JP2008097830A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2008097830A
JP2008097830A JP2006274269A JP2006274269A JP2008097830A JP 2008097830 A JP2008097830 A JP 2008097830A JP 2006274269 A JP2006274269 A JP 2006274269A JP 2006274269 A JP2006274269 A JP 2006274269A JP 2008097830 A JP2008097830 A JP 2008097830A
Authority
JP
Japan
Prior art keywords
battery
cooling air
cooling wind
cooling
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274269A
Other languages
Japanese (ja)
Inventor
Nobuhiro Shiraishi
信浩 白石
Tsuyoshi Kokubo
毅之 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006274269A priority Critical patent/JP2008097830A/en
Publication of JP2008097830A publication Critical patent/JP2008097830A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack capable of cooling a battery nearly uniformly by improving cooling efficiency of the battery in the downstream region and capable of preventing reduction of a battery life. <P>SOLUTION: This is the battery pack 10 in which a power generating element wherein a positive electrode plate and a negative electrode plate are laminated is sealed inside the outer layer member, in which an electrode terminal connected to the power generating element is led out to the outside of the outer layer member, and in which a plurality of a flat type battery of outer shape flat type are laminated. At every prescribed sheet of the flat type battery, this is equipped with a gap as a cooling wind flow passage 51 into which the cooling wind flows, and a straightening plate 30 to split the gap toward the battery inside 53b of the center side of the cooling wind flow passage width direction in the upstream region of the cooling wind circulating direction and toward the battery side 52a of more outside of the cooling wind flow passage width direction than the battery inside, and to guide the cooling wind which is circulating through the battery side at the downstream region in the cooling wind circulating direction toward the battery inside. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電池を任意の個数直列および/または並列に接続した組電池に関する。   The present invention relates to an assembled battery in which an arbitrary number of batteries are connected in series and / or in parallel.

シート状の外装部材内に発電要素を封止し、発電要素に接続された板状の電極タブ(電極端子)を外装部材の外部に導出した扁平型電池(以下、「電池」という。)を複数積層して形成された電池モジュールが知られている(たとえば、特許文献1参照)。このような電池モジュールを複数配列するとともに各電池モジュールを電気的に直列および/または並列に接続することにより、高出力および高容量の組電池とすることが一般的に行われている(たとえば、特許文献2参照)。なお、電池モジュールは組電池を組み立てる単位ユニットという意味で電池であり、電気的に接続された複数枚の扁平型電池を含むので組電池の一種でもある。   A flat battery (hereinafter referred to as “battery”) in which a power generation element is sealed in a sheet-shaped exterior member and a plate-like electrode tab (electrode terminal) connected to the power generation element is led out of the exterior member. A battery module formed by laminating a plurality of layers is known (for example, see Patent Document 1). It is generally performed to form a battery pack with high output and high capacity by arranging a plurality of such battery modules and electrically connecting each battery module in series and / or in parallel (for example, Patent Document 2). The battery module is a battery in the sense of a unit unit for assembling an assembled battery, and is a kind of assembled battery because it includes a plurality of electrically connected flat batteries.

このような組電池においては、充放電時の電池の発熱によって組電池の温度が上昇し、電池の寿命が低下する。したがって、組電池の組立においては、電池間(もしくは電池モジュール間)に隙間を隔てて配列し、その隙間により形成された冷却風流路に冷却風を流すことによって電池を冷却している。
特開2001−256934号 特開2005−302698号
In such an assembled battery, the temperature of the assembled battery rises due to the heat generated by the battery during charging and discharging, and the life of the battery is reduced. Therefore, in assembling the assembled battery, the batteries are cooled by arranging the batteries (or between the battery modules) with a gap therebetween and flowing cooling air through the cooling air passage formed by the gap.
JP 2001-256934 A JP-A-2005-302698

ところで、従来の組電池では、冷却風流路の上流域では電池を効率良く冷却することが可能であるが、下流域には上流域を通過して暖められた冷却風がそのまま供給されるので電池の冷却効率が悪くなる。その結果、電池を均一に冷却することができず、電池寿命が低下する虞がある。   By the way, in the conventional assembled battery, it is possible to efficiently cool the battery in the upstream area of the cooling air flow path, but the cooling air warmed through the upstream area is supplied to the downstream area as it is. The cooling efficiency of the becomes worse. As a result, the battery cannot be cooled uniformly, and the battery life may be reduced.

本発明は、上記の事情に鑑みて創案されたものであり、下流域における電池の冷却効率を向上させて電池を略均一に冷却することができ、電池寿命の低下を防止することができる組電池を提供することを目的とする。   The present invention was devised in view of the above circumstances, and can improve the cooling efficiency of the battery in the downstream region to cool the battery substantially uniformly, and can prevent the battery life from being lowered. An object is to provide a battery.

上記目的を達成するための本発明に係る組電池は、正極板と負極板が積層された発電要素を外層部材内部に封止し、前記発電要素に接続された電極端子を前記外層部材外部に導出した、外形扁平型の扁平型電池を複数積層してなる組電池であって、前記扁平型電池の所定枚数毎に、冷却風が流入する冷却風流路としての隙間と、当該隙間を、冷却風流通方向上流域で冷却風流路幅方向中央側の電池内方と当該電池内方よりも冷却風流路幅方向外側の電池側方とに分流すると共に、冷却風流通方向下流域で前記電池側方を流通した冷却風を前記電池内方へ案内する整流板と、を備えることを特徴とする。   In order to achieve the above object, an assembled battery according to the present invention seals a power generation element in which a positive electrode plate and a negative electrode plate are laminated inside an outer layer member, and has an electrode terminal connected to the power generation element outside the outer layer member. A battery pack that is formed by laminating a plurality of flat-type batteries having a flat outer shape, and for each predetermined number of the flat-type batteries, a gap as a cooling air flow channel into which cooling air flows and the gap is cooled. In the upstream area of the wind flow direction, the battery is divided into the inner side of the battery in the width direction of the cooling air flow path and the battery side of the outside of the battery in the width direction of the cooling air flow path. And a rectifying plate for guiding the cooling air flowing through the battery toward the inside of the battery.

本発明に係る組電池によれば、冷却風流路に整流板を配設することにより、冷却風流路の上流域において電池側方を通過してきて温度上昇していない冷却風が下流域において電池内方へと案内されるので、下流域における電池の冷却効率を向上させて電池を略均一に冷却することができ、電池寿命の低下を防止することができる。   According to the assembled battery according to the present invention, by providing the rectifying plate in the cooling air flow path, the cooling air that has passed through the side of the battery in the upstream area of the cooling air flow path and has not risen in temperature is in the battery in the downstream area. Therefore, it is possible to improve the cooling efficiency of the battery in the downstream region, cool the battery substantially uniformly, and prevent the battery life from decreasing.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1において、(A)は本実施の形態に係る組電池10の一例を前面側から見て示す斜視図、(B)は同組電池10を背面側から見て示す斜視図である。図2は、電池モジュール50の配列後バスバー接続前の組電池10を示す斜視図である。図3は電池モジュール50の配列状態を示す模式図である。図4は、組電池10を組み立てる際の単位ユニットである電池モジュール50の一例を示す斜視図である。図5は、図4に示される電池モジュール50を上下反転し、さらに分解して示す斜視図である。図6は扁平型電池100の一例を示す斜視図である。図7は冷却風流路51に第1例の整流板30を配設した状態示す平面図である。図8は冷却風流路51に第2例の整流板30を配設した状態示す平面図である。図9は電池モジュール50上に第2例の整流板30を配設した状態示す斜視図である。図10は第2例の整流板30を示す斜視図である。図11は冷却風流路51に第3例の整流板30を配設した状態示す平面図である。図12は従来の電池モジュール50の温度ばらつきを示す説明図である。なお、図4に示されるX軸方向を電池モジュール50の長手方向といい、Y軸方向を短手方向という。また、図2において、出力端子140,150が位置する面を前面と、これに対向する反対側の面を背面とする。   1A is a perspective view showing an example of an assembled battery 10 according to the present embodiment as seen from the front side, and FIG. 1B is a perspective view showing the assembled battery 10 as seen from the back side. FIG. 2 is a perspective view showing the assembled battery 10 after arranging the battery modules 50 and before connecting the bus bars. FIG. 3 is a schematic diagram showing an arrangement state of the battery modules 50. FIG. 4 is a perspective view showing an example of a battery module 50 that is a unit unit when the assembled battery 10 is assembled. FIG. 5 is a perspective view showing the battery module 50 shown in FIG. FIG. 6 is a perspective view showing an example of the flat battery 100. FIG. 7 is a plan view showing a state in which the rectifying plate 30 of the first example is disposed in the cooling air passage 51. FIG. 8 is a plan view showing a state in which the rectifying plate 30 of the second example is disposed in the cooling air passage 51. FIG. 9 is a perspective view showing a state in which the current plate 30 of the second example is disposed on the battery module 50. FIG. 10 is a perspective view showing the current plate 30 of the second example. FIG. 11 is a plan view showing a state in which the rectifying plate 30 of the third example is disposed in the cooling air flow path 51. FIG. 12 is an explanatory diagram showing temperature variations of the conventional battery module 50. The X-axis direction shown in FIG. 4 is referred to as the longitudinal direction of the battery module 50, and the Y-axis direction is referred to as the short direction. In FIG. 2, the surface on which the output terminals 140 and 150 are located is the front surface, and the opposite surface opposite to the front surface is the back surface.

図1および図2を参照して、本実施の形態の組電池10は、自動車や電車などの車両に搭載される車載電池であり、組電池用ケース11内に、複数個の電池モジュール50が隙間を隔てて配列されている。組電池用ケース11は、アッパーケース12とロアケース13とを有し、アッパーケース12の前面に冷却風を導入するための入口ダクト14が接続され、アッパーケース12の背面に冷却風を導出するための出口ダクト15が接続されている。入口ダクト14は送風装置に接続され、送風装置から供給された冷却風は入口ダクト14を通って組電池用ケース11内に導かれる。   With reference to FIG. 1 and FIG. 2, the assembled battery 10 of the present embodiment is an in-vehicle battery mounted on a vehicle such as an automobile or a train, and a plurality of battery modules 50 are provided in the assembled battery case 11. They are arranged with a gap. The assembled battery case 11 includes an upper case 12 and a lower case 13. An inlet duct 14 for introducing cooling air is connected to the front surface of the upper case 12, and the cooling air is led to the back surface of the upper case 12. The outlet duct 15 is connected. The inlet duct 14 is connected to the blower, and the cooling air supplied from the blower is guided into the assembled battery case 11 through the inlet duct 14.

電池モジュール50を任意の個数直並列に接続することによって、所望の電流、電圧、容量に対応できる組電池10となる。図2において組電池10は、たとえば、12個の電池モジュール50を含んでいる。12個の電池モジュール50は、上下方向に3個積層された電池モジュール群50aを、左右方向に4列に配列している。電池モジュール50の正負の出力端子140、150は、すべて同じ面(前面)に設けられている。   By connecting any number of battery modules 50 in series and parallel, the assembled battery 10 can handle a desired current, voltage, and capacity. In FIG. 2, the assembled battery 10 includes, for example, 12 battery modules 50. The twelve battery modules 50 have a group of three battery modules 50a stacked in the vertical direction and arranged in four rows in the horizontal direction. The positive and negative output terminals 140 and 150 of the battery module 50 are all provided on the same surface (front surface).

電池モジュール50は空冷式であり、電池モジュール50間の隙間は、各電池モジュール50を冷却するための冷却風が流れる冷却風流路51として利用される。冷却風は、電池モジュール50の正負の出力端子140、150が設けられた前面側から背面側へと冷却風流路51内を流れる。冷却風を流して各電池モジュール50を冷却することにより、電池温度を下げ、充電効率などの特性が低下することを抑制する。上下の電池モジュール50間の隙間S、つまり冷却風流路51の高さは、積層時に電池モジュール50同士の間に配置されるスペーサ20の高さによって規定される。スペーサ20には、たとえば、円筒体状のワッシャが採用され、後述するボルト孔73にボルト固定されるようになっている(図4および図5参照)。このスペーサ20により規定される隙間Sは、車両に搭載する際のレイアウトや、冷却風流路51として機能させるために必要な寸法などを考慮して定められるが、数mm程度である。   The battery modules 50 are air-cooled, and a gap between the battery modules 50 is used as a cooling air flow path 51 through which cooling air for cooling each battery module 50 flows. The cooling air flows in the cooling air flow channel 51 from the front side where the positive and negative output terminals 140 and 150 of the battery module 50 are provided to the back side. By cooling each battery module 50 by flowing cooling air, the battery temperature is lowered and the characteristics such as charging efficiency are prevented from being lowered. The gap S between the upper and lower battery modules 50, that is, the height of the cooling air flow path 51 is defined by the height of the spacers 20 arranged between the battery modules 50 during stacking. The spacer 20 is, for example, a cylindrical washer, and is bolted to a bolt hole 73 described later (see FIGS. 4 and 5). The gap S defined by the spacer 20 is determined in consideration of a layout when mounted on the vehicle, dimensions necessary for functioning as the cooling air flow path 51, and the like, but is about several mm.

図3、図7から図11を参照して、本実施の形態の組電池10では、冷却風流路51となる電池モジュール50間の隙間Sに冷却風の風向きを制御する整流板30が配設されており、この整流板30は、冷却風流路51の上流域52において電池側方52aを通過した冷却風を、下流域53において電池内方53bへと案内するように形成されている。なお、本発明において、冷却風流路51の上流域52とは電池(電池モジュール50)の長手方向長さの前半部分における領域をいい、下流域53とは電池(電池モジュール50)の長手方向長さの後半部分における領域をいう。   With reference to FIGS. 3 and 7 to 11, in the assembled battery 10 of the present embodiment, a rectifying plate 30 that controls the direction of the cooling air is disposed in the gap S between the battery modules 50 serving as the cooling air flow path 51. The rectifying plate 30 is formed so as to guide the cooling air that has passed through the battery side 52 a in the upstream region 52 of the cooling air flow channel 51 to the battery inner 53 b in the downstream region 53. In the present invention, the upstream region 52 of the cooling air flow channel 51 refers to a region in the first half of the longitudinal length of the battery (battery module 50), and the downstream region 53 refers to the longitudinal length of the battery (battery module 50). This is the area in the latter half.

図7に示す第1例の整流板30は、冷却風流路51の上流域52を冷却風流路幅方向において外側の電池側方52aと中央側の電池内方52bとに隔て、冷却風を分流する(分離する)分離板31と、上流域52において電池側方52aを通過した冷却風を、下流域53において電池内方53bへと合流させる案内板32と、から構成されている。分離板31は、冷却風流路51の上流域52において、電池モジュール50上の左右方向の両側部に配設されている。この分離板31は上記スペーサ20と同等の高さを有する直状の板であって、電池モジュール50の長手方向に沿って起立している。また、案内板32は、冷却風流路51の上流域52と下流域53との境界部の近傍において、上記分離板31と間隔を隔てて、下流域53における電池側方53aを斜めに横断して風向きを変更するように配設されている。この案内板32は上記スペーサ20と同等の高さを有する直状の板であって、冷却風流路51の上流域52と下流域53との境界部の近傍から電池モジュール50の長手方向後方の中央部(下流域53における電池内方53bの中央部)へ向けて斜めに起立している。これらの分離板31と案内板32との間の板の途切れた部分は、上流域52の電池側方52aを通過した冷却風を下流域53において電池内方53bへと合流させる導入流路51aとなる。   The rectifying plate 30 of the first example shown in FIG. 7 divides the cooling air by dividing the upstream area 52 of the cooling air passage 51 into the battery side 52a on the outer side and the battery inner side 52b on the center side in the width direction of the cooling air passage. The separation plate 31 that performs (separates) and the guide plate 32 that joins the cooling air that has passed through the battery side 52 a in the upstream region 52 to the battery inner 53 b in the downstream region 53. The separation plate 31 is disposed on both sides in the left-right direction on the battery module 50 in the upstream region 52 of the cooling air flow channel 51. The separation plate 31 is a straight plate having the same height as the spacer 20, and stands up along the longitudinal direction of the battery module 50. Further, the guide plate 32 obliquely crosses the battery side 53a in the downstream region 53 in the vicinity of the boundary between the upstream region 52 and the downstream region 53 of the cooling air flow channel 51, with a space from the separation plate 31. The wind direction is changed. The guide plate 32 is a straight plate having the same height as the spacer 20, and is located in the longitudinal direction rearward of the battery module 50 from the vicinity of the boundary between the upstream region 52 and the downstream region 53 of the cooling air flow channel 51. It stands up obliquely toward the central portion (the central portion of the battery inner side 53b in the downstream region 53). An interrupted portion of the plate between the separation plate 31 and the guide plate 32 is an introduction flow path 51a that joins the cooling air that has passed through the battery side 52a in the upstream region 52 to the battery inner 53b in the downstream region 53. It becomes.

図7に示す第1例の整流板30によれば、分離板31によって上流域52の冷却風を電池側方52aの流れと電池内方52bの流れとに分離し、案内板32によって上流域52の電池側方52aを通過してきて温度上昇していない冷却風の風向きを変えて、下流域53の電池内方53bへと合流させることにより、下流域53の冷却風温度を下げて冷却効率を向上させている。下流域53の冷却効率が向上するので、電池内部52b,53bの温度ばらつきを低減して電池モジュール50を略均一に冷却することができ、各電池モジュール50の寿命の低下を防止することができる。本願発明においては後述するように、扁平型電池100をモジュールケース70内に収納して電池モジュール50を形成している。このような扁平型電池100においては通常、充放電に伴って発熱した場合、平面視(電池厚み方向から見て)電池外側から電池中央に向うに従って温度が高くなる。従って、このような扁平型電池を用いた電池モジュール50の表面に冷却風を流した場合には、電池内方52b(冷却風流路幅方向において中央方向)を通過した冷却風は温度が高く、電池側方53b(冷却風流路幅方向において外側方向)を通過した冷却風の温度は電池内方52bを通過した冷却風の温度よりも低くなる。本実施形態においては、上述の様に冷却風流通方向上流域の電池側方53bを通過した冷却風と電池内方52bを通過した冷却風とを、冷却風流通方向下流域で合流させることにより、冷却風流通方向上流域を流れる冷却風の温度と冷却風流通方向下領域を流れる冷却風の温度との温度差を低減して、電池モジュール50を極力均一に冷却することを可能としている。   According to the rectifying plate 30 of the first example shown in FIG. 7, the cooling air in the upstream region 52 is separated into the flow of the battery side 52 a and the flow of the battery inner 52 b by the separation plate 31, and the upstream region is separated by the guide plate 32. By changing the direction of the cooling air that has passed through the battery side 52a of the battery 52 and has not increased in temperature, and merged with the battery inner side 53b of the downstream region 53, the cooling air temperature in the downstream region 53 is lowered and the cooling efficiency is reduced. Has improved. Since the cooling efficiency of the downstream area 53 is improved, the temperature variation of the battery interiors 52b and 53b can be reduced to cool the battery modules 50 substantially uniformly, and the lifetime of each battery module 50 can be prevented from being reduced. . In the present invention, as will be described later, the flat battery 100 is housed in the module case 70 to form the battery module 50. In such a flat battery 100, when heat is generated with charging / discharging, the temperature generally increases from the outside of the battery (as viewed from the battery thickness direction) toward the center of the battery. Therefore, when cooling air is made to flow on the surface of the battery module 50 using such a flat battery, the temperature of the cooling air passing through the battery inner side 52b (center direction in the cooling air flow path width direction) is high, The temperature of the cooling air that has passed through the battery side 53b (the outer side in the cooling air flow path width direction) is lower than the temperature of the cooling air that has passed through the battery inner side 52b. In the present embodiment, as described above, the cooling air that has passed through the battery side 53b in the upstream region of the cooling air flow direction and the cooling air that has passed through the battery inner side 52b are merged in the downstream region of the cooling air flow direction. The temperature difference between the temperature of the cooling air flowing in the upstream area in the cooling air flow direction and the temperature of the cooling air flowing in the lower area in the cooling air flow direction is reduced, and the battery module 50 can be cooled as uniformly as possible.

なお、分離板31および案内板32は、たとえば、後述するモジュールケース70と同材質の薄肉の鋼板やアルミニウム板等の金属板により作製することができ、これらの金属板は電池モジュール50の放熱板としても機能する。   The separation plate 31 and the guide plate 32 can be made of, for example, a metal plate such as a thin steel plate or an aluminum plate made of the same material as the module case 70 described later. Also works.

図8および図9に示す第2例の整流板30では、冷却風流路51の上流域52を電池側方52aと電池内方52bとに隔てる湾曲した分離板33と、上流域52において電池側方52aを通過した冷却風を、下流域53において電池内方53bへと合流させる湾曲した案内板34と、から構成されている。これらの分離板33および案内板34は上記スペーサ20と同等の高さを有しており、後述するように、電池モジュール50間に隙間Sを形成するスペーサ20と一体的に形成することが好ましい。分離板33は、冷却風流路51の上流域52において、電池モジュール50上の左右方向の両側部に該電池モジュール50の長手方向に沿って配設され、その延出端33a側が電池モジュール50の内方へ湾曲するように起立している。また、案内板34は、冷却風流路51の上流域52と下流域53との境界部の近傍において、上記分離板33と間隔を隔てて、下流域53における電池側方53aを斜めに湾曲横断するように配設され、冷却風流路51の上流域52と下流域53との境界部の近傍の基端部34aから後方の延出端側へ向けて徐々に電池モジュール50の内方へ湾曲するように起立している。これらの湾曲した分離板33の延出端33a側と、湾曲した案内板34の基端側34aとによって区画された空間は、上流域52の電池側方52aを通過した冷却風を下流域53において電池内方53bへと合流させる導入流路51aとなる。   In the rectifying plate 30 of the second example shown in FIGS. 8 and 9, a curved separation plate 33 that separates the upstream region 52 of the cooling air flow passage 51 into the battery side 52 a and the battery inner 52 b, and the battery side in the upstream region 52. And a curved guide plate 34 that joins the cooling air that has passed through the direction 52 a to the battery inner side 53 b in the downstream region 53. The separation plate 33 and the guide plate 34 have the same height as the spacer 20 and are preferably formed integrally with the spacer 20 that forms the gap S between the battery modules 50 as described later. . The separation plate 33 is disposed along the longitudinal direction of the battery module 50 on both sides in the left-right direction on the battery module 50 in the upstream region 52 of the cooling air flow channel 51, and the extending end 33 a side of the separation plate 33 is the side of the battery module 50. Stands up to curve inward. In addition, the guide plate 34 bends and crosses the battery side 53a in the downstream region 53 at an angle in the vicinity of the boundary between the upstream region 52 and the downstream region 53 of the cooling air flow channel 51 with a space from the separation plate 33. And is gradually bent inward of the battery module 50 from the proximal end portion 34a in the vicinity of the boundary between the upstream region 52 and the downstream region 53 of the cooling air passage 51 toward the rearward extending end side. Stand up like you do. A space defined by the extended end 33 a side of the curved separation plate 33 and the proximal end side 34 a of the curved guide plate 34 is used to cool the cooling air that has passed through the battery side 52 a of the upstream region 52 in the downstream region 53. In this case, the introduction flow path 51a is joined to the battery inner side 53b.

図10(A)は、スペーサ20と湾曲分離板33または湾曲案内板34とを別体に形成した例である。図10(B)は、スペーサ20と湾曲分離板33または湾曲案内板34とを一体的に形成し、スペーサ20の円周部の一側に板材の一端が接触固定されている例である。たとえば、図8および図9の案内板34の構造に相当する。図10(C)は、スペーサ20と湾曲分離板33または湾曲案内板34とを一体的に形成し、スペーサ20の円周部の径方向両側にY字状の板材の二股端が接触固定されている例である。たとえば、図8および図9の分離板33の構造に相当する。   FIG. 10A shows an example in which the spacer 20 and the curved separation plate 33 or the curved guide plate 34 are formed separately. FIG. 10B is an example in which the spacer 20 and the curved separation plate 33 or the curved guide plate 34 are integrally formed, and one end of the plate material is contacted and fixed to one side of the circumferential portion of the spacer 20. For example, it corresponds to the structure of the guide plate 34 in FIGS. In FIG. 10C, the spacer 20 and the curved separation plate 33 or the curved guide plate 34 are integrally formed, and the bifurcated ends of the Y-shaped plate material are contact-fixed on both sides in the radial direction of the circumferential portion of the spacer 20. This is an example. For example, it corresponds to the structure of the separation plate 33 in FIGS.

図8および図9に示す第2例の整流板30によれば、分離板33および案内板34が湾曲板であるので、分離板33の延出端33a側と案内板34の基端部34aとに区画された導入流路51aを通して、上流域52の電池側方52aを通過してきて温度上昇していない冷却風を下流域53の電池内方53bへと円滑に導入することができる。特に、整流板30(湾曲分離板33および湾曲案内板34)と、隙間調整用のスペーサ20とを一体的に形成することにより、部品点数や新たに整流板の固定構造を追加する必要が無く、コストを増加させること無く、また、整流板30の組立工数を増加させることなく、整流板30を追加することができる。   According to the rectifying plate 30 of the second example shown in FIGS. 8 and 9, since the separation plate 33 and the guide plate 34 are curved plates, the extension end 33 a side of the separation plate 33 and the base end portion 34 a of the guide plate 34. The cooling air that has passed through the battery side 52a in the upstream region 52 and has not risen in temperature can be smoothly introduced into the battery inner side 53b in the downstream region 53 through the introduction flow path 51a partitioned into the first and second regions. In particular, by integrally forming the current plate 30 (the curved separation plate 33 and the curved guide plate 34) and the spacer 20 for adjusting the gap, there is no need to add the number of parts or a new structure for fixing the current plate. The rectifying plate 30 can be added without increasing the cost and without increasing the number of assembling steps of the rectifying plate 30.

図11に示す第3例では、前方左側のスペーサ20aから後方右側のスペーサ20dへ向けてS字状に湾曲させて整流板30Aを配設すると共に、前方右側のスペーサ20bから右側に隣接する電池モジュール50の後方左側のスペーサ20cへ向けてS字状に湾曲させて整流板30Bを配設している。この構成とは左右対称に、前方右側のスペーサ20bから後方左側のスペーサ20cへ向けてS字状に湾曲させて整流板30Aを配設すると共に、前方左側のスペーサ20aから左側に隣接する電池モジュール50の後方右側のスペーサ20dへ向けてS字状に湾曲させて整流板30Bを配設しても良い。すなわち、整流板30Aは電池モジュール50上に配設され、整流板30Bは左右の相隣接する電池モジュール50間に跨るように配設されており、この場合には、左右の相隣接する電池モジュール50間の空間は第1例および第2例よりも広い間隔となる。各整流板30の両端は、隙間調整用のスペーサ20と一体的に形成することが好ましい。   In the third example shown in FIG. 11, a rectifying plate 30A is arranged in an S shape from the front left spacer 20a toward the rear right spacer 20d, and the battery adjacent to the right side from the front right spacer 20b. A rectifying plate 30B is disposed so as to be curved in an S shape toward the spacer 20c on the left rear side of the module 50. Symmetrically symmetrical with this configuration, a rectifying plate 30A is provided by being curved in an S shape from the front right spacer 20b toward the rear left spacer 20c, and the battery module adjacent to the left side from the front left spacer 20a. The rectifying plate 30B may be arranged so as to be curved in an S shape toward the spacer 20d on the right rear side of the 50. That is, the rectifying plate 30A is disposed on the battery module 50, and the rectifying plate 30B is disposed so as to straddle between the left and right adjacent battery modules 50. In this case, the left and right adjacent battery modules are arranged. The space between 50 is wider than the first example and the second example. Both ends of each rectifying plate 30 are preferably formed integrally with the spacer 20 for adjusting the gap.

図11に示す第3例の整流板30によれば、冷却風流路51の上流域52において電池内方52bを通過してきて温度上昇した冷却風は、湾曲した整流板30Aと整流板30Bとに区画された空間を案内されて、下流域53において電池側方53aへと逃される。一方、冷却風流路51の上流域52において電池側方52aを通過してきて温度上昇していない冷却風は、湾曲した整流板30Bと整流板30Aとに区画された空間に導入されて、下流域53において電池内方53bへと案内される。   According to the rectifying plate 30 of the third example shown in FIG. 11, the cooling air that has passed through the battery inner side 52b in the upstream region 52 of the cooling air flow passage 51 and has risen in temperature flows into the curved rectifying plate 30A and the rectifying plate 30B. Guided by the partitioned space, it is escaped to the battery side 53a in the downstream area 53. On the other hand, the cooling air that has not passed through the battery side 52a in the upstream region 52 of the cooling air flow channel 51 and has not risen in temperature is introduced into the space defined by the curved rectifying plate 30B and the rectifying plate 30A, and the downstream region The battery 53 is guided to the battery inner side 53b.

図12を参照して、従来の組電池では、冷却風流路51となる上下の電池モジュール50間の隙間Sにスペーサ20のみが設けられるので、冷却風流路51の上流域52の電池内方52bを通過してきて温度上昇した冷却風が、そのまま下流域53の電池内方53bへと流れるので、電池モジュール50の下流域53においてさらに温度上昇して高温になり、電池内部52b,53bの温度にばらつきが生じる。   Referring to FIG. 12, in the conventional assembled battery, since only the spacer 20 is provided in the gap S between the upper and lower battery modules 50 that become the cooling air flow channel 51, the battery inner side 52 b in the upstream region 52 of the cooling air flow channel 51. Since the cooling air that has passed through and has risen in temperature flows to the battery inner side 53b in the downstream region 53 as it is, the temperature further rises in the downstream region 53 of the battery module 50 to a higher temperature, and reaches the temperature of the battery interiors 52b and 53b. Variation occurs.

これに対し第1例から第3例の整流板30によれば、冷却風流路51となる電池モジュール50間の隙間Sに整流板30を配設することにより、冷却風流路51の上流域52において電池側方52aを通過してきて温度上昇していない低温の冷却風を、下流域53において電池内方53bへと積極的に案内することができ、下流域53の冷却風温度を下げて高温になるのを防止して冷却効率を向上させることができる。したがって、電池内部52b,53bの温度ばらつきを低減して電池モジュール50を略均一に冷却することができ、各電池モジュール50の寿命の低下を防止することができるものである。   On the other hand, according to the rectifying plate 30 of the first to third examples, by arranging the rectifying plate 30 in the gap S between the battery modules 50 serving as the cooling air flow channel 51, the upstream region 52 of the cooling air flow channel 51. In the downstream area 53, the low-temperature cooling air that has passed through the battery side 52a and has not increased in temperature can be actively guided to the battery inner side 53b, and the cooling air temperature in the downstream area 53 is lowered to increase the temperature. It is possible to improve cooling efficiency. Therefore, the temperature variation of the battery interiors 52b and 53b can be reduced, the battery module 50 can be cooled substantially uniformly, and the lifetime of each battery module 50 can be prevented from being reduced.

図4および図5を参照して、電池モジュール50は、組電池10を組み立てる単位ユニットをなし、電気的に接続された複数枚(図示例では8枚)の扁平型電池100(101〜108の総称)を含むセルユニット60がモジュールケース70内に収納されている。なお、電池モジュール50は、電気的に接続された複数の扁平型電池(単電池)を備える点において組電池の一種であるが、本明細書においては、「組電池」を組み立てる際の単位ユニットである点で本発明の電池でもあり、複数の単電池をモジュールケース内に収納してなるユニットを「電池モジュール」と称することとする。   4 and 5, the battery module 50 forms a unit unit for assembling the assembled battery 10, and is electrically connected to a plurality of (eight in the illustrated example) flat batteries 100 (of 101 to 108). The cell unit 60 including the generic name) is housed in the module case 70. The battery module 50 is a kind of assembled battery in that it includes a plurality of electrically connected flat batteries (unit cells). In this specification, the unit unit for assembling the “assembled battery” In this respect, the battery according to the present invention is also referred to as a “battery module”. The unit includes a plurality of single cells housed in a module case.

モジュールケース70は、開口部71aが形成された箱形状をなす第1ケース71と、開口部71aを閉じる蓋体をなす第2ケース72と、を含んでいる。第2ケース72の縁部72aは、カシメ加工によって、第1ケース71の周壁71bの縁部71cに巻き締められている(図4の部分拡大図参照)。第1ケース71および第2ケース72は、比較的薄肉の鋼板またはアルミニウム板から形成され、プレス加工によって所定形状が付与されている。   The module case 70 includes a first case 71 having a box shape in which an opening 71a is formed, and a second case 72 forming a lid for closing the opening 71a. The edge 72a of the second case 72 is wound around the edge 71c of the peripheral wall 71b of the first case 71 by caulking (see the partially enlarged view of FIG. 4). The first case 71 and the second case 72 are formed from a relatively thin steel plate or aluminum plate, and are given a predetermined shape by press working.

セルユニット60は、8枚の扁平型電池100を積層するとともに各扁平型電池100を直列に接続してなるセルユニット本体80と、セルユニット本体80の前面および背面に着脱自在に取り付けられる絶縁カバー91、92と、を含んでいる。セルユニット本体80は、複数のスペーサ110によって各電極タブ100tが挟持され、また、正負の出力端子140、150が接続されている。   The cell unit 60 includes a cell unit main body 80 in which eight flat batteries 100 are stacked and the flat batteries 100 are connected in series, and an insulating cover that is detachably attached to the front and back surfaces of the cell unit main body 80. 91, 92. In the cell unit main body 80, each electrode tab 100t is sandwiched by a plurality of spacers 110, and positive and negative output terminals 140 and 150 are connected.

絶縁カバー91、92は、セルユニット本体80の前面側および背面側を覆うために用いられる。絶縁カバー91、92の中央位置には、コネクタ(図示せず)を差し込む差込口91aが形成されている。電圧の検出は、電池モジュール50の充放電管理のために行われる。   The insulating covers 91 and 92 are used to cover the front side and the back side of the cell unit main body 80. An insertion port 91 a into which a connector (not shown) is inserted is formed at the center position of the insulating covers 91 and 92. The detection of voltage is performed for charge / discharge management of the battery module 50.

正負の出力端子140、150は、第1ケース71の周壁71bの一部に形成した切り欠き部71d、71eを通してモジュールケース70から外部に導出される。絶縁カバー91、92の差込口91aも、周壁71bの一部に形成した切り欠き部71fを通してモジュールケース70の外部に露出される。出力端子140、150の前面には、ボルト(図示せず)がねじ込まれるねじ孔141、151が形成されている。   The positive and negative output terminals 140 and 150 are led out from the module case 70 through notches 71d and 71e formed in a part of the peripheral wall 71b of the first case 71. The insertion port 91a of the insulating covers 91 and 92 is also exposed to the outside of the module case 70 through a notch 71f formed in a part of the peripheral wall 71b. Screw holes 141 and 151 into which bolts (not shown) are screwed are formed on the front surfaces of the output terminals 140 and 150.

モジュールケース70の隅部の4箇所に通しボルト(図示せず)を挿通するために、第1ケース71および第2ケース72の隅部の4箇所にボルト孔73が形成され、各スペーサ110の2箇所にボルト孔111が形成されている。図4の符号93は、スペーサ110のボルト孔111に挿入されるスリーブを示し、符号94は、セルユニット60と第2ケース72との間に設けられる緩衝材を示している。   In order to insert through-bolts (not shown) in the four corners of the module case 70, bolt holes 73 are formed in the four corners of the first case 71 and the second case 72, and Bolt holes 111 are formed in two places. 4 indicates a sleeve inserted into the bolt hole 111 of the spacer 110, and reference numeral 94 indicates a cushioning material provided between the cell unit 60 and the second case 72.

図6を参照して、扁平型電池100は、例えば、扁平なリチウムイオン二次電池であり、正極板、負極板およびセパレータを順に積層した積層型の発電要素(図示せず)がラミネートフィルムなどで形成された袋状外装部材100aによって封止されている。電池100は、発電要素に一端が電気的に接続されるとともに板状をなす電極タブ(電極端子)100t(プラス側電極タブ100pおよびマイナス側電極タブ100mの総称)が外装材100aから外部に導出されている。タブ100tは、電池100の長手方向の両側に延びている。   Referring to FIG. 6, a flat battery 100 is, for example, a flat lithium ion secondary battery, and a laminated power generation element (not shown) in which a positive electrode plate, a negative electrode plate, and a separator are sequentially laminated is a laminate film or the like. It is sealed by a bag-shaped exterior member 100a formed by In the battery 100, one end of an electrode tab (electrode terminal) 100t (a general term for the plus-side electrode tab 100p and the minus-side electrode tab 100m) is electrically connected to the power generation element and led out from the exterior material 100a. Has been. The tab 100t extends on both sides of the battery 100 in the longitudinal direction.

上述した実施形態においては、8枚の扁平型電池100を積層したセルユニット60をモジュールケース70に収納して電池モジュール50を形成しているが、セルユニットを形成する扁平型電池100の枚数はこれに限定されず、例えば一枚でもよい。また、セルユニット60は必ずしもモジュールケース70に収納されている必要は無く、単に扁平型電池100を積層して形成された組電池10の所定枚数または1枚毎に隙間を設けて冷却風流路とし、この冷却風流路に上記の第1例から第3例の整流板30を同様の構成で配設することも可能である。これにより、冷却風流路の上流域において電池100の側方を通過してきて温度上昇していない低温の冷却風を、下流域において電池100の内方へと案内することができ、下流域の冷却風温度を下げて高温になるのを防止して冷却効率を向上させることができる。よって、電池100の内部の温度ばらつきを低減して電池100を略均一に冷却することができ、各電池100の寿命の低下を防止することができるものである。   In the embodiment described above, the cell unit 60 in which the eight flat batteries 100 are stacked is housed in the module case 70 to form the battery module 50. However, the number of the flat batteries 100 forming the cell unit is as follows. For example, a single sheet may be used. The cell unit 60 does not necessarily have to be stored in the module case 70, and a cooling air flow path is provided by providing a gap for every predetermined number or one of the assembled batteries 10 formed by simply stacking the flat batteries 100. The rectifying plate 30 of the first to third examples can be disposed in the cooling air passage with the same configuration. Thus, the low-temperature cooling air that has passed through the side of the battery 100 in the upstream area of the cooling air flow path and has not risen in temperature can be guided to the inside of the battery 100 in the downstream area. The cooling efficiency can be improved by lowering the wind temperature and preventing the wind temperature from becoming high. Therefore, the temperature variation inside the battery 100 can be reduced and the battery 100 can be cooled substantially uniformly, and the lifetime of each battery 100 can be prevented from being reduced.

(A)は本実施の形態に係る組電池の一例を前面側から見て示す斜視図、(B)は同組電池を背面側から見て示す斜視図である。(A) is a perspective view which shows an example of the assembled battery which concerns on this Embodiment from the front side, (B) is a perspective view which shows the assembled battery from the back side. 電池モジュールの配列後バスバー接続前の組電池を示す斜視図である。It is a perspective view which shows the assembled battery after the arrangement | sequence of a battery module and before a bus-bar connection. 電池モジュールの配列状態を示す模式図である。It is a schematic diagram which shows the arrangement | sequence state of a battery module. 組電池を組み立てる際の単位ユニットである電池モジュールの一例を示す斜視図である。It is a perspective view which shows an example of the battery module which is a unit unit at the time of assembling an assembled battery. 図4に示される電池モジュールを上下反転し、さらに分解して示す斜視図である。FIG. 5 is a perspective view showing the battery module shown in FIG. 4 turned upside down and further disassembled. 扁平型電池の一例を示す斜視図である。It is a perspective view which shows an example of a flat type battery. 冷却風流路に第1例の整流板を配設した状態示す平面図である。It is a top view which shows the state which has arrange | positioned the rectifying plate of the 1st example in the cooling air flow path. 冷却風流路に第2例の整流板を配設した状態示す平面図である。It is a top view which shows the state which has arrange | positioned the rectifying plate of the 2nd example in the cooling air flow path. 電池モジュール上に第2例の整流板を配設した状態示す斜視図である。It is a perspective view which shows the state which has arrange | positioned the baffle plate of the 2nd example on a battery module. 第2例の整流板を示す斜視図である。It is a perspective view which shows the baffle plate of the 2nd example. 冷却風流路に第3例の整流板を配設した状態示す平面図である。It is a top view which shows the state which has arrange | positioned the rectifying plate of the 3rd example in the cooling air flow path. 従来の電池モジュールの温度ばらつきを示す説明図である。It is explanatory drawing which shows the temperature dispersion | variation of the conventional battery module.

符号の説明Explanation of symbols

10 組電池、
20(20a、20b、20c、20d) スペーサ、
30(30A、30B) 整流板、
31、33 分離板、
32、34 案内板、
50 電池モジュール(電池)、
51 冷却風流路、
51a 導入流路、
52 上流域、
52a 上流域の電池側方、
52b 上流域の電池内方、
53 下流域、
53a 下流域の電池側方、
53b 下流域の電池内方、
100 扁平型電池。
10 battery packs,
20 (20a, 20b, 20c, 20d) spacer,
30 (30A, 30B) current plate,
31, 33 separator,
32, 34 Information board,
50 battery module (battery),
51 Cooling air flow path,
51a introduction flow path,
52 Upstream area,
52a The battery side of the upstream region,
52b Inside the upstream battery,
53 downstream area,
53a The side of the battery in the downstream area,
53b The inside of the battery in the downstream area,
100 Flat battery.

Claims (4)

正極板と負極板が積層された発電要素を外層部材内部に封止し、前記発電要素に接続された電極端子を前記外層部材外部に導出した、外形扁平型の扁平型電池を複数積層してなる組電池であって、
前記扁平型電池の所定枚数毎に、冷却風が流入する冷却風流路としての隙間と、
当該隙間を、冷却風流通方向上流域で冷却風流路幅方向中央側の電池内方と当該電池内方よりも冷却風流路幅方向外側の電池側方とに分流すると共に、冷却風流通方向下流域で前記電池側方を流通した冷却風を前記電池内方へ案内する整流板と、を備えることを特徴とする組電池。
A plurality of flat-type flat batteries having a flat outer shape in which a power generation element in which a positive electrode plate and a negative electrode plate are laminated is sealed inside an outer layer member and electrode terminals connected to the power generation element are led out of the outer layer member are stacked. An assembled battery comprising:
For each predetermined number of the flat battery, a gap as a cooling air flow path into which cooling air flows,
The gap is divided into the battery inner side in the cooling wind passage width direction center side and the battery side in the cooling wind passage width direction outside the battery inner side in the upstream region in the cooling wind passage direction, and lower in the cooling wind passage direction. A battery pack comprising: a rectifying plate that guides the cooling air flowing through the battery side in the basin to the inside of the battery.
前記整流板は、前記隙間を、冷却風流通方向上流域で冷却風流路幅方向中央側の電池内方と当該電池内方よりも冷却風流路幅方向外側の電池側方とに分流させる分流板と、冷却風流通方向下領域において前記冷却風流通方向上領域で電池内方を流通した冷却風を前記電池側方を流通した冷却風と合流させる案内板と、を有することを特徴とする請求項1に記載の組電池。   The rectifying plate divides the gap into a battery inner side in the cooling wind flow channel width direction central side in the upstream region of the cooling wind flow direction and a battery side in the cooling wind flow channel width direction outer side than the battery inner side. And a guide plate that joins the cooling air that has circulated inside the battery in the upper region of the cooling air flow direction with the cooling air that has circulated through the side of the battery in the lower region of the cooling air flow direction. Item 4. The assembled battery according to Item 1. 前記扁平型電池は、前記所定枚数毎にケースに収納されると共に、当該ケースに収納された状態で積層され、前記隙間は、積層方向に隣接するケース間に設けられていることを特徴とする請求項1または請求項2に記載の組電池。   The flat battery is stored in a case for each predetermined number of sheets, stacked in a state of being stored in the case, and the gap is provided between adjacent cases in the stacking direction. The assembled battery according to claim 1 or claim 2. 前記隙間は、前記積層方向に隣接するケース間に設けられたスペーサによって形成され、前記整流板は前記スペーサと一体に形成されていることを特徴とする請求項3に記載の組電池。   The assembled battery according to claim 3, wherein the gap is formed by a spacer provided between cases adjacent in the stacking direction, and the rectifying plate is formed integrally with the spacer.
JP2006274269A 2006-10-05 2006-10-05 Battery pack Pending JP2008097830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274269A JP2008097830A (en) 2006-10-05 2006-10-05 Battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274269A JP2008097830A (en) 2006-10-05 2006-10-05 Battery pack

Publications (1)

Publication Number Publication Date
JP2008097830A true JP2008097830A (en) 2008-04-24

Family

ID=39380481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274269A Pending JP2008097830A (en) 2006-10-05 2006-10-05 Battery pack

Country Status (1)

Country Link
JP (1) JP2008097830A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099288A (en) * 2010-10-29 2012-05-24 Primearth Ev Energy Co Ltd Battery pack
WO2012073415A1 (en) * 2010-11-29 2012-06-07 パナソニック株式会社 Battery pack
EP2533351A2 (en) 2011-06-08 2012-12-12 Lithium Energy Japan Battery pack
JP2013152818A (en) * 2012-01-24 2013-08-08 Toyota Industries Corp Flow path formation member and battery module
JP5364791B2 (en) * 2009-09-30 2013-12-11 株式会社日立製作所 Power storage module
JP2014207237A (en) * 2008-12-12 2014-10-30 エルジー・ケム・リミテッド (middle- or large-sized) battery pack having novel air cooling structure
JP2016009631A (en) * 2014-06-25 2016-01-18 日産自動車株式会社 Air battery unit
DE102015221264A1 (en) * 2015-10-30 2017-05-04 Bayerische Motoren Werke Aktiengesellschaft A storage device for storing electrical energy for a motor vehicle and method for operating such a storage device
CN112290123A (en) * 2020-11-03 2021-01-29 重庆广播电视大学重庆工商职业学院 New energy automobile battery cooling plate and water route simulation analysis and demonstration device thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252409B2 (en) 2008-12-12 2016-02-02 Lg Chem, Ltd. Middle or large-sized battery pack of novel air cooling structure
JP2014207237A (en) * 2008-12-12 2014-10-30 エルジー・ケム・リミテッド (middle- or large-sized) battery pack having novel air cooling structure
US9281549B2 (en) 2009-09-30 2016-03-08 Hitachi Automotive Systems, Ltd. Electricity storage module
JP5364791B2 (en) * 2009-09-30 2013-12-11 株式会社日立製作所 Power storage module
JP2012099288A (en) * 2010-10-29 2012-05-24 Primearth Ev Energy Co Ltd Battery pack
WO2012073415A1 (en) * 2010-11-29 2012-06-07 パナソニック株式会社 Battery pack
CN102782931A (en) * 2010-11-29 2012-11-14 松下电器产业株式会社 Battery pack
JPWO2012073415A1 (en) * 2010-11-29 2014-05-19 パナソニック株式会社 Battery pack
EP2533351A2 (en) 2011-06-08 2012-12-12 Lithium Energy Japan Battery pack
US8945741B2 (en) 2011-06-08 2015-02-03 Lithium Energy Japan Battery pack including a guide disposed on an inner surface of a case
JP2013152818A (en) * 2012-01-24 2013-08-08 Toyota Industries Corp Flow path formation member and battery module
JP2016009631A (en) * 2014-06-25 2016-01-18 日産自動車株式会社 Air battery unit
DE102015221264A1 (en) * 2015-10-30 2017-05-04 Bayerische Motoren Werke Aktiengesellschaft A storage device for storing electrical energy for a motor vehicle and method for operating such a storage device
CN112290123A (en) * 2020-11-03 2021-01-29 重庆广播电视大学重庆工商职业学院 New energy automobile battery cooling plate and water route simulation analysis and demonstration device thereof
CN112290123B (en) * 2020-11-03 2021-09-14 重庆广播电视大学重庆工商职业学院 New energy automobile battery cooling plate and water route simulation analysis and demonstration device thereof

Similar Documents

Publication Publication Date Title
US11444353B2 (en) Battery pack
KR102142669B1 (en) Air cooling type Battery Module having Guide vane
JP2008097830A (en) Battery pack
EP1753068B1 (en) Battery module
JP5526289B2 (en) Battery pack with new structure
KR101453780B1 (en) Battery module container, battery module temperature control apparatus and power storage system having them
EP2533350B1 (en) Battery module with improved heat exchange efficiency
JP5718549B2 (en) Medium and large battery packs with excellent cooling efficiency
US8227106B2 (en) Battery module having cooling means, and middle or large-sized battery pack containing the same
EP2738835B1 (en) Battery module
US8455133B2 (en) Battery pack
EP3453060B1 (en) Cooling arrangement for energy storage device
JP5866373B2 (en) Battery pack with excellent cooling efficiency
US8765287B2 (en) Battery module
US20120263991A1 (en) Battery pack
JP5201296B2 (en) Power supply
JP2007200712A (en) Battery pack
JP2007200778A (en) Cooling structure of secondary battery
JP2014130780A (en) Battery module and battery unit
JP4747576B2 (en) Assembled battery
JP5119727B2 (en) Laminate battery pack cooling device
JP2011044275A (en) Power supply device, and vehicle using the same
JP2006156090A (en) Battery pack
JP5242220B2 (en) Assembled battery
JP6980513B2 (en) Spacer for storage battery and assembled battery