JP2008099551A - Solid macromolecular complex responsive to magnetic field and actuator element - Google Patents

Solid macromolecular complex responsive to magnetic field and actuator element Download PDF

Info

Publication number
JP2008099551A
JP2008099551A JP2007309901A JP2007309901A JP2008099551A JP 2008099551 A JP2008099551 A JP 2008099551A JP 2007309901 A JP2007309901 A JP 2007309901A JP 2007309901 A JP2007309901 A JP 2007309901A JP 2008099551 A JP2008099551 A JP 2008099551A
Authority
JP
Japan
Prior art keywords
magnetic field
solid polymer
actuator element
ferromagnetic material
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007309901A
Other languages
Japanese (ja)
Other versions
JP4784840B2 (en
Inventor
Kinshi Azumi
欣志 安積
Yukimichi Nakao
幸道 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007309901A priority Critical patent/JP4784840B2/en
Publication of JP2008099551A publication Critical patent/JP2008099551A/en
Application granted granted Critical
Publication of JP4784840B2 publication Critical patent/JP4784840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely compact actuator element excellent in flexibility with remarkably bendable and deformable configuration. <P>SOLUTION: A solid macromolecular complex responsive to a magnetic field has a ferromagnetic material layer at least on one surface of a solid macromolecular ion-exchange membrane, and it is used for the material of the actuator element. Further, the solid macromolecular complex is used for the material of a catheter responsive to the magnetic field and actuated by a magnetic-field irradiation outside a human body, or the material of an extremity positioning sensor. The manufacturing method of the solid macromolecular complex responsive to the magnetic field is processed by reduction, after the solid macromolecular ion-exchange membrane is dipped into an aqueous solution containing ferromagnetic material ion and the ferromagnetic material is adsorbed under ion exchange reaction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁場応答固体高分子複合体、電場・磁場応答固体高分子複合体、それらの製造方法ならびにアクチュエータ素子材料、人体外からの磁場照射により駆動される磁場応答カテーテル材料、磁場センサによる先端位置センシング材料に関する。   The present invention relates to a magnetic field responsive solid polymer composite, an electric field / magnetic field responsive solid polymer composite, a manufacturing method thereof, an actuator element material, a magnetic field responsive catheter material driven by magnetic field irradiation from outside the human body, and a tip by a magnetic field sensor. It relates to position sensing materials.

イオン交換膜の両面に電極(陽極と陰極)を備えた超小型アクチュエータ素子は、公知である(特許文献1参照)。この超小型アクチュエータ素子は、電極を介して電圧を印加することにより、イオン交換膜が柔軟に湾曲および変形する。しかしながら、この電圧駆動方式の小型アクチュエータ素子は、マイクロマシーンへの応用に当たっては、電極へのリード線接続が技術的に非常に困難であり、これがその普及を妨げる一因となっている。また、電圧駆動方式のアクチュエータは、電圧の印加のみでは大きな力が得られない(大きな
変位量が得られない)ことが多く、駆動力の増大が求められている。
特公平7−4075号公報
A micro actuator element having electrodes (anode and cathode) on both surfaces of an ion exchange membrane is known (see Patent Document 1). In this micro actuator element, an ion exchange membrane is flexibly bent and deformed by applying a voltage via an electrode. However, this voltage-driven small actuator element is technically very difficult to connect with a lead wire to an electrode when applied to a micromachine, and this is one factor that hinders its spread. In addition, voltage-driven actuators often cannot obtain a large force only by applying a voltage (a large amount of displacement cannot be obtained), and an increase in driving force is required.
Japanese Patent Publication No. 7-4075

従って、本発明は、リード線を必要とすることなく、大きく柔軟に湾曲および変形しうる超小型アクチュエータ素子を提供することを主な目的とする。   Therefore, the main object of the present invention is to provide a micro actuator element that can be bent and deformed flexibly and flexibly without requiring a lead wire.

本発明は、さらに電圧駆動方式の超小型アクチュエータにおいて、大きな変位を達成する新規な超小型アクチュエータ素子を提供することをも主な目的とする。   Another object of the present invention is to provide a novel micro actuator element that achieves a large displacement in a voltage-driven micro actuator.

本発明者は、上記の技術の現状を考慮しつつ、鋭意研究を行った結果、固体高分子イオン交換膜の少なくとも一方の表面に強磁性体材料層を形成させる場合には、磁場に鋭敏に応答して、大きな変位量を呈する新規な超小型アクチュエータ素子が得られることを見出した。   As a result of intensive studies taking the present state of the above technology into consideration, the present inventor is sensitive to a magnetic field when forming a ferromagnetic material layer on at least one surface of a solid polymer ion exchange membrane. In response, it has been found that a novel micro actuator element exhibiting a large displacement can be obtained.

また、本発明者は、引き続き研究を進めた結果、固体高分子イオン交換膜の少なくとも一方の表面に貴金属層と強磁性体材料層とを併せて形成させる場合には、電場と磁場とに鋭敏に応答して、大きな変位量を呈する新規な超小型アクチュエータ素子が得られることを見出した。   In addition, as a result of continued research, the present inventor is sensitive to an electric field and a magnetic field when a noble metal layer and a ferromagnetic material layer are formed on at least one surface of a solid polymer ion exchange membrane. In response to the above, it has been found that a novel micro actuator element exhibiting a large displacement can be obtained.

すなわち、本発明は、下記の磁場応答固体高分子複合体および磁場・電場応答固体高分子複合体、それらの製造方法ならびにアクチュエータ素子材料、人体外からの磁場照射により駆動される磁場応答カテーテル材料或いは磁場センサによる先端位置センシング材料を提供する。
1.固体高分子イオン交換膜の少なくとも一方の表面に強磁性体材料層を備えた磁場応答固体高分子複合体であって、強磁性体材料がコバルトである磁場応答固体高分子複合体。2.固体高分子イオン交換膜の少なくとも一方の表面に強磁性体材料層を備えた磁場応答固体高分子複合体を用いるアクチュエータ素子であって、強磁性体材料がコバルトであるアクチュエータ素子。
That is, the present invention includes the following magnetic field responsive solid polymer composite and magnetic field / electric field responsive solid polymer composite, their production method and actuator element material, magnetic field responsive catheter material driven by magnetic field irradiation from outside the human body, or A tip position sensing material using a magnetic field sensor is provided.
1. A magnetic field responsive solid polymer composite comprising a ferromagnetic material layer on at least one surface of a solid polymer ion exchange membrane, wherein the ferromagnetic material is cobalt. 2. An actuator element using a magnetic field responsive solid polymer composite having a ferromagnetic material layer on at least one surface of a solid polymer ion exchange membrane, wherein the ferromagnetic material is cobalt.

本発明によれば、柔軟性に優れ、変位量の正確な制御が可能であり、かつ大きく湾曲および変形しうる磁場応答固体高分子複合体および電場・磁場応答固体高分子複合体が得ら
れる。
According to the present invention, it is possible to obtain a magnetic field responsive solid polymer composite and an electric field / magnetic field responsive solid polymer composite that are excellent in flexibility, can accurately control the amount of displacement, and can be greatly bent and deformed.

従って、本発明による磁場応答固体高分子複合体は、磁場駆動による超小型ソフトアクチュエータ素子材料、人体外からの磁場照射により駆動される磁場応答カテーテル材料、磁場センサによる先端位置センシング材料などとして有用である。   Therefore, the magnetic field responsive solid polymer composite according to the present invention is useful as an ultra-small soft actuator element material driven by a magnetic field, a magnetic field responsive catheter material driven by magnetic field irradiation from outside the human body, a tip position sensing material using a magnetic field sensor, and the like. is there.

また、本発明による電場・磁場応答固体高分子複合体は、電場・磁場駆動による超小型ソフトアクチュエータ素子材料などとして有用である。   The electric field / magnetic field responsive solid polymer composite according to the present invention is useful as a material for an ultra-small soft actuator element driven by an electric field / magnetic field.

より具体的には、本発明による超小型ソフトアクチュエータ素子を、例えば、マイクロサージャリー技術において使用される種々の医療器具(眼球手術、腹腔鏡下手術、微小血
管縫合手術などに際して使用されるピンセット、ハサミ、鉗子、スネア、レーザメス、スパチュラ、クリップなど)に適用する場合には、器具の微動操作を正確かつ的確に行うこ
とが出来るので、患者に対する過度の肉体的および精神的な負担が軽減される。
More specifically, the micro soft actuator element according to the present invention can be applied to various medical instruments used in, for example, microsurgery technology (tweezers, scissors used in eye surgery, laparoscopic surgery, microvascular suture surgery, etc.). When applied to a forceps, a snare, a laser knife, a spatula, a clip, etc.), the fine movement operation of the instrument can be performed accurately and accurately, thereby reducing an excessive physical and mental burden on the patient.

さらに、本発明による超小型ソフトアクチュエータ素子を備えたマイクロデバイス或いはマイクロマシンは、発電設備、化学反応装置などのプラント類、航空機エンジン、ロケットエンジンなどの機械システムなどにおける配管系統、機器内部などの検査用/モニタ
ー用/補修用センサー、補修用工具などとして、有用である。
Furthermore, the microdevice or micromachine equipped with the ultra-small soft actuator element according to the present invention is used for inspection of piping systems, equipment inside, etc. in plants such as power generation facilities, chemical reaction devices, mechanical systems such as aircraft engines and rocket engines. Useful as a monitor / repair sensor, repair tool, etc.

さらにまた、本発明による超小型ソフトアクチュエータ素子は、高周波振動によるマイクロポンプ、リハビリテーション用動力マッサージ器などの健康器具、湿度計、湿度計コントロール装置、ソフトマニピュレーター、水中バルブ、ソフト運搬装置などの工業用機器などにも、適用できる。   Furthermore, the ultra-small soft actuator element according to the present invention is used in industrial equipment such as a health device such as a micropump by high-frequency vibration, a power massager for rehabilitation, a hygrometer, a hygrometer control device, a soft manipulator, a submersible valve, and a soft transport device. It can also be applied to equipment.

以下、本発明の一実施形態の概略を示す断面図を参照しつつ、本発明をより詳細に説明する。
I.磁場応答固体高分子複合体
図1は、本発明による磁場応答固体高分子複合体の製造方法の概要を示す模式図である。
Hereinafter, the present invention will be described in more detail with reference to cross-sectional views illustrating an outline of an embodiment of the present invention.
I. Field response solid polymer composite Figure 1 is a schematic diagram showing an outline of a manufacturing method of a magnetic field responsive polymer complex according to the invention.

本発明で基材として使用する固体高分子イオン交換膜(図1においては、高分子ゲルし
て表示してある;以下単に「基材」ということがある)としては、陽イオン交換樹脂膜、
陰イオン交換樹脂膜および両性イオン交換樹脂膜が挙げられる。
As the solid polymer ion exchange membrane used as a substrate in the present invention (in FIG. 1, it is displayed as a polymer gel; hereinafter, it may be simply referred to as “substrate”), a cation exchange resin membrane,
Examples include anion exchange resin membranes and amphoteric ion exchange resin membranes.

基材を構成する陽イオン交換樹脂としては、フッ素樹脂、ポリエチレン、ポリスチレンなどにスルホン酸基、カルボキシル基などの官能基を導入した樹脂が挙げられる。これらの樹脂からなる陽イオン交換樹脂の中では、フッ素樹脂にスルホン酸基、カルボキシル基などの官能基が導入された陽イオン交換樹脂膜が、樹脂自体が柔軟であって、アクチュエータとしての変位量を大きくすることができるので、より好ましい。この様なフッ素樹脂系の陽イオン交換樹脂膜は、例えば、“ナフィオン”(デュポン社)などの商標名により市販されている。   Examples of the cation exchange resin constituting the substrate include a resin in which a functional group such as a sulfonic acid group or a carboxyl group is introduced into a fluororesin, polyethylene, polystyrene, or the like. Among these cation exchange resins, cation exchange resin membranes in which functional groups such as sulfonic acid groups and carboxyl groups are introduced into fluororesins are flexible and the amount of displacement as an actuator Can be increased, which is more preferable. Such a fluororesin-based cation exchange resin membrane is commercially available under a trade name such as “Nafion” (DuPont).

磁場応答固体高分子複合体の製造は、上述の基材を所定の強磁性体金属イオンを含む水溶液に浸漬し、金属イオンを吸着させた後、金属イオンを吸着した基材を還元剤水溶液に浸漬することにより、行う。   The production of the magnetic field responsive solid polymer composite is performed by immersing the above-mentioned base material in an aqueous solution containing a predetermined ferromagnetic metal ion, adsorbing the metal ion, and then making the base material adsorbing the metal ion into the reducing agent aqueous solution. Perform by dipping.

基材を浸漬する水溶液としては、コバルトイオン、ニッケルイオン或いはこれら両イオンを含む水溶液を使用する。この様な水溶液としては、硫酸塩(CoSO4、NiSO4など)の水溶
液、塩化物塩(CoCl2、NiCl2など)の水溶液が挙げられる。
As the aqueous solution in which the substrate is immersed, an aqueous solution containing cobalt ions, nickel ions, or both ions is used. Examples of such an aqueous solution include an aqueous solution of sulfate (CoSO 4 , NiSO 4 etc.) and an aqueous solution of chloride salt (CoCl 2 , NiCl 2 etc.).

次いで、金属イオンの還元は、金属イオンを吸着した基材を公知のメッキ加工において使用されている還元剤水溶液に浸漬することにより、行う。この様な還元剤としては、特に限定されるものではないが、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ヒドラジン、亜硫酸ナトリウム、ジメチルアミノボラン、アスコルビン酸ナトリウムなどが例示される。この還元操作により、基材表面に強磁性材料層が形成される。   Next, the reduction of the metal ions is performed by immersing the substrate adsorbing the metal ions in a reducing agent aqueous solution used in a known plating process. Examples of such a reducing agent include, but are not limited to, sodium borohydride, potassium borohydride, hydrazine, sodium sulfite, dimethylaminoborane, sodium ascorbate and the like. By this reduction operation, a ferromagnetic material layer is formed on the substrate surface.

次いで、還元処理された基材を、必要ならば水洗して、所望の磁場応答固体高分子複合体を得る。   Next, the reduction-treated substrate is washed with water if necessary to obtain a desired magnetic field-responsive solid polymer composite.

本発明においては、固体高分子イオン交換膜からなる基材に対する「金属イオンの吸着操作→還元操作→水洗操作」という一連の工程を複数回繰り返して行うことにより、強磁性体層の厚さを大きくすることができる。この工程の繰り返し回数は、所望の強磁性体層の厚さに応じて適宜選択することが出来る。   In the present invention, the thickness of the ferromagnetic layer is reduced by repeating a series of steps of “metal ion adsorption operation → reduction operation → water washing operation” a plurality of times on a substrate made of a solid polymer ion exchange membrane. Can be bigger. The number of repetitions of this step can be appropriately selected according to the desired thickness of the ferromagnetic layer.

さらに必要ならば、表面に強磁性材料層が形成された基材を無電解メッキ液に浸漬することにより、強磁性体材料層の厚さを増大させることが出来る。無電解メッキ液としては、特に限定されることなく、金属、樹脂などに対する公知のメッキ加工において使用されている無電解メッキ液を使用することができる。この様な無電解メッキ液としては、例えば、硫酸コバルト系メッキ液、硫酸コバルト-次亜リン酸ナトリウム-酒石酸塩-硼酸系メ
ッキ液、硫酸ニッケル-次亜リン酸ナトリウム-乳酸-プロピオン酸系メッキ液、硫酸ニッ
ケル-次亜リン酸ナトリウム-酢酸ナトリウム系メッキ液、硫酸ニッケル-次亜リン酸ナト
リウム-コハク酸ナトリウム-リンゴ酸系メッキ液などが例示される。
Further, if necessary, the thickness of the ferromagnetic material layer can be increased by immersing the base material having the ferromagnetic material layer formed on the surface thereof in an electroless plating solution. The electroless plating solution is not particularly limited, and an electroless plating solution used in a known plating process for metals, resins, and the like can be used. Examples of such electroless plating solutions include cobalt sulfate plating solution, cobalt sulfate-sodium hypophosphite-tartrate-boric acid plating solution, nickel sulfate-sodium hypophosphite-lactic acid-propionic acid plating. Examples thereof include a nickel sulfate-sodium hypophosphite-sodium acetate plating solution and a nickel sulfate-sodium hypophosphite-sodium succinate-malic acid plating solution.

なお、図1に示す磁場応答固体高分子複合体は、その両面に強磁性材料層が形成された実施態様(両面型)を示しているが、本発明は、その一面にのみ強磁性材料層を形成する実施態様(片面型)をも包含する。片面型の磁場応答固体高分子複合体は、良好な柔軟性を示すが、磁場感応性は、両面型の磁場応答固体高分子複合体に劣る。従って、所望の用途に応じて、両面型或いは片面型を選択すればよい。   The magnetic field responsive solid polymer composite shown in FIG. 1 shows an embodiment in which a ferromagnetic material layer is formed on both sides (double-sided type), but the present invention is only on one side of the ferromagnetic material layer. The embodiment (single-sided type) is also included. The single-sided magnetic field-responsive solid polymer composite exhibits good flexibility, but the magnetic field sensitivity is inferior to the double-sided magnetic-field-responsive solid polymer composite. Therefore, a double-sided type or a single-sided type may be selected according to a desired application.

片面型磁場応答固体高分子複合体は、例えば、強磁性体金属イオンを両面に担持した基材の片面のみに還元剤を接触させて、強磁性材料層を形成するとともに、他の片面を純水により洗浄して、金属イオンを洗い流すことにより、製造することが出来る。或いは、基材の一面を被覆した状態で、他の片面にのみ強磁性体金属イオンを吸着担持させた後、金属イオンを還元することによっても、片面型磁場応答固体高分子複合体を製造することが出来る。   A single-sided magnetic field-responsive solid polymer composite is formed, for example, by bringing a reducing agent into contact with only one side of a substrate carrying ferromagnetic metal ions on both sides to form a ferromagnetic material layer and making the other side pure. It can be manufactured by washing with water and washing away metal ions. Alternatively, a single-sided magnetic field-responsive solid polymer composite is produced by reducing the metal ions after adsorbing and supporting the ferromagnetic metal ions only on the other side with one side of the substrate covered. I can do it.

本発明による磁場応答固体高分子複合体において、基材と強磁性材料層の厚さは、目的乃至用途に応じて適宜選択することができる。一般に、基材の厚さは0.05〜0.5mm程度(より好ましくは、0.15〜0.3mm程度)であり、強磁性材料層の厚さ1〜10μm程度(より好ましくは、3〜5μm程度)である。   In the magnetic field responsive solid polymer composite according to the present invention, the thickness of the base material and the ferromagnetic material layer can be appropriately selected according to the purpose or application. In general, the thickness of the substrate is about 0.05 to 0.5 mm (more preferably about 0.15 to 0.3 mm), and the thickness of the ferromagnetic material layer is about 1 to 10 μm (more preferably 3 mm). ˜5 μm).

本発明による磁場応答固体高分子複合体は、磁場内に置かれた場合に、磁場に鋭敏に応答して大きく湾曲或いは変形する。
II.電場・磁場応答固体高分子複合体
本発明による電場・磁場応答固体高分子複合体は、基材上に貴金属層と強磁性材料層を備えている。
The magnetic field responsive solid polymer composite according to the present invention is greatly bent or deformed in response to the magnetic field when placed in the magnetic field.
II. Electric field / magnetic field responsive solid polymer composite The electric field / magnetic field responsive solid polymer composite according to the present invention comprises a noble metal layer and a ferromagnetic material layer on a substrate.

基材上への貴金属層の形成は、例えば、特許第2,961,125号公報に記載された
手法に従って行うことができる。
Formation of the noble metal layer on the substrate can be performed, for example, according to the technique described in Japanese Patent No. 2,961,125.

すなわち、所定の貴金属(金、白金、パラジウム、ロジウム、ルテニウムなど)の錯体を含む水溶液に基材を浸漬して、貴金属錯体を基材に吸着させた後、吸着された貴金属錯体を還元剤により還元して、基材表面に貴金属を析出させ、さらに必要に応じて、表面に貴金属層が形成された基材を洗浄する。この吸着操作、還元操作および洗浄操作も、必要に応じて繰り返し行うことにより、貴金属層の厚さを増大させることができる。   That is, after immersing the base material in an aqueous solution containing a complex of a predetermined noble metal (gold, platinum, palladium, rhodium, ruthenium, etc.) to adsorb the noble metal complex to the base material, Reduction is performed to deposit a noble metal on the surface of the base material, and if necessary, the base material on which the noble metal layer is formed is washed. This adsorption operation, reduction operation, and washing operation can be repeated as necessary to increase the thickness of the noble metal layer.

次いで、上述の磁場応答固体高分子複合体の製造手法に準じて、貴金属層を備えた基材を所定の強磁性体金属イオンを含む無電解メッキ液に浸漬し、金属イオンを吸着させ、金属イオンを吸着した基材を還元剤水溶液に浸漬した後、必要ならばさらに水洗して、基材表面に貴金属層と強磁性材料層とを備えた所望の電場・磁場応答固体高分子複合体を得る。   Next, in accordance with the above-described method for producing a magnetic field responsive solid polymer composite, a base material provided with a noble metal layer is immersed in an electroless plating solution containing a predetermined ferromagnetic metal ion to adsorb the metal ion, After immersing the substrate on which ions are adsorbed in a reducing agent aqueous solution, if necessary, it is further washed with water to obtain a desired electric / magnetic field responsive solid polymer composite comprising a noble metal layer and a ferromagnetic material layer on the substrate surface. obtain.

電場・磁場応答固体高分子複合体においても、基材、貴金属層および強磁性材料層の厚さは、目的乃至用途に応じて適宜選択することができる。基材および強磁性材料層の厚さは、上述の磁場応答固体高分子複合体の場合と同様である。基材と強磁性体層との間に介在する貴金属層の厚さは2〜15μm程度(より好ましくは、3〜5μm程度)である。   Also in the electric field / magnetic field responsive solid polymer composite, the thicknesses of the base material, the noble metal layer and the ferromagnetic material layer can be appropriately selected according to the purpose or application. The thicknesses of the base material and the ferromagnetic material layer are the same as those of the above-described magnetic field responsive solid polymer composite. The thickness of the noble metal layer interposed between the substrate and the ferromagnetic layer is about 2 to 15 μm (more preferably about 3 to 5 μm).

本発明による電場・磁場応答固体高分子複合体は、電場と磁場とに対して、鋭敏に応答して大きく湾曲或いは変形するというユニークな特性を示す。従って、電場と磁場内におけるその変位量は、前記の磁場応答固体高分子複合体の磁場内における変位量よりも著しく大きくなる。   The electric field / magnetic field responsive solid polymer composite according to the present invention exhibits a unique characteristic of being greatly bent or deformed in response to an electric field and a magnetic field. Therefore, the displacement amount in the electric field and the magnetic field is significantly larger than the displacement amount in the magnetic field of the magnetic field responsive solid polymer composite.

以下に、実施例を示し、本発明の特徴とするところをさらに明確にする
実施例1
厚さ0.2mmのフッ素樹脂系固体高分子電解質膜(商品名“Nafion117”、Dupont社製)を200mM硫酸コバルト水溶液中に30分間浸漬して、コバルトイオンを吸着させた
後、40mMNaBH水溶液中に30分間浸漬して、その表面にコバルト金属層を還元析出させ、さらに水洗した。この一連の操作を3回繰り返して、厚さ3μmのCoメッキ層を備えた固体高分子電解質複合体を作製した。
EXAMPLES Example 1 will be shown below, and Example 1 that further clarifies the features of the present invention will be described.
A 0.2 mm thick fluororesin-based solid polymer electrolyte membrane (trade name “Nafion117”, manufactured by Dupont) was immersed in a 200 mM cobalt sulfate aqueous solution for 30 minutes to adsorb cobalt ions, and then in a 40 mM NaBH 4 aqueous solution. For 30 minutes, a cobalt metal layer was reduced and deposited on the surface, and further washed with water. This series of operations was repeated three times to produce a solid polymer electrolyte composite having a 3 μm thick Co plating layer.

図2は、本実施例で得られたCoメッキ層を備えた固体高分子電解質複合体の断面を示すSEM写真である。固体高分子電解質膜の表面にほぼ均一にCoメッキ層が形成されていることが明らかである。
実施例2
実施例1で作製した固体高分子電解質膜/Co複合体をさらに硫酸コバルト、次亜リン酸
ナトリウム、酒石酸塩およびホウ酸からなるコバルト無電解メッキ浴に浸し、温度90℃で2時間保持して、Coメッキ層を厚さ7μmとした。
実施例3
実施例2で作製した固体高分子電解質膜/Co複合体から2mm×20mmの長方形試験片を切り取り、一方の短辺縁部3mmをつかみ、その反対側へ1.5テスラの強さの永久磁石(商品名“NEOMAX-44H”、住友特殊金属(株)製)を近づけた。
FIG. 2 is a SEM photograph showing a cross section of the solid polymer electrolyte composite provided with the Co plating layer obtained in this example. It is clear that the Co plating layer is formed almost uniformly on the surface of the solid polymer electrolyte membrane.
Example 2
The solid polymer electrolyte membrane / Co composite prepared in Example 1 was further immersed in a cobalt electroless plating bath composed of cobalt sulfate, sodium hypophosphite, tartrate and boric acid, and held at a temperature of 90 ° C. for 2 hours. The Co plating layer had a thickness of 7 μm.
Example 3
A 2 mm × 20 mm rectangular test piece was cut from the solid polymer electrolyte membrane / Co composite prepared in Example 2, and one short side edge 3 mm was gripped, and a permanent magnet having a strength of 1.5 Tesla on the opposite side. (Product name “NEOMAX-44H”, manufactured by Sumitomo Special Metals Co., Ltd.)

その結果、図3に示す様に、試験片先端と永久磁石との距離が15mmとなった時点で、試験片が湾曲した。   As a result, as shown in FIG. 3, the test piece was bent when the distance between the tip of the test piece and the permanent magnet reached 15 mm.

本発明により得られた磁場応答固体高分子複合体の優れた特性が明らかである。
実施例4
特許2,961,125号公報実施例1に記載の公知方法に従って、基材としての厚さ0.2mmのフッ素樹脂系固体高分子電解質膜(商品名“Nafion117”、Dupont社製)に金
メッキ層を形成した後、上記実施例1に示す手法によりさらにコバルト層を形成して、基材/金/コバルトからなる複合体を作製した。
The excellent properties of the magnetic field responsive solid polymer composite obtained by the present invention are clear.
Example 4
In accordance with a known method described in Example 1 of Japanese Patent No. 2,961,125, a gold plating layer is applied to a 0.2 mm-thick fluororesin solid polymer electrolyte membrane (trade name “Nafion117”, manufactured by DuPont) as a substrate. Then, a cobalt layer was further formed by the method shown in Example 1 to prepare a composite of base material / gold / cobalt.

得られた複合体から2mm×20mmの長方形試験片を切り取り、一方の短辺縁部3mmを実施例3と同様の方法でつかんだ。次いで、図4に示す様に、つかんだ部分から電圧3Vを加えたところ、約45度湾曲した。さらに、この試験片の先端に1.5テスラの強さの永久磁石(商品名“NEOMAX-44H”、住友特殊金属(株)製)を近づけたところ、試験片の先端が90度以上湾曲した。   A rectangular test piece of 2 mm × 20 mm was cut from the obtained composite, and one short side edge 3 mm was gripped in the same manner as in Example 3. Next, as shown in FIG. 4, when a voltage of 3 V was applied from the grasped portion, it was bent about 45 degrees. Furthermore, when a permanent magnet (trade name “NEOMAX-44H”, manufactured by Sumitomo Special Metal Co., Ltd.) having a strength of 1.5 Tesla was brought close to the tip of the test piece, the tip of the test piece was bent 90 degrees or more. .

本発明により得られた電場・磁場応答固体高分子複合体の優れた特性が明らかである。   The excellent properties of the electric field / magnetic field responsive solid polymer composite obtained by the present invention are clear.

本発明による磁場応答固体高分子複合体の製造方法の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the manufacturing method of the magnetic field response solid polymer composite_body | complex by this invention. 実施例1で得られた磁場応答固体高分子複合体の断面を示すSEM写真である。4 is a SEM photograph showing a cross section of the magnetic field responsive solid polymer composite obtained in Example 1. 実施例3で得られた試験片の磁場応答固体高分子複合体としての特性を示す写真である。4 is a photograph showing the characteristics of the test piece obtained in Example 3 as a magnetic field responsive solid polymer composite. 実施例4で得られた試験片の電場・磁場応答固体高分子複合体としての特性を示す図面である。It is drawing which shows the characteristic as an electric field and magnetic field response solid polymer composite of the test piece obtained in Example 4. FIG.

Claims (2)

固体高分子イオン交換膜の少なくとも一方の表面に強磁性体材料層を備えた磁場応答固体高分子複合体であって、強磁性体材料がコバルトである磁場応答固体高分子複合体。 A magnetic field responsive solid polymer composite comprising a ferromagnetic material layer on at least one surface of a solid polymer ion exchange membrane, wherein the ferromagnetic material is cobalt. 固体高分子イオン交換膜の少なくとも一方の表面に強磁性体材料層を備えた磁場応答固体高分子複合体を用いるアクチュエータ素子であって、強磁性体材料がコバルトであるアクチュエータ素子。 An actuator element using a magnetic field responsive solid polymer composite having a ferromagnetic material layer on at least one surface of a solid polymer ion exchange membrane, wherein the ferromagnetic material is cobalt.
JP2007309901A 2007-11-30 2007-11-30 Magnetic field responsive solid polymer composite and actuator element Expired - Fee Related JP4784840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309901A JP4784840B2 (en) 2007-11-30 2007-11-30 Magnetic field responsive solid polymer composite and actuator element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309901A JP4784840B2 (en) 2007-11-30 2007-11-30 Magnetic field responsive solid polymer composite and actuator element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003006526A Division JP4182203B2 (en) 2003-01-15 2003-01-15 Magnetic field responsive solid polymer composite, manufacturing method thereof, and actuator element

Publications (2)

Publication Number Publication Date
JP2008099551A true JP2008099551A (en) 2008-04-24
JP4784840B2 JP4784840B2 (en) 2011-10-05

Family

ID=39381776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309901A Expired - Fee Related JP4784840B2 (en) 2007-11-30 2007-11-30 Magnetic field responsive solid polymer composite and actuator element

Country Status (1)

Country Link
JP (1) JP4784840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097658A (en) 2015-12-25 2018-08-31 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Strain sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287523A (en) * 1986-06-05 1987-12-14 株式会社トクヤマ Manufacture of conducting high polymer construction
JPH035720A (en) * 1989-06-01 1991-01-11 Bridgestone Corp Liquid crystal actuator device
JPH066991A (en) * 1992-06-03 1994-01-14 Agency Of Ind Science & Technol Actuator element
JP2001002812A (en) * 1999-06-22 2001-01-09 Nitto Denko Corp Preparation of porous film
JP2002524113A (en) * 1998-08-31 2002-08-06 ゼネラル・サイエンス・アンド・テクノロジー・コーポレーション Medical equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287523A (en) * 1986-06-05 1987-12-14 株式会社トクヤマ Manufacture of conducting high polymer construction
JPH035720A (en) * 1989-06-01 1991-01-11 Bridgestone Corp Liquid crystal actuator device
JPH066991A (en) * 1992-06-03 1994-01-14 Agency Of Ind Science & Technol Actuator element
JP2002524113A (en) * 1998-08-31 2002-08-06 ゼネラル・サイエンス・アンド・テクノロジー・コーポレーション Medical equipment
JP2001002812A (en) * 1999-06-22 2001-01-09 Nitto Denko Corp Preparation of porous film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097658A (en) 2015-12-25 2018-08-31 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Strain sensor
US10788307B2 (en) 2015-12-25 2020-09-29 National Institute Of Advanced Industrial Science And Technology Deformation sensor comprising an ion-conductive polymer layer

Also Published As

Publication number Publication date
JP4784840B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
CA2262286C (en) Polymeric actuators and process for producing the same
Jeon et al. Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating
CN102275858B (en) Graphene-ion exchange polymer electric actuator as well as manufacturing method and application thereof
JP3030361B2 (en) Polymer electrolyte ammonium derivative
Park et al. Electromechanical performance and other characteristics of IPMCs fabricated with various commercially available ion exchange membranes
Yin et al. Printing ionic polymer metal composite actuators by fused deposition modeling technology
JP2961125B2 (en) Method for manufacturing polymer actuator
Kim et al. Analysis of mechanical characteristics of the ionic polymer metal composite (IPMC) actuator using cast ion-exchange film
He et al. The square rod-shaped ionic polymer-metal composite and its application in interventional surgical guide device
Chang et al. High-performance ionic polymer–metal composite actuators fabricated with microneedle roughening
Wang et al. Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators
Yoo et al. Silent speech recognition with strain sensors and deep learning analysis of directional facial muscle movement
JP4784840B2 (en) Magnetic field responsive solid polymer composite and actuator element
JP3646166B2 (en) Method for manufacturing actuator element
JP4182203B2 (en) Magnetic field responsive solid polymer composite, manufacturing method thereof, and actuator element
Chang et al. Hierarchical structure fabrication of ipmc strain sensor with high sensitivity
JP4154474B2 (en) Actuator element manufacturing method
Kobayashi et al. Deformation behaviors of ionic-polymer–metal composite actuator with palladium electrodes for various solvents, temperatures, and frequencies
Chen et al. High-performance liquid metal electromagnetic actuator fabricated by femtosecond laser
Annabestani et al. Design and fabrication of an ubiquitous, low-cost, and wearable respiratory bio-sensor using ionic soft materials
JP4288324B2 (en) Actuator element obtained by using conductive metal pattern formation method on polymer electrolyte structure
Namazu et al. Titanium‐nickel shape memory alloy spring actuator for forward‐looking active catheter
Dobos et al. Role of metal ion implantation on ionic polymer metal composite membranes
Tripathi et al. Actuation behavior of ionic polymer-metal composite based actuator in blood analogue fluid environment
JP4551673B2 (en) Ion exchange resin molded product and actuator element using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110629

R150 Certificate of patent or registration of utility model

Ref document number: 4784840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees