JP2008098087A - Electron source - Google Patents

Electron source Download PDF

Info

Publication number
JP2008098087A
JP2008098087A JP2006281245A JP2006281245A JP2008098087A JP 2008098087 A JP2008098087 A JP 2008098087A JP 2006281245 A JP2006281245 A JP 2006281245A JP 2006281245 A JP2006281245 A JP 2006281245A JP 2008098087 A JP2008098087 A JP 2008098087A
Authority
JP
Japan
Prior art keywords
electron
electron source
source
single crystal
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281245A
Other languages
Japanese (ja)
Other versions
JP4874758B2 (en
Inventor
Toshiyuki Morishita
利幸 森下
Yoshinori Terui
良典 照井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006281245A priority Critical patent/JP4874758B2/en
Publication of JP2008098087A publication Critical patent/JP2008098087A/en
Application granted granted Critical
Publication of JP4874758B2 publication Critical patent/JP4874758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Solid Thermionic Cathode (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron source which has a small energy width and is operated in high angle current density. <P>SOLUTION: The electron source is composed of a (100) direction single crystal rod 1 of tungsten or molybdenum and has an electron emitting face with (100) crystal face exposed at one end part, and furthermore, has a diffusion source 2 containing one kind or more of a metal element oxide selected from a group of Ho, Gd, Nd, Sm or Pr. It is preferable that its operation temperature is 1,200 K or more and 1,500 K or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、走査型電子顕微鏡、透過型電子顕微鏡、オージェ電子分光装置をはじめとする表面分析装置、半導体プロセス用電子線機器又は電子線露光機用の電子源に関する。 The present invention relates to a surface analysis apparatus such as a scanning electron microscope, a transmission electron microscope, an Auger electron spectrometer, an electron beam apparatus for a semiconductor process, or an electron source for an electron beam exposure machine.

近年、熱陰極よりも長寿命でより高輝度の電子ビームを得るために、タングステン単結晶の針状電極を用いたショットキー電子放出源が利用されている。この電子源は、軸方位が<100>方位からなるタングステン単結晶ロッドにジルコニウム及び酸素からなる被覆層(以下、「ZrO被覆層」という。)を設け、該ZrO被覆層によってタングステン単結晶の{100}面の仕事関数を4.5eVから約2.8eVに低下させたもので、前記ロッドの先鋭端に形成された{100}面に相当する微小な結晶面のみが電子放出領域となるので、従来の熱陰極よりも高輝度の電子ビームが得られ、しかも長寿命であるという特徴を有する。また冷電界放射陰極よりも安定で、低い真空度でも動作し、使い易いという特徴を有している。(以下、「ZrO/W電子源」と記す。) In recent years, a Schottky electron emission source using a tungsten single crystal needle electrode has been used to obtain an electron beam having a longer lifetime and higher brightness than a hot cathode. In this electron source, a tungsten single crystal rod having an axial orientation of <100> is provided with a coating layer made of zirconium and oxygen (hereinafter referred to as “ZrO coating layer”), and the ZrO coating layer is used to form a tungsten single crystal { The work function of the 100} plane is lowered from 4.5 eV to about 2.8 eV, and only the minute crystal plane corresponding to the {100} plane formed at the sharp end of the rod becomes the electron emission region. The electron beam with higher brightness than that of the conventional hot cathode can be obtained and has a long life. Further, it is more stable than a cold field emission cathode, operates at a low vacuum, and is easy to use. (Hereinafter referred to as “ZrO / W electron source”.)

ZrO/W電子源は、図1に示すように、絶縁碍子5に固定された導電端子4に設けられたタングステン製のフィラメント3の所定の位置に電子線を放出するタングステンの<100>方位の針状の単結晶ロッド1が溶接等により固着されている。この単結晶ロッドは電解研磨により先鋭端を有し、この先鋭端が電子放出部となる。単結晶ロッド1の一部には、酸化ジルコニウムからなるジルコニウムと酸素の拡散源2が設けられている。図示していないが単結晶ロッド1の表面はZrO被覆層で覆われている。 As shown in FIG. 1, the ZrO / W electron source has a <100> orientation of tungsten that emits an electron beam to a predetermined position of a tungsten filament 3 provided on a conductive terminal 4 fixed to an insulator 5. A needle-like single crystal rod 1 is fixed by welding or the like. This single crystal rod has a sharp end by electropolishing, and this sharp end becomes an electron emission portion. A part of the single crystal rod 1 is provided with a zirconium and oxygen diffusion source 2 made of zirconium oxide. Although not shown, the surface of the single crystal rod 1 is covered with a ZrO coating layer.

単結晶ロッド1はフィラメント3により通電加熱されて通常は1800K程度の温度下で使用されるので、単結晶ロッド1表面のZrO被覆層は蒸発により消耗する。しかし、拡散源2よりジルコニウム及び酸素が拡散することにより単結晶ロッド1の表面に連続的に供給されるので、結果的にZrO被覆層が維持される。 Since the single crystal rod 1 is energized and heated by the filament 3 and is normally used at a temperature of about 1800 K, the ZrO coating layer on the surface of the single crystal rod 1 is consumed by evaporation. However, since zirconium and oxygen are diffused from the diffusion source 2 and continuously supplied to the surface of the single crystal rod 1, the ZrO coating layer is maintained as a result.

走査型電子顕微鏡や測長SEMあるいはレビューSEMといった半導体プロセス用電子線機器などでは、ZrO/W電子源が高輝度で長寿命を有することから広く使用されている。また、これらの装置は被検体をそのままで観察、測定するため1kV以下の低加速電子線を用いることが一般的に行われている。 In electron beam equipment for semiconductor processes such as a scanning electron microscope, a length measuring SEM, or a review SEM, etc., the ZrO / W electron source is widely used because it has a high brightness and a long life. These apparatuses generally use a low acceleration electron beam of 1 kV or less in order to observe and measure the subject as it is.

低加速電子線を用いる場合は静電、磁界レンズにより絞った電子線の径は、色収差により支配される(非特許文献1参照)。
J. Pawley,‘Journal of Microscopy’ ,136,Pt1,45(1984)
In the case of using a low acceleration electron beam, the diameter of the electron beam focused by electrostatic and magnetic lenses is governed by chromatic aberration (see Non-Patent Document 1).
J. Pawley, 'Journal of Microscopy', 136, Pt1, 45 (1984)

この色収差を低減するには電子源から放出される電子のエネルギー幅を小さくする必要がある。ショットキー電子放射源のエネルギー幅は最小でも2.45kを下回ることはない。ここでkはボルツマン定数、Tは電子放出領域の絶対温度である(非特許文献2参照)。
R.D.Young,‘Phys.Rev.’113(1959)p110
In order to reduce this chromatic aberration, it is necessary to reduce the energy width of the electrons emitted from the electron source. Energy width of the Schottky electron emission source will not be less than 2.45K B at a minimum. Here, k B is the Boltzmann constant, and T is the absolute temperature of the electron emission region (see Non-Patent Document 2).
R. D. Young, 'Phys. Rev. '113 (1959) p110

したがって、色収差の低減には電子源の温度を下げることが有効なのであるが、一方、ショットキー電子放出や熱電子放出では動作温度を下げると放射電流が激減する。このため、電子源の温度を下げるには仕事関数のより低い電子源を用いなければならない。以上のような観点からZrO吸着層にかわる低仕事関数を有するタングステン単結晶上への吸着種とその拡散源の探索が近年精力的に行われている(非特許文献3、4、5、6参照)。
西山 英利、大嶋 卓、品田 博之、 「応用物理」第71巻第4号(2002)438頁 H. Nishiyama,T. Ohshima, H.Shinada,‘Applied Surface Science’146(1999),p382 斉藤 泰、 矢田 慶治、 安達 洋「信学技報」ED2001−175(2001−12)15頁 Y.Saito,K.Yada,K.Minami,H.Nakane,H.Adachi J.Vac.Sci.Technol.B22(6),2004,p2743
Therefore, it is effective to lower the temperature of the electron source in order to reduce chromatic aberration. On the other hand, in the case of Schottky electron emission or thermionic emission, the radiation current decreases drastically when the operating temperature is lowered. For this reason, an electron source having a lower work function must be used to lower the temperature of the electron source. From the above viewpoints, search for adsorption species and diffusion sources on a tungsten single crystal having a low work function in place of the ZrO adsorption layer has been actively conducted in recent years (Non-Patent Documents 3, 4, 5, 6). reference).
Hidetoshi Nishiyama, Takashi Oshima, Hiroyuki Shinada, Applied Physics, Vol. 71, No. 4 (2002), p. 438 H. Nishiyama, T .; Ohshima, H .; Shinada, 'Applied Surface Science' 146 (1999), p382. Yasushi Saito, Keiji Yada, Hiroshi Adachi “Science Technical Report” ED 2001-175 (2001-12), p. 15 Y. Saito, K .; Yada, K .; Minami, H .; Nakane, H .; Adachi J. et al. Vac. Sci. Technol. B22 (6), 2004, p2743

ZrO吸着層にかわる低仕事関数を有するタングステン単結晶上への吸着種として、BaOを吸着層として被覆して1000K程度の温度で動作させた例が既に報告されており、その拡散源としては酸化バリウムまたは(Ba,Sr,Ca)酸化物が使われている(非特許文献7、特許文献2参照)。
西山 英利、大嶋 卓、品田 博之、「応用物理」第71巻第4号(2002)438頁 特開平10−154477号公報
As an adsorption species on a tungsten single crystal having a low work function in place of the ZrO adsorption layer, an example in which BaO is coated as an adsorption layer and operated at a temperature of about 1000 K has already been reported. Barium or (Ba, Sr, Ca) oxide is used (see Non-Patent Document 7 and Patent Document 2).
Hidetoshi Nishiyama, Takashi Oshima, Hiroyuki Shinada, "Applied Physics" Vol. 71, No. 4 (2002), p. 438 JP-A-10-154477

これらの研究例によると、(Ba,Sr,Ca)酸化物を用いてタングステン単結晶の<100>方位のニードルにBaO吸着層を設けた場合には1500K以上での熱処理の後に1000Kで動作して、電子源として好ましい特性を示すことが報告されている。 According to these research examples, when (Ba, Sr, Ca) oxide is used and a BaO adsorbing layer is provided on a <100> oriented needle of a tungsten single crystal, it operates at 1000 K after heat treatment at 1500 K or more. Thus, it has been reported that it exhibits desirable characteristics as an electron source.

しかし、一方で安定して動作する時間は数時間と極めて短く、繰り返し1500K以上の熱処理を行う必要があることが述べられており、工業的な実用に耐えないと考えられる。また、酸化バリウムを拡散源とした場合についても報告されているが、この場合には電子放出分布が4回対称となり放出軸の中心での電子線量が少ないこと、再現性の乏しさが指摘されている。 However, on the other hand, the stable operation time is as short as several hours, and it is stated that it is necessary to repeatedly perform heat treatment of 1500 K or more, and it is considered that it cannot withstand industrial practical use. A case where barium oxide is used as a diffusion source has also been reported. In this case, the electron emission distribution is four-fold symmetric, and the electron dose at the center of the emission axis is small, and the reproducibility is poor. ing.

本発明者は、上記の事情に鑑みて鋭意検討した結果、前記課題を解決して低温で動作し、エネルギー幅が小さい、低仕事関数を有する電子源で、しかも高い角電流密度で動作する電子源を提供できることを見いだし、本発明に至ったものである。 As a result of intensive studies in view of the above circumstances, the present inventor has solved the above-described problems, operates at a low temperature, has a small energy width, has a low work function, and operates at a high angular current density. The present inventors have found that a source can be provided and have arrived at the present invention.

本発明は、タングステンまたはモリブデンの<100>方位単結晶ロッドからなり、一端部に{100}結晶面が露出した電子放出面を有し、しかもHo、Gd、Nd、Sm、及びPrからなる群から選ばれる1種以上の金属元素酸化物を含む拡散源を有することを特徴とする電子源である。 The present invention consists of a <100> -oriented single crystal rod of tungsten or molybdenum, has an electron emission surface with an exposed {100} crystal plane at one end, and is composed of Ho, Gd, Nd, Sm, and Pr. An electron source having a diffusion source containing at least one metal element oxide selected from the group consisting of:

更に、本発明は動作温度が1200K以上1500K以下であることを特徴とする前記の電子源である。 Furthermore, the present invention is the above-described electron source, wherein the operating temperature is 1200 K or more and 1500 K or less.

また更に、本発明は、前記の電子源を具備することを特徴とする走査型電子顕微鏡、透過型電子顕微鏡、表面分析装置、半導体プロセス用電子線機器または電子線露光装置である。 Furthermore, the present invention is a scanning electron microscope, a transmission electron microscope, a surface analysis apparatus, an electron beam apparatus for semiconductor processes, or an electron beam exposure apparatus characterized by comprising the above-described electron source.

本発明の電子源は、ZrO/W電子源よりも低い仕事関数を有することから、動作温度も従来公知のZrO/W電子源よりも低い1200Kから1500Kで動作することが可能で、その結果、エネルギー幅の小さい電子線を放出するので、低加速電圧で動作する走査型電子顕微鏡や半導体プロセス用電子線機器の分解能向上や電子線露光装置においてより微細なパターンを描画するのに寄与する。 Since the electron source of the present invention has a work function lower than that of the ZrO / W electron source, it is possible to operate at an operating temperature of 1200 K to 1500 K lower than that of the conventionally known ZrO / W electron source. Since an electron beam having a small energy width is emitted, it contributes to improving the resolution of a scanning electron microscope or an electron beam apparatus for semiconductor processing that operates at a low acceleration voltage and to drawing a finer pattern in an electron beam exposure apparatus.

本発明の走査型電子顕微鏡、透過型電子顕微鏡、表面分析装置、半導体プロセス用電子線機器または電子線露光装置は、前記特徴のある電子源を有しているので、それぞれの使用下において、より好ましい結果、例えば、透過型電子顕微鏡においては、エネルギー損失分光法による軽元素の分析を行う際に、低いバックグラウンドスペクトルが得られ、感度の向上に寄与する。 Since the scanning electron microscope, transmission electron microscope, surface analyzer, semiconductor process electron beam apparatus or electron beam exposure apparatus of the present invention has the electron source having the characteristics described above, As a preferable result, for example, in a transmission electron microscope, when analyzing a light element by energy loss spectroscopy, a low background spectrum is obtained, which contributes to an improvement in sensitivity.

本発明を実施するため具体的な実施態様を以下に説明する。 Specific embodiments for carrying out the present invention will be described below.

機械加工により形成したタングステンの<100>単結晶ロッドを加熱ヒータ用のタングステンフィラメントに溶接する。フィラメントの両端は絶縁碍子にロウ付けされた2本の導電端子に固着され、導電端子を介して通電ジュール加熱を行うことが出来る。続いて水酸化ナトリウム水溶液を用いて電解研磨により単結晶ロッドの一端にサブミクロンから数ミクロンの曲率半径を有する先鋭端を形成する。 A <100> single crystal rod of tungsten formed by machining is welded to a tungsten filament for a heater. Both ends of the filament are fixed to two conductive terminals brazed to an insulator, and energization Joule heating can be performed through the conductive terminals. Subsequently, a sharp end having a radius of curvature of submicron to several microns is formed at one end of the single crystal rod by electrolytic polishing using an aqueous solution of sodium hydroxide.

次に単結晶ロッドの一部に、Ho、Gd、Nd、Sm、及びPrからなる群から選ばれる一種以上の金属元素酸化物を、酢酸イソアミル等の有機溶剤を分散媒として乳鉢によりスラリー状になるまで破砕、混合したものを塗布し、乾燥して拡散源を形成する。 Next, in one part of the single crystal rod, one or more metal element oxides selected from the group consisting of Ho, Gd, Nd, Sm, and Pr are slurried in a mortar using an organic solvent such as isoamyl acetate as a dispersion medium. The mixture is crushed and mixed until it becomes, and dried to form a diffusion source.

この電子源を真空装置中に導入して真空度を10−10Torr台まで引き、導電端子を介して通電して単結晶ロッドの温度を1500K程度に加熱する。 This electron source is introduced into a vacuum apparatus, the degree of vacuum is pulled to the 10 −10 Torr level, and the temperature of the single crystal rod is heated to about 1500 K by energizing through a conductive terminal.

次に単結晶ロッドに負の高電圧を印加することにより単結晶ロッドの先鋭端に高い電界が印加される。この状態を維持することにより先鋭端に{100}結晶面が露出し、その部分のみ仕事関数がタングステンのそれよりも低くなり、高い電流密度で電子放出する。 Next, a high electric field is applied to the sharp end of the single crystal rod by applying a negative high voltage to the single crystal rod. By maintaining this state, the {100} crystal plane is exposed at the sharp end, and the work function of only that portion is lower than that of tungsten, and electrons are emitted at a high current density.

この電子源の動作温度は1200Kから1500KとZrO/W電子源の動作温度である1800Kよりも低く、低いエネルギー幅の電子線を放出する。 The operating temperature of this electron source is 1200 K to 1500 K, which is lower than the operating temperature of 1800 K, which is the operating temperature of the ZrO / W electron source, and emits an electron beam with a low energy width.

拡散源としては、Ho、Gd、Nd、Sm、及びPrからなる群から選ばれる一種以上の金属元素酸化物としては、本発明者検討に拠れば、Pr酸化物からなる拡散源の場合に好ましい電子放出特性を示す。 As the diffusion source, one or more metal element oxides selected from the group consisting of Ho, Gd, Nd, Sm, and Pr are preferable in the case of a diffusion source made of Pr oxide according to the present inventors' investigation. Electron emission characteristics are shown.

本発明の電子源は、特定の金属元素酸化物からなる拡散源を有し、従来公知のZrO/W電子源に比してかなり低温下で電子放出ができるので、その結果としてエネルギー幅の低い電子線が提供できる特徴を有する。このため、本発明の電子源を用いた電子線利用装置において、それぞれの装置に於いて、従来に得られなかった利点を得ることができる。例えば、走査型電子顕微鏡、透過型電子顕微鏡、表面分析装置、半導体プロセス用電子線機器に於いては分解能が向上でき、電子線露光装置においてはより微細なパターンを描画できる。 The electron source of the present invention has a diffusion source made of a specific metal element oxide, and can emit electrons at a considerably low temperature as compared with a conventionally known ZrO / W electron source. As a result, the energy width is low. It has the characteristics that an electron beam can provide. For this reason, in the electron beam utilization apparatus using the electron source of the present invention, advantages that have not been obtained in the past can be obtained in each apparatus. For example, the resolution can be improved in a scanning electron microscope, a transmission electron microscope, a surface analyzer, and an electron beam apparatus for semiconductor processing, and a finer pattern can be drawn in an electron beam exposure apparatus.

(実施例1〜5、比較例)
絶縁碍子5にロウ付けされた導電端子4にタングステン製のフィラメント3をスポット溶接により固定した後、機械加工により作成した<100>方位の単結晶タングステン製ロッドを前記フィラメントにスポット溶接により取り付け、更に、ロッドの一端部を電解研磨して曲率半径が約1μmの鋭利な先端を得た(図1参照)。
(Examples 1-5, comparative example)
After fixing the tungsten filament 3 to the conductive terminal 4 brazed to the insulator 5 by spot welding, a <100> oriented single crystal tungsten rod prepared by machining is attached to the filament by spot welding, and Then, one end of the rod was electropolished to obtain a sharp tip having a radius of curvature of about 1 μm (see FIG. 1).

次にHo、Gd、Nd、Sm、Prのそれぞれの酸化物(Ho、Gd、Nd、Sm、Pr)の粉末を、酢酸イソアミルを分散媒として、乳鉢上で粉砕してスラリーを得た。前記スラリーを前記ロッドの一部に塗布して、拡散源2を形成した。 Next, powders of oxides of Ho, Gd, Nd, Sm, and Pr (Ho 2 O 3 , Gd 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Pr 2 O 3 ) are dispersed in isoamyl acetate. As a medium, the mixture was pulverized on a mortar to obtain a slurry. The slurry was applied to a part of the rod to form the diffusion source 2.

スラリー中の酢酸イソアミルが蒸発した後、図2に示す装置に導入した。ロッド1の先端はサプレッサー電極6と引き出し電極7との間に配置される。尚、ニードル1の先端とサプレッサー電極6の距離は0.25mm、サプレッサー電極6と引き出し電極7も距離は0.6mm、引き出し電極7の孔径は0.6mm、サプレッサー電極6の孔径は0.4mmである。 After the isoamyl acetate in the slurry was evaporated, it was introduced into the apparatus shown in FIG. The tip of the rod 1 is disposed between the suppressor electrode 6 and the extraction electrode 7. The distance between the tip of the needle 1 and the suppressor electrode 6 is 0.25 mm, the distance between the suppressor electrode 6 and the extraction electrode 7 is also 0.6 mm, the hole diameter of the extraction electrode 7 is 0.6 mm, and the hole diameter of the suppressor electrode 6 is 0.4 mm. It is.

フィラメント3はフィラメント加熱電源14に接続され、更に高圧電源13に接続され、ロッド1とフィラメント3に対して負の高電圧、即ちエミッター電圧Vが印加される。また、サプレッサー電極6はバイアス電源12に接続され、ロッド1とフィラメント3に対して更に負の電圧、バイアス電圧V、が印加される。これによりフィラメント3からの放射熱電子を遮る。電子源からの全放射電流Iは高圧電源13とアース間に置かれた電流計15により測定される。ロッド1の先端から放出した電子線16は引き出し電極7の孔を通過して、蛍光板8に到達する。蛍光板に到達した電流I(以降スクリーン電流と記す)は電流計17により測定される。計蛍光板8の中央にはアパーチャー9(小孔)が有り、通過してカップ状電極10に到達したプローブ電流Iは微小電流計11により測定される。なおアパーチャー9とロッド1の先端との距離とアパーチャー9の内径から算出される立体角をωとすると角電流密度はI/ωとなる。 Filament 3 is connected to a filament heating power source 14 is further connected to a high voltage power supply 13, a negative high voltage, that is, the emitter voltage V E is applied to the rod 1 and the filament 3. Further, the suppressor electrode 6 is connected to a bias power source 12, and a negative voltage and a bias voltage V b are further applied to the rod 1 and the filament 3. Thereby, the radiant thermoelectrons from the filament 3 are blocked. Total emission current I t from the electron source is measured by the ammeter 15 is placed between the high voltage source 13 and ground. The electron beam 16 emitted from the tip of the rod 1 passes through the hole of the extraction electrode 7 and reaches the fluorescent plate 8. A current I S (hereinafter referred to as a screen current) reaching the fluorescent plate is measured by an ammeter 17. There is an aperture 9 (small hole) in the center of the total fluorescent plate 8, and the probe current Ip that has passed through and reached the cup-shaped electrode 10 is measured by the microammeter 11. If the solid angle calculated from the distance between the aperture 9 and the tip of the rod 1 and the inner diameter of the aperture 9 is ω, the angular current density is I p / ω.

作成した電子源を真空装置内に導入して装置内を3×10−10 Torr(4×10−8Pa)の超高真空としてフィラメント3に通電してニードル1を1500Kに加熱し、拡散源を焼成する。更にニードルを1800Kに1分程度加熱して先端表面を清浄化し、1500Kに再調整後サプレッサーにバイアス電圧V=−300Vの電圧を印加して、続いてエミッター電圧V=−6.5kVの高電圧を印加して数時間から数10時間維持した。 The created electron source is introduced into a vacuum apparatus, the inside of the apparatus is set to an ultra-high vacuum of 3 × 10 −10 Torr (4 × 10 −8 Pa), the filament 3 is energized, the needle 1 is heated to 1500 K, and a diffusion source Is fired. Further, the needle is heated to 1800K for about 1 minute to clean the tip surface, readjusted to 1500K, a bias voltage V b = −300V is applied to the suppressor, and then the emitter voltage V E = −6.5 kV. A high voltage was applied and maintained for several hours to several tens of hours.

この間に徐々に全放出電流が増し、エミッター電圧を−4.5kVまで下げ数時間電子放出を継続したところ、蛍光板8上の中心のみが明るくなり電子放出角度分布が軸上を中心に狭い領域に閉じこめられていることが確認できた。 During this time, the total emission current gradually increased, and when the emitter voltage was lowered to −4.5 kV and electron emission was continued for several hours, only the center on the fluorescent plate 8 was brightened, and the electron emission angle distribution was narrowed around the axis. It was confirmed that it was confined.

更に動作温度を様々に変えて安定に動作する温度領域を調べ、スクリーン電流I、角電流密度I/ω対エミッター電圧、即ち電流対電圧特性を測定した。なお、電流対電圧特性を測定する際のバイアス電圧Vはエミッター電圧Vの1/10とした。 Further, the temperature range in which the operation temperature was changed stably was investigated, and the screen current I S , the angular current density I p / ω vs. the emitter voltage, that is, the current vs. voltage characteristics were measured. The bias voltage V b at the time of measuring the current-voltage characteristic was 1/10 of the emitter voltage V E.

その後、装置から電子源を取り出してタングステンロッドの先端を走査型電子顕微鏡で観察したところロッド先端に{100}結晶面が形成されていることが確認できた。 Thereafter, the electron source was taken out from the apparatus, and the tip of the tungsten rod was observed with a scanning electron microscope. As a result, it was confirmed that a {100} crystal plane was formed on the rod tip.

次に比較例として市販のZrO/W電子源で単結晶ロッドの先鋭端の曲率半径が1μmのものを同じ装置に導入して電子放出特性を同様に測定した。 Next, as a comparative example, a commercially available ZrO / W electron source having a single crystal rod with a sharp radius of curvature of 1 μm was introduced into the same apparatus, and the electron emission characteristics were measured in the same manner.

表1に本発明による電子源と比較例の電子源の安定動作領域を示した。なお、安定動作領域の判別は、蛍光板の中心にのみ電子放出分布パターンが観察でき、プローブ電流Iのドリフトが10時間あたり5%以下であるとした。比較例であるZrO/W電子源では1650Kから1850Kの間で安定動作が認められたのに対して、本発明による電子源は何れも比較例よりも低い1200Kから1500Kの間で安定動作が認められた。 Table 1 shows stable operation regions of the electron source according to the present invention and the electron source of the comparative example. It should be noted that the stable operation region was determined by observing the electron emission distribution pattern only at the center of the fluorescent plate and the probe current Ip drift being 5% or less per 10 hours. In the ZrO / W electron source which is a comparative example, stable operation was observed between 1650K and 1850K, whereas in the electron source according to the present invention, stable operation was observed between 1200K and 1500K which is lower than the comparative example. It was.

Figure 2008098087
Figure 2008098087

実施例1に掛かる電子源と比較例の電子源とに関する実効仕事関数の測定結果を以下に示す。実効仕事関数の決定は以下の方法に依った。 The measurement results of the effective work function regarding the electron source according to Example 1 and the electron source of the comparative example are shown below. The effective work function was determined by the following method.

まず、ロッド先端に形成された{100}結晶面の半径を走査型電子顕微鏡観察により測定する。この結晶面は電子放出面に相当しスクリーン電流Iをπ(半径)により除することにより電流密度Jを算出する。動作温度毎に(電流密度Jの対数)対(エミッター電圧の絶対値)1/2の図を作成して直線でフィッティングし、(エミッター電圧の絶対値)1/2をゼロ外挿することによりゼロ電界に相当する電流密度(飽和電流密度)を算出する。飽和電流密度Jと動作温度T、仕事関数φの関係はRichardsonの式より以下の通りとなる(非特許文献8参照)。
J=ATexp(−φ/kT)
ここでJは飽和電流密度、kBはボルツマン定数、φは仕事関数、Tは絶対温度である。Richardoson定数Aを理論値120A/cm/Kとしたときの仕事関数を実効仕事関数φとすると、
φ=−kTln(J/120T
となり、飽和電流密度J、動作温度Tから実効仕事関数φが決定できる。
S.G.Christov,phys.stat.sol. 17,11,1966,p22
First, the radius of the {100} crystal plane formed at the tip of the rod is measured by observation with a scanning electron microscope. The crystal plane calculates the current density J by dividing the corresponding screen-current I s a [pi (radius) 2 electron emitting surfaces. By creating a figure of (logarithm of current density J) versus (absolute value of emitter voltage) 1/2 for each operating temperature and fitting with a straight line, and extrapolating (absolute value of emitter voltage) 1/2 to zero The current density (saturation current density) corresponding to the zero electric field is calculated. The relationship between the saturation current density J, the operating temperature T, and the work function φ is as follows from the Richardson equation (see Non-Patent Document 8).
J = AT 2 exp (−φ / k B T)
Here, J is the saturation current density, kB is the Boltzmann constant, φ is the work function, and T is the absolute temperature. When the work function when the Richardson constant A is the theoretical value 120 A / cm 2 / K 2 is the effective work function φ E ,
φ E = −k B Tln (J / 120T 2 )
Thus, the effective work function φ E can be determined from the saturation current density J and the operating temperature T.
S. G. Christov, phys. Stat. Sol. 17, 11, 1966, p22

図3に、本発明の実施例1に係る電子源と比較例に係る電子源との実効仕事関数の温度依存性を示した。実施例1の電子源は比較例のものよりも遙かに低い実効仕事関数を有することが確認された。 FIG. 3 shows the temperature dependence of the effective work function of the electron source according to Example 1 of the present invention and the electron source according to the comparative example. It was confirmed that the electron source of Example 1 has a much lower effective work function than that of the comparative example.

更に図4に、発明の実施例1に係る電子源と比較例に係る電子源との角電流密度Ip/ω対エミッター電圧の関係を示した。本発明の電子源は比較例のものよりも高い角電流密度を示して、電子源としてより高性能であることが確認された。 Further, FIG. 4 shows the relationship between the angular current density Ip / ω versus the emitter voltage of the electron source according to Example 1 of the invention and the electron source according to the comparative example. The electron source of the present invention showed a higher angular current density than that of the comparative example, and it was confirmed that the electron source had higher performance as an electron source.

また、本発明の実施例1に係る電子源を走査型電子顕微鏡に搭載して1300Kで動作して加速電圧1kVで観察を行ったところ、比較例の電子源の場合に比べて約30%分解能が向上した。 Further, when the electron source according to Example 1 of the present invention was mounted on a scanning electron microscope and operated at 1300 K and observed at an acceleration voltage of 1 kV, the resolution was about 30% that of the comparative example. Improved.

本発明の電子源は、従来のZrO/W電子源の安定動作温度である1650Kから1800Kよりも低い動作温度である1200Kから1500Kで動作するので、その結果低いエネルギー幅の電子線を放出することができる。そしてその結果、走査型電子顕微鏡や表面分析機器、半導体プロセス用電子機器の分解能向上や電子線露光装置の描画パターンの微細化に寄与することができるので、産業上極めて有用である。 The electron source of the present invention operates at 1200 K to 1500 K, which is lower than 1650 K, which is the stable operating temperature of the conventional ZrO / W electron source, and as a result, emits an electron beam with a low energy width. Can do. As a result, it can contribute to improving the resolution of a scanning electron microscope, surface analysis equipment, and electronic equipment for semiconductor processes and miniaturizing the drawing pattern of an electron beam exposure apparatus, which is extremely useful industrially.

電子源の構成図。The block diagram of an electron source. 電子放出特性の評価装置の構成図。The block diagram of the evaluation apparatus of electron emission characteristics. 本発明の実施例と比較例に係る電子源の実効仕事関数の温度依存性を示す図。The figure which shows the temperature dependence of the effective work function of the electron source which concerns on the Example and comparative example of this invention. 本発明の実施例と比較例に係る電子源の角電流密度Ip/ω対エミッター電圧の関係を示す図。The figure which shows the relationship of the angular current density Ip / (omega) vs. emitter voltage of the electron source which concerns on the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 : ニードル
2 : 拡散源
3 : フィラメント
4 : 導電端子
5 : 絶縁碍子
6 : サプレッサー電極
7 : 引き出し電極
8 : 蛍光板
9 : アパーチャー
10: カップ状電極
11: プローブ電流測定用微小電流計
12: バイアス電源
13: 高圧電源
14: ファイラメント加熱電源
15: 全放出電流測定用電流計
16: 放出電子線
17: スクリーン電流測定用微小電流計
1: Needle 2: Diffusion source 3: Filament 4: Conductive terminal 5: Insulator 6: Suppressor electrode 7: Extraction electrode 8: Fluorescent plate 9: Aperture 10: Cup-shaped electrode 11: Microammeter 12 for probe current measurement: Bias power supply 13: High-voltage power supply 14: Filament heating power supply 15: Ammeter for total emission current measurement 16: Emission electron beam 17: Microammeter for screen current measurement

Claims (3)

タングステンまたはモリブデンの<100>方位単結晶ロッドからなり、一端部に{100}結晶面が露出した電子放出面を有し、しかもHo、Gd、Nd、Sm、及びPrからなる群から選ばれる1種以上の金属元素酸化物を含む拡散源を有することを特徴とする電子源。 1 consisting of a <100> oriented single crystal rod of tungsten or molybdenum, having an electron emission surface with an exposed {100} crystal plane at one end, and being selected from the group consisting of Ho, Gd, Nd, Sm, and Pr An electron source comprising a diffusion source containing a metal element oxide of more than one species. 動作温度が1200K以上1500K以下であることを特徴とする請求項1記載の電子源。 2. The electron source according to claim 1, wherein the operating temperature is 1200 K or more and 1500 K or less. 請求項1又は請求項2記載の電子源を具備することを特徴とする走査型電子顕微鏡、透過型電子顕微鏡、表面分析装置、半導体プロセス用電子線機器または電子線露光装置。 A scanning electron microscope, a transmission electron microscope, a surface analyzer, an electron beam apparatus for semiconductor processes, or an electron beam exposure apparatus, comprising the electron source according to claim 1.
JP2006281245A 2006-10-16 2006-10-16 Electron source Expired - Fee Related JP4874758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281245A JP4874758B2 (en) 2006-10-16 2006-10-16 Electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281245A JP4874758B2 (en) 2006-10-16 2006-10-16 Electron source

Publications (2)

Publication Number Publication Date
JP2008098087A true JP2008098087A (en) 2008-04-24
JP4874758B2 JP4874758B2 (en) 2012-02-15

Family

ID=39380707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281245A Expired - Fee Related JP4874758B2 (en) 2006-10-16 2006-10-16 Electron source

Country Status (1)

Country Link
JP (1) JP4874758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040326A1 (en) 2009-09-29 2011-04-07 電気化学工業株式会社 Rod for electron source, electron source, and electronic appliance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185681A (en) * 1997-12-24 1999-07-09 Hitachi Ltd Thermal diffusion supply type electron source, electron beam generating method, and electron beam applied device
JP2005222945A (en) * 2004-02-03 2005-08-18 Denki Kagaku Kogyo Kk Manufacturing method and operation method for electron source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185681A (en) * 1997-12-24 1999-07-09 Hitachi Ltd Thermal diffusion supply type electron source, electron beam generating method, and electron beam applied device
JP2005222945A (en) * 2004-02-03 2005-08-18 Denki Kagaku Kogyo Kk Manufacturing method and operation method for electron source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040326A1 (en) 2009-09-29 2011-04-07 電気化学工業株式会社 Rod for electron source, electron source, and electronic appliance

Also Published As

Publication number Publication date
JP4874758B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4971342B2 (en) Electron source
US6903499B2 (en) Electron gun and a method for using the same
JP4210131B2 (en) Electron source and method of using electron source
JP4792404B2 (en) Manufacturing method of electron source
JP4032057B2 (en) Manufacturing method of electron source
EP2242084B1 (en) Method of manufacturing an electron source
WO2011040326A1 (en) Rod for electron source, electron source, and electronic appliance
WO2007148507A1 (en) Electron source
JP4874758B2 (en) Electron source
JP5363413B2 (en) Electron source
JP2005332677A (en) Manufacturing method of electron source and its use
JP2008004411A (en) Electron source
EP1596418B1 (en) Electron gun
JP4368501B2 (en) Usage of electron emission cathode
JP2006032195A (en) Electron emission source
JP2010061898A (en) Electron source and electronic equipment
JP2001319559A (en) Electron radiating cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees