JP2008098533A - Method for collecting light, and light collecting plate - Google Patents

Method for collecting light, and light collecting plate Download PDF

Info

Publication number
JP2008098533A
JP2008098533A JP2006280810A JP2006280810A JP2008098533A JP 2008098533 A JP2008098533 A JP 2008098533A JP 2006280810 A JP2006280810 A JP 2006280810A JP 2006280810 A JP2006280810 A JP 2006280810A JP 2008098533 A JP2008098533 A JP 2008098533A
Authority
JP
Japan
Prior art keywords
light
angle
incident
plate
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006280810A
Other languages
Japanese (ja)
Inventor
Motoaki Masuda
元昭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Masuda Motoaki
Original Assignee
Masuda Motoaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masuda Motoaki filed Critical Masuda Motoaki
Priority to JP2006280810A priority Critical patent/JP2008098533A/en
Publication of JP2008098533A publication Critical patent/JP2008098533A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a method for collecting light capable of collecting the sunlight regardless of direction or altitude; a light collecting plate; and a solar collection tower applying the same. <P>SOLUTION: Incident beam from a wide angle is gradually focused into a light beam perpendicular to a plane of incidence with a rectifier unit to condense the incident beam, and a leaked light beam is sequentially focused with the rectifier unit at a next stage. In collecting the sunlight, a collected light beam in a horizontal direction is irradiated to the ground with the optical angle changing plate. The sunlight and a scattered light from all altitude and all direction can be collected by arranging the light collecting plate and the optical angle changing plate on the outer wall surface of the solar collection tower without requiring a sunlight tracking device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太陽光線など広角広範囲からの光線を、より狭い範囲の光線に段階的に絞り込んで集光する集光方法と、この集光方法に基ずく集光板に関するものである。   The present invention relates to a condensing method for condensing light beams from a wide-angle range, such as sunlight, into a narrower range of light in a stepwise manner, and a condensing plate based on this condensing method.

太陽電池を使って太陽光から発電する装置においては、季節や時刻によって変動する太陽の高度や方角を考慮して、平面的な太陽電池の発電効率が最も高くなるように、南向きに傾斜させて設置する方法が一般的に用いられているが、発電量が太陽電池の太陽に対する方角の投影面積に比例するため、発電量を確保するには電池が重ならないように広い敷地面積に太陽電池を広げるように設置する必要があった。設置面積を節減するために、適当な間隔を保って太陽電池を多段に積み重ねる方法が考えられるが、上段の電池に太陽光が遮られて下段電池の発電効率が極端に低下するため、結果的にコスト高になって実用性に欠ける不都合があった。   In a device that uses solar cells to generate power from sunlight, in consideration of the altitude and direction of the sun, which fluctuates depending on the season and time, it is tilted southward so that the power generation efficiency of a flat solar cell is the highest. However, since the amount of power generation is proportional to the projected area of the solar cell in the direction of the sun, solar cells can be installed on a large site area so that the batteries do not overlap in order to secure the amount of power generation. It was necessary to install so as to spread. In order to save the installation area, a method of stacking solar cells in multiple stages at appropriate intervals can be considered, but the upper battery is blocked by sunlight and the power generation efficiency of the lower battery is extremely reduced. However, there was a disadvantage that it was expensive and lacked practicality.

また、太陽電池に太陽光を直接照射させる上述のような方法の他に、反射鏡やプリズム、レンズを組み合わせるなど、何らかの光学デバイスを用いて太陽光を集光して太陽電池に照射させる集光式太陽光発電法がある。しかし、いずれの方法においても効率を高めるために太陽追尾装置によって太陽を常に追跡する必要があった。   In addition to the above-described method of directly irradiating solar cells with sunlight, condensing the solar cells by condensing sunlight using some kind of optical device, such as combining a reflector, prism, or lens. There is a solar power generation method. However, in any of the methods, it has been necessary to always track the sun with a solar tracking device in order to increase efficiency.

このため、太陽の方角や高度に関係なく集光できる集光板を所定の間隔を保って搭状に積層して太陽光線を集光し、この光線を塔下面の太陽電池に照射して発電する方法の集光搭が提案されている。
特願2006−219105 集光板
For this reason, light collecting plates that can collect light regardless of the direction and altitude of the sun are stacked in a tower shape at a predetermined interval to condense solar rays, and the solar cells on the bottom surface of the tower are irradiated to generate power. A concentrating tower of methods has been proposed.
Japanese Patent Application No. 2006-219105

しかし、前記提案の方法では、塔の上方から射し込む直射光が下段の集光板を透過して太陽電池に到達する構成であるため、多段の集光板を透過する光線は、集光板毎の機構的な光線処理損失や構成部材の表面反射損失、材料自体の光線透過損失などを段数分だけ繰り返し受け、結果的にかなりの損失が発生して実用効率を低下させる恐れがあった。太陽追尾装置を必要とせず、全方角から集光できて効率の高い集光方法の開発が課題である。   However, in the proposed method, the direct light incident from the top of the tower is transmitted through the lower light collector and reaches the solar cell. However, there is a risk that a considerable loss occurs and the practical efficiency is lowered as a result of repeated light processing loss, surface reflection loss of the constituent members, light transmission loss of the material itself, and the like. The development of a highly efficient light collection method that can collect light from all directions without requiring a solar tracking device is an issue.

