JP2008098624A - Semiconductor apparatus and manufacturing method thereof - Google Patents

Semiconductor apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP2008098624A
JP2008098624A JP2007235676A JP2007235676A JP2008098624A JP 2008098624 A JP2008098624 A JP 2008098624A JP 2007235676 A JP2007235676 A JP 2007235676A JP 2007235676 A JP2007235676 A JP 2007235676A JP 2008098624 A JP2008098624 A JP 2008098624A
Authority
JP
Japan
Prior art keywords
layer
concentration drain
concentration
drain layer
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007235676A
Other languages
Japanese (ja)
Other versions
JP5431663B2 (en
Inventor
Toshisuke Yatsuyanagi
俊祐 八柳
Masabumi Uehara
正文 上原
Katsuyoshi Anzai
勝義 安齊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007235676A priority Critical patent/JP5431663B2/en
Publication of JP2008098624A publication Critical patent/JP2008098624A/en
Application granted granted Critical
Publication of JP5431663B2 publication Critical patent/JP5431663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transistor structure capable of improving an ESD resistance. <P>SOLUTION: In the semiconductor apparatus, a drain layer 12 with high concentration is formed apart from an edge of drain side of a gate electrode 7 on a surface of a drain layer 10 with intermediate concentration. A P-type impurity layer 13 is formed on a surface of a substrate between the gate electrode 7 and the drain layer 12 with high concentration so as to surround the drain layer 12 with high concentration. During a parasitic bipolar transistor 30 turns on due to abnormal surge voltage, electrons move from a source electrode 15 side to a drain electrode 16 side. In this case, electrons avoid the vicinity of the surface of the substrate X on which the P-type impurity layer 13 is formed, as shown by the arrow 25 in Fig. 4, electrons are dispersed and moved so as to infiltrate into a side of drain electrode 16 from deeper location. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体装置及びその製造方法に関し、特に、高耐圧MOSトランジスタ及びその製造方法に関するものである。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a high voltage MOS transistor and a manufacturing method thereof.

高耐圧MOSトランジスタは、高いソース・ドレイン耐圧(BVDS),あるいは高いゲート耐圧を有しており、LCDドライバー,ELドライバー等の各種のドライバーや電源回路等に広く用いられている。   High breakdown voltage MOS transistors have a high source / drain breakdown voltage (BVDS) or a high gate breakdown voltage, and are widely used in various drivers such as LCD drivers and EL drivers, power supply circuits, and the like.

図6は、従来例に係るNチャネル型の高耐圧MOSトランジスタの構造を示す断面図である。P型の半導体基板100の表面にゲート絶縁膜101,厚いフィールド絶縁膜102が形成されている。ゲート絶縁膜101上から、隣接するフィールド絶縁膜102の一部上にはゲート電極103が形成されている。半導体基板100の表面領域には、ゲート電極103の一方の端に隣接して高濃度(N++型)のソース層104及び低濃度のソース層105が形成されている。   FIG. 6 is a cross-sectional view showing the structure of an N-channel high voltage MOS transistor according to a conventional example. A gate insulating film 101 and a thick field insulating film 102 are formed on the surface of a P-type semiconductor substrate 100. A gate electrode 103 is formed on the gate insulating film 101 and on a part of the adjacent field insulating film 102. In the surface region of the semiconductor substrate 100, a high concentration (N ++ type) source layer 104 and a low concentration source layer 105 are formed adjacent to one end of the gate electrode 103.

また、ゲート電極103の他方の端から離間した半導体基板100の表面には高濃度(N++型)のドレイン層106が形成されている。また、ゲート電極103の下方からフィールド絶縁膜102及び高濃度のドレイン層106の下方に至る領域には、高濃度のドレイン層106よりも濃度が低く、深くまで拡散した低濃度(N−型)のドレイン層107が形成されている。高濃度のドレイン層106は低濃度のドレイン層107内に形成されている。このように、ソース領域及びドレイン領域が高濃度部分と低濃度部分とから構成されたいわゆるLDD(Lightly Doped Drain)構造になっている。また、ゲート電極103の側壁には、シリコン窒化膜等のサイドウォールスペーサ膜108が形成されている。   A high concentration (N ++ type) drain layer 106 is formed on the surface of the semiconductor substrate 100 spaced from the other end of the gate electrode 103. Further, in a region extending from below the gate electrode 103 to below the field insulating film 102 and the high-concentration drain layer 106, the concentration is lower than that of the high-concentration drain layer 106, and the low concentration (N-type) diffused deeply. The drain layer 107 is formed. The high concentration drain layer 106 is formed in the low concentration drain layer 107. Thus, the source region and the drain region have a so-called LDD (Lightly Doped Drain) structure in which a high concentration portion and a low concentration portion are configured. A sidewall spacer film 108 such as a silicon nitride film is formed on the sidewall of the gate electrode 103.

上述した従来の高耐圧MOSトランジスタでは、高濃度のドレイン層106に高電圧を印加した場合に、低濃度のドレイン層107の中に空乏層が広がることでドレイン電界が緩和されるため、高いソース・ドレイン耐圧を得ることができる。また、ゲート電極103はゲート絶縁膜101から隣接するフィールド絶縁膜102の一部上に延在しているため、ゲート絶縁膜101の破壊にも強い構造を有している。   In the conventional high-voltage MOS transistor described above, when a high voltage is applied to the high-concentration drain layer 106, the depletion layer spreads in the low-concentration drain layer 107, so that the drain electric field is relaxed. -A drain breakdown voltage can be obtained. Further, since the gate electrode 103 extends from the gate insulating film 101 onto a part of the adjacent field insulating film 102, the gate electrode 103 has a structure that is resistant to the breakdown of the gate insulating film 101.

なお、本発明に関連する技術は、以下の特許文献に記載されている。
特開2002−134738号公報
The technique related to the present invention is described in the following patent documents.
JP 2002-134738 A

しかしながら、上述した従来のトランジスタ構造では、静電破壊耐量(以下、ESD耐量という)が十分でないという問題があった。例えば、本発明者が行ったヒューマンボディモデル(HBM)に基づく一般的な静電破壊試験によれば200ボルト(V)未満のESD耐量であり、マシーンモデル(MM)に基づく静電破壊試験では50ボルト(V)未満のESD耐量であり、これでは不十分であった。そこで、本発明はESD耐量を向上させたトランジスタ構造を提供することを目的とする。   However, the conventional transistor structure described above has a problem that the electrostatic breakdown resistance (hereinafter referred to as ESD resistance) is not sufficient. For example, according to a general electrostatic breakdown test based on the human body model (HBM) conducted by the present inventor, the ESD resistance is less than 200 volts (V). In the electrostatic breakdown test based on the machine model (MM), The ESD resistance was less than 50 volts (V), which was insufficient. Therefore, an object of the present invention is to provide a transistor structure with improved ESD tolerance.

本発明の主な特徴は以下のとおりである。すなわち、本発明の半導体装置は、第1導電型の半導体層の表面に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、前記半導体層の表面に形成された第2導電型のソース層と、前記ゲート電極のドレイン側の端部から離間し、前記半導体層の表面に形成された第2導電型の高濃度のドレイン層と、前記ゲート電極と前記高濃度のドレイン層との間における前記半導体層の表面に、前記高濃度のドレイン層に隣接する第1導電型の不純物層とを備えることを特徴とする。   The main features of the present invention are as follows. That is, the semiconductor device of the present invention includes a gate insulating film formed on the surface of the first conductivity type semiconductor layer, a gate electrode formed on the gate insulating film, and a first electrode formed on the surface of the semiconductor layer. A second conductivity type source layer, a second conductivity type high-concentration drain layer formed on the surface of the semiconductor layer and spaced from an end of the gate electrode on the drain side, the gate electrode and the high concentration An impurity layer of a first conductivity type adjacent to the high concentration drain layer is provided on the surface of the semiconductor layer between the drain layer and the drain layer.

また、本発明の半導体装置の製造方法は、第1導電型の半導体層の表面上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記ゲート電極から離間した前記半導体層の表面に第2導電型の高濃度のドレイン層を形成する工程と、第1導電型の不純物層を、前記高濃度のドレイン層に隣接させて、前記半導体層の表面に形成する工程とを有することを特徴とする。   According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor device comprising: forming a gate insulating film on a surface of a first conductivity type semiconductor layer; forming a gate electrode on the gate insulating film; Forming a second conductive type high-concentration drain layer on the surface of the semiconductor layer that is spaced apart; and adhering a first conductive type impurity layer adjacent to the high-concentration drain layer on the surface of the semiconductor layer. And a step of forming.

本発明では、ゲート電極と高濃度のドレイン層との間における半導体層の表面に、高濃度のドレイン層に隣接した、当該ドレイン層と逆導電型の不純物層が形成されている。このように構成することで、異常なサージが発生したときの電子は、前記不純物層が形成された付近を避けるようにして移動し、より深い位置からドレイン電極へと回り込む。つまり、半導体層の表面付近の電子の移動が抑えられる。そのため、ESD耐量を向上させることができる。   In the present invention, on the surface of the semiconductor layer between the gate electrode and the high concentration drain layer, an impurity layer having a conductivity type opposite to that of the drain layer is formed adjacent to the high concentration drain layer. With this configuration, electrons when an abnormal surge occurs move so as to avoid the vicinity where the impurity layer is formed, and wrap around from the deeper position to the drain electrode. That is, the movement of electrons near the surface of the semiconductor layer is suppressed. Therefore, ESD tolerance can be improved.

次に、本発明の実施形態に係る半導体装置について図面を参照しながら説明する。図1乃至図4は、本発明の実施形態に係る半導体装置を製造工程順に示す断面図である。   Next, a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. 1 to 4 are sectional views showing a semiconductor device according to an embodiment of the present invention in the order of manufacturing steps.

まず、図1に示すように、P型の半導体基板1の表面にN型不純物を注入し、熱拡散させることでN型のウェル層2(NW)を形成する。当該イオン注入は、例えばリンイオン(31)を加速電圧80KeV,注入量1.0×1013/cmの条件で行う。なお、本発明では、前記N型のウェル層2(NW)の形成を省略するものであっても構わない。 First, as shown in FIG. 1, an N-type well layer 2 (NW) is formed by implanting an N-type impurity into the surface of a P-type semiconductor substrate 1 and thermally diffusing it. The ion implantation is performed, for example, using phosphorus ions ( 31 P + ) under the conditions of an acceleration voltage of 80 KeV and an implantation amount of 1.0 × 10 13 / cm 2 . In the present invention, the formation of the N-type well layer 2 (NW) may be omitted.

次に、ウェル層2の表面にP型不純物を注入し、熱拡散させることでP型のウェル層3(PW)を形成する。当該イオン注入は、例えばボロンイオン(11)を加速電圧80KeV,注入量2.3×1013/cmの条件で行う。 Next, P-type impurities are implanted into the surface of the well layer 2 and thermally diffused to form a P-type well layer 3 (PW). The ion implantation is performed, for example, using boron ions ( 11 B + ) under the conditions of an acceleration voltage of 80 KeV and an implantation amount of 2.3 × 10 13 / cm 2 .

次に、ウェル層3の表面にN型不純物を選択的に注入することで、低濃度(N−型)のドレイン層4a,4bを形成する。低濃度のドレイン層4a,4bの間は離間している。すなわち、ドレイン層4a,4bの間にはイオン注入がなされないように所定のマスクを用いて当該イオン注入が行われる。このイオン注入は、例えばリンイオン(31)を加速電圧100KeV,注入量1.5×1013/cmの条件で行う。 Next, by selectively injecting N-type impurities into the surface of the well layer 3, low concentration (N− type) drain layers 4a and 4b are formed. The low concentration drain layers 4a and 4b are spaced apart. That is, the ion implantation is performed using a predetermined mask so that the ion implantation is not performed between the drain layers 4a and 4b. This ion implantation is performed, for example, with phosphorus ions ( 31 P + ) under the conditions of an acceleration voltage of 100 KeV and an implantation amount of 1.5 × 10 13 / cm 2 .

次に、図2に示すように、LOCOS(Local Oxidation Of Silicon)法を用いて、ウェル層3の所定領域上に厚いフィールド絶縁膜5a,5b,5cを形成する。このうちフィールド絶縁膜5a,5bはそれぞれ低濃度のドレイン層4a,4bと重畳した領域に形成されている。フィールド絶縁膜は一般に素子分離用に形成されるが、この半導体装置におけるフィールド絶縁膜5a,5bはトランジスタの耐圧向上に利用されている。フィールド絶縁膜5a,5b,5cの膜厚は目標耐圧によって異なるが、例えば300nm〜600nm程度である。なお、フィールド絶縁膜の形成はLOCOS法に限定されず、例えばSTI(Shallow Trench Isolation)法を含め他の素子分離法を用いてもよい。   Next, as shown in FIG. 2, thick field insulating films 5a, 5b, and 5c are formed on a predetermined region of the well layer 3 by using a LOCOS (Local Oxidation Of Silicon) method. Of these, the field insulating films 5a and 5b are formed in regions overlapping the low-concentration drain layers 4a and 4b, respectively. The field insulating film is generally formed for element isolation, but the field insulating films 5a and 5b in this semiconductor device are used to improve the breakdown voltage of the transistor. The film thickness of the field insulating films 5a, 5b, and 5c varies depending on the target breakdown voltage, but is about 300 nm to 600 nm, for example. The formation of the field insulating film is not limited to the LOCOS method, and other element isolation methods including, for example, an STI (Shallow Trench Isolation) method may be used.

次に、例えば熱酸化法によりゲート絶縁膜6を形成する。ゲート絶縁膜6の膜厚は目標耐圧によって異なるが例えば15〜200nm程度である。なお、フィールド絶縁膜5a,5b,5cは、ゲート絶縁膜6よりも厚い絶縁膜である。   Next, the gate insulating film 6 is formed by, eg, thermal oxidation. The thickness of the gate insulating film 6 varies depending on the target breakdown voltage, but is about 15 to 200 nm, for example. The field insulating films 5a, 5b, and 5c are insulating films thicker than the gate insulating film 6.

次に、半導体基板1上の全面に導電材料としてポリシリコン層を例えばCVD(Chemical Vapor Deposition)法により形成する。その後、当該ポリシリコン層及びゲート絶縁膜6を選択的に除去することで、ゲート電極7を形成する。ゲート電極7は、ゲート絶縁膜6上から隣接するフィールド絶縁膜5aの一部上に延在するようにパターニングされる。これによって耐圧が向上する。その膜厚は例えば300nmである。なお、必要に応じてリンイオン等の不純物を注入して拡散させることで、ゲート電極7を低抵抗化させる。   Next, a polysilicon layer as a conductive material is formed on the entire surface of the semiconductor substrate 1 by, for example, a CVD (Chemical Vapor Deposition) method. Thereafter, the polysilicon layer and the gate insulating film 6 are selectively removed to form the gate electrode 7. The gate electrode 7 is patterned so as to extend from the gate insulating film 6 onto a part of the adjacent field insulating film 5a. This improves the breakdown voltage. The film thickness is, for example, 300 nm. Note that the resistance of the gate electrode 7 is reduced by injecting and diffusing impurities such as phosphorus ions as necessary.

次に、ゲート電極7をマスクの一部として、ゲート電極7の左側のウェル層3の表面領域にN型不純物を注入し、低濃度のソース層8(LN)を形成する。このイオン注入は、例えばリンイオン(31)を加速電圧20KeV,注入量4.2×1013/cmの条件で行う。なお、低濃度のソース層8の形成は、後述するサイドウォールスペーサ膜9a,9bの形成後であってもよい。 Next, using the gate electrode 7 as a part of the mask, an N-type impurity is implanted into the surface region of the well layer 3 on the left side of the gate electrode 7 to form a low concentration source layer 8 (LN). This ion implantation is performed, for example, using phosphorus ions ( 31 P + ) under the conditions of an acceleration voltage of 20 KeV and an implantation amount of 4.2 × 10 13 / cm 2 . Note that the low-concentration source layer 8 may be formed after formation of sidewall spacer films 9a and 9b described later.

次に、図3(a)に示すように、半導体基板1上の全面に例えばシリコン窒化膜をCVD法により形成し、次に当該シリコン窒化膜をエッチバックすることで、ゲート電極7の周囲を囲むサイドウォールスペーサ膜9a,9bを形成する。なお、前記シリコン窒化膜に代えて、例えばTEOS膜等から成るシリコン酸化膜をCVD法により形成するものでも良い。また、当該サイドウォールスペーサ膜9a,9bがポリシリコン等の導電材料から成る場合にはゲート電極7とサイドウォールスペーサ膜9a,9bの全体がゲート電極となる。   Next, as shown in FIG. 3A, for example, a silicon nitride film is formed on the entire surface of the semiconductor substrate 1 by the CVD method, and then the silicon nitride film is etched back so that the periphery of the gate electrode 7 is formed. Surrounding sidewall spacer films 9a and 9b are formed. Instead of the silicon nitride film, a silicon oxide film made of, for example, a TEOS film or the like may be formed by a CVD method. When the sidewall spacer films 9a and 9b are made of a conductive material such as polysilicon, the gate electrode 7 and the entire sidewall spacer films 9a and 9b are gate electrodes.

次に、不図示のホトレジスト層およびフィールド絶縁膜5a,5bをマスクとして、フィールド絶縁膜5a,5bで囲まれたウェル層3の表面領域にN型不純物を注入し、低濃度のドレイン層4a,4bよりも高い不純物濃度であり、かつ深くまで不純物が注入された中濃度のドレイン層10(N)を形成する。中濃度のドレイン層10は、低濃度のドレイン層4a,4bと隣接する。このイオン注入は、例えばリンイオン(31)を加速電圧1000KeV,注入量8.0×1013/cmの条件で行う。なお、中濃度のドレイン層10と低濃度のドレイン層4a,4bとは離間していてもよいし、一部重畳していてもよい。 Next, N-type impurities are implanted into the surface region of the well layer 3 surrounded by the field insulating films 5a and 5b using a photoresist layer (not shown) and the field insulating films 5a and 5b as masks, and the low-concentration drain layers 4a and 5b are formed. An intermediate concentration drain layer 10 (N) having an impurity concentration higher than 4b and deeply doped with impurities is formed. The medium concentration drain layer 10 is adjacent to the low concentration drain layers 4a and 4b. This ion implantation is performed, for example, using phosphorus ions ( 31 P + ) under the conditions of an acceleration voltage of 1000 KeV and an implantation amount of 8.0 × 10 13 / cm 2 . The medium concentration drain layer 10 and the low concentration drain layers 4a and 4b may be separated from each other, or may be partially overlapped.

次に、不図示のホトレジスト層及びサイドウォールスペーサ膜9aをマスクとしてN型不純物を注入し、低濃度のソース層8と重畳する領域に高濃度のソース層11(N+)を形成するとともに、中濃度のドレイン層10と重畳する領域に高濃度のドレイン層12(N+)を形成する。このイオン注入は、例えばヒ素イオン(75As)を加速電圧100KeV,注入量5.0×1013/cmの条件で行う。高濃度のドレイン層12は、中濃度のドレイン層10の表面の全面に形成されるのではなく、図3(a)(b)に示すようにフィールド絶縁膜5a,5bとは離間し、後述するドレイン電極16が形成される領域の近傍に形成される。なお、図3(b)は、図3(a)のフィールド絶縁膜5a,5bや高濃度のドレイン層12の形成領域を示す部分平面図である。 Next, N-type impurities are implanted using a photoresist layer and sidewall spacer film 9a (not shown) as a mask to form a high concentration source layer 11 (N +) in a region overlapping with the low concentration source layer 8, and A high concentration drain layer 12 (N +) is formed in a region overlapping with the concentration drain layer 10. This ion implantation is performed, for example, with arsenic ions ( 75 As + ) under conditions of an acceleration voltage of 100 KeV and an implantation amount of 5.0 × 10 13 / cm 2 . The high-concentration drain layer 12 is not formed on the entire surface of the medium-concentration drain layer 10, but is separated from the field insulating films 5a and 5b as shown in FIGS. The drain electrode 16 is formed in the vicinity of the region where the drain electrode 16 is formed. FIG. 3B is a partial plan view showing regions where the field insulating films 5a and 5b and the high-concentration drain layer 12 shown in FIG.

次に、不図示のホトレジスト層をマスクとしてP型不純物を中濃度のドレイン層10に注入し、高濃度のP型不純物層13を形成する。P型不純物層13はESD耐量を向上させることに寄与する層である。この点については後述する。このイオン注入は、例えば二フッ化ボロン(49BF )イオンを加速電圧40KeV,注入量2.0×1015/cmの条件で行う。本実施形態のP型不純物層13は、図3(b)に示すように、高濃度のドレイン層12の周囲をリング状に囲むとともに、高濃度のドレイン層12と隣接している。なお、ESD耐量を向上させる観点から、P型不純物層13は、少なくとも高濃度のドレイン層12よりも深く形成することが好ましいと考えられる。なお、ESD耐量を向上させる観点からは、図3(a),(b)に示すように、P型不純物層13が高濃度のドレイン層12と接していることが好ましいと考えるが離間させることもできる。また、本実施形態ではP型不純物層13はフィールド絶縁膜5a,5bと隣接している。次に、アニール処理を行う。 Next, using a photoresist layer (not shown) as a mask, P-type impurities are implanted into the medium-concentration drain layer 10 to form a high-concentration P-type impurity layer 13. The P-type impurity layer 13 is a layer that contributes to improving the ESD tolerance. This point will be described later. This ion implantation is performed, for example, using boron difluoride ( 49 BF 2 + ) ions under the conditions of an acceleration voltage of 40 KeV and an implantation amount of 2.0 × 10 15 / cm 2 . As shown in FIG. 3B, the P-type impurity layer 13 of the present embodiment surrounds the periphery of the high concentration drain layer 12 in a ring shape and is adjacent to the high concentration drain layer 12. From the viewpoint of improving the ESD tolerance, it is considered that the P-type impurity layer 13 is preferably formed deeper than at least the high-concentration drain layer 12. From the viewpoint of improving the ESD tolerance, it is preferable that the P-type impurity layer 13 is in contact with the high-concentration drain layer 12 as shown in FIGS. 3A and 3B. You can also. In the present embodiment, the P-type impurity layer 13 is adjacent to the field insulating films 5a and 5b. Next, an annealing process is performed.

なお、高濃度のドレイン層12の形成のためのイオン注入を中濃度のドレイン層10の表面領域の全面に注入し、その後当該領域にP型不純物層13の形成のためのイオン注入を一部重畳させることで、高濃度のドレイン層12とP型不純物層13を形成してもよい。   Note that ion implantation for forming the high-concentration drain layer 12 is implanted into the entire surface region of the medium-concentration drain layer 10, and then part of the ion implantation for forming the P-type impurity layer 13 is performed in the region. By overlapping, the high-concentration drain layer 12 and the P-type impurity layer 13 may be formed.

次に、図4に示すように、半導体基板1上の全面に層間絶縁膜14(例えば、CVD法によるBPSG膜やシリコン窒化膜)を形成する。次に、高濃度のソース層11及び高濃度のドレイン層12に至るコンタクトホールを形成し、各コンタクトホールにそれぞれソース電極15とドレイン電極16を形成する。   Next, as shown in FIG. 4, an interlayer insulating film 14 (for example, a BPSG film or a silicon nitride film by a CVD method) is formed on the entire surface of the semiconductor substrate 1. Next, contact holes reaching the high concentration source layer 11 and the high concentration drain layer 12 are formed, and the source electrode 15 and the drain electrode 16 are formed in each contact hole.

以上の製造工程から、本実施形態に係る半導体装置20を得る事ができる。このようにして完成した半導体装置20のドレイン電極16に過大な正のサージ電圧が生じると、図4に示すように寄生NPNバイポーラトランジスタ30がオンし、ドレイン電極16側からソース電極15側へと電流が流れる。この寄生バイポーラ動作は、ドレイン層4aとウェル3との接合がブレークダウンしてウェル層3を電流が流れると、ウェル層3の電圧が上昇し、そしてウェル層3からソース層(8,11)側にベース電流が流れ、これによって寄生バイポーラトランジスタ30がオンする現象である。   From the above manufacturing process, the semiconductor device 20 according to the present embodiment can be obtained. When an excessive positive surge voltage is generated at the drain electrode 16 of the semiconductor device 20 thus completed, the parasitic NPN bipolar transistor 30 is turned on as shown in FIG. 4, and the drain electrode 16 side to the source electrode 15 side is turned on. Current flows. In this parasitic bipolar operation, when the junction between the drain layer 4a and the well 3 breaks down and a current flows through the well layer 3, the voltage of the well layer 3 rises and the well layer 3 to the source layer (8, 11). This is a phenomenon in which a base current flows to the side and the parasitic bipolar transistor 30 is turned on.

寄生バイポーラ動作が起きている間、電子はソース電極15側からドレイン電極16側へと移動する。ここで、P型不純物層13が形成されていない従来構造(図6参照)では、電子が基板表面付近を集中的に流れ、発熱し、これによって破壊に至ると考えられる。これに対して、本実施形態の構成ではP型不純物層13が形成されている。そのため、電子はP型不純物層13が形成された基板表面付近Xを避け、図4の矢印25に示すように電子は分散して流れ、より深い位置からドレイン電極16側へと回り込むように移動すると考えられる。つまり、P型不純物層13の作用によって、基板表面よりもより深い位置を電子(=電流)が分散して流れ、熱が集中せず、その結果として静電破壊が起き難くなっていると考えられる。   During the parasitic bipolar operation, electrons move from the source electrode 15 side to the drain electrode 16 side. Here, in the conventional structure in which the P-type impurity layer 13 is not formed (see FIG. 6), it is considered that electrons flow intensively near the substrate surface and generate heat, thereby causing destruction. On the other hand, the P-type impurity layer 13 is formed in the configuration of the present embodiment. Therefore, the electrons avoid the vicinity of the substrate surface X on which the P-type impurity layer 13 is formed, and the electrons flow in a dispersed manner as indicated by an arrow 25 in FIG. 4 so that they move from a deeper position to the drain electrode 16 side. I think that. That is, the action of the P-type impurity layer 13 causes electrons (= currents) to flow in a deeper position than the substrate surface, so that heat does not concentrate, and as a result, electrostatic breakdown is unlikely to occur. It is done.

本発明者が行った静電破壊試験によれば、ESD耐量の向上が確認できた。具体的には、従来構造(図6参照)で200ボルト未満だったヒューマンボディモデルのESD耐量が3000〜3500ボルト程度に向上し、従来構造で50ボルト未満だったマシーンモデルのESD耐量が約400ボルトに向上した。また、P型不純物層13を形成しない点を除いて本実施形態と同様の構成を有する半導体装置について静電破壊試験を行ったところ、ヒューマンボディモデルのESD耐量が2000〜2250ボルトであり、マシーンモデルのESD耐量が200ボルト〜220ボルトであった。これらの実験から、本実施形態の構造は、従来構造に比してESD耐量が飛躍的に向上する構造であること、及びP型不純物層13がESD耐量の向上に大きく寄与していることが判った。   According to the electrostatic breakdown test conducted by the present inventor, it was confirmed that the ESD resistance was improved. Specifically, the ESD resistance of the human body model that was less than 200 volts in the conventional structure (see FIG. 6) is improved to about 3000 to 3500 volts, and the ESD resistance of the machine model that was less than 50 volts in the conventional structure is about 400. Improved to bolts. Further, when an electrostatic breakdown test was performed on a semiconductor device having the same configuration as that of the present embodiment except that the P-type impurity layer 13 was not formed, the ESD resistance of the human body model was 2000 to 2250 volts, and the machine The ESD tolerance of the model was 200 to 220 volts. From these experiments, it can be seen that the structure of this embodiment has a structure in which the ESD resistance is dramatically improved as compared with the conventional structure, and that the P-type impurity layer 13 greatly contributes to the improvement of the ESD resistance. understood.

なお、本発明は上記実施形態に限定されることはなくその要旨を逸脱しない範囲で設計変更が可能であることは言うまでも無い。例えば、上記した構成では、断面図に示された低濃度のドレイン層4a,4bに離間した部分があったが、離間させずに低濃度ドレイン領域を切れ目なく形成してもよい。また、フィールド絶縁膜5aの下部に別のP型不純物層を配置することで更にESD耐量を向上させることも考えられる。また、本実施形態ではゲート電極7の一部下にフィールド絶縁膜5aが形成されていたが、図5(a)に示すようにフィールド絶縁膜5aを形成しない構造に設計変更することも可能である。   Needless to say, the present invention is not limited to the above-described embodiment, and the design can be changed without departing from the gist thereof. For example, in the above-described configuration, the low-concentration drain layers 4a and 4b shown in the cross-sectional view have a separated portion, but the low-concentration drain region may be formed without a gap without being separated. It is also conceivable to further improve the ESD tolerance by disposing another P-type impurity layer below the field insulating film 5a. In the present embodiment, the field insulating film 5a is formed under a part of the gate electrode 7. However, as shown in FIG. 5A, the design can be changed to a structure in which the field insulating film 5a is not formed. .

さらに、図5(b)に示すように、中濃度のドレイン層10のソース側の端部がゲート電極7あるいはサイドウォールスペーサ膜9bの下に位置するように構成し、低濃度のドレイン層4aを形成しない構造に設計変更することも可能である。   Further, as shown in FIG. 5B, the end portion on the source side of the medium concentration drain layer 10 is located below the gate electrode 7 or the sidewall spacer film 9b, so that the low concentration drain layer 4a is formed. It is also possible to change the design to a structure that does not form the.

また、製造工程の順番や条件を変更することも当然可能である。例えば、上記ではサイドウォールスペーサ膜9a,9bの形成の後に中濃度のドレイン層10を形成しているが、これよりも以前に形成することもできる。具体的には、フィールド絶縁膜5a〜5c形成後に、所定のマスクを用いて中濃度のドレイン層10形成のためのイオン注入を行い、その後に注入されたイオンを熱拡散させることで中濃度のドレイン層10を形成してもよい。そして、その後ゲート絶縁膜6やゲート電極7を形成することができる。なお、中濃度のドレイン層10を熱拡散によって深く形成する観点から、この場合の中濃度のドレイン層10の形成に係るイオン注入は、注入量を比較的多くすることで、高加速ではない条件で行うことができる。このときの注入条件は、例えばヒ素イオン(75As)を用いた場合には、加速電圧90〜150KeV,注入量1.0×1015〜6.0×1015/cmであり、また、リンイオン(31)を用いた場合には、加速電圧40〜80KeV,注入量1.0×1015〜6.0×1015/cmの条件である。 Of course, it is also possible to change the order and conditions of the manufacturing process. For example, although the intermediate concentration drain layer 10 is formed after the formation of the sidewall spacer films 9a and 9b in the above description, it may be formed before this. Specifically, after the field insulating films 5a to 5c are formed, ion implantation for forming the medium concentration drain layer 10 is performed using a predetermined mask, and then the implanted ions are thermally diffused to thermally diffuse. The drain layer 10 may be formed. Thereafter, the gate insulating film 6 and the gate electrode 7 can be formed. From the viewpoint of forming the intermediate concentration drain layer 10 deeply by thermal diffusion, ion implantation related to the formation of the intermediate concentration drain layer 10 in this case is a condition that is not highly accelerated by relatively increasing the implantation amount. Can be done. The implantation conditions at this time are, for example, an acceleration voltage of 90 to 150 KeV and an implantation amount of 1.0 × 10 15 to 6.0 × 10 15 / cm 2 when arsenic ions ( 75 As + ) are used. When phosphorus ions ( 31 P + ) are used, the acceleration voltage is 40 to 80 KeV and the injection amount is 1.0 × 10 15 to 6.0 × 10 15 / cm 2 .

また、Pチャネル型のMOSトランジスタに関する説明は省略するが、導電型が異なるだけで同様の構造であることは周知のとおりである。   In addition, although description on the P-channel MOS transistor is omitted, it is well known that the structure is the same except that the conductivity type is different.

本発明の実施形態に係る半導体装置及びその製造方法を説明する断面図である。It is sectional drawing explaining the semiconductor device which concerns on embodiment of this invention, and its manufacturing method. 本発明の実施形態に係る半導体装置及びその製造方法を説明する断面図である。It is sectional drawing explaining the semiconductor device which concerns on embodiment of this invention, and its manufacturing method. 本発明の実施形態に係る半導体装置及びその製造方法を説明する断面図及び平面図である。It is sectional drawing and the top view explaining the semiconductor device which concerns on embodiment of this invention, and its manufacturing method. 本発明の実施形態に係る半導体装置及びその製造方法を説明する断面図である。It is sectional drawing explaining the semiconductor device which concerns on embodiment of this invention, and its manufacturing method. 本発明の実施形態に係る半導体装置の変更例を説明する断面図である。It is sectional drawing explaining the example of a change of the semiconductor device which concerns on embodiment of this invention. 従来の半導体装置を説明する断面図である。It is sectional drawing explaining the conventional semiconductor device.

符号の説明Explanation of symbols

1 半導体基板 2 ウェル層 3 ウェル層 4a,4b 低濃度のドレイン層 5a,5b,5c フィールド絶縁膜 6 ゲート絶縁膜 7 ゲート電極 8 低濃度のソース層 9a,9b サイドウォールスペーサ膜 10 中濃度のドレイン層 11 高濃度のソース層 12 高濃度のドレイン層 13 P型不純物層 14 層間絶縁膜 15 ソース電極 16 ドレイン電極 20 半導体装置 25 電子の流れ 30 寄生バイポーラトランジスタ 100 半導体基板 101 ゲート絶縁膜 102 フィールド絶縁膜 103 ゲート電極 104 ソース層 105 低濃度のソース層 106 高濃度のドレイン層 107 低濃度のドレイン層 108 サイドウォールスペーサ膜 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Well layer 3 Well layer 4a, 4b Low concentration drain layer 5a, 5b, 5c Field insulating film 6 Gate insulating film 7 Gate electrode 8 Low concentration source layer 9a, 9b Side wall spacer film 10 Medium concentration drain Layer 11 High-concentration source layer 12 High-concentration drain layer 13 P-type impurity layer 14 Interlayer insulating film 15 Source electrode 16 Drain electrode 20 Semiconductor device 25 Electron flow 30 Parasitic bipolar transistor 100 Semiconductor substrate 101 Gate insulating film 102 Field insulating film 103 Gate electrode 104 Source layer 105 Low concentration source layer 106 High concentration drain layer 107 Low concentration drain layer 108 Side wall spacer film

Claims (9)

第1導電型の半導体層の表面に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成されたゲート電極と、
前記半導体層の表面に形成された第2導電型のソース層と、
前記ゲート電極のドレイン側の端部から離間し、前記半導体層の表面に形成された第2導電型の高濃度のドレイン層と、
前記ゲート電極と前記高濃度のドレイン層との間における前記半導体層の表面に、前記高濃度のドレイン層に隣接する第1導電型の不純物層とを備えることを特徴とする半導体装置。
A gate insulating film formed on the surface of the first conductivity type semiconductor layer;
A gate electrode formed on the gate insulating film;
A second conductivity type source layer formed on the surface of the semiconductor layer;
A second conductivity type high-concentration drain layer formed on the surface of the semiconductor layer, spaced from the drain side end of the gate electrode;
A semiconductor device comprising: a first conductivity type impurity layer adjacent to the high concentration drain layer on a surface of the semiconductor layer between the gate electrode and the high concentration drain layer.
前記高濃度のドレイン層よりも低濃度であり、かつ深く拡散し、前記ゲート電極の下方から前記高濃度のドレイン層との間の前記半導体層の表面に形成された第2導電型の低濃度のドレイン層を有することを特徴とする請求項1に記載の半導体装置。   Low concentration of the second conductivity type, which has a lower concentration than the high concentration drain layer and diffuses deeply and is formed on the surface of the semiconductor layer between the lower concentration gate layer and the high concentration drain layer. The semiconductor device according to claim 1, further comprising: a drain layer. 前記高濃度のドレイン層及び前記不純物層と重畳し、前記高濃度のドレイン層よりも低濃度であって、かつ深く拡散した中濃度のドレイン層を備えることを特徴とする請求項1または請求項2に記載の半導体装置。   2. The intermediate-concentration drain layer that overlaps with the high-concentration drain layer and the impurity layer, has a lower concentration than the high-concentration drain layer, and is deeply diffused. 2. The semiconductor device according to 2. 前記半導体層上に前記ゲート絶縁膜よりも厚い絶縁膜が形成され、前記ゲート電極は前記厚い絶縁膜の一部上に延在していることを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置。   4. The semiconductor device according to claim 1, wherein an insulating film thicker than the gate insulating film is formed on the semiconductor layer, and the gate electrode extends on a part of the thick insulating film. A semiconductor device according to claim 1. 前記不純物層は、前記厚い絶縁膜のドレイン側の一端と隣接していることを特徴とする請求項4に記載の半導体装置。   The semiconductor device according to claim 4, wherein the impurity layer is adjacent to one end of the thick insulating film on a drain side. 第1導電型の半導体層の表面上にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極を形成する工程と、
前記ゲート電極から離間した前記半導体層の表面に第2導電型の高濃度のドレイン層を形成する工程と、
第1導電型の不純物層を、前記高濃度のドレイン層に隣接させて、前記半導体層の表面に形成する工程とを有することを特徴とする半導体装置の製造方法。
Forming a gate insulating film on the surface of the first conductivity type semiconductor layer;
Forming a gate electrode on the gate insulating film;
Forming a second conductivity type high-concentration drain layer on the surface of the semiconductor layer spaced from the gate electrode;
Forming a first conductivity type impurity layer on the surface of the semiconductor layer adjacent to the high-concentration drain layer.
前記高濃度のドレイン層よりも低濃度であり、かつ深く拡散し、前記ゲート電極の下方から前記高濃度のドレイン層との間の前記半導体層の表面に低濃度のドレイン層を形成する工程を有することを特徴とする請求項6に記載の半導体装置の製造方法。   Forming a low-concentration drain layer on the surface of the semiconductor layer between the high-concentration drain layer and a lower concentration than the high-concentration drain layer and diffusing deeply; A method for manufacturing a semiconductor device according to claim 6, comprising: 前記低濃度のドレイン層に隣接し、前記高濃度のドレイン層及び前記不純物層と重畳する領域に、前記高濃度のドレイン層よりも深く、かつ低い濃度の中濃度のドレイン層を形成する工程を有することを特徴とする請求項7に記載の半導体装置の製造方法。   Forming a low-concentration medium-concentration drain layer deeper than the high-concentration drain layer and in a region adjacent to the low-concentration drain layer and overlapping the high-concentration drain layer and the impurity layer; 8. The method of manufacturing a semiconductor device according to claim 7, further comprising: 前記低濃度のドレイン層上に前記ゲート絶縁膜よりも厚い絶縁膜を形成する工程を有し、前記不純物層を形成する工程は、
前記不純物層が、前記厚い絶縁膜のドレイン側の一端と隣接するように行うことを特徴とする請求項7または請求項8に記載の半導体装置の製造方法。
A step of forming an insulating film thicker than the gate insulating film on the low-concentration drain layer, and the step of forming the impurity layer includes:
9. The method for manufacturing a semiconductor device according to claim 7, wherein the impurity layer is formed so as to be adjacent to one end on the drain side of the thick insulating film.
JP2007235676A 2006-09-15 2007-09-11 Semiconductor device and manufacturing method thereof Active JP5431663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235676A JP5431663B2 (en) 2006-09-15 2007-09-11 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006251079 2006-09-15
JP2006251079 2006-09-15
JP2007235676A JP5431663B2 (en) 2006-09-15 2007-09-11 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008098624A true JP2008098624A (en) 2008-04-24
JP5431663B2 JP5431663B2 (en) 2014-03-05

Family

ID=39381095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235676A Active JP5431663B2 (en) 2006-09-15 2007-09-11 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5431663B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160510A (en) * 2011-01-31 2012-08-23 Fujitsu Semiconductor Ltd Semiconductor device and method of manufacturing the same
JP2014138091A (en) * 2013-01-17 2014-07-28 Fuji Electric Co Ltd Semiconductor device and manufacturing method of the same
CN112490288A (en) * 2019-09-12 2021-03-12 株式会社东芝 Semiconductor device with a plurality of semiconductor chips

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314869A (en) * 1987-04-24 1988-12-22 パワー インテグレーションズ,インコーポレーテッド High voltage mos transistor
JP2000183181A (en) * 1998-12-10 2000-06-30 Sanyo Electric Co Ltd Semiconductor device and its manufacture
US6144070A (en) * 1997-08-29 2000-11-07 Texas Instruments Incorporated High breakdown-voltage transistor with electrostatic discharge protection
JP2001320047A (en) * 2000-03-03 2001-11-16 Toshiba Corp Semiconductor device
JP2002043579A (en) * 2000-07-26 2002-02-08 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2003218348A (en) * 2002-01-18 2003-07-31 Rohm Co Ltd Double diffusion mosfet and semiconductor device comprising it
JP2005109483A (en) * 2003-09-30 2005-04-21 Agere Systems Inc Metal-oxide semiconductor device including buried lightly-doped drain region
JP2006114768A (en) * 2004-10-15 2006-04-27 Fujitsu Ltd Semiconductor device and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314869A (en) * 1987-04-24 1988-12-22 パワー インテグレーションズ,インコーポレーテッド High voltage mos transistor
JPH08172184A (en) * 1987-04-24 1996-07-02 Power Integrations Inc High-voltage mos transistor
US6144070A (en) * 1997-08-29 2000-11-07 Texas Instruments Incorporated High breakdown-voltage transistor with electrostatic discharge protection
JP2000183181A (en) * 1998-12-10 2000-06-30 Sanyo Electric Co Ltd Semiconductor device and its manufacture
JP2001320047A (en) * 2000-03-03 2001-11-16 Toshiba Corp Semiconductor device
JP2002043579A (en) * 2000-07-26 2002-02-08 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2003218348A (en) * 2002-01-18 2003-07-31 Rohm Co Ltd Double diffusion mosfet and semiconductor device comprising it
JP2005109483A (en) * 2003-09-30 2005-04-21 Agere Systems Inc Metal-oxide semiconductor device including buried lightly-doped drain region
JP2006114768A (en) * 2004-10-15 2006-04-27 Fujitsu Ltd Semiconductor device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160510A (en) * 2011-01-31 2012-08-23 Fujitsu Semiconductor Ltd Semiconductor device and method of manufacturing the same
JP2014138091A (en) * 2013-01-17 2014-07-28 Fuji Electric Co Ltd Semiconductor device and manufacturing method of the same
CN112490288A (en) * 2019-09-12 2021-03-12 株式会社东芝 Semiconductor device with a plurality of semiconductor chips

Also Published As

Publication number Publication date
JP5431663B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP5487304B2 (en) Semiconductor device and manufacturing method thereof
US8735997B2 (en) Semiconductor device having drain/source surrounded by impurity layer and manufacturing method thereof
US20080160706A1 (en) Method for fabricating semiconductor device
JP5125036B2 (en) Manufacturing method of semiconductor device
JP2007227746A (en) Semiconductor device, and manufacturing method thereof
JP2006100404A (en) Semiconductor device and its manufacturing method
JP2008091445A (en) Semiconductor device
JP5307966B2 (en) Manufacturing method of semiconductor device
US8269274B2 (en) Semiconductor device and method for fabricating the same
KR102424771B1 (en) Semiconductor device and method of manufacturing the same
JP2007019200A (en) Semiconductor device and its manufacturing method
US7642617B2 (en) Integrated circuit with depletion mode JFET
JP2010177292A (en) Semiconductor device and method for manufacturing the same
JP5431663B2 (en) Semiconductor device and manufacturing method thereof
JP2009152442A (en) Semiconductor device and method for manufacturing thereof
JP2009158621A (en) Semiconductor device
JP2007287798A (en) Semiconductor device, and its fabrication process
JP2004335812A (en) High breakdown voltage semiconductor device and its manufacturing method
JP2009010379A (en) Semiconductor device and method of manufacturing the same
JP2004031805A (en) Semiconductor device and its manufacturing method
JP2014207324A (en) Semiconductor device and manufacturing method of the same
JP2009302114A (en) Semiconductor device and its manufacturing method
JP2009266868A (en) Mosfet and manufacturing method of mosfet
US20090159982A1 (en) Bi-CMOS Semiconductor Device and Method of Manufacturing the Same
JP2014053414A (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5431663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250