JP2008096813A - Optical fiber ribbon for installation in structure - Google Patents

Optical fiber ribbon for installation in structure Download PDF

Info

Publication number
JP2008096813A
JP2008096813A JP2006280170A JP2006280170A JP2008096813A JP 2008096813 A JP2008096813 A JP 2008096813A JP 2006280170 A JP2006280170 A JP 2006280170A JP 2006280170 A JP2006280170 A JP 2006280170A JP 2008096813 A JP2008096813 A JP 2008096813A
Authority
JP
Japan
Prior art keywords
optical fiber
tape
fiber
laying
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280170A
Other languages
Japanese (ja)
Other versions
JP4946338B2 (en
Inventor
Shinji Komatsuzaki
晋路 小松崎
Masatsugu Kojima
正嗣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006280170A priority Critical patent/JP4946338B2/en
Publication of JP2008096813A publication Critical patent/JP2008096813A/en
Application granted granted Critical
Publication of JP4946338B2 publication Critical patent/JP4946338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber ribbon for installation in a structure, with reduced initial transmission loss. <P>SOLUTION: The optical fiber ribbon 1 for installation in a structure is equipped with an optical fiber 2, a plurality of fibers 3 arranged on the periphery of the optical fiber 2, and a resin body 4 which is formed in a long ribbon shape in the axial direction of the optical fiber, with these optical fiber 2 and the fibers 3 embedded therein, wherein there are provided along the optical fiber 2 linear members 5 that protect the optical fiber 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、初期伝送損失を低減する構造物敷設用テープ状光ファイバに関する。   The present invention relates to a tape-like optical fiber for laying a structure that reduces initial transmission loss.

構造物敷設用テープ状光ファイバは、構造物の表面に固定したり構造物内に埋め込むことにより敷設し、構造物に印加されている歪みを計測することを目的としている。   The tape-like optical fiber for laying a structure is intended to measure the strain applied to the structure by laying it by fixing it to the surface of the structure or by embedding it in the structure.

図4により歪み計測の原理を説明する。光源光が伝搬している光ファイバから散乱光が発生する。図4に示されるように、散乱光は種類により波長帯を異にし、レイリー散乱光の波長λ0の長波長側と短波長側とにそれぞれブリルアン散乱光が存在し、さらに長波長側にはラマン散乱光の内のストークス光が存在し、反対に短波長側にはラマン散乱光の内のアンチストークス光が存在する。レイリー散乱光の波長λ0に対するブリルアン散乱光の波長のシフト量(波長の差)が光ファイバの歪みに依存する。そのため、このシフト量を検出すれば歪みを計測することができる。   The principle of strain measurement will be described with reference to FIG. Scattered light is generated from the optical fiber through which the light source light propagates. As shown in FIG. 4, the scattered light has different wavelength bands depending on the type, and Brillouin scattered light exists on the long wavelength side and the short wavelength side of the wavelength λ0 of the Rayleigh scattered light. Stokes light in the scattered light exists, and anti-Stokes light in the Raman scattered light exists on the short wavelength side. The shift amount (wavelength difference) of the Brillouin scattered light with respect to the wavelength λ0 of the Rayleigh scattered light depends on the distortion of the optical fiber. Therefore, distortion can be measured by detecting this shift amount.

また、ストークス光とアンチストークス光との強度比が温度に依存するので、この強度比を検出すれば温度を計測することができる。   In addition, since the intensity ratio between Stokes light and anti-Stokes light depends on temperature, the temperature can be measured by detecting this intensity ratio.

従来の構造物敷設用テープ状光ファイバは、一方向性ガラス繊維体で強化した熱可塑性樹脂内にポリイミド被覆ファイバを埋め込んだものである(非特許文献1参照)。一方向性ガラス繊維体とは、一本一本の繊維が複数本揃って同じ方向に向かせて配置されたものである。   A conventional tape-like optical fiber for laying a structure is one in which a polyimide-coated fiber is embedded in a thermoplastic resin reinforced with a unidirectional glass fiber body (see Non-Patent Document 1). A unidirectional glass fiber body is one in which a plurality of individual fibers are aligned and oriented in the same direction.

図5に示されるように、構造物敷設用テープ状光ファイバ51は、一方向性ガラス繊維体(図示せず)を用い、光ファイバ52の周囲に複数のガラス繊維53を、全てのガラス繊維53の向きを光ファイバ52の軸方向に向かせて配置し、これら光ファイバ52及びガラス繊維53を樹脂57で埋め込んで光ファイバ52の軸方向に長いテープ状に樹脂体54を形成したものである。この構造物敷設用テープ状光ファイバ51は、ガラス繊維53により樹脂体54の機械的強度が強化されており、また、樹脂体54の樹脂57が熱可塑性樹脂からなるため、プラント等の高温環境下においても歪み計測が可能な耐熱性を有している。   As shown in FIG. 5, the tape-like optical fiber 51 for laying a structure uses a unidirectional glass fiber body (not shown), a plurality of glass fibers 53 around the optical fiber 52, and all the glass fibers. The resin body 54 is formed in a tape shape that is long in the axial direction of the optical fiber 52 by placing the optical fiber 52 and the glass fiber 53 with the resin 57. is there. In the tape-like optical fiber 51 for laying the structure, the mechanical strength of the resin body 54 is reinforced by the glass fiber 53, and the resin 57 of the resin body 54 is made of a thermoplastic resin. It has heat resistance that enables strain measurement even underneath.

熱可塑性樹脂は、樹脂57として光ファイバ52及びガラス繊維53の周囲に埋める際に所定の温度に加熱して軟化させる必要があるため、熱可塑性樹脂には、耐熱温度が300℃であり、一般のセンサ用耐熱被覆材であるポリイミド樹脂が用いられる。   Since the thermoplastic resin needs to be softened by heating to a predetermined temperature when buried around the optical fiber 52 and the glass fiber 53 as the resin 57, the thermoplastic resin has a heat resistant temperature of 300 ° C. Polyimide resin, which is a heat-resistant coating material for sensors, is used.

しかし、図5のようにガラス繊維53が全て光ファイバ52の軸方向の向きに配置された構造物敷設用テープ状光ファイバ51は、光ファイバ52に垂直な方向に働くせん断応力に対しては十分な機械的強度を保持できるが、光ファイバ52の軸方向に働くせん断応力に対しては十分な機械的強度を保持することが難しく、光ファイバ52の軸方向にクラックや割れが発生しやすく、裂けやすい。   However, as shown in FIG. 5, the tape-like optical fiber 51 for laying a structure in which all the glass fibers 53 are arranged in the axial direction of the optical fiber 52 is free from shear stress acting in a direction perpendicular to the optical fiber 52. Although sufficient mechanical strength can be maintained, it is difficult to maintain sufficient mechanical strength against shear stress acting in the axial direction of the optical fiber 52, and cracks and cracks are likely to occur in the axial direction of the optical fiber 52. Easy to tear.

そこで、図6に示されるように、ガラス繊維63を光ファイバ62の軸方向とテープ幅方向(=光ファイバに垂直な方向)の2方向に配置することにより、光ファイバ62の軸方向に働くせん断応力に対しても樹脂体64が十分な機械的強度を保持できる構造物敷設用テープ状光ファイバ61が考案されている。   Therefore, as shown in FIG. 6, the glass fibers 63 are arranged in two directions, ie, the axial direction of the optical fiber 62 and the tape width direction (= direction perpendicular to the optical fiber), thereby acting in the axial direction of the optical fiber 62. A tape-like optical fiber 61 for laying a structure has been devised in which the resin body 64 can maintain sufficient mechanical strength against shear stress.

この構造物敷設用テープ状光ファイバ61は、前述の補強効果だけでなく、樹脂体64を光ファイバ62の軸の回りに捻転させると光ファイバ62に垂直な方向に向いたガラス繊維63が光ファイバ62の軸方向に向いたガラス繊維63にせん断応力を与えるため、ガラス繊維63と共に樹脂体64をテープ幅方向に裂くことができる。これにより、図7に示されるように、樹脂体64を引き裂いて内部の光ファイバ62を取り出すことができるので、コネクタ装着のための加工が容易である。   The tape-like optical fiber 61 for laying the structure has not only the above-described reinforcing effect, but also the glass fiber 63 oriented in the direction perpendicular to the optical fiber 62 is lighted when the resin body 64 is twisted around the axis of the optical fiber 62. Since a shear stress is applied to the glass fiber 63 oriented in the axial direction of the fiber 62, the resin body 64 can be split together with the glass fiber 63 in the tape width direction. Thereby, as shown in FIG. 7, the resin body 64 can be torn and the internal optical fiber 62 can be taken out, so that the processing for mounting the connector is easy.

図5、図6の構造物敷設用テープ状光ファイバ51,61に組み込む光ファイバには、曲げや局所的な歪みによる伝送損失の増加を小さくために、例えば、コアに添加するゲルマニウムの量を増やしてコアとクラッドとの比屈折率差をシングルモードファイバよりも大きくした高デルタ光ファイバや、クラッドのコアを中心とした円周上に複数の空孔を設けてクラッドの平均屈折率を等価的にコアよりも小さくしたホーリーファイバなどを用いる。   In order to reduce an increase in transmission loss due to bending or local distortion, for example, the amount of germanium added to the core is reduced in the optical fiber incorporated in the tape-like optical fibers 51 and 61 for laying the structure in FIGS. Increase the relative refractive index difference between the core and the clad to be higher than that of the single mode fiber, or provide multiple holes on the circumference around the clad core to equalize the average refractive index of the clad For example, a holey fiber that is smaller than the core is used.

B.Glistic、D.Inaudi、「Integration of long−gage fiber−optic sensor into a fiber−reinforced composite sensing tape」16th International Conference on Optical Fiber Sensors、Nara、Japan 13th−17th October(2003)B. Glistic, D.C. Inaudi, “Integration of long-gage fiber-optical sensor into a fiber-reinformed composite sensing tape, 16th International Conference on Optical 13

図6の構造物敷設用テープ状光ファイバの製造方法を図8により説明する。   A manufacturing method of the tape-like optical fiber for laying the structure of FIG. 6 will be described with reference to FIG.

図8に示されるように、光ファイバ62をテープ厚み方向から二方向性ガラス繊維体66で挟み込む。二方向性ガラス繊維体66とは、複数のガラス繊維63を直交させてクロス構造に配置したものである。一方のガラス繊維63を光ファイバの軸方向に向け他方のガラス繊維63をテープ幅方向に向け配置するものとする。   As shown in FIG. 8, the optical fiber 62 is sandwiched between the bidirectional glass fiber bodies 66 from the tape thickness direction. The bi-directional glass fiber body 66 is a structure in which a plurality of glass fibers 63 are orthogonally arranged in a cross structure. One glass fiber 63 is arranged in the axial direction of the optical fiber, and the other glass fiber 63 is arranged in the tape width direction.

二方向性ガラス繊維体66のテープ厚み方向両外側にはそれぞれビニルエステル等の熱可塑性樹脂67を重ね、さらにその両外側にそれぞれ剥離用テープ68を重ねる。一方の剥離用テープ68に熱印加板69を当て、他方の剥離用テープ68に加重印加板(図示せず)を当てる。熱印加板69を例えば約45℃の温度に加熱しながら加重印加板を押し付けることで、テープ厚み方向から圧力を与え、軟化した熱可塑性樹脂67で光ファイバ62及び二方向性ガラス繊維体66を埋め込む。   A thermoplastic resin 67 such as vinyl ester is stacked on both outer sides of the bi-directional glass fiber body 66 in the tape thickness direction, and a peeling tape 68 is further stacked on both outer sides thereof. A heat application plate 69 is applied to one peeling tape 68 and a weight application plate (not shown) is applied to the other peeling tape 68. By pressing the weighted application plate while heating the heat application plate 69 to a temperature of about 45 ° C., for example, pressure is applied from the tape thickness direction, and the optical fiber 62 and the bidirectional glass fiber body 66 are made of the softened thermoplastic resin 67. Embed.

しかし、熱及び圧力を印加する前の図8の状態では、光ファイバ62を挟み込んだ2つの二方向性ガラス繊維体66間には隙間がある。加重印加板により圧力を与えたとき、二方向性ガラス繊維体66が隙間を狭めていくため、図9に示されるように、二方向性ガラス繊維体66中の光ファイバに垂直なガラス繊維63が光ファイバ62を囲むように曲がって、その応力が光ファイバ62に加わる。光ファイバ62は、この応力によって径方向に圧迫され、曲げや局所的な歪みを生じる。この結果、構造物敷設用テープ状光ファイバ61の伝送損失の増加を招いてしまう。   However, in the state of FIG. 8 before applying heat and pressure, there is a gap between the two bidirectional glass fiber bodies 66 sandwiching the optical fiber 62. When the pressure is applied by the weight application plate, the bi-directional glass fiber body 66 narrows the gap, so that the glass fiber 63 perpendicular to the optical fiber in the bi-directional glass fiber body 66 is shown in FIG. Is bent so as to surround the optical fiber 62, and the stress is applied to the optical fiber 62. The optical fiber 62 is squeezed in the radial direction by this stress, causing bending and local distortion. As a result, the transmission loss of the structure-laying tape-like optical fiber 61 is increased.

また、熱可塑性樹脂67の成形(埋め込み)の後、冷却して硬化させるとき、熱可塑性樹脂67が収縮しながら硬化する。このため、この硬化しつつある熱可塑性樹脂67に随伴して二方向性ガラス繊維体66が変形すると、二方向性ガラス繊維体66中の光ファイバに垂直なガラス繊維63が光ファイバ62を圧迫し、伝送損失の増加を招いてしまう。同時に、熱可塑性樹脂67が光ファイバ62の軸方向にも収縮するため、光ファイバ62に軸方向の応力が加わる。   When the thermoplastic resin 67 is molded (embedded) and then cooled and cured, the thermoplastic resin 67 is cured while shrinking. Therefore, when the bi-directional glass fiber body 66 is deformed in association with the curing thermoplastic resin 67, the glass fibers 63 perpendicular to the optical fiber in the bi-directional glass fiber body 66 press the optical fiber 62. As a result, transmission loss increases. At the same time, since the thermoplastic resin 67 contracts in the axial direction of the optical fiber 62, an axial stress is applied to the optical fiber 62.

光ファイバ62に軸方向の応力が加わると、光ファイバ62がうねって小曲がりが発生してしまい、伝送損失の増加を招く。   When an axial stress is applied to the optical fiber 62, the optical fiber 62 undulates and a small bend occurs, leading to an increase in transmission loss.

このように、図6の構造物敷設用テープ状光ファイバ61は、製造時に加わった局所的な歪みによる伝送損失の増加が熱可塑性樹脂67の硬化によって製品に固定的に残留して初期伝送損失となる。このため、せっかく高デルタ光ファイバやホーリーファイバを用いて製造時や製造後に加わる曲げや局所的な歪みによる伝送損失を低減しても、それだけでは不十分である。   As described above, in the tape-like optical fiber 61 for laying the structure of FIG. 6, the increase in transmission loss due to local distortion applied at the time of manufacture remains fixed on the product due to the hardening of the thermoplastic resin 67, and the initial transmission loss. It becomes. For this reason, it is not sufficient to reduce transmission loss due to bending or local distortion applied during or after manufacture using a high delta optical fiber or holey fiber.

そこで、本発明の目的は、上記課題を解決し、初期伝送損失を低減する構造物敷設用テープ状光ファイバを提供することにある。   Therefore, an object of the present invention is to provide a tape-like optical fiber for laying a structure that solves the above-described problems and reduces initial transmission loss.

上記目的を達成するために本発明は、光ファイバと、その光ファイバの周囲に配置された複数の繊維と、これら光ファイバ及び繊維を樹脂で埋め込んで光ファイバの軸方向に長いテープ状に形成された樹脂体とを備えた構造物敷設用テープ状光ファイバにおいて、上記光ファイバに沿わせて該光ファイバを保護する線状部材を設けたものである。   In order to achieve the above object, the present invention provides an optical fiber, a plurality of fibers arranged around the optical fiber, and the optical fiber and the fiber embedded in a resin so as to be formed in a tape shape long in the axial direction of the optical fiber. A tape-like optical fiber for laying a structure provided with the resin body is provided with a linear member that protects the optical fiber along the optical fiber.

上記線状部材を、上記光ファイバのテープ幅方向両側にそれぞれ配置してもよい。   The linear members may be arranged on both sides of the optical fiber in the tape width direction.

上記線状部材の外径を、上記光ファイバの外径と同一か、より大きくしてもよい。   The outer diameter of the linear member may be the same as or larger than the outer diameter of the optical fiber.

上記線状部材の径方向の剛性を、上記光ファイバの径方向の剛性より強くしてもよい。   The radial rigidity of the linear member may be stronger than the radial rigidity of the optical fiber.

上記線状部材の軸方向の剛性を、上記光ファイバの軸方向の剛性より強くしてもよい。   The axial rigidity of the linear member may be made stronger than the axial rigidity of the optical fiber.

上記線状部材の曲げ剛性を、上記光ファイバの曲げ剛性より弱くしてもよい。   The bending rigidity of the linear member may be weaker than the bending rigidity of the optical fiber.

上記線状部材を、光ファイバ、金属線、ガラス繊維、樹脂線のいずれかとしてもよい。   The said linear member is good also as either an optical fiber, a metal wire, glass fiber, and a resin wire.

上記繊維の配置方向を、光ファイバの軸方向とテープ幅方向の2方向としてもよい。   The fiber arrangement direction may be two directions, that is, the axial direction of the optical fiber and the tape width direction.

上記繊維を、ガラス繊維、アラミド繊維、炭素繊維、POB(ポリ−p−フェニレンベンゾビスオキサゾール)繊維のいずれかとしてもよい。   The fiber may be any of glass fiber, aramid fiber, carbon fiber, and POB (poly-p-phenylenebenzobisoxazole) fiber.

上記樹脂体の樹脂を、不飽和ポリエチレン樹脂、ビニルエステル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリブテンのいずれかとしてもよい。   The resin of the resin body may be any of unsaturated polyethylene resin, vinyl ester resin, epoxy resin, polyimide resin, polyphenylene sulfide resin, polyether ether ketone resin, and polybutene.

上記光ファイバを、高デルタ光ファイバ、ホーリーファイバのいずれかとしてもよい。   The optical fiber may be either a high delta optical fiber or a holey fiber.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)初期伝送損失を低減することができる。   (1) The initial transmission loss can be reduced.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る構造物敷設用テープ状光ファイバ1は、光ファイバ2と、その光ファイバ2の周囲に配置された複数の繊維3と、これら光ファイバ2及び繊維3を樹脂7で埋め込んで光ファイバ2の軸方向に長いテープ状に形成された樹脂体4とを備えた構造物敷設用テープ状光ファイバ1において、光ファイバ2に沿わせて光ファイバ2を保護する線状部材5を設けたものである。   As shown in FIG. 1, a tape-like optical fiber 1 for laying a structure according to the present invention includes an optical fiber 2, a plurality of fibers 3 arranged around the optical fiber 2, the optical fibers 2 and the fibers. In a structure-laying tape-like optical fiber 1 having a resin body 4 formed by embedding 3 in a resin 7 and having a long tape shape in the axial direction of the optical fiber 2, the optical fiber 2 is arranged along the optical fiber 2. A linear member 5 to be protected is provided.

この実施形態では、線状部材5を、光ファイバ2のテープ幅方向両側に、それぞれ光ファイバ2と平行に、光ファイバ2に接するように配置している。線状部材5の外径は、光ファイバ2の外径と同一である。線状部材5としては、通信用として一般に使用されている光ファイバ、金属線、ガラス繊維、光ケーブル用のテンションメンバ(抗張力体)に使用されている樹脂線などがある。   In this embodiment, the linear members 5 are arranged on both sides of the optical fiber 2 in the tape width direction so as to be in contact with the optical fiber 2 in parallel with the optical fiber 2. The outer diameter of the linear member 5 is the same as the outer diameter of the optical fiber 2. Examples of the linear member 5 include an optical fiber, a metal wire, a glass fiber, and a resin wire used for a tension member (strength member) for an optical cable that are generally used for communication.

光ファイバ2は、コア13とクラッド14を有し、その外周にポリイミド樹脂15を被覆したシングルモードファイバ(クラッド径125±1μm、外径約145μm)である。   The optical fiber 2 is a single mode fiber (clad diameter 125 ± 1 μm, outer diameter about 145 μm) having a core 13 and a clad 14 and coated with a polyimide resin 15 on the outer periphery thereof.

この実施形態では、繊維3の配置方向を光ファイバ2の軸方向とテープ幅方向の2方向とするべく、光ファイバ2をテープ厚み方向両側から二方向性ガラス繊維体で挟み込んでいる(図8参照)。繊維3としては、ガラス繊維、アラミド繊維、炭素繊維、POB(ポリ−p−フェニレンベンゾビスオキサゾール)繊維などがある。   In this embodiment, the optical fiber 2 is sandwiched by bi-directional glass fiber bodies from both sides of the tape thickness direction so that the arrangement direction of the fibers 3 is two directions of the axial direction of the optical fiber 2 and the tape width direction (FIG. 8). reference). Examples of the fiber 3 include glass fiber, aramid fiber, carbon fiber, and POB (poly-p-phenylenebenzobisoxazole) fiber.

樹脂体4の樹脂は、熱硬化性樹脂であり、不飽和ポリエチレン樹脂、ビニルエステル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリブテンなどがある。   The resin of the resin body 4 is a thermosetting resin, such as an unsaturated polyethylene resin, a vinyl ester resin, an epoxy resin, a polyimide resin, a polyphenylene sulfide resin, a polyether ether ketone resin, or a polybutene.

構造物敷設用テープ状光ファイバ1の製造方法は、図8で説明した方法と概略同じであり、線状部材5を光ファイバ2に沿わせる点だけが異なる。   The manufacturing method of the structure-laying tape-like optical fiber 1 is substantially the same as the method described with reference to FIG. 8, except that the linear member 5 extends along the optical fiber 2.

次に、構造物敷設用テープ状光ファイバ1の作用効果を説明する。   Next, the effect of the structure-laying tape-like optical fiber 1 will be described.

本発明の構造物敷設用テープ状光ファイバ1は、光ファイバ2に沿わせた線状部材5があるため、製造時に樹脂が軸方向に収縮した際、線状部材5がテンションメンバの役割を果たし、光ファイバ2に加わる軸方向の圧縮歪みを低減することができる。   Since the tape-like optical fiber 1 for laying a structure of the present invention has a linear member 5 along the optical fiber 2, when the resin contracts in the axial direction at the time of manufacture, the linear member 5 serves as a tension member. As a result, the compressive strain in the axial direction applied to the optical fiber 2 can be reduced.

軸方向の圧縮歪みを低減することにより、光ファイバ2の軸方向に小曲がりが発生することを防止することができるため、光ファイバ2の伝送損失を低減できる。   By reducing the compressive strain in the axial direction, it is possible to prevent a small bend from occurring in the axial direction of the optical fiber 2, thereby reducing the transmission loss of the optical fiber 2.

また、図8と同様にして加重印加板により圧力を与えて二方向性ガラス繊維体6が隙間を狭めていくとき、図2に示されるように、光ファイバ2に垂直な繊維3が光ファイバ2と線状部材5を囲むように曲がる。このとき、その曲げによる応力は主として線状部材5に加わる。よって、光ファイバ2に加わる応力は図9の場合に比べると緩和される。すなわち、線状部材5がクッション材(緩衝材)となり、光ファイバ2の径方向に加わる圧縮歪みが低減されるので、光ファイバ2の曲げや局所的な歪みが低減される。このようにして、製造時における構造物敷設用テープ状光ファイバ1の伝送損失の増加を低減し、初期伝送損失を低減することができる。   Similarly to FIG. 8, when the pressure is applied by the weighted application plate and the bi-directional glass fiber body 6 narrows the gap, the fibers 3 perpendicular to the optical fiber 2 are formed as shown in FIG. 2 and bend so as to surround the linear member 5. At this time, the stress due to the bending is mainly applied to the linear member 5. Therefore, the stress applied to the optical fiber 2 is relaxed compared to the case of FIG. That is, the linear member 5 serves as a cushioning material (buffer material), and compressive strain applied in the radial direction of the optical fiber 2 is reduced, so that bending and local strain of the optical fiber 2 are reduced. In this way, it is possible to reduce the increase in transmission loss of the structure-laying tape-like optical fiber 1 at the time of manufacture, and to reduce the initial transmission loss.

次に、本発明の他の実施形態を説明する。   Next, another embodiment of the present invention will be described.

線状部材5は、テンションメンバの役割を果たすので、軸方向の剛性ができるだけ大きなものが望ましく、例えば、光ファイバ2の軸方向の剛性より強いことが望ましい。軸方向の剛性は、例えば、ヤング率で表すことができる。   Since the linear member 5 plays the role of a tension member, it is desirable that the rigidity in the axial direction is as large as possible. For example, the linear member 5 is preferably stronger than the rigidity in the axial direction of the optical fiber 2. The axial rigidity can be expressed, for example, by Young's modulus.

また、線状部材5は、図2の原理で加わる応力を線状部材5に集中させるために、光ファイバ2に比べて径方向の剛性が十分に大きい(強い)ことが望ましい。径方向の剛性は、例えば、ヤング率で表すことができる。    Further, it is desirable that the linear member 5 has sufficiently large (strong) radial rigidity compared to the optical fiber 2 in order to concentrate the stress applied to the linear member 5 according to the principle of FIG. The radial rigidity can be expressed, for example, by Young's modulus.

さらに、構造物敷設用テープ状光ファイバ1は曲げて敷設されることが考えられるため、線状部材5の曲げ剛性が光ファイバの曲げ剛性より十分に小さい(弱い)ことが望ましい。曲げ剛性が強すぎると、構造物敷設用テープ状光ファイバ1を湾曲部に設置する場合に設置が難しい等の不具合が生じる。   Furthermore, since it is conceivable that the tape-like optical fiber 1 for laying a structure is bent and laid, it is desirable that the bending rigidity of the linear member 5 is sufficiently smaller (weak) than the bending rigidity of the optical fiber. If the bending rigidity is too strong, problems such as difficulty in installation occur when the tape-like optical fiber 1 for laying a structure is installed in a curved portion.

線状部材5の曲げ剛性は、ヤング率Eと線状部材5の断面構造によって決まる断面2次モーメントIとによって、E・Iと定義される。ただし、曲げ剛性がどの程度以下であればよいかという具体的数値は、設置場所を考慮して適宜設定することが望ましい。   The bending rigidity of the linear member 5 is defined as E · I by the Young's modulus E and the sectional second moment I determined by the sectional structure of the linear member 5. However, it is desirable that the specific numerical value indicating the degree of bending rigidity or less be appropriately set in consideration of the installation location.