全高度全方角からの太陽光線を集光して太陽電池に供給するために、集光搭の外周面にほぼ鉛直に集光板を配置し、朝夕の水平方向からの太陽光でも真昼の上空からの太陽光でも、全てを上下方向の光線に変換して太陽電池に照射できる集光方法と集光板によって前記課題を解決するものである。   In order to collect solar rays from all directions at all altitudes and supply them to the solar cells, a light collector plate is arranged almost vertically on the outer peripheral surface of the light collecting tower, so that sunlight from morning and evening horizontal directions can also be observed from mid-day sky. The above-mentioned problem is solved by a condensing method and a condensing plate that can convert all of the sunlight into light beams in the vertical direction and irradiate the solar cell.

本発明の集光板に用いる集光方法は、広い方角からの光線を少しずつ絞り込んで集束させる無数の整流ユニットを上下に連結してなる集光板を積層して段階的に集光する集光方法で、整流ユニットを連結してなる集光板、集光板で集光された光線を任意の方角に方向変換させるための光角変換板、並びに集光板を使った太陽集光搭を提案するものである。   The condensing method used for the condensing plate of the present invention is a condensing method for condensing step by step by laminating concentrating plates formed by connecting innumerable rectifying units that narrow and converge light beams from a wide direction little by little. In this proposal, a light collecting plate formed by connecting rectifying units, a light angle conversion plate for changing the direction of light collected by the light collecting plate in an arbitrary direction, and a solar light collecting tower using the light collecting plate are proposed. is there.

本発明の集光方法は底辺を下向きに傾斜させた鈍角三角形からなる整流ユニットを、上下に連続させてなる表裏の断面が鋸歯状の透明な集光板において、整流ユニットの1面を集光板面にほぼ垂直な上面とし、鈍角三角形の底面を集光板面に対して最大屈折角からそれ以下の角度で傾斜させて光線の入射面とし、残る1面を入射面に対して最大屈折角の2分に1以下の角度で入射面と同じ方角に傾斜させて光線の射出面とし、入射光線の角度範囲に対して射出光線の角度範囲を絞り込むように入射面と射出面の傾斜角度を設定したことを特徴とする集光方法で、整流ユニットに入射する光線の角度を段階的に狭めて整流する集光方法である。   The condensing method of the present invention is a rectifying unit made of an obtuse angled triangle with the bottom inclined downward, and a transparent condensing plate having a sawtooth cross section on the front and back, and one surface of the rectifying unit is the surface of the condensing plate The bottom surface of the obtuse triangle is inclined with respect to the light collecting plate surface at an angle smaller than the maximum refraction angle to make the light incident surface, and the remaining one surface has a maximum refraction angle of 2 with respect to the incident surface. Inclined in the same direction as the incident surface at an angle of 1 or less per minute to make the light exit surface, and the angle of inclination of the entrance surface and the exit surface was set so as to narrow the angle range of the exit light with respect to the angle range of the incident light This is a condensing method characterized in that the angle of light incident on the rectifying unit is narrowed stepwise and rectified.

集光板は整流ユニットを無数に連結して構成された外見的には表裏両面が鋸歯状の板で、整流できる入射光線の範囲は高度で0〜90度の光線である。プラス90度からマイナス90度の全方角からの光線を集光するには傾斜が逆向きの集光板を2枚重ねにすればよい。   The condensing plate is formed by connecting an infinite number of rectifying units. From the outside, both the front and back surfaces are saw-toothed plates, and the range of incident light that can be rectified is 0 to 90 degrees. In order to collect light rays from all directions from plus 90 degrees to minus 90 degrees, it is only necessary to stack two light collecting plates with opposite inclinations.

集光板から集光されて射出する光線は集光板面に垂直方向の光線となるが、光角変換板を用いて任意の方角に方向を変換させることができる。変換ユニットは入射光線の入射面と、入射面に平行する射出面と、傾斜する上下の変換面で囲まれた平行四辺形で、変換面の傾斜角度は変換させたい角度のほぼ2分の1の角度に設定されたもので、光角変換板は無数の変換ユニットを積層したものである。   A light beam condensed and emitted from the light collecting plate becomes a light beam perpendicular to the surface of the light collecting plate, but the direction can be changed to an arbitrary direction using the light angle conversion plate. The conversion unit is a parallelogram surrounded by an incident surface of incident light, an exit surface parallel to the incident surface, and upper and lower conversion surfaces, and the inclination angle of the conversion surface is approximately one half of the angle to be converted. The angle-of-light conversion plate is a stack of innumerable conversion units.

また、太陽集光搭は積層された集光板と光角変換板を組み合わせて、集光板から射出する光線を太陽集光搭の下面に向けて照射するように構成したものである。   Moreover, the solar condensing tower is constructed by combining the laminated condensing plate and the light angle conversion plate so that the light emitted from the condensing plate is irradiated toward the lower surface of the solar condensing tower.

集光板は均質な透明材料で形成された外見的には表裏両面が鋸歯状の透明板である。通常の素材で構成する場合は2〜4枚を積層することで0〜90度の全方角からの光線をほぼ2分の1以下の角度範囲に絞り込むことができる。更に集光範囲を絞り込むには傾斜角度の異なる集光板を積層することでより狭い範囲に集光することができる。   The light collector is a transparent plate that is formed of a homogeneous transparent material and has a saw-tooth shape on both sides. In the case of using a normal material, by laminating 2 to 4 sheets, it is possible to narrow light rays from all directions of 0 to 90 degrees to an angle range of approximately one half or less. Further, in order to narrow down the light condensing range, the light can be condensed in a narrower range by stacking light collecting plates having different inclination angles.

以上の如く、本発明の集光方法と集光板は、全ての方角からの光線を集光板面に垂直な方向に範囲を絞り込んで集光することができる。このため、ヘッドライトや投光器、天井照明などの球状光源の光線を照明したい範囲に集光させたり、照明範囲外に漏れる光線を阻止して防眩とエネルギー損失を抑制することができる。また、集光搭は従来一般的な集光方法のように太陽を追跡する装置が不要で、全方角全高度の太陽光を搭下面に集光することができるから、小面積の太陽電池に広い面積分の太陽光を集光して照射できる。さらに、直射光に限らず曇天でも全方角からの散乱光も集光でき、全体としてコストを削減できる効果がある。集光塔は太陽熱を利用した給湯装置や、自然光による屋内照明の光ダクトなどにも応用できるものである。   As described above, the condensing method and the condensing plate of the present invention can condense light beams from all directions by narrowing the range in the direction perpendicular to the condensing plate surface. For this reason, it is possible to condense a light beam of a spherical light source such as a headlight, a projector, or a ceiling illumination in a range to be illuminated, or to block a light beam leaking outside the illumination range to suppress glare and energy loss. In addition, the light collecting tower does not require a device for tracking the sun unlike conventional light collecting methods, and can collect sunlight at all altitudes at all altitudes on the tower bottom surface. A large area of sunlight can be collected and irradiated. Furthermore, not only the direct light but also the scattered light from all directions can be collected even in cloudy weather, and the cost can be reduced as a whole. The condensing tower can be applied to a hot water supply device using solar heat or a light duct for indoor lighting using natural light.

以下、本発明の基本となる集光方法を積層された集光板の光線経路図2に基づいて説明する。なお、理解を容易にするため、集光搭の外壁面などに集光板を垂直に用いた場合を対象に、水平方向(朝陽や夕陽)から日中の真上方向までの、高度が0〜90度の太陽光線を集光する場合について説明する。集光搭や建物の天井に集光板を水平に設置した場合には、上方からの光線が下方に向けて集光できることになることは当然である。従って集光板に入射する光線の角度は0〜90度の範囲となるが、集光板で集光処理した光線を更に絞り込んで集光する場合があることや、高度が90度の太陽光は赤道直下でない限り実在しないことや、水平に近い朝陽や夕陽は微弱なので集光処理の対象から除外する方が集光板の設計に都合がよい面もあるので、集光板に入射させる光線の範囲は必ずしも0〜90度の範囲ではない。整流ユニットの形状で最大角の入射光線から最小角の入射光線の範囲に適した集光板を設計することができる。   Hereinafter, the light collecting method that is the basis of the present invention will be described with reference to FIG. For ease of understanding, the altitude from the horizontal direction (morning sun or sunset) to the direct upward direction during the day is 0 to 0 when the light collecting plate is used vertically on the outer wall surface of the light collecting tower. The case where 90 degree sunlight rays are condensed is demonstrated. When the light collecting plate is installed horizontally on the light collecting tower or the ceiling of the building, it is natural that the light rays from above can be condensed downward. Therefore, the angle of the light ray incident on the light collector is in the range of 0 to 90 degrees. However, the light condensed by the light collector may be further narrowed and condensed, or sunlight with an altitude of 90 degrees may be equator. Since there is no real thing unless it is directly below, and the morning sun and sunset near the horizontal are weak, there are some aspects that are more convenient for the design of the light collecting plate, so the range of light rays incident on the light collecting plate is not necessarily It is not in the range of 0 to 90 degrees. A condensing plate suitable for the range of the incident light with the maximum angle to the incident light with the minimum angle can be designed in the shape of the rectifying unit.

集光板1は、図1の如く断面が鈍角三角形の整流ユニット2を、光線の入射面3となる鈍角三角形の底辺を下向きに角度αで傾斜させて上下に無数を連結して形成されている。鈍角三角形の一辺は整流ユニットの上面5として集光板面7に対してほぼ垂直に、残りの一辺は光線の射出面4として入射面と同じ下向きの方角に角度βで傾斜させた配置にある。また、上下の整流ユニット2は入射面3と射出面4の交わる頂点aから上面の右端bにかけて連結代6で相互に連結された構成にある。   As shown in FIG. 1, the light collector 1 is formed by connecting a rectifying unit 2 having an obtuse triangle with an infinite number of vertical sections by inclining the base of the obtuse triangle serving as the light incident surface 3 downward at an angle α. . One side of the obtuse angled triangle is substantially perpendicular to the light collecting plate surface 7 as the upper surface 5 of the rectifying unit, and the other side is inclined as the light exit surface 4 in the same downward direction as the incident surface at an angle β. Further, the upper and lower rectifying units 2 are connected to each other at a connecting margin 6 from a vertex a where the incident surface 3 and the exit surface 4 intersect to a right end b on the upper surface.

高度90度の太陽光線は集光板面7に対して最大角度で入射する光線で、素材の屈折率に応じて入射面で屈折して整流ユニット内を進行した後、射出面で再び屈折して射出される。また、高度0度の水平方向からの太陽光線は最小角度で入射する光線で、入射面との角度差に応じて同様に屈折して進行し射出面から射出される。入射面と射出面の傾斜角度を適切に選択することで入射する光線の角度範囲から射出される光線の角度範囲を縮小することができる。   Sunlight at an altitude of 90 degrees is a light ray incident at the maximum angle with respect to the light collector plate surface 7 and refracts at the incident surface according to the refractive index of the material and travels through the rectifying unit, and then refracts again at the exit surface. It is injected. Sun rays from the horizontal direction at an altitude of 0 degrees are incident light at a minimum angle, and are similarly refracted and emitted from the exit surface according to the angle difference from the incident surface. By appropriately selecting the inclination angle between the incident surface and the exit surface, the angle range of the emitted light can be reduced from the angle range of the incident light.

光線が透明素材に入射すると入射角に応じて屈折するが、素材の屈折率をk、光線の入射角をθとすると屈折角は、asin(sinθ÷k)となる。集光処理の対象となる光線角度のうち集光したい最大入射角と最少入射角の差に相当する角度の光線の屈折角を最大屈折角と称する。太陽光線は入射角が0〜90度の範囲であるが、90度の光線は国内では実在しないことや、0度の水平線近くの光線は微弱で実用性が低いので除外したい場合や、光線範囲を絞り込んだ後に更に範囲を縮小して集光処理をしたい場合があり、例えば、0〜45度の光線を集光する場合、k=1.5、θ=45、の最大屈折角は約28度となる。なお、光線経路図2における光線の方角は実態に即して描かれている。   When a light ray enters the transparent material, it is refracted according to the incident angle. However, when the refractive index of the material is k and the light incident angle is θ, the refraction angle is asin (sin θ ÷ k). Of the light beam angles to be collected, the refraction angle of the light beam having an angle corresponding to the difference between the maximum incident angle and the minimum incident angle to be collected is referred to as a maximum refraction angle. Sunlight has an incident angle in the range of 0 to 90 degrees, but the 90-degree light beam does not exist in Japan, or the light near the 0-degree horizon line is weak and less practical, so you can exclude it. There is a case where it is desired to further reduce the range after focusing down and focus the light. For example, when condensing light of 0 to 45 degrees, the maximum refraction angle at k = 1.5 and θ = 45 is about 28. Degree. In addition, the direction of the light ray in the ray path diagram 2 is drawn according to the actual situation.

集光板で集光するには整流ユニットが鈍角三角形で、その底辺を入射面として傾斜させることが絶対的な条件となる。仮に整流ユニットが直角三角形であった場合、集光板は液晶表示板のバックライト用のプリズムシートと同じ形状になるが、この場合は図3のごとく射出する光線の方角がより広がったり、集光板を積層した場合に繰り返しの全反射で反転し、入射面側へ射出する光線が発生して集光することができない状態が発生する。   In order to collect light with the light collector, the absolute condition is that the rectifying unit is an obtuse triangle and the base is inclined with respect to the incident surface. If the rectifying unit is a right triangle, the condensing plate has the same shape as the backlight prism sheet of the liquid crystal display panel. In this case, however, the direction of the emitted light is further expanded as shown in FIG. When the layers are stacked, the light is inverted by repeated total reflection, and a light beam emitted to the incident surface side is generated and cannot be condensed.

また、入射面の傾斜角度を極端に小さくすると、図4に示す如く整流ユニットでの屈折が緩やかになって上面で全反射して散逸する光線の発生を抑制できたり、入射面に比べて上面から入射する光線を少なくできるので集光しやすい一面もあるが、多数枚の集光板を積層しないと所定の範囲に集光できないことや、表面反射光が入射側にそのまま放出されて損失になりやすいこと、積層枚数が多くなるために表面反射損失が増大して全体として集光効率を極端に低下させる結果となる不都合がある。   In addition, if the inclination angle of the incident surface is made extremely small, the refraction at the rectifying unit becomes gentle as shown in FIG. 4, and the generation of light rays that are totally reflected and scattered by the upper surface can be suppressed, or the upper surface compared to the incident surface. However, it is difficult to collect light within a specified range without stacking multiple light collectors, and the surface reflected light is emitted directly to the incident side, resulting in a loss. There is an inconvenience that the number of stacked layers increases and the surface reflection loss increases, resulting in a drastic decrease in light collection efficiency as a whole.

一方、射出面の傾斜角度を極端に大きくすると、図5のごとく整流ユニット内を進行する光線のうち整流ユニットの上面に当たって全反射で集光方向から逆に拡散する光線が増加する結果、射出面から射出するまでに多数の整流ユニットを経由しなければならないことになって表面反射などの損失が増大する傾向になる。   On the other hand, when the inclination angle of the exit surface is extremely large, among the light rays traveling in the rectification unit as shown in FIG. 5, the light rays that hit the upper surface of the rectification unit and diffuse back from the light collection direction due to total reflection increase. Therefore, it is necessary to go through a large number of rectifying units before being ejected, so that the loss such as surface reflection tends to increase.

集光効率を高めるには、基本的に入射光線の全てが集光されて射出面から射出されることと、表面反射による光線の損失を少なくすること、集光板に出入りする際の表面反射光や全反射光を有効光線として方向付けできることが重要である。このためには入射面の傾斜角度を集光板面に対して最大屈折角に近い角度からそれ以下の角度で傾斜させ、射出面の傾斜角度を入射面に対して最大屈折角の2分の1以下の角度で傾斜させることが望ましく、本集光方法の要点でもある。   In order to increase the light collection efficiency, basically all incident light is collected and emitted from the exit surface, light loss due to surface reflection is reduced, and surface reflected light when entering and exiting the light collecting plate. It is important that the total reflected light can be directed as an effective ray. For this purpose, the inclination angle of the incident surface is inclined from the angle close to the maximum refraction angle with respect to the light collecting plate surface to an angle smaller than that, and the inclination angle of the exit surface is half of the maximum refraction angle with respect to the incident surface. It is desirable to incline at the following angles, which is also the main point of this condensing method.

図2は臨界角が約42度(屈折率1,5)の一般的なガラスやアクリル樹脂を使った集光板で、入射面の傾斜角度を38度、射出面の傾斜角度を69度に設定した集光板の光線経路を示している。高度90度(最大角)の真上からの太陽光線は整流ユニットの先端にしか当たらない実用性のない光線である。高度75度の光線は光線経路p75u、また、高度15度の光線は光線経路p15nとして示しているが、屈折と全反射を繰り返して最終段集光板の射出面から射出される。光線経路に付されたp番号は入射光線の高度を示している。また、末尾のuは整流ユニットの上面の左先端から入射する光線、nは上面の右端から入射する光線、sは入射面の下の先端に入射する光線、mは入射面中程から入射する光線を表しており、全ての光線はこれらのポイントの範囲で入射することになる。   Fig. 2 shows a condensing plate using general glass or acrylic resin with a critical angle of about 42 degrees (refractive index 1, 5). The incident surface has an inclination angle of 38 degrees and the exit surface has an inclination angle of 69 degrees. The light beam path of the light collecting plate is shown. Sunlight from directly above an altitude of 90 degrees (maximum angle) is a non-practical ray that hits only the tip of the rectification unit. A light beam with an altitude of 75 degrees is shown as a light beam path p75u, and a light beam with an altitude of 15 degrees is shown as a light beam path p15n, but the light is emitted from the exit surface of the final stage light collecting plate after repeating refraction and total reflection. The p number attached to the light path indicates the height of the incident light. Further, the suffix u is a light beam incident from the left end of the upper surface of the rectifying unit, n is a light beam incident from the right end of the upper surface, s is a light beam incident on the lower end of the incident surface, and m is incident from the middle of the incident surface. Represents all rays, and all rays will be incident on these points.

最適な仕様では、各方角からの入射光線が最少回数で整流されて最終段の集光板の射出面から射出されることになるが、集光板が1枚だけの場合、連結代から直接射出面側に漏れる光線が発生したり、逆に拡散する方向に射出される光線が発生することもある。集光板を数枚積層することでこれらの不都合は殆ど解消できる。また、素材が一般的な透明ガラスや透明樹脂の場合には片面で約4%の表面反射が発生するが、入射面や射出面を適正に傾斜させることで、有効な光線として集光することができ、表面反射損失を最小限に食い止めることができる。   In the optimum specification, the incident light from each direction is rectified at the minimum number of times and is emitted from the exit surface of the final light collector. However, if there is only one light collector, the direct exit surface from the coupling allowance A light beam leaking to the side may be generated, or a light beam emitted in the direction of diffusion may be generated. These disadvantages can be almost eliminated by stacking several light collecting plates. In addition, when the material is general transparent glass or transparent resin, surface reflection of about 4% occurs on one side, but it can be condensed as an effective light beam by properly tilting the entrance and exit surfaces. And surface reflection loss can be minimized.

集光板では集光板面に垂直な方角の光線から板面に平行な方角の光線まで、90度の範囲の光線を板面に垂直な方角に集光することができる。集光板面に平行する逆方向の光線(マイナス90〜0度)を集光するには傾斜角度が逆勾配の集光板を2枚重ねにすることよって真下から真上方角(右から左方角)の180度の光線を板面に垂直方向の光線として集光することができる。   The light collecting plate can collect light in a range of 90 degrees from light in a direction perpendicular to the light collecting plate to light in a direction parallel to the plate in a direction perpendicular to the plate. To condense light rays in the opposite direction (minus 90 to 0 degrees) parallel to the surface of the light collecting plate, two light collecting plates with opposite inclination angles are overlapped to form an angle from directly below (right to left) The 180 degree light beam can be condensed as a light beam perpendicular to the plate surface.

より屈折率の大きな材料で集光板を形成すると、小型化や製造が容易になり集光性能をさらに高めることが期待できる。また、集光板を積み重ねて積層の集光板を形成するには、積み重ねた集光板の所どころをスポット溶着で結合すればよい。なお、連結代は光線の制御には直接関係しないので、その厚みは製造上の都合や、製品の必要強度を考慮した上で進行光線に影響しないように設定すればよいが、なるべく薄い方が小型化できるから、0,01〜2mmが適当である。なお、集光板を成形するための透明材料は、光線を透過する材質であれば無色でも有色でもよい。軟質樹脂を使えば柔軟なシートとして形成することもできる。また、集光板は相似形で縮小しても機能は変わらないから、小型化で極めて薄い集光板にすることも期待できる。透明樹脂製の集光板は射出成型やプレス成型などの一般的な成型方法で製造可能である。   When the light collecting plate is formed of a material having a higher refractive index, it is possible to easily reduce the size and manufacture the light collecting performance. In addition, in order to stack the light collecting plates to form a laminated light collecting plate, the points of the stacked light collecting plates may be joined by spot welding. In addition, since the connection allowance is not directly related to the control of the light beam, its thickness should be set so as not to affect the traveling light beam in consideration of manufacturing convenience and the required strength of the product, but the thinner one should be as much as possible. Since the size can be reduced, 0.01 to 2 mm is appropriate. Note that the transparent material for forming the light collector may be colorless or colored as long as it is a material that transmits light. If a soft resin is used, it can be formed as a flexible sheet. Further, since the function of the condensing plate is similar and does not change even if it is reduced, it can be expected that the light condensing plate is reduced in size and made extremely thin. The light-condensing plate made of transparent resin can be manufactured by a general molding method such as injection molding or press molding.

図6は垂直に配置された集光板において、集光板面に垂直な方向(水平方向)に集光した光線を板面に平行な垂直方向や任意の方向に方向変換をさせる光角変換板11を示すもので、9は垂直方向の入射面3と、入射面に平行する射出面4と、傾斜する上下の変換面10で囲まれた平行四辺形の変換ユニットである。変換面の傾斜角度γは方向を変換させたい角度のほぼ2分の1に設定されている。また、変換ユニットの長さwは入射面に垂直に入射する光線の全てが、変換面で全反射する変換点までの長さwに設定されている。光角変換板11は変換ユニット9を、上下方向に無数に積層して形成され、上下の変換ユニットは入射面と射出面において連結代6で相互に連結されている。各変換ユニットの間には微小な空隙があり、空隙との境界面で全反射を起こさせるものである。空隙の幅は全反射の作用が機能すれば特に限定されないが、通常は約0.01〜2mmの範囲で製造のしやすさ、品質等の見地から設定される。   FIG. 6 shows a light angle conversion plate 11 in which light rays collected in a direction (horizontal direction) perpendicular to the surface of the light collecting plate are converted in a vertical direction parallel to the plate surface or in an arbitrary direction in the light collecting plate arranged vertically. 9 is a parallelogram conversion unit surrounded by a vertical incident surface 3, an exit surface 4 parallel to the incident surface, and upper and lower conversion surfaces 10 which are inclined. The inclination angle γ of the conversion surface is set to approximately one half of the angle whose direction is to be converted. The length w of the conversion unit is set to the length w up to the conversion point at which all of the light rays perpendicularly incident on the incident surface are totally reflected by the conversion surface. The light angle conversion plate 11 is formed by stacking innumerable conversion units 9 in the vertical direction, and the upper and lower conversion units are connected to each other at a connection allowance 6 on the entrance surface and the exit surface. There is a minute gap between each conversion unit, and causes total reflection at the interface with the gap. The width of the gap is not particularly limited as long as the function of total reflection functions, but it is usually set in the range of about 0.01 to 2 mm from the viewpoint of ease of manufacturing, quality, and the like.

集光板で集光された水平方向の光線が変換ユニット9に入射すると、入射面3の点aから点bの間のどの位置から入射しても変換面10に当たって1回だけ全反射で方角を変換した後に放射面4から照射される。臨界角が約42度の材料を使った場合に、傾斜角度γを21度に設定すると変換後の光線の方角は2倍の42度となり、光角変換板11から放出される光線の方角を90度変換させることができる。傾斜角度を0〜21度の範囲で加減することで任意の方角に角度変換させることができる。   When the horizontal light beam collected by the light collector is incident on the conversion unit 9, regardless of the position between the point a and the point b on the incident surface 3, the light strikes the conversion surface 10 and undergoes a total reflection only once. After conversion, the light is irradiated from the radiation surface 4. When a material having a critical angle of about 42 degrees is used and the tilt angle γ is set to 21 degrees, the direction of the converted light beam is doubled to 42 degrees, and the direction of the light beam emitted from the light angle conversion plate 11 is It can be converted by 90 degrees. By changing the inclination angle in the range of 0 to 21 degrees, the angle can be converted into an arbitrary direction.

集光搭で太陽光線を搭下面に集光させるには集光板と光角変換板を組み合わせればよい。図7は外壁面に集光板1、その内面に光角変換板11を張り、天井に集光板1を取付けた集光塔12を示すもので、塔の壁面に当たる太陽光の全てを塔内部の下方に向けて集光して照射するものである。天井の集光板で集光された光線は方向変換をしないでそのまま塔内直下に集光して照射する様子を示すものである。塔の平面形状は四角形でも円形でもよい。円形の場合の集光板や光角転換板は塔の円周に合わせて湾曲させればよい。また、天井の集光板には四角形の集光板を丸く切断して設置してもよいが、外周から中心に向かって放射状に丸めた円形集光板を配置してもよい。この場合は中心から左と右で集光できる光線範囲が逆になるから、傾斜角度が逆勾配の円形集光板を2枚重ねにすることで、左右全方角からの太陽光を塔内中心部に集光して照射できるものである。円形集光搭では季節や時刻によって変動する太陽光線を均等に集光できる利点がある。太陽電池12は集光された光線が当たる塔の床面に設置される。   A condensing plate and a light angle conversion plate may be combined in order to collect sunlight rays on the bottom surface of the concentrating tower. FIG. 7 shows a condensing tower 12 in which a condensing plate 1 is attached to the outer wall surface, a light angle conversion plate 11 is attached to the inner surface, and the condensing plate 1 is attached to the ceiling. The light is condensed and irradiated downward. The light collected by the light collecting plate on the ceiling is shown as it is condensed and irradiated directly under the tower without changing its direction. The planar shape of the tower may be square or circular. In the case of a circular shape, the light collecting plate and the light angle conversion plate may be curved in accordance with the circumference of the tower. In addition, a rectangular light collecting plate may be cut and installed on the ceiling light collecting plate, but a circular light collecting plate that is radially rounded from the outer periphery toward the center may be arranged. In this case, the range of light rays that can be collected from the center to the left and right is reversed, so by overlapping two circular light collectors with opposite inclination angles, sunlight from all left and right angles can be centered inside the tower. Can be condensed and irradiated. Circular concentrator towers have the advantage of being able to uniformly collect sunlight that fluctuates depending on the season and time. The solar cell 12 is installed on the floor of the tower where the collected light hits.

集光板を天井照明などにおける防眩用のルーバーに応用する場合、広い方角に照射される光源からの光を50度以内の光線に絞り込むことができる。この場合、逆勾配の集光板を重ね合わせることで多方角に対してグレアーの防止ができる。   When the light collector is applied to an antiglare louver for ceiling lighting or the like, light from a light source irradiated in a wide direction can be narrowed down to a light beam of 50 degrees or less. In this case, it is possible to prevent glare from multidirectional angles by superimposing light collecting plates with opposite gradients.

本集光方法による集光板の断面図である。It is sectional drawing of the light-condensing plate by this condensing method. 積層した集光板における光線経路図である。It is a light beam path | route figure in the laminated light-condensing plate. 角度の異なる集光板での光線経路の説明図である。It is explanatory drawing of the light ray path in the condensing plate from which an angle differs. 角度の異なる集光板での光線経路の説明図である。It is explanatory drawing of the light ray path in the condensing plate from which an angle differs. 角度の異なる集光板での光線経路の説明図である。It is explanatory drawing of the light ray path in the condensing plate from which an angle differs. 光角変換板の断面図である。It is sectional drawing of a light angle conversion board. 集光塔の断面模型図である。It is a cross-sectional model figure of a condensing tower.

符号の説明Explanation of symbols

1、集光板
2、整流ユニット
3、入射面
4、射出面
5、上面
6、連結代
7、集光板面
8、積層集光板
9、変換ユニット
10、変換面
11、光角変換板
12、太陽集光搭
13、太陽電池
DESCRIPTION OF SYMBOLS 1, Light-condensing plate 2, Rectification unit 3, Incidence surface 4, Emission surface 5, Upper surface 6, Connection cost 7, Light-condensing plate surface 8, Laminated light-condensing plate 9, Conversion unit 10, Conversion surface 11, Light angle conversion plate 12, Sun Condensing tower 13, solar cell

Claims (5)

底辺を下向きに傾斜させた鈍角三角形からなる整流ユニットを、上下に連続させてなる表裏の断面が鋸歯状の透明な集光板において、整流ユニットの1面を集光板面にほぼ垂直な上面とし、鈍角三角形の底面を集光板面に対して最大屈折角以下の角度で傾斜させて光線の入射面とし、残る1面を入射面に対して最大屈折角の2分の1以下の角度で入射面と同じ方角に傾斜させて光線の射出面とし、入射光線の角度範囲に対して射出光線の角度範囲を絞り込むように入射面と射出面の傾斜角度を設定したことを特徴とする集光方法。   In a rectifying unit composed of an obtuse angled triangle with the bottom inclined downward, a transparent condensing plate with a sawtooth cross-section on the front and back, and one surface of the rectifying unit is an upper surface substantially perpendicular to the condensing plate surface, The bottom surface of the obtuse triangle is inclined at an angle less than the maximum refraction angle with respect to the light converging plate surface to make the light incident surface, and the remaining one surface is an incident surface with an angle less than one half of the maximum refraction angle with respect to the incident surface. The light condensing method is characterized in that the angle of inclination of the incident surface and the exit surface is set so as to narrow the angle range of the exit light beam relative to the angle range of the incident light beam. 請求項1記載の集光板において、上下の整流ユニットを厚みが0.01〜2mmの連結代で連結したことを特徴とする集光板。   2. The light collector according to claim 1, wherein the upper and lower rectifying units are connected with a connection margin of 0.01 to 2 mm in thickness. 複数の請求項2記載の集光板を積層し、入射する光線の角度範囲を段階的に整流して集光することを特徴とする集光方法。   A condensing method comprising: laminating a plurality of condensing plates according to claim 2, and condensing by concentrating the angle range of incident light in stages. 光線の入射面と、入射面に平行する射出面と、傾斜する上下の変換面で囲まれた平行四辺形の変換ユニットにおいて、変換面の傾斜角度を変換させたい角度のほぼ2分の1の角度とし、その長さを入射面に垂直に入射する入射光線の全てが、変換面で全反射する点までの長さとし、この変換ユニットを積層して光線の進行方角を変換するように構成したことを特徴とする光角変換板。   In the parallelogram conversion unit surrounded by the incident surface of the light beam, the exit surface parallel to the incident surface, and the upper and lower conversion surfaces that are inclined, the inclination angle of the conversion surface is approximately one half of the angle to be converted. The angle is the length up to the point at which all incident light incident perpendicularly to the incident surface is totally reflected by the conversion surface, and this conversion unit is stacked to convert the traveling direction of the light. A light angle conversion plate characterized by that. 請求項2記載の集光板と請求項4記載の光角変換板を集光搭の外周に、集光板が外側に位置するように垂直で配置したことを特徴とする太陽集光搭。   A solar concentrator tower, wherein the light collector plate according to claim 2 and the light angle conversion plate according to claim 4 are arranged vertically on the outer periphery of the light collector tower so that the light collector plate is located outside.
JP2006280810A 2006-10-14 2006-10-14 Method for collecting light, and light collecting plate Pending JP2008098533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280810A JP2008098533A (en) 2006-10-14 2006-10-14 Method for collecting light, and light collecting plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280810A JP2008098533A (en) 2006-10-14 2006-10-14 Method for collecting light, and light collecting plate

Publications (1)

Publication Number Publication Date
JP2008098533A true JP2008098533A (en) 2008-04-24

Family

ID=39381032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280810A Pending JP2008098533A (en) 2006-10-14 2006-10-14 Method for collecting light, and light collecting plate

Country Status (1)

Country Link
JP (1) JP2008098533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8988791B2 (en) 2010-09-27 2015-03-24 Denso Corporation Light collector and light collecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8988791B2 (en) 2010-09-27 2015-03-24 Denso Corporation Light collector and light collecting device

Similar Documents

Publication Publication Date Title
JP5944398B2 (en) Turning optics for heat collection and lighting systems
JP2000147262A (en) Converging device and photovoltaic power generation system utilizing the device
RU2676214C1 (en) Concentrated solar power system
EP2519978B1 (en) Photovoltaic concentrator with optical stepped lens and method for designing the same
US20160043259A1 (en) Non-Imaging Light Concentrator
CN103077990B (en) Wide-angle concentrated photovoltaic power generating system with wavelength selectivity and method thereof
CA2738647A1 (en) Solar collector panel
EP2779254B1 (en) System for generating photovoltaic power
US20150009568A1 (en) Light collection system and method
US20140048117A1 (en) Solar energy systems using external reflectors
US6840636B1 (en) Solar diffusion loss compensator and collimator
JP2008066133A (en) Light collecting method and board
JP2007073774A (en) Solar battery
JP2008098533A (en) Method for collecting light, and light collecting plate
TWM502813U (en) Solar light-gathering device
US20100307480A1 (en) Non-tracking solar collectors
JP2010067565A (en) Daylighting prism sheet, and daylighting device
JP4313841B1 (en) Solar lens and solar-powered equipment
CN102356345A (en) Solar condensing device
CN207350050U (en) A kind of optical collector with light humidification
JP5281198B2 (en) Sunlight incident structure consisting of light incident adjustment member
CN112097405A (en) Static large-angle solar energy collecting system
JP2008203522A (en) Light condensing device
KR101018879B1 (en) Prismatic fresnel lens sheet, apparatus for collecting solar radiation employing the prismatic fresnel lens sheet, and solar system
JP2002521709A6 (en) Radiant energy concentrator