FIG. 1, “β-LG” is a spot image and the number of spots corresponding to β-LG-specific antibody-producing cells. On the other hand, “FG” is a spot image and the number of spots corresponding to a cell producing an antibody specific to the blocking reagent FG, that is, a cell producing an antibody that binds nonspecifically. In addition, the numerical value of 1 or 10 in FIG. 1 represents the heat-killed cell density | concentration (microgram / ml) of the added lactic acid bacteria. From FIG. 1, a significant antigen-specific antibody production enhancing effect was observed in L31, L32, and L34.

実施例2 〔乳酸菌の免疫賦活作用(2)乳酸菌による免疫応答増強効果〕
体外免疫によるヒト末梢血リンパ球の抗原感作時に凍結乾燥した乳酸菌の加熱死菌体を共存させることで、末梢血リンパ球の免疫応答が増強され、その結果として、炎症性サイトカインの発現量が増強されるかを、CBA法により検証した。
Example 2 [Immune Stimulating Action of Lactic Acid Bacteria (2) Immune Response Enhancement Effect by Lactic Acid Bacteria]
By coexisting with heat-killed cells of lactic acid bacteria that have been lyophilized during antigen sensitization of human peripheral blood lymphocytes by in vitro immunity, the immune response of peripheral blood lymphocytes is enhanced, resulting in increased expression of inflammatory cytokines. Whether it was enhanced was verified by the CBA method.

(培養上清中のサイトカイン産生量の測定)
実施例1と同様の条件で乳酸菌添加または無添加(コントロール及びDpK)で調製した培養上清について、培養上清中に分泌された各種サイトカインの濃度を測定した。尚、本実施例では乳酸菌としてL31,L32,L33,及びL34の4種を用いた。
(Measurement of cytokine production in culture supernatant)
The concentration of various cytokines secreted into the culture supernatant of the culture supernatant prepared with or without the addition of lactic acid bacteria under the same conditions as in Example 1 (control and DpK) was measured. In this example, four types of L31, L32, L33, and L34 were used as lactic acid bacteria.

培養上清中に分泌された各種サイトカインの濃度は、BDTM Cytometric Bead Array System(CBA;Becton Dickinson,Franklin Lakes,NJ)のHuman Inflammation Kit(IL−8,IL−1β,IL−6,IL−10,TNF,IL−12p70の測定用)およびHuman Flex Set(IL−2,IL−4,IFN−γの測定用)を用い、BD FACSAria(Becton Dickinson)を用い測定した。測定は、それぞれのキットに付属のプロトコールに基づき行った。 The concentration of various cytokines secreted into the culture supernatant was determined by the Human Information Kit (IL-8, IL-1β, IL-6, IL-6) of BD Cytometric Bead Array System (CBA; Becton Dickinson, Franklin Lakes, NJ). 10, TNF, for measuring IL-12p70) and Human Flex Set (for measuring IL-2, IL-4, IFN-γ), and using BD FACSAria (Becton Dickinson). The measurement was performed based on the protocol attached to each kit.

TNF、IL−6、IL−1β、IL−8の各炎症性サイトカインの濃度の測定結果を、図2−1、図2−2、図2−3、図2−4に示す。図2−1〜2−4から明らかな通り、L31〜L34の乳酸菌株に、TNF、IL−6、IL−1β、IL−8等の炎症性サイトカインの発現増強効果が認められた。   The measurement results of the concentrations of each inflammatory cytokine of TNF, IL-6, IL-1β, and IL-8 are shown in FIGS. 2-1, 2-2, 2-3, and 2-4. As is clear from FIGS. 2-1 to 2-4, the L31 to L34 lactic acid strains showed an effect of enhancing the expression of inflammatory cytokines such as TNF, IL-6, IL-1β, and IL-8.

実施例3
次に、健常人及びアレルギー患者より採取した末梢血リンパ球に、凍結乾燥した乳酸菌の加熱死菌体を共存させた場合に、末梢血リンパ球の免疫応答が増強され、その結果として、炎症性サイトカインの発現量が増強するか、CBA法により検証した。
Example 3
Next, when the freeze-dried lactic acid bacteria heat-killed cells coexist with peripheral blood lymphocytes collected from healthy individuals and allergic patients, the immune response of peripheral blood lymphocytes is enhanced, resulting in inflammatory Whether the expression level of cytokines was enhanced was verified by the CBA method.

実施例1において、採取対象を健常人およびアレルギー患者としたこと、体外免疫を行わない未処理の末梢血リンパ球に乳酸菌を添加したこと、乳酸菌としてL31,L32,L33,及びL34の4種を用いたこと、及び乳酸菌加熱死菌体を0.1または1μg/mLの濃度で添加したことのほかは同様にして培養上清を得た。そして各乳酸菌添加または無添加(コントロール及びDpK)で調製した培養上清について、培養上清中に分泌された各種サイトカインの濃度を、実施例2と同様にCBA法に基づき測定した。   In Example 1, the collection targets were healthy individuals and allergic patients, lactic acid bacteria were added to untreated peripheral blood lymphocytes that were not subjected to in vitro immunity, and four types of L31, L32, L33, and L34 were used as lactic acid bacteria. A culture supernatant was obtained in the same manner except that it was used and heat-killed lactic acid bacteria were added at a concentration of 0.1 or 1 μg / mL. Then, with respect to the culture supernatant prepared with or without each lactic acid bacterium added (control and DpK), the concentrations of various cytokines secreted into the culture supernatant were measured based on the CBA method as in Example 2.

各炎症性サイトカインの濃度の測定結果を、図3−1、図3−2、及び図3−3(健常人);図3−4、図3−5及び図3−6(アレルギー患者)に示す。なお、図3−1〜図3−6中の0.1または1の数値は添加した乳酸菌の加熱死菌体濃度(μg/ml)を表す。図3−1〜3−6から明らかなように、健常人においてはL31に強いTNF産生増強が認められたが、アレルギー患者においては、L33に強いTNF産生増強が、L31,L32に強いIL−6,IL−8産生増強が、L34に弱いIL−6,IL−8産生増強効果が認められた。   The measurement results of the concentration of each inflammatory cytokine are shown in FIG. 3-1, FIG. 3-2, and FIG. 3-3 (healthy person); FIG. 3-4, FIG. 3-5, and FIG. Show. In addition, the numerical value of 0.1 or 1 in FIGS. 3-1 to 3-6 represents the heat-killed cell concentration (μg / ml) of the added lactic acid bacteria. As is apparent from FIGS. 3-1 to 3-6, strong TNF production enhancement was observed in L31 in healthy individuals, whereas in allergic patients, strong TNF production enhancement in L33 was strong against IL31 and L32. 6, IL-8 production enhancement, but weak IL-6 and IL-8 production enhancement effect was observed in L34.

実施例4 〔乳酸菌の抗アレルギー作用 (1)乳酸菌のヒスタミン蓄積抑制効果及び(2)ヒスタミン遊離抑制効果〕
乳酸菌のKU812Fにおけるヒスタミン蓄積抑制効果および遊離抑制効果を、上清サンプル及び細胞ライセートサンプル中のβ−ヘキソサミニダーゼ活性を算出することにより検証した。
Example 4 [Antiallergic Action of Lactic Acid Bacteria (1) Histamine Accumulation Inhibitory Effect of Lactic Acid Bacteria and (2) Histamine Release Inhibitory Effect]
The inhibitory effect on histamine accumulation and release in KU812F of lactic acid bacteria was verified by calculating β-hexosaminidase activity in supernatant samples and cell lysate samples.

(ヒト好塩基球様細胞株KU812Fの分化誘導および乳酸菌処理)
KU812F(東北大学加齢医学研究所より入手)は10%FBS含有RPMI−1640培地(日水製薬株式会社)を用い、37℃、5%、CO2/95%airの条件下で培養した。実施例1と同様の条件で凍結乾燥し調製した乳酸菌の加熱死菌体L31,L32,L33,L34のそれぞれを、KU812Fに0.1または1μg/mlの濃度で添加し、3日間処理を行い、ヒスタミン遊離能の変化を追跡した。
(Induction of differentiation of human basophil-like cell line KU812F and treatment with lactic acid bacteria)
KU812F (obtained from Tohoku University Institute of Aging Medicine) was cultured in a 10% FBS-containing RPMI-1640 medium (Nissui Pharmaceutical Co., Ltd.) under conditions of 37 ° C., 5%, CO 2 /95% air. Each of the heat-killed lactic acid bacteria L31, L32, L33, and L34 prepared by lyophilization under the same conditions as in Example 1 was added to KU812F at a concentration of 0.1 or 1 μg / ml, followed by treatment for 3 days. The change in histamine release ability was followed.

(β−ヘキソサミニダーゼ活性の測定)
細胞から分泌されたあるいは細胞内のヒスタミン量は、脱顆粒の際にヒスタミンなどのケミカルメディエーターとともに放出されるβ−ヘキソサミニダーゼという顆粒内酵素の酵素活性を測定することにより推定した。
(Measurement of β-hexosaminidase activity)
The amount of histamine secreted from the cell or intracellular was estimated by measuring the enzyme activity of an intragranular enzyme called β-hexosaminidase released together with a chemical mediator such as histamine during degranulation.

上述の乳酸菌処理をしたKU812F細胞を、2×106cells/tubeになるように調整し、タイロード液(137mM NaCl,2.7mM KCl,1.8mM CaCl2,1.1mM MgCl2,11.9mM NaHCO3,0.4mM NaH2PO4,pH7.2)で2回洗浄した。150μlのタイロード液で再懸濁した後、10μM イオノマイシン(Sigma,St.Louis,MO)で処理し、37℃で1時間反応させた(イオノマイシン刺激)。一方、イオノマイシンを添加しないほかは同様に処理したものを用意した(無刺激)。 KU812F cells treated with the above lactic acid bacteria were adjusted to 2 × 10 6 cells / tube, and Tyrode's solution (137 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl 2 , 1.1 mM MgCl 2 , 11. It was washed twice with 9 mM NaHCO 3 , 0.4 mM NaH 2 PO 4 , pH 7.2). After resuspending in 150 μl of Tyrode's solution, it was treated with 10 μM ionomycin (Sigma, St. Louis, MO) and reacted at 37 ° C. for 1 hour (ionomycin stimulation). On the other hand, a similar treatment was prepared except that no ionomycin was added (no stimulation).

1時間後、遠心して上清を回収し、上清サンプルとした。得られた細胞ペレットは、150μlの0.1% TritonX−100で溶解し、細胞ライセートサンプルとした。得られた上清サンプルおよび細胞ライセートサンプルをそれぞれ40μlずつ、96wellイムノプレートに添加し、そこに基質として2mM p−ニトロフェニル−N−アセチル−β−D−グルコサミニド(NAG)を100μl添加して、37℃で30分静置し発色反応を行った。反応終了後、0.2M グリシンを150μlずつ添加することによって反応を停止させた後、405nmの吸光度を測定した。一方、乳酸菌を添加しないほかは同様に調製及び測定したサンプルをコントロールとした。   After 1 hour, the supernatant was collected by centrifugation and used as a supernatant sample. The obtained cell pellet was dissolved in 150 μl of 0.1% Triton X-100 to obtain a cell lysate sample. 40 μl each of the obtained supernatant sample and cell lysate sample were added to a 96-well immunoplate, and 100 μl of 2 mM p-nitrophenyl-N-acetyl-β-D-glucosaminide (NAG) was added thereto as a substrate, The mixture was allowed to stand at 37 ° C. for 30 minutes for color reaction. After completion of the reaction, the reaction was stopped by adding 150 μl of 0.2 M glycine, and then the absorbance at 405 nm was measured. On the other hand, a sample prepared and measured in the same manner except that lactic acid bacteria were not added was used as a control.

(1)乳酸菌のヒスタミン蓄積抑制効果
KU812Fに対する乳酸菌のヒスタミン蓄積抑制効果は、相対ヒスタミン蓄積量で評価した。相対ヒスタミン蓄積量は、上清サンプル及び細胞ライセートサンプル中のβ−ヘキソサミニダーゼ活性として算出した。相対ヒスタミン蓄積量の結果を、無刺激の場合を図4−1に、イオノマイシン刺激の場合を図4−2に示す。その結果、L33及びL34に、有意なヒスタミン蓄積抑制効果が認められた(図4−1及び図4−2)
(1) Histamine accumulation inhibitory effect of lactic acid bacteria The histamine accumulation inhibitory effect of lactic acid bacteria on KU812F was evaluated by relative histamine accumulation amount. Relative histamine accumulation was calculated as β-hexosaminidase activity in the supernatant and cell lysate samples. The results of relative histamine accumulation are shown in Fig. 4-1 for no stimulation and Fig. 4-2 for ionomycin stimulation. As a result, a significant inhibitory effect on histamine accumulation was observed in L33 and L34 (FIGS. 4-1 and 4-2).

(2)乳酸菌のヒスタミン遊離抑制効果
KU812Fに対する乳酸菌のヒスタミン遊離抑制効果は、相対ヒスタミン遊離活性で評価した。相対ヒスタミン遊離活性は、イオノマイシン刺激時での(上清サンプル中のβ−ヘキソサミニダーゼ活性)/(上清及び細胞ライセートサンプル中のβ−ヘキソサミニダーゼ活性)×100として産出した。相対ヒスタミン遊離活性の結果を図5に示す。図5から明らかなように、L32において相対ヒスタミン遊離活性の抑制が認められた。
(2) Histamine release inhibitory effect of lactic acid bacteria The histamine release inhibitory effect of lactic acid bacteria on KU812F was evaluated by relative histamine release activity. The relative histamine releasing activity was produced as (β-hexosaminidase activity in the supernatant sample) / (β-hexosaminidase activity in the supernatant and cell lysate sample) × 100 upon stimulation with ionomycin. The result of relative histamine releasing activity is shown in FIG. As is clear from FIG. 5, suppression of relative histamine release activity was observed in L32.

実施例5 〔乳酸菌の抗アレルギー作用 (3)乳酸菌の抗アレルギー効果〕
ヒト末梢血リンパ球のサイトカイン産生に対する乳酸菌の影響を検証した。
まず、体外免疫を行う抗原感作時に乳酸菌を添加し、末梢血リンパ球のサイトカイン産生に対する影響を検証した。すなわち、測定対象であるサイトカインをTH1サイトカインIL−12p70、IFN−γとしたほかは実施例2の条件に従いサンプルの調製及び測定を行った。IL−12p70、IFN−γの測定結果を図6−1及び図6−2に示す。なお、図6−1および図6−2中の1または10の数値は添加した乳酸菌の加熱死菌体濃度(μg/ml)を表す。図6−1および図6−2から明らかなように、L32にTH1型サイトカインであるIL−12 p70の発現増強作用が、またL31〜L34にTH1型サイトカインであるIFN−γの発現増強作用が認められた。
Example 5 [Anti-allergic effect of lactic acid bacteria (3) Anti-allergic effect of lactic acid bacteria]
The effect of lactic acid bacteria on cytokine production of human peripheral blood lymphocytes was examined.
First, lactic acid bacteria were added at the time of antigen sensitization for in vitro immunization, and the influence of peripheral blood lymphocytes on cytokine production was verified. That is, were prepared and measurements of the sample in accordance addition to the to be measured cytokines and T H 1 cytokine IL-12p70, IFN-γ is the conditions of Example 2. The measurement results of IL-12p70 and IFN-γ are shown in FIGS. 6-1 and 6-2. In addition, the numerical value of 1 or 10 in FIGS. 6-1 and FIGS. 6-2 represents the heat dead cell density | concentration (microgram / ml) of the added lactic acid bacteria. As is apparent from FIGS. 6-1 and Figure 6-2, the expression enhancing action of IL-12 p70 is a T H 1-type cytokines in L32 is also the IFN-gamma is a T H 1-type cytokines in L31~L34 An expression enhancing action was observed.

次に、分離直後の末梢血リンパ球に乳酸菌を添加し、そのサイトカイン産生に対する影響を検証した。すなわち、採取対象を健常人及びアレルギー患者としたこと、及び乳酸菌加熱死菌体を0.1または1μg/mLの濃度で添加したこと以外は実施例1と同様に末梢血単核球を採取して同様に調整後、抗原感作を行わずに乳酸菌の加熱死菌体を添加し、培養した。続いて、実施例2の条件に従いTH1サイトカインであるIL−12p70、IFN−γを測定した。各サイトカインの測定結果を図7−1及び図7−2(健常人);図7−3及び図7−4に示す(アレルギー患者)。なお、図7−1〜7−4中の0.1または1の数値は添加した乳酸菌の加熱死菌体濃度(μg/ml)を表す。図7−1〜図7−4から明らかなように、健常人末梢血リンパ球に対しては、L32が強いIL−12 p70産生増強効果を、L31〜34が弱いIFN−γ産生増強効果を示した。さらにアレルギー患者由来末梢血リンパ球に対しては、L31、L32が強いIL−12 p70産生増強効果を示し、L31、L32、L33が強いIFN−γ産生増強効果を示した。 Next, lactic acid bacteria were added to the peripheral blood lymphocytes immediately after separation, and the effect on cytokine production was verified. That is, peripheral blood mononuclear cells were collected in the same manner as in Example 1 except that healthy subjects and allergic patients were collected, and heat-killed lactic acid bacteria were added at a concentration of 0.1 or 1 μg / mL. After adjustment in the same manner, heat-killed cells of lactic acid bacteria were added and cultured without antigen sensitization. Subsequently, IL-12p70 and IFN-γ, which are T H 1 cytokines, were measured according to the conditions of Example 2. The measurement results of each cytokine are shown in FIGS. 7-1 and 7-2 (healthy people); FIGS. 7-3 and 7-4 (allergic patients). In addition, the numerical value of 0.1 or 1 in FIGS. 7-1 to 7-4 represents the heat-killed cell density | concentration (microgram / ml) of the added lactic acid bacteria. As apparent from FIGS. 7-1 to 7-4, L32 has a strong IL-12 p70 production enhancing effect on healthy human peripheral blood lymphocytes, and L31 to 34 has a weak IFN-γ production enhancing effect. Indicated. Furthermore, for allergic patient-derived peripheral blood lymphocytes, L31 and L32 showed a strong IL-12 p70 production enhancing effect, and L31, L32 and L33 showed a strong IFN-γ production enhancing effect.

実施例6 〔既知の乳酸菌との比較(免疫賦活活性)〕
本発明の乳酸菌と既知の乳酸菌との間で、免疫賦活活性の比較試験を行った。
既知の乳酸菌としては、ラクトバチルス・アシドフィルス(L.acidophilus)の4株(L1(JCM1028),L2(JCM1034),L3(JCM1132),L4(JCM1229))、ラクトバチルス・アミロヴォルス(L.amylovorus)の1株(L5(JCM2125))、ラクトバチルス・ガセリ(L.gasseri)の3株(L10(JCM1130),L11(JCM1131),L12(JCM8787))、ラクトバチルス・ジョンソニ(L.johnsonii)の2株(L16(JCM1022),L17(JCM8791))を用いた。
Example 6 [Comparison with known lactic acid bacteria (immunostimulatory activity)]
A comparative test of immunostimulatory activity was performed between the lactic acid bacteria of the present invention and known lactic acid bacteria.
Known lactic acid bacteria include 4 strains of L. acidophilus (L1 (JCM1028), L2 (JCM1034), L3 (JCM1132), L4 (JCM1229)) and Lactobacillus amylovorus (L. amylovorus). 1 strain (L5 (JCM2125)), 3 strains of L. gasseri (L10 (JCM1130), L11 (JCM1131), L12 (JCM8787)), 2 strains of Lactobacillus johnsonii (L. johnsonii) (L16 (JCM1022), L17 (JCM8791)) were used.

L31等の代わりにこれらの既知の菌株を加熱死菌体として用いた他は、実施例1と同様にしてサンプルを調製しスポット数を測定し、DpKのスポット数に対する相対値(比スポット数)を算出した。尚、L1、L2、L3、L4、L5については、乳酸菌死菌体の添加量を0.1μg/ml、1μg/mlまたは10μg/mlの3種類とした。各菌の比スポット数の結果をL31、L32、L33、L34の結果とあわせて図8に示す。なお、図8中の0.1、1または10の数値は添加した乳酸菌の加熱死菌体濃度(μg/ml)を表す。   A sample was prepared and the number of spots was measured in the same manner as in Example 1 except that these known strains were used as heat-killed cells instead of L31, etc., and the relative value to the number of DpK spots (specific spot number). Was calculated. In addition, about L1, L2, L3, L4, and L5, the addition amount of the lactic-acid-bacteria dead body was made into three types, 0.1 microgram / ml, 1 microgram / ml, or 10 microgram / ml. The result of the specific spot number of each bacterium is shown in FIG. 8 together with the results of L31, L32, L33, and L34. In addition, the numerical value of 0.1, 1 or 10 in FIG. 8 represents the heat-killed cell density | concentration (microgram / ml) of the added lactic acid bacteria.

図8から明らかなように、本発明の乳酸菌、特にL31,L32,L34は、他の乳酸菌と比較して高い免疫賦活活性を示すことが明らかとなった。   As is clear from FIG. 8, the lactic acid bacteria of the present invention, in particular L31, L32, and L34, have been shown to exhibit higher immunostimulatory activity than other lactic acid bacteria.

実施例7 〔既知の乳酸菌との比較(サイトカイン産生能)〕
本発明の乳酸菌と既知の乳酸菌とのサイトカイン産生能の比較を、実施例6と同様に行った。IL−12p70については、各群の測定値のDpKの測定値に対する相対値を算出した。IL−6の測定値は、コントロールの測定値に対する相対値を算出した。各菌の各サイトカインの結果をL31〜34の結果とあわせて図9−1(IL−12p70)及び図9−2(IL−6)に示す。なお、図9−1および図9−2中の0.1、1または10の数値は添加した乳酸菌の加熱死菌体濃度(μg/ml)を表す。
図9−1および図9−2から明らかなように、本発明の乳酸菌のL31,L32,L33およびL34は、他の乳酸菌と比較して高い免疫賦活活性を示すことが明らかとなった。
Example 7 [Comparison with known lactic acid bacteria (cytokine production ability)]
The cytokine production ability between the lactic acid bacteria of the present invention and known lactic acid bacteria was compared in the same manner as in Example 6. For IL-12p70, the relative value of the measured value of each group to the measured value of DpK was calculated. The measured value of IL-6 was calculated as a relative value to the measured value of the control. The results of each cytokine of each bacterium are shown in FIG. 9-1 (IL-12p70) and FIG. 9-2 (IL-6) together with the results of L31 to 34. In addition, the numerical value of 0.1, 1 or 10 in FIGS. 9-1 and 9-2 represents the heat-killed cell density | concentration (microgram / ml) of the added lactic acid bacteria.
As is apparent from FIGS. 9-1 and 9-2, L31, L32, L33, and L34 of the lactic acid bacterium of the present invention showed higher immunostimulatory activity than other lactic acid bacteria.

図1は、本発明の乳酸菌の体外免疫における抗原特異的抗体産生増強効果を示す図である。FIG. 1 is a graph showing an antigen-specific antibody production enhancing effect in the in vitro immunization of the lactic acid bacterium of the present invention. 図2−1は、本発明の乳酸菌の体外免疫におけるTNF産生増強効果を示す図である。2-1 is a figure which shows the TNF production enhancement effect in the in vitro immunity of the lactic acid bacteria of this invention. 図2−2は、本発明の乳酸菌の体外免疫におけるIL−6産生増強効果を示す図である。2-2 is a figure which shows the IL-6 production enhancement effect in the in vitro immunity of the lactic acid bacteria of this invention. 図2−3は、本発明の乳酸菌の体外免疫におけるIL−1β産生増強効果を示す図である。2-3 is a figure which shows the IL-1 (beta) production enhancement effect in the in vitro immunity of the lactic acid bacteria of this invention. 図2−4は、本発明の乳酸菌の体外免疫におけるIL−8産生増強効果を示す図である。2-4 is a figure which shows the IL-8 production enhancement effect in the in vitro immunity of the lactic acid bacteria of this invention. 図3−1は、本発明の乳酸菌の健常人末梢血リンパ球からのTNF産生増強効果を示す図である。3-1 is a figure which shows the TNF production enhancement effect from the healthy human peripheral blood lymphocyte of the lactic acid bacteria of this invention. 図3−2は、本発明の乳酸菌の健常人末梢血リンパ球からのIL−6産生増強効果を示す図である。3-2 is a figure which shows the IL-6 production enhancement effect from the healthy human peripheral blood lymphocyte of the lactic acid bacteria of this invention. 図3−3は、本発明の乳酸菌の健常人末梢血リンパ球からのIL−1β産生増強効果を示す図である。3-3 is a figure which shows the IL-1 (beta) production enhancement effect from the healthy human peripheral blood lymphocyte of the lactic acid bacteria of this invention. 図3−4は、本発明の乳酸菌のアレルギー患者末梢血リンパ球からのTNF産生増強効果を示す図である。3-4 is a figure which shows the TNF production enhancement effect from the allergic patient peripheral blood lymphocyte of the lactic acid bacteria of this invention. 図3−5は、本発明の乳酸菌のアレルギー患者末梢血リンパ球からのIL−6産生増強効果を示す図である。3-5 is a figure which shows the IL-6 production enhancement effect from the allergic patient peripheral blood lymphocyte of the lactic acid bacteria of this invention. 図3−6は、本発明の乳酸菌のアレルギー患者末梢血リンパ球からのIL−8産生増強効果を示す図である。3-6 is a figure which shows the IL-8 production enhancement effect from the allergic patient peripheral blood lymphocyte of the lactic acid bacteria of this invention. 図4−1は、本発明の乳酸菌の無刺激下におけるヒスタミン蓄積抑制効果を示す図である。4-1 is a figure which shows the histamine accumulation | storage suppression effect under the non-stimulation of the lactic acid bacteria of this invention. 図4−2は、本発明の乳酸菌のイオノマイシン刺激下におけるヒスタミン蓄積抑制効果を示す図である。4-2 is a figure which shows the histamine accumulation | storage suppression effect under the ionomycin stimulation of the lactic acid bacteria of this invention. 図5は、本発明の乳酸菌のヒスタミン遊離抑制効果を示す図である。FIG. 5 is a diagram showing the histamine release inhibitory effect of the lactic acid bacteria of the present invention. 図6−1は、本発明の乳酸菌の体外免疫時におけるIL−12p70産生増強効果を示す図である。6-1 is a figure which shows the IL-12p70 production enhancement effect at the time of the in-vitro immunization of the lactic acid bacteria of this invention. 図6−2は、本発明の乳酸菌の体外免疫時におけるIFN−γ産生増強効果を示す図である。6-2 is a figure which shows the IFN-gamma production enhancement effect at the time of the in-vitro immunization of the lactic acid bacteria of this invention. 図7−1は、本発明の乳酸菌の健常人末梢血リンパ球からのIL−12p70産生増強効果を示す図である。7-1 is a figure which shows the IL-12p70 production enhancement effect from the healthy human peripheral blood lymphocyte of the lactic acid bacteria of this invention. 図7−2は、本発明の乳酸菌の健常人末梢血リンパ球からのIFN−γ産生増強効果を示す図である。FIG. 7-2 is a graph showing an effect of enhancing IFN-γ production from peripheral blood lymphocytes of healthy persons by the lactic acid bacteria of the present invention. 図7−3は、本発明の乳酸菌のアレルギー患者末梢血リンパ球からのIL−12p70産生増強効果を示す図である。7-3 is a figure which shows the IL-12p70 production enhancement effect from the allergic patient peripheral blood lymphocyte of the lactic acid bacteria of this invention. 図7−4は、本発明の乳酸菌のアレルギー患者末梢血リンパ球からのIFN−γ産生増強効果を示す図である。FIG. 7-4 is a diagram showing an effect of enhancing IFN-γ production from peripheral blood lymphocytes of allergic patients of lactic acid bacteria of the present invention. 図8は、本発明の乳酸菌と既知の乳酸菌との免疫賦活活性の比較を示す図である。FIG. 8 is a diagram showing a comparison of immunostimulatory activity between the lactic acid bacteria of the present invention and known lactic acid bacteria. 図9−1は、本発明の乳酸菌と既知の乳酸菌とのIL−12p70産生能の比較を示す図である。FIG. 9-1 is a diagram showing a comparison of IL-12p70 production ability between the lactic acid bacteria of the present invention and known lactic acid bacteria. 図9−2は、本発明の乳酸菌と既知の乳酸菌とのIL−6産生能の比較を示す図である。FIG. 9-2 is a diagram showing a comparison of IL-6 production ability between the lactic acid bacteria of the present invention and known lactic acid bacteria.

Claims (4)

免疫賦活作用・抗アレルギー作用を有するラクトバチルス属乳酸菌。   Lactobacillus lactic acid bacteria having immunostimulatory action and antiallergic action. ラクトバチルス・パラカゼイ NHH2株(NITE P−262)、ラクトバチルス・プランタラム NHT4株(NITE P−264)、ラクトバチルス・ガセリ NHMT2株(NITE P−265)、およびラクトバチルス・サリバリウス・サブスピーシーズ・サリバリウス NHMF1株(NITE P−263)からなる群から選択される請求項1記載の乳酸菌。   Lactobacillus paracasei NHH2 strain (NITE P-262), Lactobacillus plantarum NHT4 strain (NITE P-264), Lactobacillus gasseri NHMT2 strain (NITE P-265), and Lactobacillus salivaius subspecies Sarivarius The lactic acid bacterium according to claim 1, which is selected from the group consisting of NHMF1 strain (NITE P-263). 請求項1または2に記載の乳酸菌を有効成分として含有することを特徴とする、免疫賦活作用・抗アレルギー作用を有する組成物。   A composition having an immunostimulatory action and an antiallergic action, comprising the lactic acid bacterium according to claim 1 as an active ingredient. 請求項1または2に記載の乳酸菌、もしくは請求項3記載の組成物を含有する、飲食品、飼料、化粧品または医薬品。   A food, drink, feed, cosmetic or pharmaceutical comprising the lactic acid bacterium according to claim 1 or 2 or the composition according to claim 3.
JP2006286181A 2006-10-20 2006-10-20 Lactic acid bacterium having immunostimulatory activity/anti-allergic activity Pending JP2008099632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286181A JP2008099632A (en) 2006-10-20 2006-10-20 Lactic acid bacterium having immunostimulatory activity/anti-allergic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286181A JP2008099632A (en) 2006-10-20 2006-10-20 Lactic acid bacterium having immunostimulatory activity/anti-allergic activity

Publications (1)

Publication Number Publication Date
JP2008099632A true JP2008099632A (en) 2008-05-01

Family

ID=39434470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286181A Pending JP2008099632A (en) 2006-10-20 2006-10-20 Lactic acid bacterium having immunostimulatory activity/anti-allergic activity

Country Status (1)

Country Link
JP (1) JP2008099632A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202557A (en) * 2009-03-02 2010-09-16 Nippon Luna Kk Nk activity enhancer
WO2011059332A2 (en) 2009-11-16 2011-05-19 Stichting Top Institute Food And Nutrition Improved immunomodulation by probiotics
JP2011142907A (en) * 2009-12-23 2011-07-28 Lytone Enterprise Inc Lactobacillus paracasei strain lt12 as immunoregulatory agent
WO2011114645A1 (en) 2010-03-19 2011-09-22 株式会社キティー Anti-allergic composition
JP2012000093A (en) * 2010-06-21 2012-01-05 Rakuno Gakuen New lactobacillus, and new lactobacillus-containing composition
JP2013188197A (en) * 2012-02-16 2013-09-26 Kanazawa Univ Immunostimulatory lactic acid bacterium composition and immunostimulatory lactic fermentation food
JP2018068211A (en) * 2016-10-28 2018-05-10 森永乳業株式会社 Measuring method of dead cells of microorganisms and/or inactivated viruses
JP6487106B1 (en) * 2018-10-15 2019-03-20 株式会社湖池屋 Food composition for improving immune function
US10806769B2 (en) 2016-03-31 2020-10-20 Gojo Industries, Inc. Antimicrobial peptide stimulating cleansing composition
US10874700B2 (en) 2016-03-31 2020-12-29 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
JP2021524748A (en) * 2018-05-23 2021-09-16 コ・バイオラブズ・インコーポレイテッド Lactobacillus gasserie KBL697 strain and its use
US11564879B2 (en) 2016-11-23 2023-01-31 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202557A (en) * 2009-03-02 2010-09-16 Nippon Luna Kk Nk activity enhancer
WO2011059332A2 (en) 2009-11-16 2011-05-19 Stichting Top Institute Food And Nutrition Improved immunomodulation by probiotics
JP2011142907A (en) * 2009-12-23 2011-07-28 Lytone Enterprise Inc Lactobacillus paracasei strain lt12 as immunoregulatory agent
US10052354B2 (en) 2010-03-19 2018-08-21 Kitii Co., Ltd. Anti-allergic composition
WO2011114645A1 (en) 2010-03-19 2011-09-22 株式会社キティー Anti-allergic composition
JP2012000093A (en) * 2010-06-21 2012-01-05 Rakuno Gakuen New lactobacillus, and new lactobacillus-containing composition
JP2013188197A (en) * 2012-02-16 2013-09-26 Kanazawa Univ Immunostimulatory lactic acid bacterium composition and immunostimulatory lactic fermentation food
US11633451B2 (en) 2016-03-31 2023-04-25 Gojo Industries, Inc. Antimicrobial peptide stimulating cleansing composition
US11998575B2 (en) 2016-03-31 2024-06-04 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
US10806769B2 (en) 2016-03-31 2020-10-20 Gojo Industries, Inc. Antimicrobial peptide stimulating cleansing composition
US10874700B2 (en) 2016-03-31 2020-12-29 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
JP2018068211A (en) * 2016-10-28 2018-05-10 森永乳業株式会社 Measuring method of dead cells of microorganisms and/or inactivated viruses
US11564879B2 (en) 2016-11-23 2023-01-31 Gojo Industries, Inc. Sanitizer composition with probiotic/prebiotic active ingredient
JP2021524748A (en) * 2018-05-23 2021-09-16 コ・バイオラブズ・インコーポレイテッド Lactobacillus gasserie KBL697 strain and its use
JP7088573B2 (en) 2018-05-23 2022-06-21 コバイオラブズ・インコーポレイテッド Lactobacillus gasserie KBL697 strain and its use
US11285183B2 (en) 2018-05-23 2022-03-29 Kobiolabs, Inc. Lactobacillus gasseri KBL697 strain and use thereof
US11819526B2 (en) 2018-05-23 2023-11-21 Kobiolabs, Inc. Lactobacillus Gasseri KBL697 strain and use thereof
JP2020061945A (en) * 2018-10-15 2020-04-23 株式会社湖池屋 Food composition for improving immune function
JP6487106B1 (en) * 2018-10-15 2019-03-20 株式会社湖池屋 Food composition for improving immune function

Similar Documents

Publication Publication Date Title
JP2008099632A (en) Lactic acid bacterium having immunostimulatory activity/anti-allergic activity
Thoreux et al. Kefir milk enhances intestinal immunity in young but not old rats
Sashihara et al. An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases
US9314041B2 (en) Immune function modulating agents
RU2208632C2 (en) Immunostimulating strain lactobacillus rhamnosus (variants), composition for immunity enhancement (variants), method of immunity enhancement (variants)
Shida et al. Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity
Prioult et al. Stimulation of interleukin-10 production by acidic β-lactoglobulin-derived peptides hydrolyzed with Lactobacillus paracasei NCC2461 peptidases
CA3147134A1 (en) Lactobacillus paracasei 207-27 and use thereof
JP5069556B2 (en) T cell apoptosis inducer
JP4942831B2 (en) Antiallergic composition
EP1854467B1 (en) Immunostimulatory composition
Noguchi et al. Lactobacillus plantarum NRIC1832 enhances IL-10 production from CD4+ T cells in vitro
EP2947142B1 (en) Method for screening lactobacillus having immunomodulatory action
JP7358001B2 (en) Lactic acid bacteria, interleukin-22 production inducer, skin barrier function enhancer
JP7358002B2 (en) Bacillus bacteria, interleukin-22 production inducer, skin barrier function enhancer
TWI509069B (en) Lactic acid bacterium having immunomodulatory and anti-allergic effects
Enomoto et al. Oral administration of Lactobacillus plantarum NRIC0380 suppresses IgE production and induces CD4+ CD25+ Foxp3+ cells in vivo
JP2008179630A (en) Lactobacillus having immunostimulative action, product having immunostimulative action and method for producing the same
JPWO2008075685A1 (en) IgA production promoter
El-Bakry et al. Role of some selected Bifidobacterium strains in modulating immunosenescence of aged albino rats
JP2008061513A (en) Lactic acid bacterium of genus lactobacillus normalizing immunological balance and food and drink using the same
JP4459938B2 (en) Streptococcus lactic acid bacteria that normalize immune balance and food and drink using the same
JP6149228B2 (en) Screening method for lactic acid bacteria having immunomodulating action
Baccigalupi et al. Characterization of food-isolated strains of Lactobacillus fermentum with potential probiotic activity
He The intestinal microbiota of the elderly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090901

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216