JP2008096743A - Positive resist composition for liquid immersion lithography and resist pattern forming method - Google Patents

Positive resist composition for liquid immersion lithography and resist pattern forming method Download PDF

Info

Publication number
JP2008096743A
JP2008096743A JP2006279146A JP2006279146A JP2008096743A JP 2008096743 A JP2008096743 A JP 2008096743A JP 2006279146 A JP2006279146 A JP 2006279146A JP 2006279146 A JP2006279146 A JP 2006279146A JP 2008096743 A JP2008096743 A JP 2008096743A
Authority
JP
Japan
Prior art keywords
group
acid
alkyl group
component
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006279146A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
中村  剛
Yasuhiro Yoshii
靖博 吉井
Hiroaki Shimizu
宏明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2006279146A priority Critical patent/JP2008096743A/en
Publication of JP2008096743A publication Critical patent/JP2008096743A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive resist composition for liquid immersion lithography capable of suppressing substance elution in liquid immersion lithography and having excellent lithography characteristics, and a resist pattern forming method. <P>SOLUTION: The positive resist composition for liquid immersion lithography comprises a resin component (A) of which the alkali solubility increases under the action of an acid, an acid generator component (B) which generates an acid upon exposure to light and an acid propagator component (G). The resist pattern forming method includes the step of forming a resist film on a substrate using the positive resist composition for liquid immersion lithography; subjecting the resist film to liquid immersion lithography; and developing the resist film to form a resist pattern. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液浸露光(イマージョン(immersion)リソグラフィー)に用いられる液浸露光用ポジ型レジスト組成物およびレジストパターン形成方法に関する。   The present invention relates to a positive resist composition for immersion exposure and a method for forming a resist pattern used for immersion exposure (immersion lithography).

半導体デバイス、液晶デバイス等の各種電子デバイスにおける微細構造の製造には、リソグラフィー法が多用されているが、デバイス構造の微細化に伴って、リソグラフィー工程におけるレジストパターンの微細化が要求されている。現在では、リソグラフィー法により、例えばArFエキシマレーザーを用いた最先端の領域では、線幅が90nm程度の微細なレジストパターンを形成することが可能となっているが、今後はさらに微細なパターン形成が要求される。   Lithography is often used to manufacture fine structures in various electronic devices such as semiconductor devices and liquid crystal devices. However, with the miniaturization of device structures, it is required to make finer resist patterns in the lithography process. At present, it is possible to form a fine resist pattern with a line width of about 90 nm in a state-of-the-art region using, for example, an ArF excimer laser by a lithography method. Required.

このような微細なパターン形成を達成させるためには、露光装置と、それに対応するレジストの開発が第一となる。
レジストとしては、放射線の照射により酸を発生する酸発生剤と、該酸発生剤から発生した酸の作用によりアルカリ溶解性が変化するベース樹脂とを含有する化学増幅型レジストが注目され、盛んに開発が行われている。化学増幅型レジストによれば、高解像性が達成される上に、放射線の照射により発生した酸の触媒反応、連鎖反応が利用でき、量子収率が1以上で、しかも高感度が達成できる。
ポジ型の化学増幅型レジストにおいては、主に、酸解離性溶解抑制基を有する樹脂が用いられている。該酸解離性溶解抑制基としては、たとえば、エトキシエチル基等のアセタール基、tert−ブチル基等の3級アルキル基、tert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基などが知られている。また、従来ArFレジスト組成物の樹脂成分中の酸解離性溶解抑制基を有する構成単位としては、下記特許文献1に示されるように、(メタ)アクリル酸の3級エステル化合物、例えば2−アルキル−2−アダマンチル(メタ)アクリレート等から誘導される構成単位が一般的に用いられている。なお、「(メタ)アクリル酸」とは、α位に水素原子が結合したアクリル酸と、α位にメチル基が結合したメタクリル酸の一方あるいは両方を意味する。「(メタ)アクリレート」とは、α位に水素原子が結合したアクリレートと、α位にメチル基が結合したメタクリレートの一方あるいは両方を意味する。
In order to achieve such a fine pattern formation, the development of an exposure apparatus and a corresponding resist is the first.
As the resist, a chemically amplified resist containing an acid generator that generates an acid upon irradiation with radiation and a base resin whose alkali solubility is changed by the action of the acid generated from the acid generator has attracted attention. Development is underway. According to the chemically amplified resist, not only high resolution is achieved, but also the catalytic reaction and chain reaction of the acid generated by radiation irradiation can be used, the quantum yield is 1 or more, and high sensitivity can be achieved. .
In a positive chemically amplified resist, a resin having an acid dissociable, dissolution inhibiting group is mainly used. As the acid dissociable, dissolution inhibiting group, for example, an acetal group such as an ethoxyethyl group, a tertiary alkyl group such as a tert-butyl group, a tert-butoxycarbonyl group, and a tert-butoxycarbonylmethyl group are known. Further, as a structural unit having an acid dissociable, dissolution inhibiting group in a resin component of a conventional ArF resist composition, as shown in Patent Document 1 below, a tertiary ester compound of (meth) acrylic acid, for example, 2-alkyl A structural unit derived from 2-adamantyl (meth) acrylate or the like is generally used. “(Meth) acrylic acid” means one or both of acrylic acid having a hydrogen atom bonded to the α-position and methacrylic acid having a methyl group bonded to the α-position. “(Meth) acrylate” means one or both of an acrylate having a hydrogen atom bonded to the α-position and a methacrylate having a methyl group bonded to the α-position.

一方、露光装置においては、使用する光源波長の短波長化や、レンズの開口数(NA)の大口径化(高NA化)等が一般的である。たとえば、一般に、レジスト解像性約0.5μmでは水銀ランプの主要スペクトルが436nmのg線が、約0.5〜0.30μmでは同じく水銀ランプの主要スペクトルが365nmのi線が用いられており、約0.30〜0.15μmでは248nmのKrFエキシマレーザー光が用いられ、約0.15μm以下では193nmのArFエキシマレーザー光が用いられている。また、さらなる微細化のために、Fエキシマレーザー(157nm)やArエキシマレーザー(126nm)、EUV(極端紫外線;13.5nm)、EB(電子線)、X線等の使用が検討されている。
しかし、光源波長の短波長化は高額な新たな露光装置が必要となる。また、高NA化では、解像度と焦点深度幅がトレードオフの関係にあるため、解像度を上げても焦点深度幅が低下するという問題がある。
On the other hand, in an exposure apparatus, it is common to shorten the wavelength of the light source used, increase the numerical aperture (NA) of the lens (to increase the NA), or the like. For example, in general, the g-line with a main spectrum of a mercury lamp of 436 nm is used at a resist resolution of about 0.5 μm, and the i-line with a main spectrum of a mercury lamp of 365 nm is used at about 0.5 to 0.30 μm. 248 nm KrF excimer laser light is used at about 0.30 to 0.15 μm, and 193 nm ArF excimer laser light is used at about 0.15 μm or less. For further miniaturization, the use of F 2 excimer laser (157 nm), Ar 2 excimer laser (126 nm), EUV (extreme ultraviolet; 13.5 nm), EB (electron beam), X-ray, etc. has been studied. Yes.
However, shortening the wavelength of the light source requires an expensive new exposure apparatus. Further, when the NA is increased, the resolution and the depth of focus are in a trade-off relationship. Therefore, there is a problem that the depth of focus is reduced even if the resolution is increased.

そのような中、液浸露光(イマージョンリソグラフィー)という方法が報告されている(たとえば、非特許文献1〜3参照)。この方法は、露光時に、従来は空気や窒素等の不活性ガスで満たされているレンズとウェーハ上のレジスト膜との間の部分を、空気の屈折率よりも大きい屈折率を有する溶媒(液浸媒体)で満たした状態で露光(浸漬露光)を行う工程を有する方法である。   Under such circumstances, a method called immersion exposure (immersion lithography) has been reported (for example, see Non-Patent Documents 1 to 3). This method uses a solvent (liquid) having a refractive index larger than the refractive index of air at the time of exposure between a lens and a resist film on the wafer, which is conventionally filled with an inert gas such as air or nitrogen. It is a method including a step of performing exposure (immersion exposure) in a state filled with an immersion medium.

このような液浸露光によれば、同じ露光波長の光源を用いても、より短波長の光源を用いた場合や高NAレンズを用いた場合と同様の高解像性を達成でき、しかも焦点深度幅の低下もないといわれている。また、液浸露光は、既存の露光装置を用いて行うことができる。そのため、液浸露光は、低コストで、高解像性で、かつ焦点深度幅にも優れるレジストパターンの形成を実現できると予想され、多額な設備投資を必要とする半導体素子の製造において、コスト的にも、解像度等のリソグラフィー特性的にも、半導体産業に多大な効果を与えるものとして大変注目されている。現在、液浸媒体としては、主に水が検討されている。
特開平10−161313号公報 ジャーナルオブバキュームサイエンステクノロジー(Journal of Vacuum Science & Technology B)(米国)、1999年、第17巻、6号、3306−3309頁. ジャーナルオブバキュームサイエンステクノロジー(Journal of Vacuum Science & Technology B)(米国)、2001年、第19巻、6号、2353−2356頁. プロシーディングスオブエスピーアイイ(Proceedings of SPIE)(米国)、2002年、第4691巻、459−465頁.
According to such immersion exposure, even when a light source having the same exposure wavelength is used, the same high resolution as when a light source having a shorter wavelength or a high NA lens is used can be achieved, and the focus can be reduced. It is said that there is no decrease in depth. Moreover, immersion exposure can be performed using an existing exposure apparatus. Therefore, immersion exposure is expected to be able to form a resist pattern with low cost, high resolution, and excellent depth of focus, and in the manufacture of semiconductor devices that require a large capital investment. In particular, in terms of lithography characteristics such as resolution, the semiconductor industry is attracting a great deal of attention. Currently, water is mainly studied as an immersion medium.
JP-A-10-161313 Journal of Vacuum Science & Technology B (USA), 1999, Vol. 17, No. 6, pp. 3306-3309. Journal of Vacuum Science & Technology B (USA), 2001, Vol. 19, No. 6, pp. 2353-2356. Proceedings of SPIE (USA), 2002, 4691, pages 459-465.

しかし、液浸露光にはまだまだ未知な点が多く、微細なパターンを実際に使用できるレベルで形成することは、実際には困難である。たとえば、液浸露光においては、上述のように、浸漬露光時にレジスト膜やレンズに液浸媒体が接触する。そのため、レジストに含まれる物質が液浸媒体中へ溶出する等によりレジスト膜が変質してその性能が低下したり、溶出した物質によって液浸媒体の屈折率が局所的に変化したり、溶出した物質がレンズ表面を汚染する等により、リソグラフィー特性に悪影響を与えることが考えられる。すなわち、感度が劣化したり、得られるレジストパターンがT−トップ形状となったり、レジストパターンの表面荒れや膨潤が生じる等の問題が予想される。
このような問題を解決する手段として、たとえば、レジスト膜の、液浸媒体に対する親和性を低くすることが考えられる。たとえば、現在、液浸媒体としては、主に水等の水性溶剤が検討されていることから、レジスト膜表面の親水性を低くする、つまり疎水性(撥水性)を高めることが、上記問題の改善に有効ではないかと推測される。
However, there are still many unknown points in immersion exposure, and it is actually difficult to form a fine pattern at a level where it can actually be used. For example, in immersion exposure, as described above, the immersion medium comes into contact with the resist film and the lens during immersion exposure. For this reason, the resist film changes in quality due to elution of substances contained in the resist into the immersion medium, and the performance of the resist film deteriorates, or the refractive index of the immersion medium locally changes or dissolves due to the eluted substance. It is conceivable that the substance adversely affects the lithography characteristics due to contamination of the lens surface. That is, problems such as deterioration in sensitivity, a resulting resist pattern having a T-top shape, and surface roughness and swelling of the resist pattern are expected.
As a means for solving such a problem, for example, it is conceivable to reduce the affinity of the resist film for the immersion medium. For example, as an immersion medium, an aqueous solvent such as water is currently being studied. Therefore, reducing the hydrophilicity of the resist film surface, that is, increasing the hydrophobicity (water repellency) causes the above-mentioned problem. It is estimated that it is effective for improvement.

しかしながら、レジスト膜の疎水性を高めるためにはレジストの組成を変更する必要があり、レジスト組成の変更は、通常、リソグラフィー特性の悪化を伴ってしまう。そのため、液浸露光用として用いるためにレジスト膜の疎水性を高めたとしても、当該レジスト膜に対し、実際に使用できるレベルで微細なパターンを形成することは困難である。
本発明は、上記事情に鑑みてなされたものであって、浸漬露光時の物質溶出を抑制でき、リソグラフィー特性にも優れた液浸露光用ポジ型レジスト組成物およびレジストパターン形成方法を提供することを目的とする。
However, in order to increase the hydrophobicity of the resist film, it is necessary to change the composition of the resist, and the change in the resist composition is usually accompanied by deterioration of lithography characteristics. Therefore, even if the hydrophobicity of the resist film is increased for use in immersion exposure, it is difficult to form a fine pattern on the resist film at a practically usable level.
The present invention has been made in view of the above circumstances, and provides a positive resist composition for immersion exposure and a method for forming a resist pattern, which can suppress substance elution during immersion exposure and have excellent lithography properties. With the goal.

上記の目的を達成するために、本発明は以下の構成を採用した。
すなわち、本発明の第一の態様は、酸の作用によりアルカリ溶解性が増大する樹脂成分(A)、露光により酸を発生する酸発生剤成分(B)および酸増殖剤成分(G)を含有することを特徴とする液浸露光用ポジ型レジスト組成物である。
In order to achieve the above object, the present invention employs the following configuration.
That is, the first aspect of the present invention includes a resin component (A) whose alkali solubility is increased by the action of an acid, an acid generator component (B) that generates an acid upon exposure, and an acid multiplier component (G). A positive resist composition for immersion exposure.

また、本発明の第二の態様は、前記第一の態様の液浸露光用ポジ型レジスト組成物を用いて基板上にレジスト膜を形成する工程、前記レジスト膜を浸漬露光する工程および前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法である。   The second aspect of the present invention includes a step of forming a resist film on a substrate using the positive resist composition for immersion exposure according to the first aspect, a step of immersion exposure of the resist film, and the resist. A resist pattern forming method including a step of developing a film to form a resist pattern.

なお、本明細書および特許請求の範囲において、「構成単位」とは、重合体(樹脂)を構成するモノマー単位を意味する。
「アルキル基」は、特に断りがない限り、直鎖状、分岐鎖状および環状の1価の飽和炭化水素基を包含するものとする。
「低級アルキル基」は、炭素原子数1〜5のアルキル基を意味する。
「露光」とは、光の照射のみならず、電子線の照射等の放射線の照射全体を包括する概念とする。
In the present specification and claims, “structural unit” means a monomer unit constituting a polymer (resin).
Unless otherwise specified, the “alkyl group” includes linear, branched and cyclic monovalent saturated hydrocarbon groups.
“Lower alkyl group” means an alkyl group having 1 to 5 carbon atoms.
“Exposure” is a concept that encompasses not only light irradiation but also whole irradiation of radiation such as electron beam irradiation.

本発明によれば、浸漬露光時の物質溶出を抑制でき、リソグラフィー特性にも優れた液浸露光用ポジ型レジスト組成物およびレジストパターン形成方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the elution of the substance at the time of immersion exposure can be suppressed, and the positive resist composition for immersion exposure which was excellent also in the lithography characteristic, and the resist pattern formation method can be provided.

≪液浸露光用ポジ型レジスト組成物≫
本発明の液浸露光用ポジ型レジスト組成物は、酸の作用によりアルカリ溶解性が増大する樹脂成分(A)(以下、(A)成分という。)、露光により酸を発生する酸発生剤成分(B)(以下、(B)成分という。)および酸増殖剤成分(G)(以下、(G)成分という。)を含有する。
かかる液浸露光用ポジ型レジスト組成物において、(A)成分は、露光前はアルカリ不溶性であり、露光により(B)成分から酸が発生すると、該酸の作用により、(A)成分のアルカリ溶解性が増大する。そのため、レジストパターンの形成において、当該液浸露光用ポジ型レジスト組成物を用いて得られるレジスト膜に対して選択的露光を行うと、露光部はアルカリ可溶性へ転じる一方で、未露光部はアルカリ不溶性のまま変化しないので、アルカリ現像を行うことにより、レジストパターンを形成することができる。
また、本発明の液浸露光用ポジ型レジスト組成物においては、前記(A)成分、(B)成分および(G)成分に加え、好ましくは、さらに含窒素有機化合物(D)(以下、(D)成分という。)を含有する。
以下、各成分について説明する。
≪Positive resist composition for immersion exposure≫
The positive resist composition for immersion exposure of the present invention comprises a resin component (A) whose alkali solubility is increased by the action of an acid (hereinafter referred to as component (A)), and an acid generator component which generates an acid upon exposure. (B) (hereinafter referred to as component (B)) and acid proliferator component (G) (hereinafter referred to as component (G)).
In such a positive resist composition for immersion exposure, the component (A) is insoluble in alkali before exposure, and when an acid is generated from the component (B) by exposure, the action of the acid causes the alkali of the component (A). Solubility increases. Therefore, in the formation of the resist pattern, when selective exposure is performed on the resist film obtained using the positive resist composition for immersion exposure, the exposed portion turns into alkali-soluble, while the unexposed portion becomes alkaline. Since it remains insoluble and does not change, a resist pattern can be formed by alkali development.
In the positive resist composition for immersion exposure according to the present invention, in addition to the components (A), (B) and (G), preferably a nitrogen-containing organic compound (D) (hereinafter, ( D) component)).
Hereinafter, each component will be described.

<(A)成分>
本発明において、(A)成分は、特に限定されず、これまで、ポジ型の化学増幅型レジスト用のベース樹脂として提案されているものを使用することができ、たとえばポリヒドロキシスチレン系樹脂、アクリル酸エステル系樹脂等が挙げられる。
本発明においては、なかでも、(A)成分としては、アクリル酸エステルから誘導される構成単位を有することが好ましい。
かかる構成単位を有する樹脂は、特にArFエキシマレーザーに対する透明性が高く、ArFエキシマレーザーを用いたリソグラフィーにおいて好適に使用できる。
(A)成分中、アクリル酸エステルから誘導される構成単位の割合は、当該(A)成分を構成する全構成単位の合計に対し、20モル%以上であることが好ましく、50モル%以上がより好ましく、80モル%以上がさらに好ましく、100モル%であってもよい。
<(A) component>
In the present invention, the component (A) is not particularly limited, and those conventionally proposed as base resins for positive chemically amplified resists can be used, such as polyhydroxystyrene resins, acrylic resins, and the like. Examples include acid ester resins.
In the present invention, among them, the component (A) preferably has a structural unit derived from an acrylate ester.
A resin having such a structural unit is particularly highly transparent to an ArF excimer laser, and can be suitably used in lithography using an ArF excimer laser.
In the component (A), the proportion of the structural unit derived from the acrylate ester is preferably 20 mol% or more, and 50 mol% or more with respect to the total of all the structural units constituting the component (A). More preferably, 80 mol% or more is more preferable, and 100 mol% may be sufficient.

ここで、本明細書および特許請求の範囲において、「アクリル酸エステルから誘導される構成単位」とは、アクリル酸エステルのエチレン性二重結合が開裂して構成される構成単位を意味する。
「アクリル酸エステル」は、α位の炭素原子に水素原子が結合しているアクリル酸エステルのほか、α位の炭素原子に置換基(水素原子以外の原子または基)が結合しているものも含む概念とする。置換基としては、ハロゲン原子、低級アルキル基、ハロゲン化低級アルキル基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。
なお、アクリル酸エステルから誘導される構成単位のα位(α位の炭素原子)とは、特に断りがない限り、カルボニル基が結合している炭素原子のことである。
アクリル酸エステルにおいて、α位の置換基としての低級アルキル基として、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基などの低級の直鎖状または分岐状のアルキル基が挙げられる。
本発明において、アクリル酸エステルのα位に結合しているのは、水素原子、ハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基であることが好ましく、水素原子、フッ素原子、低級アルキル基またはフッ素化低級アルキル基であることがより好ましく、工業上の入手の容易さから、水素原子またはメチル基であることが最も好ましい。
Here, in the present specification and claims, the “structural unit derived from an acrylate ester” means a structural unit formed by cleavage of an ethylenic double bond of an acrylate ester.
“Acrylic acid esters” include those in which a hydrogen atom is bonded to the carbon atom at the α-position, and those in which a substituent (atom or group other than a hydrogen atom) is bonded to the carbon atom in the α-position. Include concepts. Examples of the substituent include a halogen atom, a lower alkyl group, and a halogenated lower alkyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is particularly preferable.
The α-position (α-position carbon atom) of a structural unit derived from an acrylate ester is a carbon atom to which a carbonyl group is bonded unless otherwise specified.
In the acrylate ester, as the lower alkyl group as a substituent at the α-position, specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, Examples include lower linear or branched alkyl groups such as isopentyl group and neopentyl group.
In the present invention, the α-position of the acrylate ester is preferably a hydrogen atom, a halogen atom, a lower alkyl group or a halogenated lower alkyl group, and a hydrogen atom, a fluorine atom, a lower alkyl group or a fluorine atom. A lower alkyl group is more preferable, and a hydrogen atom or a methyl group is most preferable in terms of industrial availability.

本発明の液浸露光用ポジ型レジスト組成物においては、(A)成分として酸解離性溶解抑制基を含むアクリル酸エステルから誘導される構成単位(a1)を有することが好ましい。
また、(A)成分は、前記構成単位(a1)に加えて、さらに、ラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位(a2)を有することが好ましい。
また、(A)成分は、前記構成単位(a1)に加えて、または、前記構成単位(a1)と前記構成単位(a2)に加えて、さらに、極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位(a3)を有することが好ましい。
The positive resist composition for immersion exposure of the present invention preferably has a structural unit (a1) derived from an acrylate ester containing an acid dissociable, dissolution inhibiting group as the component (A).
In addition to the structural unit (a1), the component (A) preferably further has a structural unit (a2) derived from an acrylate ester containing a lactone-containing cyclic group.
In addition to the structural unit (a1) or in addition to the structural unit (a1) and the structural unit (a2), the component (A) is an acrylic containing a polar group-containing aliphatic hydrocarbon group. It is preferable to have a structural unit (a3) derived from an acid ester.

・構成単位(a1)
構成単位(a1)は、酸解離性溶解抑制基を含むアクリル酸エステルから誘導される構成単位である。
構成単位(a1)における酸解離性溶解抑制基は、解離前は(A)成分全体をアルカリ不溶とするアルカリ溶解抑制性を有するとともに、解離後はこの(A)成分全体をアルカリ可溶性へ変化させるものであれば、これまで、化学増幅型レジスト用のベース樹脂の酸解離性溶解抑制基として提案されているものを使用することができる。一般的には、(メタ)アクリル酸等におけるカルボキシ基と環状または鎖状の第3級アルキルエステルを形成する基;アルコキシアルキル基等のアセタール型酸解離性溶解抑制基などが広く知られている。なお、「(メタ)アクリル酸エステル」とは、α位に水素原子が結合したアクリル酸エステルと、α位にメチル基が結合したメタクリル酸エステルの一方あるいは両方を意味する。
・ Structural unit (a1)
The structural unit (a1) is a structural unit derived from an acrylate ester containing an acid dissociable, dissolution inhibiting group.
The acid dissociable, dissolution inhibiting group in the structural unit (a1) has an alkali dissolution inhibiting property that makes the entire component (A) insoluble in alkali before dissociation, and changes the entire component (A) to alkali soluble after dissociation. If it is a thing, the thing proposed until now as an acid dissociable, dissolution inhibiting group of the base resin for chemically amplified resists can be used. Generally, a group that forms a cyclic or chain tertiary alkyl ester with a carboxy group in (meth) acrylic acid or the like; an acetal-type acid dissociable, dissolution inhibiting group such as an alkoxyalkyl group is widely known. . The “(meth) acrylic acid ester” means one or both of an acrylic acid ester having a hydrogen atom bonded to the α-position and a methacrylic acid ester having a methyl group bonded to the α-position.

ここで、「第3級アルキルエステル」とは、カルボキシ基の水素原子が、鎖状または環状のアルキル基で置換されることによりエステルを形成しており、そのカルボニルオキシ基(−C(O)−O−)の末端の酸素原子に、前記鎖状または環状のアルキル基の第3級炭素原子が結合している構造を示す。この第3級アルキルエステルにおいては、酸が作用すると、酸素原子と第3級炭素原子との間で結合が切断される。
なお、前記鎖状または環状のアルキル基は置換基を有していてもよい。
以下、カルボキシ基と第3級アルキルエステルを構成することにより、酸解離性となっている基を、便宜上、「第3級アルキルエステル型酸解離性溶解抑制基」という。
第3級アルキルエステル型酸解離性溶解抑制基としては、脂肪族分岐鎖状酸解離性溶解抑制基、脂肪族環式基を含有する酸解離性溶解抑制基が挙げられる。
Here, the “tertiary alkyl ester” is an ester formed by replacing a hydrogen atom of a carboxy group with a chain or cyclic alkyl group, and the carbonyloxy group (—C (O)). A structure in which the tertiary carbon atom of the chain or cyclic alkyl group is bonded to the terminal oxygen atom of -O-). In this tertiary alkyl ester, when an acid acts, a bond is cut between an oxygen atom and a tertiary carbon atom.
The chain or cyclic alkyl group may have a substituent.
Hereinafter, a group that is acid dissociable by constituting a carboxy group and a tertiary alkyl ester is referred to as a “tertiary alkyl ester type acid dissociable, dissolution inhibiting group” for convenience.
Examples of the tertiary alkyl ester type acid dissociable, dissolution inhibiting group include an aliphatic branched acid dissociable, dissolution inhibiting group and an acid dissociable, dissolution inhibiting group containing an aliphatic cyclic group.

ここで、本特許請求の範囲及び明細書における「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。
「脂肪族分岐鎖状」とは、芳香族性を持たない分岐鎖状の構造を有することを示す。「脂肪族分岐鎖状酸解離性溶解抑制基」の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。
脂肪族分岐鎖状酸解離性溶解抑制基としては、炭素数4〜8の第3級アルキル基が好ましく、具体的にはtert−ブチル基、tert−アミル基、tert−ヘプチル基等が挙げられる。
Here, “aliphatic” in the claims and the specification is a relative concept with respect to aromatics, and is defined to mean a group, a compound, or the like that does not have aromaticity.
“Aliphatic branched” means having a branched structure having no aromaticity. The structure of the “aliphatic branched acid dissociable, dissolution inhibiting group” is not limited to a group consisting of carbon and hydrogen (hydrocarbon group), but is preferably a hydrocarbon group. The “hydrocarbon group” may be either saturated or unsaturated, but is usually preferably saturated.
As the aliphatic branched acid dissociable, dissolution inhibiting group, a tertiary alkyl group having 4 to 8 carbon atoms is preferable, and specific examples include a tert-butyl group, a tert-amyl group, and a tert-heptyl group. .

「脂肪族環式基」は、芳香族性を持たない単環式基または多環式基であることを示す。
構成単位(a1)における「脂肪族環式基」は、置換基を有していてもよいし、有していなくてもよい。置換基としては、炭素数1〜5の低級アルキル基、フッ素原子、フッ素原子で置換された炭素数1〜5のフッ素化低級アルキル基、酸素原子(=O)等が挙げられる。
「脂肪族環式基」の置換基を除いた基本の環の構造は、炭素および水素からなる基(炭化水素基)であることに限定はされないが、炭化水素基であることが好ましい。また、「炭化水素基」は飽和または不飽和のいずれでもよいが、通常は飽和であることが好ましい。「脂肪族環式基」は、多環式基であることが好ましい。
脂肪族環式基の具体例としては、例えば、低級アルキル基、フッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
脂肪族環式基を含有する酸解離性溶解抑制基としては、例えば環状のアルキル基の環骨格上に第3級炭素原子を有する基を挙げることができ、具体的には2−メチル−2−アダマンチル基や、2−エチル−2−アダマンチル基等が挙げられる。あるいは、下記一般式(a1”)で示す構成単位において、カルボニルオキシ基(−C(O)−O−)の酸素原子に結合した基の様に、アダマンチル基等の脂肪族環式基と、これに結合する、第3級炭素原子を有する分岐鎖状アルキレン基とを有する基が挙げられる。
The “aliphatic cyclic group” means a monocyclic group or a polycyclic group having no aromaticity.
The “aliphatic cyclic group” in the structural unit (a1) may or may not have a substituent. Examples of the substituent include a lower alkyl group having 1 to 5 carbon atoms, a fluorine atom, a fluorinated lower alkyl group having 1 to 5 carbon atoms substituted with a fluorine atom, an oxygen atom (= O), and the like.
The basic ring structure excluding the substituent of the “aliphatic cyclic group” is not limited to a group consisting of carbon and hydrogen (hydrocarbon group), but is preferably a hydrocarbon group. The “hydrocarbon group” may be either saturated or unsaturated, but is usually preferably saturated. The “aliphatic cyclic group” is preferably a polycyclic group.
Specific examples of the aliphatic cyclic group include, for example, a monocycloalkane, a bicycloalkane, a tricycloalkane, which may or may not be substituted with a lower alkyl group, a fluorine atom or a fluorinated alkyl group, Examples thereof include a group obtained by removing one or more hydrogen atoms from a polycycloalkane such as tetracycloalkane. Specific examples include monocycloalkanes such as cyclopentane and cyclohexane, and groups obtained by removing one or more hydrogen atoms from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
Examples of the acid dissociable, dissolution inhibiting group containing an aliphatic cyclic group include a group having a tertiary carbon atom on the ring skeleton of a cyclic alkyl group. Specifically, 2-methyl-2 -Adamantyl group, 2-ethyl-2-adamantyl group, etc. are mentioned. Alternatively, in a structural unit represented by the following general formula (a1 ″), an aliphatic cyclic group such as an adamantyl group, such as a group bonded to an oxygen atom of a carbonyloxy group (—C (O) —O—); And a group having a branched alkylene group having a tertiary carbon atom bonded thereto.

Figure 2008096743
[式中、Rは水素原子、ハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基を示し;R15、R16はそれぞれ独立してアルキル基を示す。]
Figure 2008096743
[Wherein, R represents a hydrogen atom, a halogen atom, a lower alkyl group or a halogenated lower alkyl group; R 15 and R 16 each independently represents an alkyl group. ]

前記一般式(a1”)において、Rのハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基は、上記アクリル酸エステルのα位に結合していてよいハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基と同様である。
15、R16は、それぞれ独立してアルキル基を示し、該アルキル基としては、直鎖、分岐鎖状のいずれでもよく、好ましくは炭素数1〜5である。
In the general formula (a1 ″), the halogen atom, lower alkyl group or halogenated lower alkyl group of R is a halogen atom, lower alkyl group or halogenated lower alkyl group which may be bonded to the α-position of the acrylate ester. It is the same.
R 15 and R 16 each independently represent an alkyl group, and the alkyl group may be linear or branched, and preferably has 1 to 5 carbon atoms.

「アセタール型酸解離性溶解抑制基」は、一般的に、カルボキシ基、水酸基等のアルカリ可溶性基末端の水素原子と置換して酸素原子と結合している。そして、露光により酸が発生すると、この酸が作用して、アセタール型酸解離性溶解抑制基と、当該アセタール型酸解離性溶解抑制基が結合した酸素原子との間で結合が切断される。
アセタール型酸解離性溶解抑制基としては、たとえば、下記一般式(p1)で表される基が挙げられる。
The “acetal-type acid dissociable, dissolution inhibiting group” is generally bonded to an oxygen atom by substituting a hydrogen atom at the terminal of an alkali-soluble group such as a carboxy group or a hydroxyl group. When an acid is generated by exposure, the acid acts to break the bond between the acetal acid dissociable, dissolution inhibiting group and the oxygen atom to which the acetal acid dissociable, dissolution inhibiting group is bonded.
Examples of the acetal type acid dissociable, dissolution inhibiting group include a group represented by the following general formula (p1).

Figure 2008096743
[式中、R1’,R2’はそれぞれ独立して水素原子または低級アルキル基を表し、nは0〜3の整数を表し、Yは低級アルキル基または脂肪族環式基を表す。]
Figure 2008096743
[Wherein, R 1 ′ and R 2 ′ each independently represent a hydrogen atom or a lower alkyl group, n represents an integer of 0 to 3, and Y represents a lower alkyl group or an aliphatic cyclic group. ]

上記式中、nは、0〜2の整数であることが好ましく、0または1がより好ましく、0が最も好ましい。
1’,R2’の低級アルキル基としては、上記Rの低級アルキル基と同様のものが挙げられ、メチル基またはエチル基が好ましく、メチル基が最も好ましい。
本発明においては、R1’,R2’のうち少なくとも1つが水素原子であることが好ましい。すなわち、酸解離性溶解抑制基(p1)が、下記一般式(p1−1)で表される基であることが好ましい。
In the above formula, n is preferably an integer of 0 to 2, more preferably 0 or 1, and most preferably 0.
Examples of the lower alkyl group for R 1 ′ and R 2 ′ include the same lower alkyl groups as those described above for R. A methyl group or an ethyl group is preferable, and a methyl group is most preferable.
In the present invention, at least one of R 1 ′ and R 2 ′ is preferably a hydrogen atom. That is, the acid dissociable, dissolution inhibiting group (p1) is preferably a group represented by the following general formula (p1-1).

Figure 2008096743
[式中、R1’、n、Yは上記と同様である。]
Figure 2008096743
[Wherein, R 1 ′ , n and Y are the same as described above. ]

Yの低級アルキル基としては、上記Rの低級アルキル基と同様のものが挙げられる。
Yの脂肪族環式基としては、従来ArFレジスト等において多数提案されている単環又は多環式の脂肪族環式基の中から適宜選択して用いることができ、たとえば上記「脂肪族環式基」と同様のものが例示できる。
Examples of the lower alkyl group for Y include the same lower alkyl groups as those described above for R.
The aliphatic cyclic group for Y can be appropriately selected from monocyclic or polycyclic aliphatic cyclic groups conventionally proposed in a number of ArF resists and the like. For example, the above “aliphatic ring” Examples thereof are the same as those in the formula group.

また、アセタール型酸解離性溶解抑制基としては、下記一般式(p2)で示される基も挙げられる。   Examples of the acetal type acid dissociable, dissolution inhibiting group also include a group represented by the following general formula (p2).

Figure 2008096743
[式中、R17、R18はそれぞれ独立して直鎖状または分岐鎖状のアルキル基または水素原子であり、R19は直鎖状、分岐鎖状または環状のアルキル基である。または、R17およびR19がそれぞれ独立に直鎖状または分岐鎖状のアルキレン基であって、R17の末端とR19の末端とが結合して環を形成していてもよい。]
Figure 2008096743
[Wherein, R 17 and R 18 each independently represent a linear or branched alkyl group or a hydrogen atom, and R 19 represents a linear, branched or cyclic alkyl group. Alternatively, R 17 and R 19 may be each independently a linear or branched alkylene group, and the end of R 17 and the end of R 19 may be bonded to form a ring. ]

17、R18において、アルキル基の炭素数は好ましくは1〜15であり、直鎖状、分岐鎖状のいずれでもよく、エチル基、メチル基が好ましく、メチル基が最も好ましい。特にR17、R18の一方が水素原子で、他方がメチル基であることが好ましい。
19は直鎖状、分岐鎖状または環状のアルキル基であり、炭素数は好ましくは1〜15であり、直鎖状、分岐鎖状又は環状のいずれでもよい。
19が直鎖状、分岐鎖状の場合は炭素数1〜5であることが好ましく、エチル基、メチル基がさらに好ましく、特にエチル基が最も好ましい。
19が環状の場合は炭素数4〜15であることが好ましく、炭素数4〜12であることがさらに好ましく、炭素数5〜10が最も好ましい。具体的にはフッ素原子またはフッ素化アルキル基で置換されていてもよいし、されていなくてもよいモノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などを例示できる。具体的には、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。中でもアダマンタンから1個以上の水素原子を除いた基が好ましい。
また、上記式においては、R17及びR19がそれぞれ独立に直鎖状または分岐鎖状のアルキレン基(好ましくは炭素数1〜5のアルキレン基)であってR19の末端とR17の末端とが結合していてもよい。
この場合、R17とR19と、R19が結合した酸素原子と、該酸素原子およびR17が結合した炭素原子とにより環式基が形成されている。該環式基としては、4〜7員環が好ましく、4〜6員環がより好ましい。該環式基の具体例としては、テトラヒドロピラニル基、テトラヒドロフラニル基等が挙げられる。
In R 17 and R 18 , the alkyl group preferably has 1 to 15 carbon atoms, may be linear or branched, and is preferably an ethyl group or a methyl group, and most preferably a methyl group. In particular, it is preferable that one of R 17 and R 18 is a hydrogen atom and the other is a methyl group.
R 19 is a linear, branched or cyclic alkyl group, preferably having 1 to 15 carbon atoms, and may be any of linear, branched or cyclic.
When R 19 is linear or branched, it preferably has 1 to 5 carbon atoms, more preferably an ethyl group or a methyl group, and most preferably an ethyl group.
When R 19 is cyclic, it preferably has 4 to 15 carbon atoms, more preferably 4 to 12 carbon atoms, and most preferably 5 to 10 carbon atoms. Specifically, one or more polycycloalkanes such as monocycloalkane, bicycloalkane, tricycloalkane, and tetracycloalkane, which may or may not be substituted with a fluorine atom or a fluorinated alkyl group, are included. Examples include groups excluding hydrogen atoms. Specific examples include monocycloalkanes such as cyclopentane and cyclohexane, and groups obtained by removing one or more hydrogen atoms from polycycloalkanes such as adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane. Among them, a group obtained by removing one or more hydrogen atoms from adamantane is preferable.
In the above formula, R 17 and R 19 are each independently a linear or branched alkylene group (preferably an alkylene group having 1 to 5 carbon atoms), and the end of R 19 and the end of R 17 And may be combined.
In this case, a cyclic group is formed by R 17 , R 19 , the oxygen atom to which R 19 is bonded, and the carbon atom to which the oxygen atom and R 17 are bonded. The cyclic group is preferably a 4-7 membered ring, and more preferably a 4-6 membered ring. Specific examples of the cyclic group include a tetrahydropyranyl group and a tetrahydrofuranyl group.

構成単位(a1)としては、下記一般式(a1−0−1)で表される構成単位および下記一般式(a1−0−2)で表される構成単位からなる群から選ばれる1種以上を用いることが好ましい。   As the structural unit (a1), one or more selected from the group consisting of structural units represented by the following general formula (a1-0-1) and structural units represented by the following general formula (a1-0-2): Is preferably used.

Figure 2008096743
[式中、Rは水素原子、ハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基を示し;Xは酸解離性溶解抑制基を示す。]
Figure 2008096743
[Wherein, R represents a hydrogen atom, a halogen atom, a lower alkyl group or a halogenated lower alkyl group; and X 1 represents an acid dissociable, dissolution inhibiting group. ]

Figure 2008096743
[式中、Rは水素原子、ハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基を示し;Xは酸解離性溶解抑制基を示し;Yはアルキレン基または脂肪族環式基を示す。]
Figure 2008096743
[Wherein, R represents a hydrogen atom, a halogen atom, a lower alkyl group or a halogenated lower alkyl group; X 2 represents an acid dissociable, dissolution inhibiting group; Y 2 represents an alkylene group or an aliphatic cyclic group. ]

一般式(a1−0−1)において、Rのハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基は、上記アクリル酸エステルのα位に結合していてよいハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基と同様である。
は、酸解離性溶解抑制基であれば特に限定することはなく、例えば上述した第3級アルキルエステル型酸解離性溶解抑制基、アセタール型酸解離性溶解抑制基などを挙げることができ、第3級アルキルエステル型酸解離性溶解抑制基が好ましい。
In the general formula (a1-0-1), the halogen atom, lower alkyl group or halogenated lower alkyl group of R is a halogen atom, lower alkyl group or halogenated lower group which may be bonded to the α-position of the acrylate ester. It is the same as the alkyl group.
X 1 is not particularly limited as long as it is an acid dissociable, dissolution inhibiting group, and examples thereof include the above-described tertiary alkyl ester type acid dissociable, dissolution inhibiting group and acetal type acid dissociable, dissolution inhibiting group. A tertiary alkyl ester type acid dissociable, dissolution inhibiting group is preferred.

一般式(a1−0−2)において、Rは、上記と同様である。
は、式(a1−0−1)中のXと同様である。
は、好ましくは炭素数1〜4のアルキレン基又は2価の脂肪族環式基であり、該脂肪族環式基としては、水素原子が2個以上除かれた基が用いられる以外は前記「脂肪族環式基」の説明と同様のものを用いることができる。
In general formula (a1-0-2), R is the same as defined above.
X 2 is the same as X 1 in formula (a1-0-1).
Y 2 is preferably an alkylene group having 1 to 4 carbon atoms or a divalent aliphatic cyclic group, except that a group in which two or more hydrogen atoms are removed is used as the aliphatic cyclic group. The same as described for the “aliphatic cyclic group” can be used.

構成単位(a1)として、より具体的には、下記一般式(a1−1)〜(a1−4)で表される構成単位が挙げられる。   More specifically, examples of the structural unit (a1) include structural units represented by the following general formulas (a1-1) to (a1-4).

Figure 2008096743
[上記式中、X’は第3級アルキルエステル型酸解離性溶解抑制基を表し、Yは炭素数1〜5の低級アルキル基、または脂肪族環式基を表し;nは0〜3の整数を表し;mは0または1を表し;Rは前記と同じであり、R’、R’はそれぞれ独立して水素原子または炭素数1〜5の低級アルキル基を表す。]
Figure 2008096743
[In the above formula, X ′ represents a tertiary alkyl ester type acid dissociable, dissolution inhibiting group, Y represents a lower alkyl group having 1 to 5 carbon atoms, or an aliphatic cyclic group; M represents 0 or 1; R is the same as defined above; R 1 ′ and R 2 ′ each independently represent a hydrogen atom or a lower alkyl group having 1 to 5 carbon atoms. ]

前記R’、R’は、好ましくは少なくとも1つが水素原子であり、より好ましくは共に水素原子である。nは、好ましくは0または1である。 R 1 ′ and R 2 ′ are preferably at least one hydrogen atom, more preferably a hydrogen atom. n is preferably 0 or 1.

X’は、前記Xにおいて例示した第3級アルキルエステル型酸解離性溶解抑制基と同様のものである。
Yの脂肪族環式基については、上述の「脂肪族環式基」の説明において例示したものと同様のものが挙げられる。
X ′ is the same as the tertiary alkyl ester type acid dissociable, dissolution inhibiting group exemplified in X 1 above.
Examples of the aliphatic cyclic group for Y include the same groups as those exemplified above in the description of “aliphatic cyclic group”.

以下に、上記一般式(a1−1)〜(a1−4)で表される構成単位の具体例を示す。   Specific examples of the structural units represented by the general formulas (a1-1) to (a1-4) are shown below.

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

構成単位(a1)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
その中でも、一般式(a1−1)で表される構成単位が好ましく、具体的には(a1−1−1)〜(a1−1−6)または(a1−1−35)〜(a1−1−41)で表される構成単位から選ばれる少なくとも1種を用いることがより好ましい。
さらに、構成単位(a1)としては、特に式(a1−1−1)〜式(a1−1−4)の構成単位を包括する下記一般式(a1−1−01)で表されるものや、式(a1−1−35)〜(a1−1−41)の構成単位を包括する下記一般式(a1−1−02)も好ましい。
As the structural unit (a1), one type may be used alone, or two or more types may be used in combination.
Among these, the structural unit represented by the general formula (a1-1) is preferable, and specifically, (a1-1-1) to (a1-1-6) or (a1-1-35) to (a1- It is more preferable to use at least one selected from structural units represented by 1-41).
Furthermore, as the structural unit (a1), in particular, those represented by the following general formula (a1-1-01) including the structural units of the formulas (a1-1-1) to (a1-1-4) The following general formula (a1-1-02) including the structural units of formulas (a1-1-35) to (a1-1-41) is also preferable.

Figure 2008096743
(式中、Rは水素原子、ハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基を示し、R11は低級アルキル基を示す。)
Figure 2008096743
(In the formula, R represents a hydrogen atom, a halogen atom, a lower alkyl group or a halogenated lower alkyl group, and R 11 represents a lower alkyl group.)

Figure 2008096743
(式中、Rは水素原子、ハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基を示し、R12は低級アルキル基を示す。hは1〜3の整数を表す。)
Figure 2008096743
(In the formula, R represents a hydrogen atom, a halogen atom, a lower alkyl group or a halogenated lower alkyl group, R 12 represents a lower alkyl group, and h represents an integer of 1 to 3.)

一般式(a1−1−01)において、Rについては上記と同様である。R11の低級アルキル基はRにおける低級アルキル基と同様であり、メチル基又はエチル基が好ましく、メチル基が最も好ましい。 In general formula (a1-1-01), R is the same as defined above. The lower alkyl group for R 11 is the same as the lower alkyl group for R, preferably a methyl group or an ethyl group, and most preferably a methyl group.

一般式(a1−1−02)において、Rについては上記と同様である。R12の低級アルキル基はRにおける低級アルキル基と同様であり、メチル基又はエチル基が好ましく、エチル基が最も好ましい。hは1又は2が好ましく、2が最も好ましい。 In general formula (a1-1-02), R is the same as defined above. The lower alkyl group for R 12 is the same as the lower alkyl group for R, preferably a methyl group or an ethyl group, and most preferably an ethyl group. h is preferably 1 or 2, and most preferably 2.

(A)成分中、構成単位(a1)の割合は、(A)成分を構成する全構成単位に対し、10〜80モル%が好ましく、20〜70モル%がより好ましく、25〜50モル%がさらに好ましい。下限値以上とすることによって、レジスト組成物とした際に容易にパターンを得ることができ、上限値以下とすることにより他の構成単位とのバランスをとることができる。   In the component (A), the proportion of the structural unit (a1) is preferably 10 to 80 mol%, more preferably 20 to 70 mol%, more preferably 25 to 50 mol%, based on all structural units constituting the component (A). Is more preferable. By setting it to the lower limit value or more, a pattern can be easily obtained when the resist composition is used, and by setting it to the upper limit value or less, it is possible to balance with other structural units.

・構成単位(a2)
(A)成分は、ラクトン含有環式基を含むアクリル酸エステルから誘導される構成単位(a2)を有することが好ましい。
ここで、ラクトン含有環式基とは、−O−C(O)−構造を含むひとつの環(ラクトン環)を含有する環式基を示す。ラクトン環をひとつの目の環として数え、ラクトン環のみの場合は単環式基、さらに他の環構造を有する場合は、その構造に関わらず多環式基と称する。
構成単位(a2)のラクトン環式基は、(A)成分をレジスト膜の形成に用いた場合に、レジスト膜の基板への密着性を高めたり、水を含有する現像液との親和性を高めたりするうえで有効なものである。
・ Structural unit (a2)
The component (A) preferably has a structural unit (a2) derived from an acrylate ester containing a lactone-containing cyclic group.
Here, the lactone-containing cyclic group refers to a cyclic group containing one ring (lactone ring) containing an —O—C (O) — structure. The lactone ring is counted as the first ring. When only the lactone ring is present, it is called a monocyclic group. When it has another ring structure, it is called a polycyclic group regardless of the structure.
When the lactone cyclic group of the structural unit (a2) is used for forming a resist film, the lactone cyclic group increases the adhesion of the resist film to the substrate or has an affinity for a developer containing water. It is effective in raising.

構成単位(a2)としては、特に限定されることなく任意のものが使用可能である。
具体的には、ラクトン含有単環式基としては、γ−ブチロラクトンから水素原子1つを除いた基が挙げられる。また、ラクトン含有多環式基としては、ラクトン環を有するビシクロアルカン、トリシクロアルカン、テトラシクロアルカンから水素原子一つを除いた基が挙げられる。
As the structural unit (a2), any unit can be used without any particular limitation.
Specifically, examples of the lactone-containing monocyclic group include groups in which one hydrogen atom has been removed from γ-butyrolactone. Examples of the lactone-containing polycyclic group include groups in which one hydrogen atom has been removed from a bicycloalkane, tricycloalkane, or tetracycloalkane having a lactone ring.

構成単位(a2)の例として、より具体的には、下記一般式(a2−1)〜(a2−5)で表される構成単位が挙げられる。   More specifically, examples of the structural unit (a2) include structural units represented by general formulas (a2-1) to (a2-5) shown below.

Figure 2008096743
[式中、Rは水素原子、ハロゲン原子、低級アルキル基またはハロゲン化低級アルキル基であり、R’は水素原子、低級アルキル基、または炭素数1〜5のアルコキシ基であり、mは0または1の整数であり、Aは炭素数1〜5のアルキレン基または酸素原子である。]
Figure 2008096743
[Wherein, R is a hydrogen atom, a halogen atom, a lower alkyl group or a halogenated lower alkyl group, R ′ is a hydrogen atom, a lower alkyl group, or an alkoxy group having 1 to 5 carbon atoms, and m is 0 or 1 is an integer, and A is an alkylene group having 1 to 5 carbon atoms or an oxygen atom. ]

一般式(a2−1)〜(a2−5)におけるRは、前記構成単位(a1)におけるRと同様である。
R’の低級アルキル基としては、前記構成単位(a1)におけるRの低級アルキル基と同じである。
一般式(a2−1)〜(a2−5)中、R’は、工業上入手が容易であること等を考慮すると、水素原子が好ましい。
Aの炭素数1〜5のアルキレン基として、具体的には、メチレン基、エチレン基、n−プロピレン基、イソプロピレン基等が挙げられる。
以下に、前記一般式(a2−1)〜(a2−5)の具体的な構成単位を例示する。
R in the general formulas (a2-1) to (a2-5) is the same as R in the structural unit (a1).
The lower alkyl group for R ′ is the same as the lower alkyl group for R in the structural unit (a1).
In general formulas (a2-1) to (a2-5), R ′ is preferably a hydrogen atom in view of industrial availability.
Specific examples of the alkylene group having 1 to 5 carbon atoms of A include a methylene group, an ethylene group, an n-propylene group, and an isopropylene group.
Below, the specific structural unit of the said general formula (a2-1)-(a2-5) is illustrated.

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

Figure 2008096743
Figure 2008096743

これらの中でも、一般式(a2−1)〜(a2−5)から選択される少なくとも1種以上を用いることが好ましく、一般式(a2−1)〜(a2−3)から選択される少なくとも1種以上を用いることが好ましい。具体的には、化学式(a2−1−1)、(a2−1−2)、(a2−2−1)、(a2−2−2)、(a2−3−1)、(a2−3−2)、(a2−3−9)及び(a2−3−10)から選択される少なくとも1種以上を用いることが好ましい。   Among these, it is preferable to use at least one selected from general formulas (a2-1) to (a2-5), and at least one selected from general formulas (a2-1) to (a2-3). It is preferable to use more than one species. Specifically, chemical formulas (a2-1-1), (a2-1-2), (a2-2-1), (a2-2-2), (a2-3-1), (a2-3) -2), at least one selected from (a2-3-9) and (a2-3-10) is preferably used.

(A)成分において、構成単位(a2)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A)成分中の構成単位(a2)の割合は、(A)成分を構成する全構成単位の合計に対して、5〜60モル%が好ましく、10〜50モル%がより好ましく、20〜50モル%がさらに好ましい。下限値以上とすることにより構成単位(a2)を含有させることによる効果が充分に得られ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
In the component (A), as the structural unit (a2), one type of structural unit may be used alone, or two or more types may be used in combination.
The proportion of the structural unit (a2) in the component (A) is preferably 5 to 60 mol%, more preferably 10 to 50 mol%, based on the total of all structural units constituting the component (A). 50 mol% is more preferable. By making it the lower limit value or more, the effect of containing the structural unit (a2) can be sufficiently obtained, and by making it the upper limit value or less, it is possible to balance with other structural units.

・構成単位(a3)
(A)成分は、極性基含有脂肪族炭化水素基を含むアクリル酸エステルから誘導される構成単位(a3)を有することが好ましい。構成単位(a3)を有することにより、(A)成分の親水性が高まり、現像液との親和性が高まって、露光部でのアルカリ溶解性が向上し、解像性の向上に寄与する。
極性基としては、水酸基、シアノ基、カルボキシ基、アルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基等が挙げられ、特に水酸基が好ましい。
脂肪族炭化水素基としては、炭素数1〜10の直鎖状または分岐状の炭化水素基(好ましくはアルキレン基)や、多環式の脂肪族炭化水素基(多環式基)が挙げられる。該多環式基としては、例えばArFエキシマレーザー用レジスト組成物用の樹脂において、多数提案されているものの中から適宜選択して用いることができる。該多環式基の炭素数は、7〜30であることが好ましい。
その中でも、水酸基、シアノ基、カルボキシ基、またはアルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基を含有する脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位がより好ましい。該多環式基としては、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどから1個以上の水素原子を除いた基などを例示できる。具体的には、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。これらの多環式基の中でも、アダマンタンから2個以上の水素原子を除いた基、ノルボルナンから2個以上の水素原子を除いた基、テトラシクロドデカンから2個以上の水素原子を除いた基が工業上好ましい。
・ Structural unit (a3)
The component (A) preferably has a structural unit (a3) derived from an acrylate ester containing a polar group-containing aliphatic hydrocarbon group. By having the structural unit (a3), the hydrophilicity of the component (A) is increased, the affinity with the developer is increased, the alkali solubility in the exposed area is improved, and the resolution is improved.
Examples of the polar group include a hydroxyl group, a cyano group, a carboxy group, and a hydroxyalkyl group in which a part of hydrogen atoms of an alkyl group is substituted with a fluorine atom. A hydroxyl group is particularly preferable.
Examples of the aliphatic hydrocarbon group include a linear or branched hydrocarbon group having 1 to 10 carbon atoms (preferably an alkylene group) and a polycyclic aliphatic hydrocarbon group (polycyclic group). . As the polycyclic group, for example, a resin for a resist composition for ArF excimer laser can be appropriately selected from among many proposed ones. The polycyclic group preferably has 7 to 30 carbon atoms.
Among them, a structural unit derived from an acrylate ester containing an aliphatic polycyclic group containing a hydroxyalkyl group in which a part of hydrogen atoms of a hydroxyl group, a cyano group, a carboxy group, or an alkyl group is substituted with a fluorine atom Is more preferable. Examples of the polycyclic group include groups in which one or more hydrogen atoms have been removed from bicycloalkane, tricycloalkane, tetracycloalkane, or the like. Specific examples include groups in which one or more hydrogen atoms have been removed from a polycycloalkane such as adamantane, norbornane, isobornane, tricyclodecane, or tetracyclododecane. Among these polycyclic groups, there are groups in which two or more hydrogen atoms have been removed from adamantane, groups in which two or more hydrogen atoms have been removed from norbornane, and groups in which two or more hydrogen atoms have been removed from tetracyclododecane. Industrially preferable.

構成単位(a3)としては、極性基含有脂肪族炭化水素基における炭化水素基が炭素数1〜10の直鎖状または分岐状の炭化水素基のときは、アクリル酸のヒドロキシエチルエステルから誘導される構成単位が好ましく、該炭化水素基が多環式基のときは、下記式(a3−1)で表される構成単位、下記式(a3−2)で表される構成単位、下記式(a3−3)で表される構成単位が好ましいものとして挙げられる。   The structural unit (a3) is derived from a hydroxyethyl ester of acrylic acid when the hydrocarbon group in the polar group-containing aliphatic hydrocarbon group is a linear or branched hydrocarbon group having 1 to 10 carbon atoms. When the hydrocarbon group is a polycyclic group, the structural unit represented by the following formula (a3-1), the structural unit represented by the following formula (a3-2), the following formula ( The structural unit represented by a3-3) is preferred.

Figure 2008096743
(式中、Rは前記と同じであり、jは1〜3の整数であり、kは1〜3の整数であり、t’は1〜3の整数であり、lは1〜5の整数であり、sは1〜3の整数である。)
Figure 2008096743
(Wherein R is the same as above, j is an integer of 1 to 3, k is an integer of 1 to 3, t 'is an integer of 1 to 3, and l is an integer of 1 to 5) And s is an integer of 1 to 3.)

式(a3−1)中、jは、1又は2であることが好ましく、1であることがさらに好ましい。jが2の場合は、水酸基がアダマンチル基の3位と5位に結合しているものが好ましい。jが1の場合は、水酸基がアダマンチル基の3位に結合しているものが好ましい。
jは、1であることが好ましく、特に水酸基がアダマンチル基の3位に結合しているものが好ましい。
In formula (a3-1), j is preferably 1 or 2, and more preferably 1. When j is 2, it is preferable that the hydroxyl group is bonded to the 3rd and 5th positions of the adamantyl group. When j is 1, it is preferable that the hydroxyl group is bonded to the 3-position of the adamantyl group.
j is preferably 1, and a hydroxyl group bonded to the 3-position of the adamantyl group is particularly preferred.

式(a3−2)中、kは1であることが好ましい。シアノ基はノルボルニル基の5位または6位に結合していることが好ましい。   In formula (a3-2), k is preferably 1. The cyano group is preferably bonded to the 5th or 6th position of the norbornyl group.

式(a3−3)中、t’は1であることが好ましい。lは1であることが好ましい。sは1であることが好ましい。これらはアクリル酸のカルボキシ基の末端に2−ノルボルニル基または3−ノルボルニル基が結合していることが好ましい。フッ素化アルキルアルコールはノルボルニル基の5又は6位に結合していることが好ましい。   In formula (a3-3), t ′ is preferably 1. l is preferably 1. s is preferably 1. These preferably have a 2-norbornyl group or a 3-norbornyl group bonded to the terminal of the carboxy group of acrylic acid. The fluorinated alkyl alcohol is preferably bonded to the 5th or 6th position of the norbornyl group.

構成単位(a3)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A)成分中、構成単位(a3)の割合は、当該(A)成分を構成する全構成単位に対し、5〜50モル%であることが好ましく、5〜40モル%がより好ましく、5〜25モル%がさらに好ましい。下限値以上とすることにより構成単位(a3)を含有させることによる効果が充分に得られ、上限値以下とすることにより他の構成単位とのバランスをとることができる。
As the structural unit (a3), one type may be used alone, or two or more types may be used in combination.
In the component (A), the proportion of the structural unit (a3) is preferably 5 to 50 mol%, more preferably 5 to 40 mol%, based on all the structural units constituting the component (A). More preferred is ˜25 mol%. By setting it to the lower limit value or more, the effect of containing the structural unit (a3) is sufficiently obtained, and by setting the upper limit value or less, it is possible to balance with other structural units.

・構成単位(a4)
(A)成分は、本発明の効果を損なわない範囲で、上記構成単位(a1)〜(a3)以外の他の構成単位(a4)を含んでいてもよい。
構成単位(a4)は、上述の構成単位(a1)〜(a3)に分類されない他の構成単位であれば特に限定するものではなく、ArFエキシマレーザー用、KrFエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト用樹脂に用いられるものとして従来から知られている多数のものが使用可能である。
構成単位(a4)としては、例えば酸非解離性の脂肪族多環式基を含むアクリル酸エステルから誘導される構成単位などが好ましい。該多環式基は、例えば、前記の構成単位(a1)の場合に例示したものと同様のものを例示することができ、ArFエキシマレーザー用、KrFエキシマレーザー用(好ましくはArFエキシマレーザー用)等のレジスト組成物の樹脂成分に用いられるものとして従来から知られている多数のものが使用可能である。
特にトリシクロデカニル基、アダマンチル基、テトラシクロドデカニル基、イソボルニル基、ノルボルニル基から選ばれる少なくとも1種以上であると、工業上入手し易いなどの点で好ましい。これらの多環式基は、炭素数1〜5の直鎖又は分岐状のアルキル基を置換基として有していてもよい。
構成単位(a4)として、具体的には、下記一般式(a4−1)〜(a4−5)の構造のものを例示することができる。
・ Structural unit (a4)
The component (A) may contain other structural units (a4) other than the structural units (a1) to (a3) as long as the effects of the present invention are not impaired.
The structural unit (a4) is not particularly limited as long as it is another structural unit that is not classified into the structural units (a1) to (a3) described above. For ArF excimer laser, for KrF excimer laser (preferably ArF excimer laser) A number of conventionally known resins can be used for resist resins such as
As the structural unit (a4), for example, a structural unit derived from an acrylate ester containing a non-acid-dissociable aliphatic polycyclic group is preferable. Examples of the polycyclic group include those exemplified in the case of the structural unit (a1), and for ArF excimer laser and KrF excimer laser (preferably for ArF excimer laser). A number of hitherto known materials can be used for the resin component of the resist composition.
In particular, at least one selected from a tricyclodecanyl group, an adamantyl group, a tetracyclododecanyl group, an isobornyl group, and a norbornyl group is preferable in terms of industrial availability. These polycyclic groups may have a linear or branched alkyl group having 1 to 5 carbon atoms as a substituent.
Specific examples of the structural unit (a4) include those represented by the following general formulas (a4-1) to (a4-5).

Figure 2008096743
(式中、Rは前記と同じである。)
Figure 2008096743
(In the formula, R is as defined above.)

かかる構成単位(a4)を(A)成分に含有させる際には、(A)成分を構成する全構成単位の合計に対して、構成単位(a4)を1〜30モル%、好ましくは10〜20モル%含有させると好ましい。   When the structural unit (a4) is contained in the component (A), the structural unit (a4) is contained in an amount of 1 to 30 mol%, preferably 10 to 10% of the total of all the structural units constituting the component (A). It is preferable to contain 20 mol%.

本発明において、(A)成分は、構成単位(a1)を有する樹脂(重合体)であることが好ましく、さらに、構成単位(a1)に加え、構成単位(a2)および/又は構成単位(a3)を有する樹脂(共重合体)であることがより好ましい。係る樹脂としては、たとえば、上記構成単位(a1)、(a2)および(a3)からなる樹脂、上記構成単位(a1)、(a2)、(a3)および(a4)からなる樹脂等が例示できる。   In the present invention, the component (A) is preferably a resin (polymer) having the structural unit (a1), and in addition to the structural unit (a1), the structural unit (a2) and / or the structural unit (a3). It is more preferable that the resin (copolymer) has a). Examples of the resin include resins composed of the structural units (a1), (a2) and (a3), resins composed of the structural units (a1), (a2), (a3) and (a4). .

(A)成分中、係る樹脂としては、1種を単独で用いてもよく、2種以上を併用してもよい。
本発明において、係る樹脂としては、特に下記の様な構成単位の組み合わせを含むものが好ましい。
In the component (A), as the resin, one type may be used alone, or two or more types may be used in combination.
In the present invention, as the resin, those containing the following combination of structural units are particularly preferable.

Figure 2008096743
[式中、Rは前記と同じであり、R20は低級アルキル基である。]
Figure 2008096743
[Wherein, R is the same as defined above, and R 20 represents a lower alkyl group. ]

式(A1−11)中、R20の低級アルキル基は、Rの低級アルキル基と同様であり、メチル基またはエチル基が好ましく、メチル基が最も好ましい。 In formula (A1-11), the lower alkyl group for R 20 is the same as the lower alkyl group for R, preferably a methyl group or an ethyl group, and most preferably a methyl group.

(A)成分は、各構成単位を誘導するモノマーを、例えばアゾビスイソブチロニトリル(AIBN)のようなラジカル重合開始剤を用いた公知のラジカル重合等によって重合させることによって得ることができる。
また、(A)成分には、上記重合の際に、たとえばHS−CH−CH−CH−C(CF−OHのような連鎖移動剤を併用して用いることにより、末端に−C(CF−OH基を導入してもよい。このように、アルキル基の水素原子の一部がフッ素原子で置換されたヒドロキシアルキル基が導入された樹脂は、現像欠陥の低減やLER(ラインエッジラフネス:ライン側壁の不均一な凹凸)の低減に有効である。
The component (A) can be obtained by polymerizing a monomer for deriving each structural unit by a known radical polymerization using a radical polymerization initiator such as azobisisobutyronitrile (AIBN).
In addition, the component (A) is used in combination with a chain transfer agent such as, for example, HS—CH 2 —CH 2 —CH 2 —C (CF 3 ) 2 —OH at the time of the polymerization. A —C (CF 3 ) 2 —OH group may be introduced into the. As described above, a resin having a hydroxyalkyl group in which a part of hydrogen atoms of an alkyl group is substituted with a fluorine atom reduces development defects and LER (line edge roughness: uneven unevenness of line side walls). It is effective for.

(A)成分の質量平均分子量(Mw)(ゲルパーミエーションクロマトグラフィーによるポリスチレン換算基準)は、特に限定するものではないが、2000〜50000が好ましく、3000〜30000がより好ましく、5000〜20000が最も好ましい。この範囲の上限よりも小さいと、レジストとして用いるのに充分なレジスト溶剤への溶解性があり、この範囲の下限よりも大きいと、耐ドライエッチング性やレジストパターン断面形状が良好である。
また、分散度(Mw/Mn)は1.0〜5.0が好ましく、1.0〜3.0がより好ましく、1.2〜2.5が最も好ましい。なお、Mnは数平均分子量を示す。
The weight average molecular weight (Mw) of the component (A) (polystyrene conversion standard by gel permeation chromatography) is not particularly limited, but is preferably 2000 to 50000, more preferably 3000 to 30000, and most preferably 5000 to 20000. preferable. When it is smaller than the upper limit of this range, it has sufficient solubility in a resist solvent to be used as a resist, and when it is larger than the lower limit of this range, dry etching resistance and resist pattern cross-sectional shape are good.
Further, the dispersity (Mw / Mn) is preferably 1.0 to 5.0, more preferably 1.0 to 3.0, and most preferably 1.2 to 2.5. In addition, Mn shows a number average molecular weight.

<(B)成分>
(B)成分としては、特に限定されず、これまで化学増幅型レジスト用の酸発生剤として提案されているものを使用することができる。このような酸発生剤としては、これまで、ヨードニウム塩やスルホニウム塩などのオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキルまたはビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類などのジアゾメタン系酸発生剤、ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤など多種のものが知られている。
<(B) component>
The component (B) is not particularly limited, and those that have been proposed as acid generators for chemically amplified resists can be used. Examples of such acid generators include onium salt acid generators such as iodonium salts and sulfonium salts, oxime sulfonate acid generators, bisalkyl or bisarylsulfonyldiazomethanes, and poly (bissulfonyl) diazomethanes. There are various known diazomethane acid generators, nitrobenzyl sulfonate acid generators, imino sulfonate acid generators, disulfone acid generators, and the like.

オニウム塩系酸発生剤として、例えば下記一般式(b−0)で表される酸発生剤を好適に用いることができる。   As the onium salt acid generator, for example, an acid generator represented by the following general formula (b-0) can be preferably used.

Figure 2008096743
Figure 2008096743

[式中、R51は、直鎖、分岐鎖若しくは環状のアルキル基、または直鎖、分岐鎖若しくは環状のフッ素化アルキル基を表し;R52は、水素原子、水酸基、ハロゲン原子、直鎖若しくは分岐鎖状のアルキル基、直鎖若しくは分岐鎖状のハロゲン化アルキル基、または直鎖若しくは分岐鎖状のアルコキシ基であり;R53は置換基を有していてもよいアリール基であり;u’’は1〜3の整数である。] [Wherein, R 51 represents a linear, branched or cyclic alkyl group, or a linear, branched or cyclic fluorinated alkyl group; R 52 represents a hydrogen atom, a hydroxyl group, a halogen atom, linear or A branched alkyl group, a linear or branched halogenated alkyl group, or a linear or branched alkoxy group; R 53 is an aryl group which may have a substituent; u '' Is an integer of 1 to 3. ]

一般式(b−0)において、R51は、直鎖、分岐鎖若しくは環状のアルキル基、または直鎖、分岐鎖若しくは環状のフッ素化アルキル基を表す。
前記直鎖若しくは分岐鎖状のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、炭素数4〜12であることが好ましく、炭素数5〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また、該フッ化アルキル基のフッ素化率(アルキル基中全水素原子の個数に対する置換したフッ素原子の個数の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
51としては、直鎖状のアルキル基またはフッ素化アルキル基であることが最も好ましい。
In General Formula (b-0), R 51 represents a linear, branched, or cyclic alkyl group, or a linear, branched, or cyclic fluorinated alkyl group.
The linear or branched alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
The cyclic alkyl group preferably has 4 to 12 carbon atoms, more preferably 5 to 10 carbon atoms, and most preferably 6 to 10 carbon atoms.
The fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms. The fluorination rate of the fluorinated alkyl group (ratio of the number of substituted fluorine atoms to the total number of hydrogen atoms in the alkyl group) is preferably 10 to 100%, more preferably 50 to 100%, and particularly Those in which all hydrogen atoms are substituted with fluorine atoms are preferred because the strength of the acid is increased.
R 51 is most preferably a linear alkyl group or a fluorinated alkyl group.

52は、水素原子、水酸基、ハロゲン原子、直鎖若しくは分岐鎖状のアルキル基、直鎖若しくは分岐鎖状のハロゲン化アルキル基、または直鎖若しくは分岐鎖状のアルコキシ基である。
52において、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子などが挙げられ、フッ素原子が好ましい。
52において、アルキル基は、直鎖または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
52において、ハロゲン化アルキル基は、アルキル基中の水素原子の一部または全部がハロゲン原子で置換された基である。ここでのアルキル基は、前記R52における「アルキル基」と同様のものが挙げられる。置換するハロゲン原子としては上記「ハロゲン原子」について説明したものと同様のものが挙げられる。ハロゲン化アルキル基において、水素原子の全個数の50〜100%がハロゲン原子で置換されていることが望ましく、全て置換されていることがより好ましい。
52において、アルコキシ基としては、直鎖状または分岐鎖状であり、その炭素数は好ましくは1〜5、特に1〜4、さらには1〜3であることが望ましい。
52としては、これらの中でも水素原子が好ましい。
R 52 represents a hydrogen atom, a hydroxyl group, a halogen atom, a linear or branched alkyl group, a linear or branched alkyl halide group, or a linear or branched alkoxy group.
In R 52 , examples of the halogen atom include a fluorine atom, a bromine atom, a chlorine atom, and an iodine atom, and a fluorine atom is preferable.
In R 52 , the alkyl group is linear or branched, and the carbon number thereof is preferably 1 to 5, particularly 1 to 4, and more preferably 1 to 3.
In R 52 , the halogenated alkyl group is a group in which part or all of the hydrogen atoms in the alkyl group are substituted with halogen atoms. Examples of the alkyl group herein are the same as the “alkyl group” in R 52 . Examples of the halogen atom to be substituted include the same as those described above for the “halogen atom”. In the halogenated alkyl group, it is desirable that 50 to 100% of the total number of hydrogen atoms are substituted with halogen atoms, and it is more preferable that all are substituted.
In R 52 , the alkoxy group is linear or branched, and the carbon number thereof is preferably 1 to 5, particularly 1 to 4, and more preferably 1 to 3.
Among these, R 52 is preferably a hydrogen atom.

53は置換基を有していてもよいアリール基であり、置換基を除いた基本環(母体環)の構造としては、ナフチル基、フェニル基、アントラセニル基などが挙げられ、本発明の効果やArFエキシマレーザーなどの露光光の吸収の観点から、フェニル基が望ましい。
置換基としては、水酸基、低級アルキル基(直鎖または分岐鎖状であり、その好ましい炭素数は5以下であり、特にメチル基が好ましい)などを挙げることができる。
53のアリール基としては、置換基を有しないものがより好ましい。
u’’は1〜3の整数であり、2または3であることが好ましく、特に3であることが望ましい。
R 53 is an aryl group which may have a substituent, and examples of the structure of the basic ring (matrix ring) excluding the substituent include a naphthyl group, a phenyl group, an anthracenyl group, and the like. From the viewpoint of absorption of exposure light such as ArF excimer laser, a phenyl group is desirable.
Examples of the substituent include a hydroxyl group and a lower alkyl group (straight or branched chain, preferably having 5 or less carbon atoms, particularly preferably a methyl group).
As the aryl group for R 53, an aryl group having no substituent is more preferable.
u ″ is an integer of 1 to 3, preferably 2 or 3, and particularly preferably 3.

一般式(b−0)で表される酸発生剤の好ましいものは以下の様なものを挙げることができる。   Preferable examples of the acid generator represented by the general formula (b-0) include the following.

Figure 2008096743
Figure 2008096743

一般式(b−0)で表される酸発生剤は1種または2種以上混合して用いることができる。   The acid generator represented by general formula (b-0) can be used alone or in combination of two or more.

また、一般式(b−0)で表される酸発生剤の他のオニウム塩系酸発生剤として、例えば下記一般式(b−1)または(b−2)で表される化合物も好適に用いられる。   In addition, as another onium salt-based acid generator represented by the general formula (b-0), for example, a compound represented by the following general formula (b-1) or (b-2) is also preferable. Used.

Figure 2008096743
[式中、R”〜R”,R”〜R”は、それぞれ独立に、アリール基またはアルキル基を表し;R”は、直鎖、分岐または環状のアルキル基またはフッ素化アルキル基を表し;R”〜R”のうち少なくとも1つはアリール基を表し、R”〜R”のうち少なくとも1つはアリール基を表す。]
Figure 2008096743
[Wherein, R 1 ″ to R 3 ″ and R 5 ″ to R 6 ″ each independently represents an aryl group or an alkyl group; R 4 ″ represents a linear, branched or cyclic alkyl group or fluorinated group. Represents an alkyl group; at least one of R 1 ″ to R 3 ″ represents an aryl group, and at least one of R 5 ″ to R 6 ″ represents an aryl group.]

式(b−1)中、R”〜R”は、それぞれ独立にアリール基またはアルキル基を表す。R”〜R”のうち、少なくとも1つはアリール基を表す。R”〜R”のうち、2以上がアリール基であることが好ましく、R”〜R”のすべてがアリール基であることが最も好ましい。
”〜R”のアリール基としては、特に制限はなく、例えば、炭素数6〜20のアリール基であって、該アリール基は、その水素原子の一部または全部がアルキル基、アルコキシ基、ハロゲン原子等で置換されていてもよく、されていなくてもよい。アリール基としては、安価に合成可能なことから、炭素数6〜10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。
前記アリール基の水素原子が置換されていても良いアルキル基としては、炭素数1〜5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基であることが最も好ましい。
前記アリール基の水素原子が置換されていても良いアルコキシ基としては、炭素数1〜5のアルコキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
前記アリール基の水素原子が置換されていても良いハロゲン原子としては、フッ素原子であることが好ましい。
”〜R”のアルキル基としては、特に制限はなく、例えば炭素数1〜10の直鎖状、分岐状または環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1〜5であることが好ましい。具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
これらの中で、R”〜R”は、それぞれ、フェニル基またはナフチル基であることが最も好ましい。
In formula (b-1), R 1 ″ to R 3 ″ each independently represents an aryl group or an alkyl group. At least one of R 1 ″ to R 3 ″ represents an aryl group. Of R 1 ″ to R 3 ″, two or more are preferably aryl groups, and most preferably all of R 1 ″ to R 3 ″ are aryl groups.
The aryl group for R 1 ″ to R 3 ″ is not particularly limited, and is, for example, an aryl group having 6 to 20 carbon atoms, in which part or all of the hydrogen atoms are alkyl groups, alkoxy groups It may or may not be substituted with a group, a halogen atom or the like. The aryl group is preferably an aryl group having 6 to 10 carbon atoms because it can be synthesized at a low cost. Specific examples include a phenyl group and a naphthyl group.
The alkyl group that may be substituted for the hydrogen atom of the aryl group is preferably an alkyl group having 1 to 5 carbon atoms, and is a methyl group, an ethyl group, a propyl group, an n-butyl group, or a tert-butyl group. Is most preferred.
The alkoxy group that may be substituted with a hydrogen atom of the aryl group is preferably an alkoxy group having 1 to 5 carbon atoms, and most preferably a methoxy group or an ethoxy group.
The halogen atom that may be substituted for the hydrogen atom of the aryl group is preferably a fluorine atom.
The alkyl group for R 1 "~R 3", is not particularly limited, for example, a straight, include alkyl groups such as branched or cyclic. It is preferable that it is C1-C5 from the point which is excellent in resolution. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, a cyclopentyl group, a hexyl group, a cyclohexyl group, a nonyl group, and a decanyl group. A methyl group is preferable because it is excellent in resolution and can be synthesized at low cost.
Among these, R 1 ″ to R 3 ″ are most preferably a phenyl group or a naphthyl group, respectively.

”は、直鎖、分岐または環状のアルキル基またはフッ素化アルキル基を表す。
前記直鎖または分岐のアルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。
前記環状のアルキル基としては、前記R”で示したような環式基であって、炭素数4〜15であることが好ましく、炭素数4〜10であることがさらに好ましく、炭素数6〜10であることが最も好ましい。
前記フッ素化アルキル基としては、炭素数1〜10であることが好ましく、炭素数1〜8であることがさらに好ましく、炭素数1〜4であることが最も好ましい。また、該フッ化アルキル基のフッ素化率(アルキル基中のフッ素原子の割合)は、好ましくは10〜100%、さらに好ましくは50〜100%であり、特に水素原子をすべてフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
”としては、直鎖または環状のアルキル基、またはフッ素化アルキル基であることが最も好ましい。
R 4 ″ represents a linear, branched or cyclic alkyl group or a fluorinated alkyl group.
The linear or branched alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
The cyclic alkyl group is a cyclic group as indicated by R 1 ″ and preferably has 4 to 15 carbon atoms, more preferably 4 to 10 carbon atoms, and 6 carbon atoms. Most preferably, it is -10.
The fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms. The fluorination rate of the fluorinated alkyl group (ratio of fluorine atoms in the alkyl group) is preferably 10 to 100%, more preferably 50 to 100%. Particularly, all the hydrogen atoms are substituted with fluorine atoms. It is preferable because the strength of the acid is increased.
R 4 ″ is most preferably a linear or cyclic alkyl group or a fluorinated alkyl group.

式(b−2)中、R”〜R”は、それぞれ独立にアリール基またはアルキル基を表す。R”〜R”のうち、少なくとも1つはアリール基を表す。R”〜R”のすべてがアリール基であることが好ましい。
”〜R”のアリール基としては、R”〜R”のアリール基と同様のものが挙げられる。
”〜R”のアルキル基としては、R”〜R”のアルキル基と同様のものが挙げられる。
これらの中で、R”〜R”はすべてフェニル基であることが最も好ましい。
式(b−2)中のR”としては上記式(b−1)のR”と同様のものが挙げられる。
In formula (b-2), R 5 ″ to R 6 ″ each independently represents an aryl group or an alkyl group. At least one of R 5 ″ to R 6 ″ represents an aryl group. It is preferable that all of R 5 ″ to R 6 ″ are aryl groups.
As the aryl group for R 5 ″ to R 6 ″, the same as the aryl groups for R 1 ″ to R 3 ″ can be used.
As the alkyl group for R 5 ″ to R 6 ″, the same as the alkyl groups for R 1 ″ to R 3 ″ can be used.
Among these, it is most preferable that all of R 5 ″ to R 6 ″ are phenyl groups.
"As R 4 in the formula (b-1)" R 4 in the In the formula (b-2) include the same as.

式(b−1)、(b−2)で表されるオニウム塩系酸発生剤の具体例としては、ジフェニルヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、ビス(4−tert−ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネートまたはノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4−メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジメチル(4−ヒドロキシナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、モノフェニルジメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4−メチルフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、(4−メトキシフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、トリ(4−tert−ブチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジフェニル(1−(4−メトキシ)ナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネート、ジ(1−ナフチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネートまたはそのノナフルオロブタンスルホネートなどが挙げられる。また、これらのオニウム塩のアニオン部がメタンスルホネート、n−プロパンスルホネート、n−ブタンスルホネート、n−オクタンスルホネートに置き換えたオニウム塩も用いることができる。   Specific examples of the onium salt acid generators represented by the formulas (b-1) and (b-2) include diphenyliodonium trifluoromethanesulfonate or nonafluorobutanesulfonate, bis (4-tert-butylphenyl) iodonium. Trifluoromethanesulfonate or nonafluorobutanesulfonate, triphenylsulfonium trifluoromethanesulfonate, heptafluoropropanesulfonate or nonafluorobutanesulfonate, tri (4-methylphenyl) sulfonium trifluoromethanesulfonate, heptafluoropropanesulfonate or the same Nonafluorobutanesulfonate, dimethyl (4-hydroxynaphthyl) sulfonium trifluoromethanesulfonate, its heptaful Lopropanesulfonate or its nonafluorobutanesulfonate, trifluoromethanesulfonate of monophenyldimethylsulfonium, its heptafluoropropanesulfonate or its nonafluorobutanesulfonate, trifluoromethanesulfonate of diphenylmonomethylsulfonium, its heptafluoropropanesulfonate or its nonafluorobutanesulfonate (4-methylphenyl) diphenylsulfonium trifluoromethanesulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate, (4-methoxyphenyl) diphenylsulfonium trifluoromethanesulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate , Trifluoromethanesulfonate of tri (4-tert-butyl) phenylsulfonium, its heptafluoropropanesulfonate or its nonafluorobutanesulfonate, trifluoromethanesulfonate of diphenyl (1- (4-methoxy) naphthyl) sulfonium, its heptafluoropropane Sulfonate or its nonafluorobutane sulfonate, di (1-naphthyl) phenylsulfonium trifluoromethane sulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate. In addition, onium salts in which the anion portion of these onium salts is replaced with methanesulfonate, n-propanesulfonate, n-butanesulfonate, or n-octanesulfonate can also be used.

また、前記一般式(b−1)又は(b−2)において、アニオン部を下記一般式(b−3)又は(b−4)で表されるアニオン部に置き換えたオニウム塩系酸発生剤も用いることができる(カチオン部は(b−1)又は(b−2)と同様)。   In addition, in the general formula (b-1) or (b-2), an onium salt-based acid generator in which the anion moiety is replaced with an anion moiety represented by the following general formula (b-3) or (b-4). Can also be used (the cation moiety is the same as (b-1) or (b-2)).

Figure 2008096743
[式中、X”は、少なくとも1つの水素原子がフッ素原子で置換された炭素数2〜6のアルキレン基を表し;Y”、Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された炭素数1〜10のアルキル基を表す。]
Figure 2008096743
[Wherein X ″ represents an alkylene group having 2 to 6 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom; Y ″ and Z ″ each independently represent at least one hydrogen atom as a fluorine atom; Represents an alkyl group having 1 to 10 carbon atoms and substituted with

X”は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキレン基であり、該アルキレン基の炭素数は2〜6であり、好ましくは炭素数3〜5、最も好ましくは炭素数3である。
Y”、Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状または分岐状のアルキル基であり、該アルキル基の炭素数は1〜10であり、好ましくは炭素数1〜7、より好ましくは炭素数1〜3である。
X”のアルキレン基の炭素数またはY”、Z”のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト溶媒への溶解性も良好である等の理由により、小さいほど好ましい。
また、X”のアルキレン基またはY”、Z”のアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。該アルキレン基またはアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70〜100%、さらに好ましくは90〜100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基またはパーフルオロアルキル基である。
X ″ is a linear or branched alkylene group in which at least one hydrogen atom is substituted with a fluorine atom, and the alkylene group has 2 to 6 carbon atoms, preferably 3 to 5 carbon atoms, Preferably it is C3.
Y ″ and Z ″ are each independently a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and the alkyl group has 1 to 10 carbon atoms, preferably It is C1-C7, More preferably, it is C1-C3.
The carbon number of the alkylene group of X ″ or the carbon number of the alkyl group of Y ″ and Z ″ is preferably as small as possible because the solubility in the resist solvent is good within the above carbon number range.
In addition, in the alkylene group of X ″ or the alkyl group of Y ″ and Z ″, the strength of the acid increases as the number of hydrogen atoms substituted with fluorine atoms increases, and high-energy light or electron beam of 200 nm or less The ratio of fluorine atoms in the alkylene group or alkyl group, that is, the fluorination rate is preferably 70 to 100%, more preferably 90 to 100%, and most preferably all. Are a perfluoroalkylene group or a perfluoroalkyl group in which a hydrogen atom is substituted with a fluorine atom.

本明細書において、オキシムスルホネート系酸発生剤とは、下記一般式(B−1)で表される基を少なくとも1つ有する化合物であって、放射線の照射によって酸を発生する特性を有するものである。この様なオキシムスルホネート系酸発生剤は、化学増幅型レジスト組成物用として多用されているので、任意に選択して用いることができる。   In this specification, the oxime sulfonate acid generator is a compound having at least one group represented by the following general formula (B-1), and has a property of generating an acid upon irradiation with radiation. is there. Such oxime sulfonate-based acid generators are frequently used for chemically amplified resist compositions, and can be arbitrarily selected and used.

Figure 2008096743
(式(B−1)中、R31、R32はそれぞれ独立に有機基を表す。)
Figure 2008096743
(In formula (B-1), R 31 and R 32 each independently represents an organic group.)

31、R32の有機基は、炭素原子を含む基であり、炭素原子以外の原子(たとえば水素原子、酸素原子、窒素原子、硫黄原子、ハロゲン原子(フッ素原子、塩素原子等)等)を有していてもよい。
31の有機基としては、直鎖、分岐または環状のアルキル基またはアリール基が好ましい。これらのアルキル基、アリール基は置換基を有していても良い。該置換基としては、特に制限はなく、たとえばフッ素原子、炭素数1〜6の直鎖、分岐または環状のアルキル基等が挙げられる。ここで、「置換基を有する」とは、アルキル基またはアリール基の水素原子の一部または全部が置換基で置換されていることを意味する。
アルキル基としては、炭素数1〜20が好ましく、炭素数1〜10がより好ましく、炭素数1〜8がさらに好ましく、炭素数1〜6が特に好ましく、炭素数1〜4が最も好ましい。アルキル基としては、特に、部分的または完全にハロゲン化されたアルキル基(以下、ハロゲン化アルキル基ということがある)が好ましい。なお、部分的にハロゲン化されたアルキル基とは、水素原子の一部がハロゲン原子で置換されたアルキル基を意味し、完全にハロゲン化されたアルキル基とは、水素原子の全部がハロゲン原子で置換されたアルキル基を意味する。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、特にフッ素原子が好ましい。すなわち、ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
アリール基は、炭素数4〜20が好ましく、炭素数4〜10がより好ましく、炭素数6〜10が最も好ましい。アリール基としては、特に、部分的または完全にハロゲン化されたアリール基が好ましい。なお、部分的にハロゲン化されたアリール基とは、水素原子の一部がハロゲン原子で置換されたアリール基を意味し、完全にハロゲン化されたアリール基とは、水素原子の全部がハロゲン原子で置換されたアリール基を意味する。
31としては、特に、置換基を有さない炭素数1〜4のアルキル基、または炭素数1〜4のフッ素化アルキル基が好ましい。
The organic groups of R 31 and R 32 are groups containing carbon atoms, and atoms other than carbon atoms (for example, hydrogen atoms, oxygen atoms, nitrogen atoms, sulfur atoms, halogen atoms (fluorine atoms, chlorine atoms, etc.), etc.) You may have.
As the organic group for R 31 , a linear, branched, or cyclic alkyl group or aryl group is preferable. These alkyl groups and aryl groups may have a substituent. There is no restriction | limiting in particular as this substituent, For example, a fluorine atom, a C1-C6 linear, branched or cyclic alkyl group etc. are mentioned. Here, “having a substituent” means that part or all of the hydrogen atoms of the alkyl group or aryl group are substituted with a substituent.
As an alkyl group, C1-C20 is preferable, C1-C10 is more preferable, C1-C8 is more preferable, C1-C6 is especially preferable, and C1-C4 is the most preferable. As the alkyl group, a partially or completely halogenated alkyl group (hereinafter sometimes referred to as a halogenated alkyl group) is particularly preferable. The partially halogenated alkyl group means an alkyl group in which a part of hydrogen atoms is substituted with a halogen atom, and the fully halogenated alkyl group means that all of the hydrogen atoms are halogen atoms. Means an alkyl group substituted with Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is particularly preferable. That is, the halogenated alkyl group is preferably a fluorinated alkyl group.
The aryl group preferably has 4 to 20 carbon atoms, more preferably 4 to 10 carbon atoms, and most preferably 6 to 10 carbon atoms. As the aryl group, a partially or completely halogenated aryl group is particularly preferable. The partially halogenated aryl group means an aryl group in which a part of hydrogen atoms is substituted with a halogen atom, and the fully halogenated aryl group means that all of the hydrogen atoms are halogen atoms. Means an aryl group substituted with.
R 31 is particularly preferably an alkyl group having 1 to 4 carbon atoms or a fluorinated alkyl group having 1 to 4 carbon atoms which has no substituent.

32の有機基としては、直鎖、分岐または環状のアルキル基、アリール基またはシアノ基が好ましい。R32のアルキル基、アリール基としては、前記R31で挙げたアルキル基、アリール基と同様のものが挙げられる。
32としては、特に、シアノ基、置換基を有さない炭素数1〜8のアルキル基、または炭素数1〜8のフッ素化アルキル基が好ましい。
As the organic group for R 32 , a linear, branched, or cyclic alkyl group, aryl group, or cyano group is preferable. As the alkyl group and aryl group for R 32, the same alkyl groups and aryl groups as those described above for R 31 can be used.
R 32 is particularly preferably a cyano group, an alkyl group having 1 to 8 carbon atoms having no substituent, or a fluorinated alkyl group having 1 to 8 carbon atoms.

オキシムスルホネート系酸発生剤として、さらに好ましいものとしては、下記一般式(B−2)または(B−3)で表される化合物が挙げられる。   More preferable examples of the oxime sulfonate-based acid generator include compounds represented by the following general formula (B-2) or (B-3).

Figure 2008096743
[式(B−2)中、R33は、シアノ基、置換基を有さないアルキル基またはハロゲン化アルキル基である。R34はアリール基である。R35は置換基を有さないアルキル基またはハロゲン化アルキル基である。]
Figure 2008096743
[In Formula (B-2), R 33 represents a cyano group, an alkyl group having no substituent, or a halogenated alkyl group. R 34 is an aryl group. R 35 represents an alkyl group having no substituent or a halogenated alkyl group. ]

Figure 2008096743
[式(B−3)中、R36はシアノ基、置換基を有さないアルキル基またはハロゲン化アルキル基である。R37は2または3価の芳香族炭化水素基である。R38は置換基を有さないアルキル基またはハロゲン化アルキル基である。p’’は2または3である。]
Figure 2008096743
[In Formula (B-3), R 36 represents a cyano group, an alkyl group having no substituent, or a halogenated alkyl group. R 37 is a divalent or trivalent aromatic hydrocarbon group. R38 is an alkyl group having no substituent or a halogenated alkyl group. p ″ is 2 or 3. ]

前記一般式(B−2)において、R33の置換基を有さないアルキル基またはハロゲン化アルキル基は、炭素数が1〜10であることが好ましく、炭素数1〜8がより好ましく、炭素数1〜6が最も好ましい。
33としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましい。
33におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが好ましい。
In the general formula (B-2), the alkyl group or halogenated alkyl group having no substituent of R 33 preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and carbon atoms. Numbers 1 to 6 are most preferable.
R 33 is preferably a halogenated alkyl group, more preferably a fluorinated alkyl group.
The fluorinated alkyl group for R 33 is preferably such that the hydrogen atom of the alkyl group is 50% or more fluorinated, more preferably 70% or more, and still more preferably 90% or more.

34のアリール基としては、フェニル基、ビフェニル(biphenyl)基、フルオレニル(fluorenyl)基、ナフチル基、アントラセル(anthracyl)基、フェナントリル基等の、芳香族炭化水素の環から水素原子を1つ除いた基、およびこれらの基の環を構成する炭素原子の一部が酸素原子、硫黄原子、窒素原子等のヘテロ原子で置換されたヘテロアリール基等が挙げられる。これらのなかでも、フルオレニル基が好ましい。
34のアリール基は、炭素数1〜10のアルキル基、ハロゲン化アルキル基、アルコキシ基等の置換基を有していても良い。該置換基におけるアルキル基またはハロゲン化アルキル基は、炭素数が1〜8であることが好ましく、炭素数1〜4がさらに好ましい。また、該ハロゲン化アルキル基は、フッ素化アルキル基であることが好ましい。
As the aryl group of R 34 , one hydrogen atom is removed from an aromatic hydrocarbon ring such as a phenyl group, a biphenyl group, a fluorenyl group, a naphthyl group, an anthracyl group, or a phenanthryl group. And heteroaryl groups in which some of the carbon atoms constituting the ring of these groups are substituted with heteroatoms such as oxygen, sulfur, and nitrogen atoms. Among these, a fluorenyl group is preferable.
The aryl group of R 34 may have a substituent such as an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group, or an alkoxy group. The alkyl group or halogenated alkyl group in the substituent preferably has 1 to 8 carbon atoms, and more preferably 1 to 4 carbon atoms. The halogenated alkyl group is preferably a fluorinated alkyl group.

35の置換基を有さないアルキル基またはハロゲン化アルキル基は、炭素数が1〜10であることが好ましく、炭素数1〜8がより好ましく、炭素数1〜6が最も好ましい。
35としては、ハロゲン化アルキル基が好ましく、フッ素化アルキル基がより好ましく、部分的にフッ素化されたアルキル基が最も好ましい。
35におけるフッ素化アルキル基は、アルキル基の水素原子が50%以上フッ素化されていることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上フッ素化されていることが、発生する酸の強度が高まるため好ましい。最も好ましくは、水素原子が100%フッ素置換された完全フッ素化アルキル基である。
The alkyl group or halogenated alkyl group having no substituent for R 35 preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 6 carbon atoms.
R 35 is preferably a halogenated alkyl group, more preferably a fluorinated alkyl group, and most preferably a partially fluorinated alkyl group.
The fluorinated alkyl group in R 35 preferably has 50% or more of the hydrogen atom of the alkyl group, more preferably 70% or more, and even more preferably 90% or more fluorinated. This is preferable because the strength of the acid is increased. Most preferred is a fully fluorinated alkyl group in which a hydrogen atom is 100% fluorine-substituted.

前記一般式(B−3)において、R36の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R33の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
37の2または3価の芳香族炭化水素基としては、上記R34のアリール基からさらに1または2個の水素原子を除いた基が挙げられる。
38の置換基を有さないアルキル基またはハロゲン化アルキル基としては、上記R35の置換基を有さないアルキル基またはハロゲン化アルキル基と同様のものが挙げられる。
p’’は、好ましくは2である。
In the general formula (B-3), the alkyl group or halogenated alkyl group having no substituent for R 36 is the same as the alkyl group or halogenated alkyl group having no substituent for R 33. Is mentioned.
Examples of the divalent or trivalent aromatic hydrocarbon group for R 37 include groups obtained by further removing one or two hydrogen atoms from the aryl group for R 34 .
Examples of the alkyl group or halogenated alkyl group having no substituent of R 38 include the same alkyl groups or halogenated alkyl groups having no substituent as R 35 described above.
p ″ is preferably 2.

オキシムスルホネート系酸発生剤の具体例としては、α−(p−トルエンスルホニルオキシイミノ)−ベンジルシアニド、α−(p−クロロベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(4−ニトロベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(4−ニトロ−2−トリフルオロメチルベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−4−クロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−2,4−ジクロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−2,6−ジクロロベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−4−メトキシベンジルシアニド、α−(2−クロロベンゼンスルホニルオキシイミノ)−4−メトキシベンジルシアニド、α−(ベンゼンスルホニルオキシイミノ)−チエン−2−イルアセトニトリル、α−(4−ドデシルベンゼンスルホニルオキシイミノ)−ベンジルシアニド、α−[(p−トルエンスルホニルオキシイミノ)−4−メトキシフェニル]アセトニトリル、α−[(ドデシルベンゼンスルホニルオキシイミノ)−4−メトキシフェニル]アセトニトリル、α−(トシルオキシイミノ)−4−チエニルシアニド、α−(メチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロヘプテニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−1−シクロオクテニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−シクロヘキシルアセトニトリル、α−(エチルスルホニルオキシイミノ)−エチルアセトニトリル、α−(プロピルスルホニルオキシイミノ)−プロピルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−シクロペンチルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−シクロヘキシルアセトニトリル、α−(シクロヘキシルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(イソプロピルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(n−ブチルスルホニルオキシイミノ)−1−シクロペンテニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(イソプロピルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(n−ブチルスルホニルオキシイミノ)−1−シクロヘキセニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−フェニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−フェニルアセトニトリル、α−(トリフルオロメチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(エチルスルホニルオキシイミノ)−p−メトキシフェニルアセトニトリル、α−(プロピルスルホニルオキシイミノ)−p−メチルフェニルアセトニトリル、α−(メチルスルホニルオキシイミノ)−p−ブロモフェニルアセトニトリルなどが挙げられる。
また、特開平9−208554号公報(段落[0012]〜[0014]の[化18]〜[化19])に開示されているオキシムスルホネート系酸発生剤、国際公開第04/074242号パンフレット(65〜85頁目のExample1〜40)に開示されているオキシムスルホネート系酸発生剤も好適に用いることができる。
また、好適なものとして以下のものを例示することができる。
Specific examples of the oxime sulfonate acid generator include α- (p-toluenesulfonyloxyimino) -benzyl cyanide, α- (p-chlorobenzenesulfonyloxyimino) -benzyl cyanide, α- (4-nitrobenzenesulfonyloxy). Imino) -benzylcyanide, α- (4-nitro-2-trifluoromethylbenzenesulfonyloxyimino) -benzylcyanide, α- (benzenesulfonyloxyimino) -4-chlorobenzylcyanide, α- (benzenesulfonyl) Oxyimino) -2,4-dichlorobenzyl cyanide, α- (benzenesulfonyloxyimino) -2,6-dichlorobenzyl cyanide, α- (benzenesulfonyloxyimino) -4-methoxybenzyl cyanide, α- ( 2-Chlorobenzenesulfonyloxyimino) 4-methoxybenzylcyanide, α- (benzenesulfonyloxyimino) -thien-2-ylacetonitrile, α- (4-dodecylbenzenesulfonyloxyimino) -benzylcyanide, α-[(p-toluenesulfonyloxyimino) -4-methoxyphenyl] acetonitrile, α-[(dodecylbenzenesulfonyloxyimino) -4-methoxyphenyl] acetonitrile, α- (tosyloxyimino) -4-thienyl cyanide, α- (methylsulfonyloxyimino) -1-cyclo Pentenyl acetonitrile, α- (methylsulfonyloxyimino) -1-cyclohexenylacetonitrile, α- (methylsulfonyloxyimino) -1-cycloheptenylacetonitrile, α- (methylsulfonyloxyimino) -1-cyclooctene Acetonitrile, α- (trifluoromethylsulfonyloxyimino) -1-cyclopentenylacetonitrile, α- (trifluoromethylsulfonyloxyimino) -cyclohexylacetonitrile, α- (ethylsulfonyloxyimino) -ethylacetonitrile, α- (propyl Sulfonyloxyimino) -propylacetonitrile, α- (cyclohexylsulfonyloxyimino) -cyclopentylacetonitrile, α- (cyclohexylsulfonyloxyimino) -cyclohexylacetonitrile, α- (cyclohexylsulfonyloxyimino) -1-cyclopentenylacetonitrile, α- ( Ethylsulfonyloxyimino) -1-cyclopentenylacetonitrile, α- (isopropylsulfonyloxyimino) -1-cyclope N-tenyl acetonitrile, α- (n-butylsulfonyloxyimino) -1-cyclopentenylacetonitrile, α- (ethylsulfonyloxyimino) -1-cyclohexenylacetonitrile, α- (isopropylsulfonyloxyimino) -1-cyclohexenylacetonitrile , Α- (n-butylsulfonyloxyimino) -1-cyclohexenylacetonitrile, α- (methylsulfonyloxyimino) -phenylacetonitrile, α- (methylsulfonyloxyimino) -p-methoxyphenylacetonitrile, α- (trifluoro Methylsulfonyloxyimino) -phenylacetonitrile, α- (trifluoromethylsulfonyloxyimino) -p-methoxyphenylacetonitrile, α- (ethylsulfonyloxyimino) -p- Butoxy phenylacetonitrile, alpha-(propylsulfonyl oxyimino)-p-methylphenyl acetonitrile, alpha-like (methylsulfonyloxyimino)-p-bromophenyl acetonitrile.
Further, an oxime sulfonate-based acid generator disclosed in JP-A-9-208554 (paragraphs [0012] to [0014] [chemical formula 18] to [chemical formula 19]), pamphlet of International Publication No. 04/074242, An oxime sulfonate-based acid generator disclosed in Examples 1 to 40) on pages 65 to 85 can also be suitably used.
Moreover, the following can be illustrated as a suitable thing.

Figure 2008096743
Figure 2008096743

上記例示化合物の中でも、下記の4つの化合物が好ましい。   Of the above exemplified compounds, the following four compounds are preferred.

Figure 2008096743
Figure 2008096743

ジアゾメタン系酸発生剤のうち、ビスアルキルまたはビスアリールスルホニルジアゾメタン類の具体例としては、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(1,1−ジメチルエチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(2,4−ジメチルフェニルスルホニル)ジアゾメタン等が挙げられる。
また、特開平11−035551号公報、特開平11−035552号公報、特開平11−035573号公報に開示されているジアゾメタン系酸発生剤も好適に用いることができる。
また、ポリ(ビススルホニル)ジアゾメタン類としては、例えば、特開平11−322707号公報に開示されている、1,3−ビス(フェニルスルホニルジアゾメチルスルホニル)プロパン、1,4−ビス(フェニルスルホニルジアゾメチルスルホニル)ブタン、1,6−ビス(フェニルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(フェニルスルホニルジアゾメチルスルホニル)デカン、1,2−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)エタン、1,3−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)プロパン、1,6−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)ヘキサン、1,10−ビス(シクロヘキシルスルホニルジアゾメチルスルホニル)デカンなどを挙げることができる。
Among diazomethane acid generators, specific examples of bisalkyl or bisarylsulfonyldiazomethanes include bis (isopropylsulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (1,1-dimethylethylsulfonyl) diazomethane, Examples include bis (cyclohexylsulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, and the like.
Further, diazomethane acid generators disclosed in JP-A-11-035551, JP-A-11-035552, and JP-A-11-035573 can also be suitably used.
Examples of poly (bissulfonyl) diazomethanes include 1,3-bis (phenylsulfonyldiazomethylsulfonyl) propane and 1,4-bis (phenylsulfonyldiazo) disclosed in JP-A-11-322707. Methylsulfonyl) butane, 1,6-bis (phenylsulfonyldiazomethylsulfonyl) hexane, 1,10-bis (phenylsulfonyldiazomethylsulfonyl) decane, 1,2-bis (cyclohexylsulfonyldiazomethylsulfonyl) ethane, 1,3 -Bis (cyclohexylsulfonyldiazomethylsulfonyl) propane, 1,6-bis (cyclohexylsulfonyldiazomethylsulfonyl) hexane, 1,10-bis (cyclohexylsulfonyldiazomethylsulfonyl) decane, etc. Door can be.

(B)成分は、これらの酸発生剤を1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明においては、中でも(B)成分としてフッ素化アルキルスルホン酸イオンをアニオンとするオニウム塩を用いることが好ましい。
本発明の液浸露光用ポジ型レジスト組成物における(B)成分の含有量は、(A)成分100質量部に対し、0.5〜30質量部、好ましくは1〜15質量部とされる。上記範囲とすることでパターン形成が充分に行われる。また、均一な溶液が得られ、保存安定性が良好となるため好ましい。
As the component (B), one type of these acid generators may be used alone, or two or more types may be used in combination.
In the present invention, it is particularly preferable to use an onium salt having a fluorinated alkyl sulfonate ion as an anion as the component (B).
The content of the component (B) in the positive resist composition for immersion exposure according to the present invention is 0.5 to 30 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the component (A). . By setting it within the above range, pattern formation is sufficiently performed. Moreover, since a uniform solution is obtained and storage stability becomes favorable, it is preferable.

<(G)成分>
本発明の液浸露光用ポジ型レジスト組成物には、酸増殖剤成分(G)が含有される。当該(G)成分を含有することにより、浸漬露光時の物質溶出を抑制でき、リソグラフィー特性にも優れるという効果が得られる。
本発明の液浸露光用ポジ型レジスト組成物においては、露光により、前記(B)成分から酸が発生する。そして、該酸によって(G)成分は分解されて遊離酸が生成し、かかる遊離酸によって(G)成分はさらに分解されて遊離酸を生成する。このようにして、露光により、(G)成分が連鎖的に分解し、多数の遊離酸分子が生成する。
<(G) component>
The positive resist composition for immersion exposure of the present invention contains an acid multiplier component (G). By containing the said (G) component, the effect that the substance elution at the time of immersion exposure can be suppressed and it is excellent also in a lithography characteristic is acquired.
In the positive resist composition for immersion exposure according to the present invention, an acid is generated from the component (B) by exposure. The (G) component is decomposed by the acid to generate a free acid, and the (G) component is further decomposed by the free acid to generate a free acid. In this way, the (G) component is chain-decomposed by exposure to generate a large number of free acid molecules.

係る(G)成分としては、上記のように、露光により、(B)成分から発生する酸の作用により分解し、新たに酸を自ら発生させて自己触媒的に酸を増殖するものであればよく、たとえば架橋炭素環骨格構造を有する化合物が好適なものとして挙げられる。
ここで、「架橋炭素環骨格構造を有する化合物」とは、その分子内に複数の炭素環同士の橋かけ結合による構造(以下、単に「架橋炭素環」ということがある。)を有する化合物を示す。
該架橋炭素環骨格構造を有する化合物は、橋かけ結合を有していることにより、分子が剛直化され、該化合物の熱安定性が向上する。
炭素環の個数としては、2〜6個が好ましく、より好ましくは2〜3個である。
架橋炭素環は、その水素原子の一部又は全部が、アルキル基、アルコキシ基等で置換されていてもよい。当該アルキル基としては、炭素数1〜6が好ましく、1〜3がより好ましく、具体的にはメチル基、エチル基、プロピル基等が挙げられる。当該アルコキシ基としては、炭素数1〜6が好ましく、1〜3がより好ましく、具体的にはメトキシ基、エトキシ基等が挙げられる。また、架橋炭素環は、二重結合等の不飽和結合を有していてもよい。
As the component (G), as described above, it can be decomposed by the action of an acid generated from the component (B) by exposure and newly generate an acid by itself to proliferate the acid in an autocatalytic manner. For example, a compound having a bridged carbocyclic skeleton structure is preferable.
Here, the “compound having a bridged carbocyclic skeleton structure” refers to a compound having a structure (hereinafter sometimes simply referred to as “bridged carbocycle”) formed by a bridge bond between a plurality of carbocycles in the molecule. Show.
The compound having the bridged carbocyclic skeleton structure has a bridging bond, whereby the molecule is stiffened and the thermal stability of the compound is improved.
The number of carbocycles is preferably 2-6, more preferably 2-3.
In the bridged carbocycle, part or all of the hydrogen atoms may be substituted with an alkyl group, an alkoxy group or the like. As the said alkyl group, C1-C6 is preferable, 1-3 are more preferable, and a methyl group, an ethyl group, a propyl group etc. are mentioned specifically ,. As the said alkoxy group, C1-C6 is preferable, 1-3 are more preferable, and a methoxy group, an ethoxy group, etc. are mentioned specifically ,. The bridged carbocycle may have an unsaturated bond such as a double bond.

本発明において、架橋炭素環は、その環上に、水酸基と、該水酸基が結合している炭素原子の隣接位の炭素原子に下記一般式(Gs)で表されるスルホナート基とを有するものが特に好ましい。   In the present invention, the bridged carbocycle has a hydroxyl group and a sulfonate group represented by the following general formula (Gs) on the carbon atom adjacent to the carbon atom to which the hydroxyl group is bonded. Particularly preferred.

Figure 2008096743
[式中、Rは脂肪族基、芳香族基又は複素環式基を示す。]
Figure 2008096743
[Wherein, R 0 represents an aliphatic group, an aromatic group or a heterocyclic group. ]

前記式(Gs)中、Rは、脂肪族基、芳香族基又は複素環式基を示す。
において、脂肪族基としては、たとえば鎖状もしくは環状のアルキル基またはアルケニル基が挙げられ、炭素数は1〜12が好ましく、より好ましくは1〜8である。
芳香族基は、単環式基であってもよく、多環式基であってもよく、具体的には、たとえばアリール基等が挙げられる。
複素環式基は、単環式基であってもよく、多環式基であってもよく、従来公知の各種の複素環式化合物から誘導されるものが挙げられる。
上記の脂肪族基、芳香族基及び複素環式基は、置換基を有していてもよく、該置換基としては、ハロゲン原子、アルキル基、アルコキシ基、アミノ基、置換アミノ基等が挙げられる。
前記脂肪族基及び前記芳香族基として具体的には、たとえばメチル基、エチル基、プロピル基、ブチル基、アシル基、ヘキシル基、ビニル基、プロピレン基、アリル基、シクロヘキシル基、シクロオクチル基、ビシクロ炭化水素基、トリシクロ炭化水素基、フェニル基、トリル基、ベンジル基、フェネチル基、ナフチル基、ナフチルメチル基又はそれらの置換体等が挙げられる。
前記複素環式基としては、各種の複素環式化合物、たとえばフラン、チオフェン、ピロール、ベンゾフラン、チオナフテン、インドール、カルバゾール等の1つのヘテロ原子を含む五員環化合物又はその縮合環化合物;オキサゾール、チアゾール、ピラゾール等の2つのヘテロ原子を含む五員環化合物又はその縮合環化合物;ピラン、ピロン、クマリン、ピリジン、キノリン、イソキノリン、アクリジン等の1つのヘテロ原子を含む六員環化合物又はその縮合環化合物;ピリダジン、ピリミジン、ピラジン、フタルジン等の2つのヘテロ原子を含む六員環化合物又はその縮合環化合物等から誘導された各種のものが挙げられる。
In the formula (Gs), R 0 represents an aliphatic group, an aromatic group, or a heterocyclic group.
In R 0 , examples of the aliphatic group include a chain or cyclic alkyl group or alkenyl group, and the number of carbon atoms is preferably 1 to 12, and more preferably 1 to 8.
The aromatic group may be a monocyclic group or a polycyclic group, and specific examples thereof include an aryl group.
The heterocyclic group may be a monocyclic group or a polycyclic group, and examples thereof include those derived from various conventionally known heterocyclic compounds.
The aliphatic group, aromatic group and heterocyclic group may have a substituent, and examples of the substituent include a halogen atom, an alkyl group, an alkoxy group, an amino group, and a substituted amino group. It is done.
Specific examples of the aliphatic group and the aromatic group include, for example, methyl group, ethyl group, propyl group, butyl group, acyl group, hexyl group, vinyl group, propylene group, allyl group, cyclohexyl group, cyclooctyl group, A bicyclo hydrocarbon group, a tricyclo hydrocarbon group, a phenyl group, a tolyl group, a benzyl group, a phenethyl group, a naphthyl group, a naphthylmethyl group, or a substituted product thereof can be exemplified.
Examples of the heterocyclic group include various heterocyclic compounds, for example, five-membered ring compounds containing one hetero atom such as furan, thiophene, pyrrole, benzofuran, thionaphthene, indole, carbazole, or condensed ring compounds thereof; oxazole, thiazole 5-membered ring compounds containing two heteroatoms such as pyrazole, or condensed ring compounds thereof; 6-membered ring compounds containing one heteroatom such as pyran, pyron, coumarin, pyridine, quinoline, isoquinoline, acridine, etc. or condensed ring compounds thereof And various derivatives derived from six-membered ring compounds containing two heteroatoms such as pyridazine, pyrimidine, pyrazine, and phthalidine, or condensed ring compounds thereof.

本発明において、(G)成分が、その架橋炭素環上に、水酸基と、前記一般式(Gs)で表されるスルホナート基とを有する場合、かかる(G)成分は、露光により、前記(B)成分から発生する酸の作用により分解して、新たに酸(RSOH)を発生させる。このように、露光により、一回の反応で1つの酸が増えて、そして、反応の進行に伴って加速的に反応が進み、(G)成分は連鎖的に分解する。
かかる場合において、発生する酸の強度は、酸解離定数(pKa)として3以下であることが好ましく、2以下であることが特に好ましい。pKaが3以下であれば、発生した酸自体が自己分解をより誘起しやすくなる。逆に、これより弱い酸であると、自己分解を引き起こしにくくなる。
上記反応によって遊離される酸(RSOH)としては、たとえばメタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペンタンスルホン酸、ヘキサンスルホン酸、ヘプタンスルホン酸、オクタンスルホン酸、シクロヘキサンスルホン酸、カンファースルホン酸、トリフルオロメタンスルホン酸、2,2,2−トリフルオロエタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、p−ブロモベンゼンスルホン酸、p−ニトロベンゼンスルホン酸、2−チオフェンスルホン酸、1−ナフタレンスルホン酸、2−ナフタレンスルホン酸等が挙げられる。
In the present invention, when the component (G) has a hydroxyl group and a sulfonate group represented by the general formula (Gs) on the bridged carbocycle, the component (G) ) Decomposed by the action of an acid generated from the component to newly generate an acid (R 0 SO 3 H). Thus, by exposure, one acid increases in one reaction, and as the reaction proceeds, the reaction accelerates and the component (G) decomposes in a chain.
In such a case, the strength of the acid generated is preferably 3 or less, particularly preferably 2 or less, as the acid dissociation constant (pKa). If pKa is 3 or less, the generated acid itself is more likely to induce autolysis. Conversely, if the acid is weaker than this, it is difficult to cause autolysis.
Examples of the acid (R 0 SO 3 H) released by the above reaction include methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, pentanesulfonic acid, hexanesulfonic acid, heptanesulfonic acid, octanesulfonic acid, Cyclohexanesulfonic acid, camphorsulfonic acid, trifluoromethanesulfonic acid, 2,2,2-trifluoroethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, p-bromobenzenesulfonic acid, p-nitrobenzenesulfonic acid, 2- Examples thereof include thiophenesulfonic acid, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid and the like.

(G)成分として、より具体的には、下記一般式(G1)〜(G4)で表される化合物(以下、それぞれの一般式に対応する化合物を、化合物(G1)〜(G4)という。)が挙げられる。   More specifically, as the component (G), compounds represented by the following general formulas (G1) to (G4) (hereinafter, compounds corresponding to the respective general formulas are referred to as compounds (G1) to (G4). ).

Figure 2008096743
[式中、Rは水素原子、脂肪族基又は芳香族基を示し;Rは脂肪族基、芳香族基又は複素環式基を示す。]
Figure 2008096743
[Wherein, R 1 represents a hydrogen atom, an aliphatic group or an aromatic group; R 2 represents an aliphatic group, an aromatic group or a heterocyclic group. ]

前記一般式(G1)〜(G3)中、Rは、水素原子、脂肪族基又は芳香族基を示す。
において、脂肪族基および芳香族基は、上記Rの脂肪族基、芳香族基とそれぞれ同様のものが挙げられる。Rは、なかでも脂肪族基又は芳香族基が好ましく、脂肪族基がより好ましく、なかでも低級アルキル基が特に好ましく、メチル基が最も好ましい。
前記一般式(G1)〜(G4)中、Rは、脂肪族基、芳香族基又は複素環式基を示し、上記Rと同様のものが挙げられる。Rは、なかでも脂肪族基又は芳香族基が好ましく、芳香族基がより好ましく、なかでもフェニル基が特に好ましく、フェニル基に置換基(好ましくは1個のメチル基)を有するものが最も好ましい。
In the general formulas (G1) to (G3), R 1 represents a hydrogen atom, an aliphatic group, or an aromatic group.
In R 1 , the aliphatic group and aromatic group are the same as the aliphatic group and aromatic group in R 0 . R 1 is preferably an aliphatic group or an aromatic group, more preferably an aliphatic group, particularly preferably a lower alkyl group, and most preferably a methyl group.
In the general formulas (G1) to (G4), R 2 represents an aliphatic group, an aromatic group, or a heterocyclic group, and examples thereof include the same as R 0 described above. R 2 is preferably an aliphatic group or an aromatic group, more preferably an aromatic group, particularly preferably a phenyl group, and most preferably a phenyl group having a substituent (preferably one methyl group). preferable.

化合物(G1)〜(G4)において、化合物(G1)はビシクロ化合物の1,3位に架橋結合を有し、化合物(G2)および化合物(G3)はビシクロ化合物の1,4位に架橋結合を有し、化合物(G4)はビシクロ化合物(デカリン)の1,6位に架橋結合をそれぞれ有する。
したがって、化合物(G1)〜(G4)において、そのシクロヘキサン環のコンホーメーション変化は高度に抑制され、その環構造は剛直性を示す。
In the compounds (G1) to (G4), the compound (G1) has a crosslinking bond at the 1,3-position of the bicyclo compound, and the compound (G2) and the compound (G3) have a crosslinking bond at the 1,4-position of the bicyclo compound. And the compound (G4) has a crosslinking bond at positions 1 and 6 of the bicyclo compound (decalin).
Therefore, in the compounds (G1) to (G4), the conformational change of the cyclohexane ring is highly suppressed, and the ring structure exhibits rigidity.

かかる(G)成分において、たとえば化合物(G1)〜(G4)等の、架橋炭素環上に、水酸基と、該水酸基が結合している炭素原子の隣接位の炭素原子に前記一般式(Gs)で表されるスルホナート基とを有する化合物は、ジオール化合物に、スルホン酸のハロゲン化物を作用させることによって容易に合成される。このジオール化合物には、シス、トランス2つの異性体が存在するが、シス異性体の方が熱的により安定であり、好適に用いられる。また、当該化合物は、酸が共存しない限り安定に保存することができる。   In the component (G), for example, the general formula (Gs) is bonded to a hydroxyl group and a carbon atom adjacent to the carbon atom to which the hydroxyl group is bonded on the bridged carbocycle such as the compounds (G1) to (G4). The compound having a sulfonate group represented by the above is easily synthesized by reacting a diol compound with a halide of sulfonic acid. This diol compound has two isomers, cis and trans. The cis isomer is more thermally stable and is preferably used. In addition, the compound can be stably stored as long as no acid is present.

(G)成分の好適な具体例を以下に挙げる。   Preferred specific examples of the component (G) are listed below.

Figure 2008096743
Figure 2008096743

(G)成分としては、上記のなかでも、本発明の効果が良好なことから、化合物(G1)又は化合物(G2)が好ましく、化合物(G1)がより好ましい。具体的には、化学式(G1−1)〜(G1−8)から選択される少なくとも1種以上を用いることが好ましく、なかでも化学式(G1−5)が最も好ましい。   As the component (G), among the above, the compound (G1) or the compound (G2) is preferable and the compound (G1) is more preferable because the effects of the present invention are good. Specifically, at least one selected from the chemical formulas (G1-1) to (G1-8) is preferably used, and the chemical formula (G1-5) is most preferable.

本発明において、(G)成分は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(G)成分の含有量は、(A)成分100質量部に対し、0.1〜20質量部であることが好ましく、0.1〜10質量部であることがより好ましく、0.5〜5質量部であることが最も好ましい。該含有量が下限値以上であることにより、浸漬露光時の物質溶出がより抑制される。また、リソグラフィー特性がより向上する。他方、該含有量が上限値以下であることにより(B)成分とのバランスをとることができ、パターン形成が充分に行われる。また、均一な溶液が得られ、保存安定性が良好となるため好ましい。
In this invention, (G) component may be used individually by 1 type, and may be used in combination of 2 or more type.
The content of the component (G) is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A), and 0.5 to Most preferably, it is 5 parts by mass. When the content is at least the lower limit value, substance elution during immersion exposure is further suppressed. Further, the lithography characteristics are further improved. On the other hand, when the content is not more than the upper limit value, a balance with the component (B) can be achieved, and the pattern formation is sufficiently performed. Moreover, since a uniform solution is obtained and storage stability becomes favorable, it is preferable.

また、本発明の液浸露光用ポジ型レジスト組成物において、(G)成分と(B)成分との混合割合は、モル比で9:1〜1:9であることが好ましく、9:1〜5:5であることがさらに好ましく、9:1〜7:3であることが特に好ましい。(G)成分の割合が上記範囲の下限値以上であると、本発明の効果がより向上する。一方、(G)成分の割合が上記範囲の上限値以下であると、(B)成分とのバランスが良好となって、パターン形成が充分に行われる。   In the positive resist composition for immersion exposure according to the present invention, the mixing ratio of the component (G) and the component (B) is preferably 9: 1 to 1: 9 in terms of molar ratio, More preferably, it is -5: 5, and it is especially preferable that it is 9: 1-7: 3. The effect of this invention improves more as the ratio of (G) component is more than the lower limit of the said range. On the other hand, when the proportion of the component (G) is not more than the upper limit of the above range, the balance with the component (B) is good, and the pattern is sufficiently formed.

<(D)成分>
本発明の液浸露光用ポジ型レジスト組成物は、レジストパターン形状、引き置き経時安定性などを向上させるために、さらに任意の成分として、含窒素有機化合物(D)(以下、(D)成分という)を含有することが好ましい。
この(D)成分は、既に多種多様なものが提案されているので、公知のものから任意に用いれば良く、なかでも脂肪族アミン、特に第2級脂肪族アミンや第3級脂肪族アミンが好ましい。ここで、本特許請求の範囲及び明細書における「脂肪族」とは、芳香族に対する相対的な概念であって、芳香族性を持たない基、化合物等を意味するものと定義する。
「脂肪族環式基」は、芳香性を持たない単環式基または多環式基であることを示す。
脂肪族アミンとは、1つ以上の脂肪族基を有するアミンであり、該脂肪族基は炭素数が1〜12であることが好ましい。
脂肪族アミンとしては、アンモニアNHの水素原子の少なくとも1つを、炭素数12以下のアルキル基またはヒドロキシアルキル基で置換したアミン(アルキルアミンまたはアルキルアルコールアミン)又は環式アミンが挙げられる。
アルキルアミンおよびアルキルアルコールアミンの具体例としては、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ−n−プロピルアミン、ジ−n−ヘプチルアミン、ジ−n−オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−ヘプチルアミン、トリ−n−オクチルアミン、トリ−n−ノニルアミン、トリ−n−デカニルアミン、トリ−n−ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ−n−オクタノールアミン、トリ−n−オクタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、炭素数5〜10のトリアルキルアミンがさらに好ましく、トリ−n−ペンチルアミン、トリ−n−オクチルアミンが特に好ましい。
環式アミンとしては、たとえば、ヘテロ原子として窒素原子を含む複素環化合物が挙げられる。該複素環化合物としては、単環式のもの(脂肪族単環式アミン)であっても多環式のもの(脂肪族多環式アミン)であってもよい。
脂肪族単環式アミンとして、具体的には、ピペリジン、ピペラジン等が挙げられる。
脂肪族多環式アミンとしては、炭素数が6〜10のものが好ましく、具体的には、1,5−ジアザビシクロ[4.3.0]−5−ノネン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、ヘキサメチレンテトラミン、1,4−ジアザビシクロ[2.2.2]オクタン等が挙げられる。
(D)成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明においては、中でも(D)成分としてトリアルキルアミンを用いることが好ましい。
(D)成分は、(A)成分100質量部に対して、通常0.01〜5.0質量部の範囲で用いられる。
<(D) component>
The positive resist composition for immersion exposure according to the present invention further includes a nitrogen-containing organic compound (D) (hereinafter referred to as the (D) component) as an optional component in order to improve the resist pattern shape, stability over time and the like. It is preferable to contain.
Since a wide variety of components (D) have already been proposed, any known one may be used. Among them, aliphatic amines, particularly secondary aliphatic amines and tertiary aliphatic amines are used. preferable. Here, “aliphatic” in the claims and the specification is a relative concept with respect to aromatics, and is defined to mean a group, a compound, or the like that does not have aromaticity.
“Aliphatic cyclic group” means a monocyclic group or polycyclic group having no aromaticity.
An aliphatic amine is an amine having one or more aliphatic groups, and the aliphatic groups preferably have 1 to 12 carbon atoms.
Examples of the aliphatic amine include an amine (alkyl amine or alkyl alcohol amine) or a cyclic amine in which at least one hydrogen atom of ammonia NH 3 is substituted with an alkyl group or hydroxyalkyl group having 12 or less carbon atoms.
Specific examples of alkylamines and alkyl alcohol amines include monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine; diethylamine, di-n-propylamine, di- -Dialkylamines such as n-heptylamine, di-n-octylamine, dicyclohexylamine; trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine , Tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decanylamine, tri-n-dodecylamine, and the like; diethanolamine, triethanolamine, diisopropanolamine Triisopropanolamine, di -n- octanol amines, alkyl alcohol amines tri -n- octanol amine. Among these, a trialkylamine having 5 to 10 carbon atoms is more preferable, and tri-n-pentylamine and tri-n-octylamine are particularly preferable.
Examples of the cyclic amine include heterocyclic compounds containing a nitrogen atom as a hetero atom. The heterocyclic compound may be monocyclic (aliphatic monocyclic amine) or polycyclic (aliphatic polycyclic amine).
Specific examples of the aliphatic monocyclic amine include piperidine and piperazine.
As the aliphatic polycyclic amine, those having 6 to 10 carbon atoms are preferable. Specifically, 1,5-diazabicyclo [4.3.0] -5-nonene, 1,8-diazabicyclo [5. 4.0] -7-undecene, hexamethylenetetramine, 1,4-diazabicyclo [2.2.2] octane, and the like.
(D) A component may be used independently and may be used in combination of 2 or more type.
In the present invention, it is particularly preferable to use a trialkylamine as the component (D).
(D) component is normally used in 0.01-5.0 mass parts with respect to 100 mass parts of (A) component.

<任意成分>
本発明の液浸露光用ポジ型レジスト組成物には、感度劣化の防止や、レジストパターン形状、引き置き経時安定性等の向上の目的で、任意の成分として、有機カルボン酸、ならびにリンのオキソ酸およびその誘導体からなる群から選択される少なくとも1種の化合物(E)(以下、(E)成分という)を含有させることができる。
有機カルボン酸としては、例えば、酢酸、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。
リンのオキソ酸およびその誘導体としては、リン酸、ホスホン酸、ホスフィン酸等が挙げられ、これらの中でも特にホスホン酸が好ましい。
リンのオキソ酸の誘導体としては、たとえば、上記オキソ酸の水素原子を炭化水素基で置換したエステル等が挙げられ、前記炭化水素基としては、炭素数1〜5のアルキル基、炭素数6〜15のアリール基等が挙げられる。
リン酸の誘導体としては、リン酸ジ−n−ブチルエステル、リン酸ジフェニルエステル等のリン酸エステルなどが挙げられる。
ホスホン酸の誘導体としては、ホスホン酸ジメチルエステル、ホスホン酸−ジ−n−ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸エステルなどが挙げられる。
ホスフィン酸の誘導体としては、フェニルホスフィン酸等のホスフィン酸エステルなどが挙げられる。
(E)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
(E)成分としては、有機カルボン酸が好ましく、特にサリチル酸が好ましい。
(E)成分は、(A)成分100質量部当り0.01〜5.0質量部の割合で用いられる。
<Optional component>
The positive resist composition for immersion exposure of the present invention includes an organic carboxylic acid and phosphorus oxo as optional components for the purpose of preventing sensitivity deterioration and improving the resist pattern shape and stability with time. At least one compound (E) selected from the group consisting of acids and derivatives thereof (hereinafter referred to as component (E)) can be contained.
As the organic carboxylic acid, for example, acetic acid, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
Examples of phosphorus oxo acids and derivatives thereof include phosphoric acid, phosphonic acid, phosphinic acid and the like, and among these, phosphonic acid is particularly preferable.
Examples of the oxo acid derivative of phosphorus include esters in which the hydrogen atom of the oxo acid is substituted with a hydrocarbon group, and the hydrocarbon group includes an alkyl group having 1 to 5 carbon atoms and 6 to 6 carbon atoms. 15 aryl groups and the like.
Examples of phosphoric acid derivatives include phosphoric acid esters such as di-n-butyl phosphate and diphenyl phosphate.
Examples of phosphonic acid derivatives include phosphonic acid esters such as phosphonic acid dimethyl ester, phosphonic acid-di-n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, and phosphonic acid dibenzyl ester.
Examples of the phosphinic acid derivatives include phosphinic acid esters such as phenylphosphinic acid.
(E) A component may be used individually by 1 type and may use 2 or more types together.
As the component (E), an organic carboxylic acid is preferable, and salicylic acid is particularly preferable.
(E) A component is used in the ratio of 0.01-5.0 mass parts per 100 mass parts of (A) component.

本発明の液浸露光用ポジ型レジスト組成物には、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、溶解抑制剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料などを適宜、添加含有させることができる。   The positive resist composition for immersion exposure according to the present invention may further contain a miscible additive as desired, for example, an additional resin for improving the performance of the resist film, a surfactant for improving the coating property, A dissolution inhibitor, a plasticizer, a stabilizer, a colorant, an antihalation agent, a dye, and the like can be appropriately added and contained.

本発明の液浸露光用ポジ型レジスト組成物は、材料を有機溶剤(以下、(S)成分ということがある。)に溶解させて製造することができる。
(S)成分としては、使用する各成分を溶解し、均一な溶液とすることができるものであればよく、従来、化学増幅型レジストの溶剤として公知のものの中から任意のものを1種または2種以上適宜選択して用いることができる。
例えば、γ−ブチロラクトン等のラクトン類;アセトン、メチルエチルケトン、シクロヘキサノン、メチル−n−アミルケトン、メチルイソアミルケトン、2−ヘプタノンなどのケトン類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコールなどの多価アルコール類;エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、またはジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類または前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体[これらの中では、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)が好ましい];ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルなどのエステル類;アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル、エチルベンゼン、ジエチルベンゼン、アミルベンゼン、イソプロピルベンゼン、トルエン、キシレン、シメン、メシチレン等の芳香族系有機溶剤などを挙げることができる。
これらの有機溶剤は単独で用いてもよく、2種以上の混合溶剤として用いてもよい。
中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、ELが好ましい。
また、PGMEAと極性溶剤とを混合した混合溶媒は好ましい。その配合比(質量比)は、PGMEAと極性溶剤との相溶性等を考慮して適宜決定すればよいが、好ましくは1:9〜9:1、より好ましくは2:8〜8:2の範囲内とすることが好ましい。
より具体的には、極性溶剤としてELを配合する場合は、PGMEA:ELの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2である。また、極性溶剤としてPGMEを配合する場合は、PGMEA:PGMEの質量比は、好ましくは1:9〜9:1、より好ましくは2:8〜8:2、さらに好ましくは3:7〜7:3である。
また、(S)成分として、その他には、PGMEA及びELの中から選ばれる少なくとも1種とγ−ブチロラクトンとの混合溶剤も好ましい。この場合、混合割合としては、前者と後者の質量比が好ましくは70:30〜95:5とされる。
(S)成分の使用量は特に限定しないが、基板等に塗布可能な濃度で、塗布膜厚に応じて適宜設定されるものであるが、一般的にはレジスト組成物の固形分濃度が2〜20質量%、好ましくは5〜15質量%の範囲内となる様に用いられる。
The positive resist composition for immersion exposure of the present invention can be produced by dissolving a material in an organic solvent (hereinafter sometimes referred to as (S) component).
As the component (S), any component can be used as long as it can dissolve each component to be used to form a uniform solution, and any one of conventionally known solvents for chemically amplified resists can be used. Two or more types can be appropriately selected and used.
For example, lactones such as γ-butyrolactone; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl-n-amyl ketone, methyl isoamyl ketone, 2-heptanone; polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol A compound having an ester bond such as ethylene glycol monoacetate, diethylene glycol monoacetate, or propylene glycol monoacetate, monomethyl ether, monoethyl ether of the polyhydric alcohol or the compound having an ester bond, A monoalkyl ether such as monopropyl ether or monobutyl ether or an ether bond such as monophenyl ether Derivatives of polyhydric alcohols such as propylene glycol monomethyl ether acetate (PGMEA) and propylene glycol monomethyl ether (PGME) are preferred among these; cyclic ethers such as dioxane, methyl lactate, lactic acid Esters such as ethyl (EL), methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, ethyl ethoxypropionate; anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, di Aromatic organic solvents such as benzyl ether, phenetol, butyl phenyl ether, ethylbenzene, diethylbenzene, amylbenzene, isopropylbenzene, toluene, xylene, cymene, mesitylene, etc. Can be mentioned.
These organic solvents may be used independently and may be used as 2 or more types of mixed solvents.
Of these, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), and EL are preferable.
Moreover, the mixed solvent which mixed PGMEA and the polar solvent is preferable. The mixing ratio (mass ratio) may be appropriately determined in consideration of the compatibility between PGMEA and the polar solvent, but is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. It is preferable to be within the range.
More specifically, when EL is blended as a polar solvent, the mass ratio of PGMEA: EL is preferably 1: 9 to 9: 1, more preferably 2: 8 to 8: 2. Moreover, when mix | blending PGME as a polar solvent, the mass ratio of PGMEA: PGME becomes like this. Preferably it is 1: 9-9: 1, More preferably, it is 2: 8-8: 2, More preferably, it is 3: 7-7: 3.
In addition, as the component (S), a mixed solvent of at least one selected from PGMEA and EL and γ-butyrolactone is also preferable. In this case, the mixing ratio of the former and the latter is preferably 70:30 to 95: 5.
The amount of component (S) used is not particularly limited, but it is a concentration that can be applied to a substrate or the like, and is appropriately set according to the coating film thickness. -20% by mass, preferably 5-15% by mass.

本発明の液浸露光用ポジ型レジスト組成物は、浸漬露光時の物質溶出を抑制でき、リソグラフィー特性にも優れるという効果を有する。
その理由は明らかではないが、本発明の液浸露光用ポジ型レジスト組成物は、樹脂成分(A)及び酸発生剤成分(B)に加えて、酸増殖剤成分(G)をさらに含有するため、本発明の効果が得られると推測される。該(G)成分は、露光により、(B)成分から発生する酸の作用により分解し、新たに酸を自ら発生させて自己触媒的に酸を増殖する。これにより、感度を向上させることが可能であり、そのため、リソグラフィー特性が向上すると考えられる。また、上記のように酸を発生する(G)成分を用いることにより、(B)成分の使用量を低減することができる。これにより、浸漬露光時のレジスト材料の液浸溶媒中への物質溶出をより抑制できると考えられる。
The positive resist composition for immersion exposure according to the present invention has an effect that it can suppress substance elution during immersion exposure and is excellent in lithography characteristics.
Although the reason is not clear, the positive resist composition for immersion exposure of the present invention further contains an acid multiplier component (G) in addition to the resin component (A) and the acid generator component (B). Therefore, it is estimated that the effect of the present invention can be obtained. The component (G) is decomposed by the action of an acid generated from the component (B) upon exposure, and newly generates an acid itself to proliferate the acid in an autocatalytic manner. Thereby, it is possible to improve sensitivity, and it is considered that the lithography characteristics are improved. Moreover, the usage-amount of (B) component can be reduced by using the (G) component which generate | occur | produces an acid as mentioned above. Thereby, it is thought that the substance elution to the immersion solvent of the resist material at the time of immersion exposure can be suppressed more.

さらに、本発明においては、上述したように、液浸溶媒中への物質溶出が抑制される。そのため、レジスト膜の変質や、液浸溶媒の屈折率の変化も抑制できる。したがって、液浸溶媒の屈折率の変化が抑制される等により、形成されるレジストパターンのうねりや、ラインエッジラフネス(パターン側壁の凹凸)が低減され、形状等のリソグラフィー特性が良好となる。また、露光装置のレンズの汚染を低減でき、そのため、これらに対する保護対策を行わなくてもよく、プロセスや露光装置の簡便化に貢献できる。
また、本発明の液浸露光用ポジ型レジスト組成物によれば、増感効果が得られる
また、本発明の液浸露光用ポジ型レジスト組成物によれば、高解像性のレジストパターンを形成できる。
また、本発明の液浸露光用ポジ型レジスト組成物を用いることにより、異物や現像欠陥の発生が抑制された、良好な形状のレジストパターンを形成できる。
Furthermore, in the present invention, as described above, substance elution into the immersion solvent is suppressed. For this reason, it is possible to suppress the alteration of the resist film and the change in the refractive index of the immersion solvent. Therefore, by suppressing the change in the refractive index of the immersion solvent, the swell of the formed resist pattern and the line edge roughness (unevenness on the pattern side wall) are reduced, and the lithography properties such as the shape are improved. Further, the contamination of the lens of the exposure apparatus can be reduced, so that it is not necessary to take a protective measure against these, and the process and the exposure apparatus can be simplified.
In addition, according to the positive resist composition for immersion exposure of the present invention, a sensitization effect can be obtained. Also, according to the positive resist composition for immersion exposure of the present invention, a resist pattern with high resolution can be obtained. Can be formed.
Moreover, by using the positive resist composition for immersion exposure according to the present invention, it is possible to form a resist pattern having a good shape in which the generation of foreign matters and development defects is suppressed.

≪レジストパターン形成方法≫
次に、本発明の第二の態様のレジストパターンの形成方法について説明する。
本発明のレジストパターン形成方法は、上記本発明の液浸露光用ポジ型レジスト組成物を用いて基板上にレジスト膜を形成する工程、前記レジスト膜を浸漬露光する工程および前記レジスト膜を現像してレジストパターンを形成する工程を含む方法である。
≪Resist pattern formation method≫
Next, a resist pattern forming method according to the second aspect of the present invention will be described.
The resist pattern forming method of the present invention includes a step of forming a resist film on a substrate using the positive resist composition for immersion exposure of the present invention, a step of immersing the resist film, and developing the resist film. And a step of forming a resist pattern.

本発明のレジストパターンの形成方法の好ましい一例を下記に示す。
まず、シリコンウェーハ等の基板上に、本発明の液浸露光用ポジ型レジスト組成物をスピンナーなどで塗布した後、プレベーク(ポストアプライベーク(PAB)処理)を行うことにより、レジスト膜を形成する。
このとき、基板とレジスト組成物の塗布層との間に、有機系または無機系の反射防止膜を設けて2層積層体とすることもできる。
また、レジスト膜上にさらに有機系の反射防止膜を設けて2層積層体とすることもでき、さらに、これに下層の反射防止膜を設けた3層積層体とすることもできる。
レジスト膜上に設ける反射防止膜は、アルカリ現像液に可溶であるものが好ましい。
ここまでの工程は、周知の手法を用いて行うことができる。操作条件等は、使用する液浸露光用ポジ型レジスト組成物の組成や特性に応じて適宜設定することが好ましい。
A preferred example of the method for forming a resist pattern of the present invention is shown below.
First, a positive resist composition for immersion exposure according to the present invention is applied onto a substrate such as a silicon wafer using a spinner and the like, and then pre-baked (post-apply bake (PAB) treatment) to form a resist film. .
At this time, an organic or inorganic antireflection film may be provided between the substrate and the coating layer of the resist composition to form a two-layer laminate.
Further, an organic antireflection film can be further provided on the resist film to form a two-layer laminate, and further, a three-layer laminate in which an underlayer antireflection film is provided can be provided.
The antireflection film provided on the resist film is preferably soluble in an alkali developer.
The steps so far can be performed using a known method. The operating conditions and the like are preferably set as appropriate according to the composition and characteristics of the positive resist composition for immersion exposure to be used.

次いで、上記で得られたレジスト膜に対して、所望のマスクパターンを介して選択的に液浸露光(Liquid Immersion Lithography)を行う。このとき、予めレジスト膜と露光装置の最下位置のレンズ間を、空気の屈折率よりも大きい屈折率を有する溶媒(液浸媒体)で満たし、その状態で露光(浸漬露光)を行う。
露光に用いる波長は、特に限定されず、ArFエキシマレーザー、KrFエキシマレーザー、Fレーザーなどの放射線を用いて行うことができる。本発明にかかるレジスト組成物は、KrFまたはArFエキシマレーザー、特にArFエキシマレーザーに対して有効である。
Next, liquid immersion lithography is selectively performed on the resist film obtained above through a desired mask pattern. At this time, the space between the resist film and the lens at the lowest position of the exposure apparatus is previously filled with a solvent (immersion medium) having a refractive index larger than that of air, and exposure (immersion exposure) is performed in this state.
The wavelength used for the exposure is not particularly limited, and can be performed using radiation such as an ArF excimer laser, a KrF excimer laser, or an F 2 laser. The resist composition according to the present invention is effective for a KrF or ArF excimer laser, particularly an ArF excimer laser.

上記のように、本発明の形成方法においては、露光時に、レジスト膜と露光装置の最下位置のレンズ間に液浸媒体で満たし、その状態で露光(浸漬露光)を行う。
このとき用いる液浸媒体としては、空気の屈折率よりも大きく、かつ液浸露光用ポジ型レジスト組成物を用いて形成されるレジスト膜の屈折率よりも小さい屈折率を有する溶媒が好ましい。かかる溶媒の屈折率としては、前記範囲内であれば特に制限されない。
空気の屈折率よりも大きく、かつレジスト膜の屈折率よりも小さい屈折率を有する溶媒としては、例えば、水、フッ素系不活性液体、シリコン系溶剤、炭化水素系溶剤等が挙げられる。
As described above, in the forming method of the present invention, during exposure, the immersion film is filled between the resist film and the lens at the lowest position of the exposure apparatus, and exposure (immersion exposure) is performed in that state.
The immersion medium used at this time is preferably a solvent having a refractive index larger than that of air and smaller than that of a resist film formed using a positive resist composition for immersion exposure. The refractive index of such a solvent is not particularly limited as long as it is within the above range.
Examples of the solvent having a refractive index larger than the refractive index of air and smaller than the refractive index of the resist film include water, a fluorine-based inert liquid, a silicon-based solvent, and a hydrocarbon-based solvent.

フッ素系不活性液体の具体例としては、CHCl、COCH、COC、C等のフッ素系化合物を主成分とする液体等が挙げられ、沸点が70〜180℃のものが好ましく、80〜160℃のものがより好ましい。フッ素系不活性液体が上記範囲の沸点を有するものであると、露光終了後に、液浸に用いた媒体の除去を、簡便な方法で行えることから好ましい。
フッ素系不活性液体としては、特に、アルキル基の水素原子が全てフッ素原子で置換されたパーフロオロアルキル化合物が好ましい。パーフロオロアルキル化合物としては、具体的には、パーフルオロアルキルエーテル化合物やパーフルオロアルキルアミン化合物を挙げることができる。
さらに、具体的には、前記パーフルオロアルキルエーテル化合物としては、パーフルオロ(2−ブチル−テトラヒドロフラン)(沸点102℃)を挙げることができ、前記パーフルオロアルキルアミン化合物としては、パーフルオロトリブチルアミン(沸点174℃)を挙げることができる。
Specific examples of the fluorine-based inert liquid include a fluorine-based compound such as C 3 HCl 2 F 5 , C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , and C 5 H 3 F 7 as a main component. Examples thereof include liquids, and those having a boiling point of 70 to 180 ° C are preferable, and those having a boiling point of 80 to 160 ° C are more preferable. It is preferable that the fluorine-based inert liquid has a boiling point in the above range since the medium used for immersion can be removed by a simple method after the exposure is completed.
As the fluorine-based inert liquid, a perfluoroalkyl compound in which all hydrogen atoms of the alkyl group are substituted with fluorine atoms is particularly preferable. Specific examples of the perfluoroalkyl compound include a perfluoroalkyl ether compound and a perfluoroalkylamine compound.
More specifically, examples of the perfluoroalkyl ether compound include perfluoro (2-butyl-tetrahydrofuran) (boiling point: 102 ° C.). Examples of the perfluoroalkylamine compound include perfluorotributylamine ( Boiling point of 174 ° C.).

本発明の液浸露光用ポジ型レジスト組成物は、特に、水による悪影響を受けにくく、感度、レジストパターンプロファイル形状に優れることから、空気の屈折率よりも大きい屈折率を有する溶媒として、水が好ましく用いられる。また、水はコスト、安全性、環境問題および汎用性の観点からも好ましい。   The positive resist composition for immersion exposure of the present invention is particularly resistant to adverse effects by water, and is excellent in sensitivity and resist pattern profile shape. Therefore, water is used as a solvent having a refractive index larger than that of air. Preferably used. Water is also preferable from the viewpoints of cost, safety, environmental problems, and versatility.

次いで、浸漬露光工程を終えた後、露光後加熱(ポストエクスポージャーベーク(PEB))を行い、続いて、アルカリ性水溶液からなるアルカリ現像液を用いて現像処理する。そして、好ましくは純水を用いて水リンスを行う。水リンスは、例えば、基板を回転させながら基板表面に水を滴下または噴霧して、基板上の現像液および該現像液によって溶解した液浸露光用ポジ型レジスト組成物を洗い流す。そして、乾燥を行うことにより、レジスト膜(液浸露光用ポジ型レジスト組成物の塗膜)がマスクパターンに応じた形状にパターニングされたレジストパターンが得られる。   Next, after the immersion exposure step is completed, post-exposure heating (post-exposure baking (PEB)) is performed, and subsequently, development processing is performed using an alkaline developer composed of an alkaline aqueous solution. And preferably, water rinsing is performed using pure water. In the water rinse, for example, water is dropped or sprayed on the surface of the substrate while rotating the substrate to wash away the developer on the substrate and the positive resist composition for immersion exposure dissolved by the developer. Then, drying is performed to obtain a resist pattern in which the resist film (the coating film of the positive resist composition for immersion exposure) is patterned into a shape corresponding to the mask pattern.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
<樹脂成分(A)>
下記実施例1〜3および比較例1において、(A)成分として用いた樹脂(A)−1は、下記モノマー(1)〜(3)を用いて、公知の滴下重合法によって共重合することにより得た。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
<Resin component (A)>
In the following Examples 1 to 3 and Comparative Example 1, the resin (A) -1 used as the component (A) is copolymerized by a known dropping polymerization method using the following monomers (1) to (3). Obtained.

Figure 2008096743
Figure 2008096743

得られた樹脂(A)−1について、GPC(ゲルパーミエーションクロマトグラフィー)測定を行い、質量平均分子量(Mw)および分散度(Mw/Mn)を求めたところ、樹脂(A)−1のMwは10000、Mw/Mnは2.0であった。
樹脂(A)−1の構造を以下に示す。
式中、( )の右下に付した数字は、当該樹脂を構成する全構成単位の合計に対する各構成単位の割合(モル%;組成比)を示す。
About the obtained resin (A) -1, GPC (gel permeation chromatography) measurement was performed, and when the mass average molecular weight (Mw) and dispersity (Mw / Mn) were calculated | required, Mw of resin (A) -1 was obtained. Was 10,000 and Mw / Mn was 2.0.
The structure of Resin (A) -1 is shown below.
In the formula, the number given to the lower right of () indicates the ratio (mol%; composition ratio) of each structural unit to the total of all the structural units constituting the resin.

Figure 2008096743
Figure 2008096743

(実施例1〜3、比較例1)
表1に示す各成分を混合し、溶解して液浸露光用ポジ型レジスト組成物を調製した。
(Examples 1 to 3, Comparative Example 1)
Each component shown in Table 1 was mixed and dissolved to prepare a positive resist composition for immersion exposure.

Figure 2008096743
Figure 2008096743

表1中の各略号は以下の意味を有する。また、[ ]内の数値は配合量(質量部)である。
(B)−1:ジ(1−ナフチル)フェニルスルホニウムノナフルオロブタンスルホネート。
(G)−1:下記化学式(G1−5)で表される化合物。
Each abbreviation in Table 1 has the following meaning. Moreover, the numerical value in [] is a compounding quantity (mass part).
(B) -1: Di (1-naphthyl) phenylsulfonium nonafluorobutanesulfonate.
(G) -1: a compound represented by the following chemical formula (G1-5).

Figure 2008096743
Figure 2008096743

(D)−1:トリ−n−ペンチルアミン。
(S)−1:PGMEA/PGME=6/4(質量比)の混合溶剤。
(D) -1: tri-n-pentylamine.
(S) -1: PGMEA / PGME = 6/4 (mass ratio) mixed solvent.

得られた液浸露光用ポジ型レジスト組成物を用いて以下の評価を行った。   The following evaluation was performed using the obtained positive resist composition for immersion exposure.

<溶出物の測定>
実施例1〜3および比較例1の液浸露光用ポジ型レジスト組成物を、スピンナーを用いて直径8インチのシリコンウェーハ上にそれぞれ塗布し、ホットプレート上で110℃、60秒間プレベーク処理し、乾燥させることにより、膜厚150nmのレジスト膜を形成した。
次に、該レジスト膜上に、VRC310S(エス・イー・エス株式会社製)を用いて、純水一滴(50μl)を滴下し、室温下で、ウェーハの中心から円を描くように等線速で、液滴を移動させた(液滴が接触したレジスト膜の総接触面積221.56cm)。
その後、その液滴を採取して、分析装置Agilent−HP1100 LC−MSD(Agilent Technologies社製)により分析して、(B)成分のカチオン部(PAG+)、(B)成分のアニオン部(PAG−)、(G)成分のアニオン部(GA−)および(D)成分の溶出量(mol/cm)をそれぞれ求めた。
<Measurement of eluate>
Each of the positive resist compositions for immersion exposure in Examples 1 to 3 and Comparative Example 1 was applied on a silicon wafer having a diameter of 8 inches using a spinner, and pre-baked on a hot plate at 110 ° C. for 60 seconds. By drying, a resist film having a thickness of 150 nm was formed.
Next, on the resist film, one drop (50 μl) of pure water is dropped using VRC310S (manufactured by SSE Co., Ltd.), and the linear velocity is drawn so as to draw a circle from the center of the wafer at room temperature. Then, the droplet was moved (total contact area 221.56 cm 2 of the resist film in contact with the droplet).
Thereafter, the droplets are collected and analyzed by an analyzer Agilent-HP1100 LC-MSD (manufactured by Agilent Technologies), and the cation part (PAG +) of the component (B) and the anion part (PAG−) of the component (B). ), And the elution amount (mol / cm 2 ) of the anion part (GA−) and (D) component of the (G) component, respectively.

また、実施例1〜3および比較例1の液浸露光用ポジ型レジスト組成物を用いて、上記と同様にしてレジスト膜を形成し、該レジスト膜に対し、ArF露光装置NSR−S302を用いて、ArFエキシマレーザー(193nm)で、オープンフレーム露光(マスクを介さないで露光)を行った。
次に、露光されたレジスト膜上において、上記と同様の操作により液滴を移動させ、その後、上記と同様に分析して、(B)成分のカチオン部(PAG+)、(B)成分のアニオン部(PAG−)、(G)成分のアニオン部(GA−)および(D)成分の溶出量(mol/cm)をそれぞれ求めた。以上の結果を表2に示した。
Moreover, using the positive resist compositions for immersion exposure in Examples 1 to 3 and Comparative Example 1, a resist film was formed in the same manner as described above, and an ArF exposure apparatus NSR-S302 was used for the resist film. Then, open frame exposure (exposure without a mask) was performed with an ArF excimer laser (193 nm).
Next, on the exposed resist film, the droplet is moved by the same operation as described above, and then analyzed in the same manner as described above, and the cation part (PAG +) of the component (B) and the anion of the component (B) The elution amount (mol / cm 2 ) of the part (PAG-), the anion part (GA-) of the component (G) and the component (D) was determined. The above results are shown in Table 2.

Figure 2008096743
Figure 2008096743

表2の結果から明らかなように、酸増殖剤を含有する、本発明に係る実施例1〜3の液浸露光用ポジ型レジスト組成物は、露光処理前後の液浸媒体(水)中への合計溶出量が、酸増殖剤を含有しない比較例1の液浸露光用ポジ型レジスト組成物に比べて、1割以上少なく、溶出抑制効果が高いことが確認できた。特に、露光後のPAG−の溶出量が、比較例1に比べて、実施例1〜3の方が少ないことが確認できた。   As is apparent from the results in Table 2, the positive resist compositions for immersion exposure of Examples 1 to 3 containing an acid proliferating agent into the immersion medium (water) before and after the exposure treatment. The total elution amount was less than 10% compared to the positive resist composition for immersion exposure of Comparative Example 1 containing no acid proliferating agent, and it was confirmed that the elution suppression effect was high. In particular, it was confirmed that the amount of elution of PAG- after exposure was smaller in Examples 1 to 3 than in Comparative Example 1.

上記溶出物の測定において、露光前の溶出量は、選択的露光を施してレジストパターンを形成する際の未露光部における溶出量を評価するためのものであり、露光後の溶出量は、露光部における溶出量を評価するためのものである。
したがって、本発明に係る実施例1〜3の液浸露光用ポジ型レジスト組成物は、露光前と露光後の両方において、液浸媒体(水)への物質溶出が少ないことから、浸漬露光する工程を含むレジストパターン形成方法に用いる液浸露光用レジスト組成物として好適に使用できることが確認できた。
In the measurement of the eluate, the elution amount before exposure is for evaluating the elution amount in the unexposed area when a resist pattern is formed by performing selective exposure, and the elution amount after exposure is determined by exposure. It is for evaluating the elution amount in the part.
Therefore, the positive resist compositions for immersion exposure according to Examples 1 to 3 according to the present invention are subjected to immersion exposure because there is little substance elution into the immersion medium (water) both before and after exposure. It was confirmed that the resist composition for immersion exposure used in the resist pattern forming method including the steps can be suitably used.

<リソグラフィー特性の評価>
有機系反射防止膜組成物「ARC29」(商品名、ブリュワーサイエンス社製)を、スピンナーを用いて8インチシリコンウェーハ上に塗布し、ホットプレート上で205℃、60秒間焼成して乾燥させることにより、膜厚77nmの有機系反射防止膜を形成した。
該有機系反射防止膜上に、実施例1〜3および比較例1の液浸露光用ポジ型レジスト組成物を、スピンナーを用いてそれぞれ塗布し、ホットプレート上で110℃、60秒間プレベーク(PAB)処理し、乾燥することにより、膜厚150nmのレジスト膜を形成した。
次いで、ArF露光装置NSR−S302B(ニコン社製;NA(開口数)=0.60,2/3輪帯照明)により、ArFエキシマレーザー(193nm)を、マスクパターンを介して選択的に照射した。
そして、110℃、60秒間の条件で露光後加熱(PEB)処理し、さらに23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で30秒間現像し、その後30秒間、純水を用いて水リンスし、振り切り乾燥を行った。
その結果、実施例1〜3および比較例1のいずれの例においても、ライン幅120nm、ピッチ240nmのラインアンドスペースのレジストパターン(以下、L/Sパターンという。)が形成された。
<Evaluation of lithography properties>
By applying an organic antireflection film composition “ARC29” (trade name, manufactured by Brewer Science Co., Ltd.) onto an 8-inch silicon wafer using a spinner, baking on a hot plate at 205 ° C. for 60 seconds and drying. An organic antireflection film having a thickness of 77 nm was formed.
On the organic antireflection film, the positive resist compositions for immersion exposure of Examples 1 to 3 and Comparative Example 1 were respectively applied using a spinner, and prebaked (PAB) at 110 ° C. for 60 seconds on a hot plate. The resist film with a film thickness of 150 nm was formed by processing and drying.
Next, an ArF excimer laser (193 nm) was selectively irradiated through the mask pattern by an ArF exposure apparatus NSR-S302B (manufactured by Nikon; NA (numerical aperture) = 0.60, 2/3 annular illumination). .
Then, post-exposure heating (PEB) treatment was performed at 110 ° C. for 60 seconds, followed by development with an aqueous 2.38 mass% tetramethylammonium hydroxide (TMAH) solution at 23 ° C. for 30 seconds, followed by pure water for 30 seconds. The sample was rinsed with water and shaken and dried.
As a result, in each of Examples 1 to 3 and Comparative Example 1, a line-and-space resist pattern (hereinafter referred to as an L / S pattern) having a line width of 120 nm and a pitch of 240 nm was formed.

(感度)
ライン幅120nm、ピッチ240nmのL/Sパターンが形成される感度(Eop,mJ/cm)を測定した。その結果を表3に示した。
(sensitivity)
The sensitivity (Eop, mJ / cm 2 ) at which an L / S pattern having a line width of 120 nm and a pitch of 240 nm was formed was measured. The results are shown in Table 3.

Figure 2008096743
Figure 2008096743

(レジストパターン形状)
このようにして得られたL/Sパターンを走査型電子顕微鏡(SEM)により観察したところ、実施例1〜3および比較例1の液浸露光用ポジ型レジスト組成物を用いて得られたL/Sパターンは、いずれも良好な形状であることが確認された。
(Resist pattern shape)
The L / S pattern thus obtained was observed with a scanning electron microscope (SEM). As a result, L obtained using the positive resist compositions for immersion exposure of Examples 1 to 3 and Comparative Example 1 were obtained. The / S pattern was confirmed to have a good shape.

以上の結果より、本発明に係る実施例1〜3の液浸露光用ポジ型レジスト組成物は、増感効果とレジストパターン形状が、比較例1と同程度に良好であることが確認できた。   From the above results, it was confirmed that the positive resist compositions for immersion exposure of Examples 1 to 3 according to the present invention were as good as the comparative example 1 in the sensitization effect and the resist pattern shape. .

したがって、本発明に係る実施例1〜3の液浸露光用ポジ型レジスト組成物は、浸漬露光時の物質溶出を抑制でき、リソグラフィー特性にも優れていることが確認できた。   Therefore, it was confirmed that the positive resist compositions for immersion exposure of Examples 1 to 3 according to the present invention can suppress substance elution during immersion exposure and have excellent lithography characteristics.

Claims (5)

酸の作用によりアルカリ溶解性が増大する樹脂成分(A)、露光により酸を発生する酸発生剤成分(B)および酸増殖剤成分(G)を含有することを特徴とする液浸露光用ポジ型レジスト組成物。   A positive for immersion exposure comprising a resin component (A) whose alkali solubility is increased by the action of an acid, an acid generator component (B) which generates an acid upon exposure, and an acid multiplier component (G) Type resist composition. 前記酸増殖剤成分(G)は、下記一般式(G1)
Figure 2008096743
[式中、Rは水素原子、脂肪族基又は芳香族基を示し;Rは脂肪族基、芳香族基又は複素環式基を示す。]で表される化合物を含む請求項1記載の液浸露光用ポジ型レジスト組成物。
The acid proliferator component (G) has the following general formula (G1)
Figure 2008096743
[Wherein, R 1 represents a hydrogen atom, an aliphatic group or an aromatic group; R 2 represents an aliphatic group, an aromatic group or a heterocyclic group. A positive resist composition for immersion exposure according to claim 1, comprising a compound represented by the formula:
前記酸増殖剤成分(G)の使用量は、前記樹脂成分(A)100質量部に対し、0.1〜20質量部である請求項1又は2に記載の液浸露光用ポジ型レジスト組成物。   3. The positive resist composition for immersion exposure according to claim 1, wherein the amount of the acid multiplier component (G) used is 0.1 to 20 parts by mass with respect to 100 parts by mass of the resin component (A). object. さらに含窒素有機化合物(D)を含有する請求項1〜3のいずれか一項に記載の液浸露光用ポジ型レジスト組成物。   The positive resist composition for immersion exposure according to any one of claims 1 to 3, further comprising a nitrogen-containing organic compound (D). 請求項1〜4のいずれか一項に記載の液浸露光用ポジ型レジスト組成物を用いて基板上にレジスト膜を形成する工程、前記レジスト膜を浸漬露光する工程および前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法。   A step of forming a resist film on a substrate using the positive resist composition for immersion exposure according to any one of claims 1 to 4, a step of immersing the resist film, and developing the resist film A resist pattern forming method including a step of forming a resist pattern.
JP2006279146A 2006-10-12 2006-10-12 Positive resist composition for liquid immersion lithography and resist pattern forming method Withdrawn JP2008096743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279146A JP2008096743A (en) 2006-10-12 2006-10-12 Positive resist composition for liquid immersion lithography and resist pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279146A JP2008096743A (en) 2006-10-12 2006-10-12 Positive resist composition for liquid immersion lithography and resist pattern forming method

Publications (1)

Publication Number Publication Date
JP2008096743A true JP2008096743A (en) 2008-04-24

Family

ID=39379654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279146A Withdrawn JP2008096743A (en) 2006-10-12 2006-10-12 Positive resist composition for liquid immersion lithography and resist pattern forming method

Country Status (1)

Country Link
JP (1) JP2008096743A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209889A (en) * 2007-01-31 2008-09-11 Fujifilm Corp Positive resist composition and pattern forming method using the positive resist composition
WO2010114107A1 (en) * 2009-03-31 2010-10-07 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JP2010256034A (en) * 2009-04-21 2010-11-11 Jsr Corp Resin composition and method for manufacturing biochip
JP2010256033A (en) * 2009-04-21 2010-11-11 Jsr Corp Resin composition and method for manufacturing biochip
JP2010256168A (en) * 2009-04-24 2010-11-11 Jsr Corp Resin composition for manufacturing biochip and method for manufacturing biochip
JP2010266755A (en) * 2009-05-15 2010-11-25 Jsr Corp Radiation-sensitive resin composition
JP2011178670A (en) * 2010-02-26 2011-09-15 Jsr Corp Radiation-sensitive composition and compound
KR101074312B1 (en) 2008-04-24 2011-10-17 도오꾜오까고오교 가부시끼가이샤 Positive resist composition, method of forming resist pattern, and polymeric compound
US8192915B2 (en) 2008-08-22 2012-06-05 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition, method of forming resist pattern, and polymeric compound
US8236477B2 (en) 2008-12-04 2012-08-07 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
US8367296B2 (en) 2008-09-29 2013-02-05 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition, method of forming resist pattern, and polymeric compound
JP2013080240A (en) * 2009-03-31 2013-05-02 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive resin composition, and pattern forming method using the same
US9120726B2 (en) 2009-12-25 2015-09-01 Jsr Corporation Radiation-sensitive resin composition, compound and producing method of compound

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507172B2 (en) 2007-01-31 2013-08-13 Fujifilm Corporation Positive resist composition and pattern forming method using the positive resist composition
JP2008209889A (en) * 2007-01-31 2008-09-11 Fujifilm Corp Positive resist composition and pattern forming method using the positive resist composition
US8088553B2 (en) 2008-04-24 2012-01-03 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition, method of forming resist pattern, and polymeric compound
KR101074312B1 (en) 2008-04-24 2011-10-17 도오꾜오까고오교 가부시끼가이샤 Positive resist composition, method of forming resist pattern, and polymeric compound
US8541529B2 (en) 2008-08-22 2013-09-24 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition, method of forming resist pattern, and polymeric compound
US8192915B2 (en) 2008-08-22 2012-06-05 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition, method of forming resist pattern, and polymeric compound
US8367296B2 (en) 2008-09-29 2013-02-05 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition, method of forming resist pattern, and polymeric compound
US8487056B2 (en) 2008-12-04 2013-07-16 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
US8236477B2 (en) 2008-12-04 2012-08-07 Tokyo Ohka Kogyo Co., Ltd. Positive resist composition and method of forming resist pattern
KR20120022735A (en) * 2009-03-31 2012-03-12 후지필름 가부시키가이샤 Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JP2010256842A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JP2013080240A (en) * 2009-03-31 2013-05-02 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive resin composition, and pattern forming method using the same
WO2010114107A1 (en) * 2009-03-31 2010-10-07 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
US8846290B2 (en) 2009-03-31 2014-09-30 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
KR101651434B1 (en) * 2009-03-31 2016-08-26 후지필름 가부시키가이샤 Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JP2010256033A (en) * 2009-04-21 2010-11-11 Jsr Corp Resin composition and method for manufacturing biochip
JP2010256034A (en) * 2009-04-21 2010-11-11 Jsr Corp Resin composition and method for manufacturing biochip
JP2010256168A (en) * 2009-04-24 2010-11-11 Jsr Corp Resin composition for manufacturing biochip and method for manufacturing biochip
JP2010266755A (en) * 2009-05-15 2010-11-25 Jsr Corp Radiation-sensitive resin composition
US9120726B2 (en) 2009-12-25 2015-09-01 Jsr Corporation Radiation-sensitive resin composition, compound and producing method of compound
JP2011178670A (en) * 2010-02-26 2011-09-15 Jsr Corp Radiation-sensitive composition and compound

Similar Documents

Publication Publication Date Title
JP4717640B2 (en) Resist composition for immersion exposure and method for forming resist pattern
JP4912733B2 (en) Resist composition for immersion exposure and method for forming resist pattern
JP2008096743A (en) Positive resist composition for liquid immersion lithography and resist pattern forming method
JP5250291B2 (en) Positive resist composition and resist pattern forming method
JP2009062422A (en) Polymer compound, positive resist composition and resist pattern formation method
JP2007212990A (en) Positive resist composition for immersion exposure and method for forming resist pattern
JP4597655B2 (en) Resist pattern forming method
JP2008145667A (en) Positive resist composition for liquid immersion exposure and method of forming resist pattern
JP2008024671A (en) Compound, acid generator, resist composition and method for forming resist pattern
JP4574595B2 (en) Positive resist composition and resist pattern forming method
JP4808545B2 (en) Positive resist composition and resist pattern forming method
JP4633648B2 (en) Positive resist composition for immersion exposure and method for forming resist pattern
JP4574507B2 (en) Positive resist composition and resist pattern forming method
JP4628899B2 (en) Positive resist composition and resist pattern forming method
JP2008026838A (en) Positive resist composition and method for formation of resist pattern
JP4668048B2 (en) Positive resist composition and resist pattern forming method
JP2007334278A (en) Positive resist composition for immersion exposure and method of forming resist pattern
JP2008037857A (en) Compound, acid-generating agent, resist composition and resist pattern-forming method
JP2008308545A (en) Polymer compound, positive-type resist composition and method for forming resist pattern
JP2008015247A (en) Positive resist composition and resist pattern forming method
JP4536622B2 (en) Positive resist composition and resist pattern forming method
JP4920271B2 (en) Positive resist composition and resist pattern forming method
JP5303122B2 (en) POLYMER COMPOUND, POSITIVE RESIST COMPOSITION AND METHOD FOR FORMING RESIST PATTERN
JP4717732B2 (en) Positive resist composition and resist pattern forming method
JP5096796B2 (en) Resist composition and resist pattern forming method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105