図1の実施形態では、線状部材5の外径を光ファイバ2の外径と同一にしたので、テープ厚み方向に線状部材5と光ファイバ2の中心軸の位置を揃えることが容易となる。一方、線状部材5の外径を光ファイバ2の外径より大きくすることにより、二方向性ガラス繊維体6中の光ファイバ2に垂直な繊維3が光ファイバ2に触れなくなるか又は圧迫しにくくなる。よって、製造時における構造物敷設用テープ状光ファイバ1の伝送損失の増加を低減し、初期伝送損失を低減することができる。   In the embodiment of FIG. 1, since the outer diameter of the linear member 5 is the same as the outer diameter of the optical fiber 2, it is easy to align the positions of the central axes of the linear member 5 and the optical fiber 2 in the tape thickness direction. Become. On the other hand, by making the outer diameter of the linear member 5 larger than the outer diameter of the optical fiber 2, the fibers 3 perpendicular to the optical fiber 2 in the bidirectional glass fiber body 6 do not touch or press the optical fiber 2. It becomes difficult. Therefore, it is possible to reduce an increase in transmission loss of the structure-laying tape-like optical fiber 1 at the time of manufacture and to reduce an initial transmission loss.

図1の実施形態では、光ファイバ2はシングルモードファイバとしたが、高デルタ光ファイバ、ホーリーファイバ(例えば、クラッド径80±1μm、外径約100μm)など、歪みに対する伝送損失増加の小さい光ファイバを用いるとよい。   In the embodiment of FIG. 1, the optical fiber 2 is a single mode fiber, but an optical fiber having a small increase in transmission loss with respect to strain, such as a high delta optical fiber or a holey fiber (for example, a cladding diameter of 80 ± 1 μm and an outer diameter of about 100 μm). Should be used.

図1の実施形態では、光ファイバ2は単体であり、その両側に線状部材5を沿わせたが、図3に示されるように、複数本の光ファイバ(種類はシングルモードファイバ、高デルタ光ファイバ、ホーリーファイバなど)32を平行に配置したテープ状光ファイバの幅方向両側に線状部材35を沿わせて樹脂体34に埋め込んだ構造物敷設用テープ状光ファイバ31においても、これまで説明したのと同様の効果を得ることができる。   In the embodiment of FIG. 1, the optical fiber 2 is a single body and the linear members 5 are arranged on both sides thereof. However, as shown in FIG. 3, a plurality of optical fibers (types are single mode fibers, high deltas). Also in the tape-like optical fiber 31 for laying a structure in which the linear member 35 is embedded in the resin body 34 along the both sides in the width direction of the tape-like optical fiber in which the optical fibers 32 and the holey fiber 32 are arranged in parallel. The same effect as described can be obtained.

本発明は、光ファイバ2に沿わせて線状部材5を設けることにより、光ファイバ2を保護するので、複数の繊維3の方向がどのような任意の方向であっても光ファイバ2を保護することができる。とりわけ、上記実施形態では、繊維3の配置方向を光ファイバ2の軸方向とテープ幅方向の2方向としたので、テープ幅方向のせん断応力に対する強度が強化される利点や製造後における図7のような加工が容易となる利点をそのまま生かすことができる。   Since the present invention protects the optical fiber 2 by providing the linear member 5 along the optical fiber 2, the optical fiber 2 is protected regardless of the direction of the plurality of fibers 3. can do. In particular, in the above embodiment, since the fiber 3 is arranged in two directions, ie, the axial direction of the optical fiber 2 and the tape width direction, the strength against the shear stress in the tape width direction is enhanced, and FIG. The advantage that such processing becomes easy can be utilized as it is.

なお、樹脂体4を光ファイバ2の軸の回りに捻転させると、ガラス繊維3と共に樹脂体4をテープ幅方向に裂くことができる。この後、光ファイバ2と線状部材5は個別に必要長にカットして、コネクタ装着等の加工が施される。   If the resin body 4 is twisted around the axis of the optical fiber 2, the resin body 4 can be split along with the glass fibers 3 in the tape width direction. Thereafter, the optical fiber 2 and the linear member 5 are individually cut into necessary lengths and subjected to processing such as connector mounting.

本発明は、初期伝送損失を低減できるので、結果的に、全体的な伝送損失の増加を著しく小さくすることができる。   Since the present invention can reduce the initial transmission loss, the overall increase in transmission loss can be significantly reduced as a result.

本発明の一実施形態を示す構造物敷設用テープ状光ファイバの断面付き斜視図及び断面拡大図である。It is the perspective view with a cross section and the cross-sectional enlarged view of the tape-shaped optical fiber for constructing a structure showing an embodiment of the present invention. 本発明の構造物敷設用テープ状光ファイバにおいて繊維から光ファイバに応力が加わりにくい様子を示した樹脂体透視図である。It is the resin body perspective view which showed a mode that it was hard to add stress from a fiber to the optical fiber in the tape-form optical fiber for structure laying of this invention. 本発明の一実施形態を示す構造物敷設用テープ状光ファイバの断面付き斜視図である。It is a perspective view with a section of a tape optic fiber for constructing a structure which shows one embodiment of the present invention. 光ファイバにおける散乱光の波長分布図である。It is a wavelength distribution map of the scattered light in an optical fiber. 従来の構造物敷設用テープ状光ファイバの断面付き斜視図及び断面拡大図である。It is the perspective view with a cross section and the cross-sectional enlarged view of the conventional tape-shaped optical fiber for structure laying. 従来の構造物敷設用テープ状光ファイバの断面付き斜視図及び断面拡大図である。It is the perspective view with a cross section and the cross-sectional enlarged view of the conventional tape-shaped optical fiber for structure laying. 構造物敷設用テープ状光ファイバの端末処理状態を示す断面付き斜視図である。It is a perspective view with a cross section which shows the terminal processing state of the tape-form optical fiber for structure laying. 構造物敷設用テープ状光ファイバの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the tape-form optical fiber for structure laying. 従来の構造物敷設用テープ状光ファイバにおいて繊維から光ファイバに応力が加わる様子を示した樹脂体透視図である。It is the resin body perspective view which showed a mode that stress was added to the optical fiber from the fiber in the conventional tape-form optical fiber for structure laying.

符号の説明Explanation of symbols

1 構造物敷設用テープ状光ファイバ
2 光ファイバ
3 繊維
4 樹脂体
5 線状部材
7 樹脂
DESCRIPTION OF SYMBOLS 1 Tape-like optical fiber for structure laying 2 Optical fiber 3 Fiber 4 Resin body 5 Linear member 7 Resin

Claims (11)

光ファイバと、その光ファイバの周囲に配置された複数の繊維と、これら光ファイバ及び繊維を樹脂で埋め込んで光ファイバの軸方向に長いテープ状に形成された樹脂体とを備えた構造物敷設用テープ状光ファイバにおいて、上記光ファイバに沿わせて該光ファイバを保護する線状部材を設けたことを特徴とする構造物敷設用テープ状光ファイバ。   Laying a structure comprising an optical fiber, a plurality of fibers arranged around the optical fiber, and a resin body formed by embedding the optical fiber and the fiber with a resin and formed in a tape shape long in the axial direction of the optical fiber A tape-like optical fiber for laying a structure, characterized in that a linear member for protecting the optical fiber is provided along the optical fiber. 上記線状部材を、上記光ファイバのテープ幅方向両側にそれぞれ配置したことを特徴とする請求項1記載の構造物敷設用テープ状光ファイバ。   2. The tape-like optical fiber for laying a structure according to claim 1, wherein the linear members are respectively arranged on both sides of the optical fiber in the tape width direction. 上記線状部材の外径を、上記光ファイバの外径と同一か、より大きくしたことを特徴とする請求項1又は2記載の構造物敷設用テープ状光ファイバ。   The tape-shaped optical fiber for laying a structure according to claim 1 or 2, wherein an outer diameter of the linear member is equal to or larger than an outer diameter of the optical fiber. 上記線状部材の径方向の剛性を、上記光ファイバの径方向の剛性より強くしたことを特徴とする請求項1〜3いずれか記載の構造物敷設用テープ状光ファイバ。   The tape-shaped optical fiber for laying a structure according to any one of claims 1 to 3, wherein the radial rigidity of the linear member is made stronger than the radial rigidity of the optical fiber. 上記線状部材の軸方向の剛性を、上記光ファイバの軸方向の剛性より強くしたことを特徴とする請求項1〜4いずれか記載の構造物敷設用テープ状光ファイバ。   The tape-like optical fiber for laying a structure according to any one of claims 1 to 4, wherein the axial rigidity of the linear member is made stronger than the axial rigidity of the optical fiber. 上記線状部材の曲げ剛性を、上記光ファイバの曲げ剛性より弱くしたことを特徴とする請求項1〜5いずれか記載の構造物敷設用テープ状光ファイバ。   6. The tape-like optical fiber for laying a structure according to claim 1, wherein the bending rigidity of the linear member is weaker than that of the optical fiber. 上記線状部材を、光ファイバ、金属線、ガラス繊維、樹脂線のいずれかとしたことを特徴とする請求項1〜6いずれか記載の構造物敷設用テープ状光ファイバ。   The tape-like optical fiber for laying a structure according to any one of claims 1 to 6, wherein the linear member is any one of an optical fiber, a metal wire, a glass fiber, and a resin wire. 上記繊維の配置方向を、光ファイバの軸方向とテープ幅方向の2方向としたことを特徴とする請求項1〜3いずれか記載の構造物敷設用テープ状光ファイバ。   The tape-like optical fiber for laying a structure according to any one of claims 1 to 3, wherein the fiber is arranged in two directions, ie, an axial direction of the optical fiber and a tape width direction. 上記繊維を、ガラス繊維、アラミド繊維、炭素繊維、POB(ポリ−p−フェニレンベンゾビスオキサゾール)繊維のいずれかとしたことを特徴とする請求項1〜8いずれか記載の構造物敷設用テープ状光ファイバ。   The tape-like light for laying a structure according to any one of claims 1 to 8, wherein the fiber is any one of glass fiber, aramid fiber, carbon fiber, and POB (poly-p-phenylenebenzobisoxazole) fiber. fiber. 上記樹脂体の樹脂を、不飽和ポリエチレン樹脂、ビニルエステル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリブテンのいずれかとしたことを特徴とする請求項1〜9いずれか記載の構造物敷設用テープ状光ファイバ。   The resin of the resin body is any one of unsaturated polyethylene resin, vinyl ester resin, epoxy resin, polyimide resin, polyphenylene sulfide resin, polyether ether ketone resin, and polybutene. Tape-like optical fiber for laying structures. 上記光ファイバを、高デルタ光ファイバ、ホーリーファイバのいずれかとしたことを特徴とする請求項1〜10いずれか記載の構造物敷設用テープ状光ファイバ。   The tape-like optical fiber for laying a structure according to any one of claims 1 to 10, wherein the optical fiber is a high delta optical fiber or a holey fiber.
JP2006280170A 2006-10-13 2006-10-13 Tape-like optical fiber for laying structures and manufacturing method thereof Expired - Fee Related JP4946338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280170A JP4946338B2 (en) 2006-10-13 2006-10-13 Tape-like optical fiber for laying structures and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280170A JP4946338B2 (en) 2006-10-13 2006-10-13 Tape-like optical fiber for laying structures and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008096813A true JP2008096813A (en) 2008-04-24
JP4946338B2 JP4946338B2 (en) 2012-06-06

Family

ID=39379709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280170A Expired - Fee Related JP4946338B2 (en) 2006-10-13 2006-10-13 Tape-like optical fiber for laying structures and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4946338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189566A (en) * 2017-05-10 2018-11-29 古河電気工業株式会社 Optical fiber sensor cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029791B2 (en) 2018-01-09 2022-03-04 アドバンス電気工業株式会社 Air operated valve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368548A (en) * 1991-06-17 1992-12-21 Mitsui Constr Co Ltd Reinforcing member for civil construction and construction of building
JPH1090018A (en) * 1996-09-17 1998-04-10 Sumitomo Electric Ind Ltd System for observing distortion of ground
JP2001004440A (en) * 1999-06-18 2001-01-12 Nippon Telegr & Teleph Corp <Ntt> Plate embedded with optical fiber sensor, composite material embedded with optical fiber sensor and production thereof
JP2002048515A (en) * 2000-08-01 2002-02-15 Fujikura Ltd Optical fiber cable
JP2003028618A (en) * 2001-07-10 2003-01-29 Fujikura Ltd Strain-detecting optical cable and strain detector using the same
JP2003083721A (en) * 2001-09-17 2003-03-19 Railway Technical Res Inst Optical fiber sensor structure
JP2005326511A (en) * 2004-05-12 2005-11-24 East Japan Railway Co Optical fiber installed long size bar and its manufacturing method
JP2005337845A (en) * 2004-05-26 2005-12-08 Hitachi Cable Ltd Optical fiber for strain sensor
JP2006208650A (en) * 2005-01-27 2006-08-10 Fujikura Ltd Coated optical fiber ribbon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368548A (en) * 1991-06-17 1992-12-21 Mitsui Constr Co Ltd Reinforcing member for civil construction and construction of building
JPH1090018A (en) * 1996-09-17 1998-04-10 Sumitomo Electric Ind Ltd System for observing distortion of ground
JP2001004440A (en) * 1999-06-18 2001-01-12 Nippon Telegr & Teleph Corp <Ntt> Plate embedded with optical fiber sensor, composite material embedded with optical fiber sensor and production thereof
JP2002048515A (en) * 2000-08-01 2002-02-15 Fujikura Ltd Optical fiber cable
JP2003028618A (en) * 2001-07-10 2003-01-29 Fujikura Ltd Strain-detecting optical cable and strain detector using the same
JP2003083721A (en) * 2001-09-17 2003-03-19 Railway Technical Res Inst Optical fiber sensor structure
JP2005326511A (en) * 2004-05-12 2005-11-24 East Japan Railway Co Optical fiber installed long size bar and its manufacturing method
JP2005337845A (en) * 2004-05-26 2005-12-08 Hitachi Cable Ltd Optical fiber for strain sensor
JP2006208650A (en) * 2005-01-27 2006-08-10 Fujikura Ltd Coated optical fiber ribbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189566A (en) * 2017-05-10 2018-11-29 古河電気工業株式会社 Optical fiber sensor cable

Also Published As

Publication number Publication date
JP4946338B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4626535B2 (en) Tape optical fiber cable
US6259844B1 (en) Strengthened fiber optic cable
US20040258373A1 (en) Monitoring cable
WO2016111290A1 (en) Covered pc steel twisted wire
US9453979B2 (en) Multi-core optical fiber tape
KR100899515B1 (en) Optical fiber coil and manufacturing method of the same
EP1217350B1 (en) Stress sensor based on periodically inserted color-changing tactile films to detect mishandling fiber optic cables
US20160159000A1 (en) Method of making adhesion between thermoset and thermoplastic polymers
JP2019070593A (en) Pc steel strand wire with optical fiber, strain measurement method, and strain measurement apparatus
JP4946338B2 (en) Tape-like optical fiber for laying structures and manufacturing method thereof
JP6434260B2 (en) Measuring device, strain measuring method, PC steel strand, and optical fiber member
US6466716B1 (en) Optical fiber having a bragg grating in a wrap that resists temperature-induced changes in length
JP5261265B2 (en) Bundle fiber
KR102049731B1 (en) Protective sleeve
JPH09243886A (en) Nonmetallic optical fiber cable
KR100965001B1 (en) wire strand having sensor unit and production method of thereof
CN102819079A (en) Tight tube optical fiber grating serial sensing optical cable
JPH07225330A (en) Optical unit for optical composite overhead earth wire
JP2006322721A (en) Optical fiber sensor
Shimizu et al. Air-Blown Fiber Optic Cable with SWR and WTC Technologies
KR20090025098A (en) Probe for fiber bragg grating temperature seonsor
JP2005221919A (en) Optical fiber cable and its manufacturing method
JPH0248607A (en) Optical fiber unit
CN117090064A (en) Grating intelligent prestress steel strand and manufacturing method thereof
JPH0343618Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees