JP2008096410A - State monitoring technique for rotary machine using electromagnetic phenomenon - Google Patents

State monitoring technique for rotary machine using electromagnetic phenomenon Download PDF

Info

Publication number
JP2008096410A
JP2008096410A JP2006303337A JP2006303337A JP2008096410A JP 2008096410 A JP2008096410 A JP 2008096410A JP 2006303337 A JP2006303337 A JP 2006303337A JP 2006303337 A JP2006303337 A JP 2006303337A JP 2008096410 A JP2008096410 A JP 2008096410A
Authority
JP
Japan
Prior art keywords
magnetic field
rotating
rotor blade
state monitoring
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006303337A
Other languages
Japanese (ja)
Inventor
Kenzo Miya
健三 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTERNAT INST OF UNIVERSALITY
INTERNATIONAL INSTITUTE OF UNIVERSALITY
Original Assignee
INTERNAT INST OF UNIVERSALITY
INTERNATIONAL INSTITUTE OF UNIVERSALITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNAT INST OF UNIVERSALITY, INTERNATIONAL INSTITUTE OF UNIVERSALITY filed Critical INTERNAT INST OF UNIVERSALITY
Priority to JP2006303337A priority Critical patent/JP2008096410A/en
Publication of JP2008096410A publication Critical patent/JP2008096410A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a state monitoring technique capable of detecting an abnormal state generated in a rotary vane part of a rotary machine noncontactly with a rotary part. <P>SOLUTION: A permanent magnet or an electromagnet is arranged in a nonrotary part in the vicinity of a rotary vane of the rotary machine, a turbulence of a magnetic field generated by a transverse motion of the rotary vane in the magnetic field is detected using a magnetic field sensor such as an induction coil and a Hall element arranged in the vicinity of the rotary vane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電磁現象を用いて回転翼の異常状態を早期に検出することを実現する状態監視および状態診断技術に関するものである。The present invention relates to a state monitoring and state diagnosis technique that realizes early detection of an abnormal state of a rotor blade using an electromagnetic phenomenon.

タービンやポンプなどの回転機においては、長時間運転に伴う損傷および劣化は避けることができない。用いられている部位によっては、回転機における不具合の発生がシステム全体の停止につながる可能性もあるため、定期的もしくは連続的に回転機の状態診断を行い、不具合の発生の兆候を可能な限り早期に検知することは重要である。従来は、回転機器の軸振動における変位、速度、加速度、およびその振動スペクトルデータ等を収集し、それらの値に基づいて回転機器の状態診断を行うという技術が主として用いられてきた。たとえば、特許公開平08−254402においては、回転軸又は回転軸外周部に設けられた部品に磁気物質を装着し、磁気センサにて外部磁場を検知することにより、回転軸の軸ぶれ量、軸方向移動量を計測する方法が記載されている。In rotating machines such as turbines and pumps, damage and deterioration associated with long-term operation cannot be avoided. Depending on the part being used, the occurrence of a malfunction in the rotating machine may lead to the entire system being stopped, so the status of the rotating machine is regularly or continuously diagnosed to indicate as much as possible the signs of the malfunction. It is important to detect early. Conventionally, a technique of collecting displacement, velocity, acceleration, vibration spectrum data, and the like in the axial vibration of a rotating device and diagnosing the state of the rotating device based on those values has been mainly used. For example, in Japanese Patent Application Laid-Open No. 08-254402, a magnetic substance is attached to a rotating shaft or a component provided on the outer periphery of the rotating shaft, and an external magnetic field is detected by a magnetic sensor. A method for measuring the amount of directional movement is described.

回転機の損傷の多くは、軸受けの磨耗に起因するものであり、これまでの研究により、軸受けの磨耗に起因する損傷であれば、回転軸の物理量を測定することで、実用上十分な精度で故障を予知することができるとされている。しかしながら、回転機の損傷は軸受けの磨耗に起因するものであるとは限らず、回転機の健全性を回転軸の物理量を測定するだけで診断できていると言うことはできない。特に、回転翼の端部に発生したきずは軸の回転に与える影響は小さく、既に回転機の機能に深刻な影響を与えるほどに成長した状態のきずでなければ、回転軸の物理量の変化からは検知することはできない。本発明はこのような背景に鑑み創案されたものであり、回転機の回転翼部に発生したきずの早期段階での検出を可能とする状態診断手法を提供することを課題とする。Most of the damage to the rotating machine is due to the wear of the bearing. If the damage is caused by the wear of the bearing according to previous studies, the physical quantity of the rotating shaft is measured, and the accuracy is practically sufficient. It is said that a failure can be predicted. However, damage to the rotating machine is not necessarily due to bearing wear, and it cannot be said that the soundness of the rotating machine can be diagnosed simply by measuring the physical quantity of the rotating shaft. In particular, flaws generated at the end of the rotor blade have little effect on the rotation of the shaft, and unless the flaw has already grown to such a degree that it will seriously affect the function of the rotating machine, Cannot be detected. The present invention has been devised in view of such a background, and an object of the present invention is to provide a state diagnosis technique that enables detection of flaws generated in the rotor blades of a rotating machine at an early stage.

上述した課題を解決するための発明は、回転機の回転翼近傍の非回転部に永久磁石もしくは電磁石を配置し、回転翼が磁場中を横切ることによって発生する磁場の乱れを回転翼近傍に配置した誘導コイルやホール素子などの磁場センサを用いて検出する状態監視技術であり、測定された磁場の乱れから回転翼の異常状態を検知することを特徴とする。In the invention for solving the above-described problems, a permanent magnet or an electromagnet is arranged in a non-rotating part near the rotor blade of the rotating machine, and the disturbance of the magnetic field generated when the rotor blade crosses the magnetic field is arranged near the rotor blade. This is a state monitoring technique for detection using a magnetic field sensor such as an induction coil or a Hall element, and is characterized by detecting an abnormal state of a rotor blade from a measured magnetic field disturbance.

以上のような状態監視技術においては、回転機の回転翼部に発生した異常状態を、回転部に非接触にて検知することができる。また、回転翼端部の異常は回転機の回転軸の振動測定からでは検知しづらいという問題があるが、本技術は回転翼を直接診断するものであるため、回転軸の振動では検知することができない回転翼の異常状態を早期に検知することができるIn the state monitoring technique as described above, an abnormal state occurring in the rotating blade portion of the rotating machine can be detected without contact with the rotating portion. In addition, there is a problem that abnormalities at the tip of the rotor blade are difficult to detect from vibration measurement of the rotating shaft of the rotating machine, but since this technology directly diagnoses the rotor blade, it can be detected by vibration of the rotating shaft. It is possible to detect abnormal conditions of rotor blades that cannot be detected at an early stage

次に、本発明における実施例について、添付図面に基づいてより詳細に説明する。各図に共通の部分は同じ符号を使用している。Next, the Example in this invention is described in detail based on an accompanying drawing. Parts common to the drawings use the same reference numerals.

図1は、本発明の実施形態の一例を示す。図1(a)が側面図、図1(b)が正面図である。図は、回転軸11に取り付けられた4枚の回転翼21、22、23、24からなる回転機をあらわしており、回転翼は回転軸のまわりを、31に示す矢印の方向に回転するものとする。41は磁場を発生させるための永久磁石もしくは電磁石であり、51は磁場センサである。FIG. 1 shows an example of an embodiment of the present invention. FIG. 1A is a side view, and FIG. 1B is a front view. The figure shows a rotating machine composed of four rotating blades 21, 22, 23, 24 attached to a rotating shaft 11, and the rotating blade rotates around the rotating shaft in the direction of the arrow 31. And 41 is a permanent magnet or electromagnet for generating a magnetic field, and 51 is a magnetic field sensor.

いま、図1と同様に4枚の回転翼を持つ回転機が毎秒10回転しているとし、磁場センサとしては誘導コイルを用いて信号を測定した場合を考える。翼に何も異常が無く、すべての翼の形状が同一である場合、磁場センサの出力信号波形は、図2のように0.1秒間に同一の波形が4つ含まれる周期的なものとなる。それに対して、たとえば回転翼23が欠損している場合には、得られる信号には図3のように回転翼23の寄与が無くなることにより、0.075秒間に3つの同一波形が確認された後に0.025秒間の間は信号が確認されないという、図3に示すような信号が得られることになる。Now, let us consider a case in which a rotating machine having four rotating blades is rotating 10 times per second as in FIG. 1, and a signal is measured using an induction coil as a magnetic field sensor. When there is no abnormality in the wings and all the wings have the same shape, the output signal waveform of the magnetic field sensor is a periodic one in which four identical waveforms are included in 0.1 second as shown in FIG. Become. On the other hand, for example, when the rotor blade 23 is missing, the contribution of the rotor blade 23 is lost as shown in FIG. 3 in the obtained signal, and three identical waveforms were confirmed in 0.075 seconds. A signal as shown in FIG. 3 indicating that no signal is confirmed for 0.025 seconds later is obtained.

さらに、4枚の翼のうち1枚にねじれが生じている場合も、当該翼からの信号に変化がみられる。回転翼23にねじれが生じていたとすると、ねじれによって翼と磁場センサの距離が近づいたのであれば、図4のように、回転翼23による信号のみ振幅値が大きなものとなる。また、逆に翼と磁場センサの距離が離れるようなねじれが生じた場合には、信号振幅は小さなものとなることは明白である。一般的に磁場センサは被検査物からの距離により大きく信号が変化するという特性を有するため、わずかな変形であっても本発明によると有意な信号変化を確認することができる。また、図5に示すように、回転翼23の先端にひび割れが発生した場合、回転翼23に誘導される電流はこのき裂を迂回して流れることになるため、結果として得られる信号は図6のように、あたかも翼が分裂したかのようなものとなる。Further, even when one of the four blades is twisted, the signal from the blade is changed. If the rotor blade 23 is twisted, if the distance between the blade and the magnetic field sensor is reduced due to the twist, only the signal from the rotor blade 23 has a large amplitude value as shown in FIG. On the other hand, when a twist that causes the distance between the wing and the magnetic field sensor to occur is large, it is clear that the signal amplitude is small. In general, a magnetic field sensor has a characteristic that a signal changes greatly depending on a distance from an object to be inspected. Therefore, even with slight deformation, a significant signal change can be confirmed according to the present invention. Further, as shown in FIG. 5, when a crack occurs at the tip of the rotor blade 23, the current induced in the rotor blade 23 flows around the crack, and the resulting signal is shown in FIG. Like 6, it looks as if the wings were split.

以上のように、本発明の実施形態においては、回転翼の異常を容易に検知することができ、また得られる信号から異常状態を評価することも容易である。As described above, in the embodiment of the present invention, it is possible to easily detect the abnormality of the rotor blade, and it is also easy to evaluate the abnormal state from the obtained signal.

実施形態の効果Effects of the embodiment

このように、この実施形態によれば、回転機の回転翼に発生した微細なきずの検出を簡便かつ容易に行うことが可能となり、回転翼の損傷に起因する回転機の劣化を早期に発見することができるようになる。As described above, according to this embodiment, it is possible to easily and easily detect fine flaws generated on the rotor blades of the rotating machine, and early detection of deterioration of the rotating machine due to damage to the rotor blades is made possible. Will be able to.

他の実施形態Other embodiments

以上にて説明した図1の実施形態では、磁場発生源と磁場センサは回転翼を挟み込むように配置されていたが、回転翼による磁場の乱れを検知することが肝要であり、磁場発生源および磁場センサの配置位置は必ずしも図1に従う必要はないということは明白である。In the embodiment of FIG. 1 described above, the magnetic field generation source and the magnetic field sensor are arranged so as to sandwich the rotor blade, but it is important to detect the disturbance of the magnetic field by the rotor blade. Obviously, the location of the magnetic field sensor does not necessarily have to follow FIG.

本発明の一実施形態の側面図(図1(a))および正面図(図1(b))である。It is a side view (Drawing 1 (a)) and a front view (Drawing 1 (b)) of one embodiment of the present invention. 図1に示す本発明の一実施形態において、軸が毎秒10回転しており、いずれの回転翼にも損傷が無いときに得られる信号を表現したものである。In the embodiment of the present invention shown in FIG. 1, the signal obtained when the shaft rotates 10 times per second and any of the rotor blades is not damaged is represented. 図1に示す本発明の一実施形態において、軸が毎秒10回転しており、回転翼23が欠落しているときに得られる信号を表現したものである。In the embodiment of the present invention shown in FIG. 1, the signal obtained when the shaft rotates 10 times per second and the rotor blade 23 is missing is represented. 図1に示す本発明の一実施形態において、軸が毎秒10回転しており、回転翼23にねじれが生じているときに得られる信号を表現したものである。In the embodiment of the present invention shown in FIG. 1, a signal obtained when the shaft rotates 10 times per second and the rotor blade 23 is twisted is represented. 本発明の一実施形態において、回転翼23先端にひび割れが生じている場合を表現したものの正面図である。In one Embodiment of this invention, it is a front view of what represented the case where the crack has arisen in the rotary blade 23 front-end | tip. 図1に示す本発明の一実施形態において、軸が毎秒10回転しており、かつ図5のように回転翼23の先端にひび割れが生じているときに得られる信号を表現したものである。In the embodiment of the present invention shown in FIG. 1, the signal obtained when the shaft rotates 10 times per second and the tip of the rotor blade 23 is cracked as shown in FIG. 5 is expressed.

符号の説明Explanation of symbols

11、回転機の回転軸である
21、22、23、24、回転機の回転翼である。
31、回転翼の回転方向を表現したものである。
41、磁場を発生させるための永久磁石もしくは電磁石である。
51、磁場を検知するための磁場センサである。
61、62、63、64、それぞれ、回転翼21、22、23、24が磁場を横切ることによって発生した磁場の乱れに起因する信号である。
71、回転翼先端に発生したひび割れである。
11, 21, 22, 23, 24, which are rotating shafts of the rotating machine, and rotating blades of the rotating machine.
31 represents the direction of rotation of the rotor blades.
41. A permanent magnet or an electromagnet for generating a magnetic field.
51 is a magnetic field sensor for detecting a magnetic field.
61, 62, 63, and 64 are signals resulting from the disturbance of the magnetic field generated when the rotor blades 21, 22, 23, and 24 cross the magnetic field, respectively.
71, a crack generated at the tip of the rotor blade.

Claims (1)

回転機の回転翼近傍の非回転部に永久磁石もしくは電磁石を配置し、回転翼が磁場中を横切ることによって発生する磁場の乱れを回転翼近傍に配置した誘導コイルやホール素子などの磁場センサを用いて検出する状態監視技術であり、測定された磁場の乱れから回転翼の異常状態を検知することを特徴とする。A permanent magnet or electromagnet is arranged in the non-rotating part near the rotor blades of the rotating machine, and magnetic field sensors such as induction coils and Hall elements are arranged near the rotor blades to prevent magnetic field disturbances that occur when the rotor blades cross the magnetic field. It is a state monitoring technique that is used to detect, and is characterized by detecting an abnormal state of a rotor blade from a measured magnetic field disturbance.
JP2006303337A 2006-10-12 2006-10-12 State monitoring technique for rotary machine using electromagnetic phenomenon Pending JP2008096410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303337A JP2008096410A (en) 2006-10-12 2006-10-12 State monitoring technique for rotary machine using electromagnetic phenomenon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303337A JP2008096410A (en) 2006-10-12 2006-10-12 State monitoring technique for rotary machine using electromagnetic phenomenon

Publications (1)

Publication Number Publication Date
JP2008096410A true JP2008096410A (en) 2008-04-24

Family

ID=39379388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303337A Pending JP2008096410A (en) 2006-10-12 2006-10-12 State monitoring technique for rotary machine using electromagnetic phenomenon

Country Status (1)

Country Link
JP (1) JP2008096410A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039019A (en) * 2009-08-14 2011-02-24 International Institute Of Universality Superconductive sensor for electromagnetic diagnostic apparatus
JP2019105457A (en) * 2017-12-08 2019-06-27 株式会社日立ビルシステム Bearing inspection device
WO2021000294A1 (en) * 2019-07-03 2021-01-07 Hamlin Electronics (Suzhou) Ltd. Apparatus for detection of angular movement of a ferromagnetic vane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139822A (en) * 1977-06-14 1979-02-13 General Electric Company Eddy current probe for inspecting interiors of gas turbines, said probe having pivotal adjustments and a borescope
JPS632470B2 (en) * 1980-10-16 1988-01-19 Nashionaru Dechuudo E Do Konsutoryukushion De Motooru Dabiashion Soc
JPH07181168A (en) * 1993-12-22 1995-07-21 Honda Motor Co Ltd Method of magnetic flaw detection for gear
JP2003294707A (en) * 2002-04-03 2003-10-15 Denshi Jiki Kogyo Kk Defect inspection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139822A (en) * 1977-06-14 1979-02-13 General Electric Company Eddy current probe for inspecting interiors of gas turbines, said probe having pivotal adjustments and a borescope
JPS632470B2 (en) * 1980-10-16 1988-01-19 Nashionaru Dechuudo E Do Konsutoryukushion De Motooru Dabiashion Soc
JPH07181168A (en) * 1993-12-22 1995-07-21 Honda Motor Co Ltd Method of magnetic flaw detection for gear
JP2003294707A (en) * 2002-04-03 2003-10-15 Denshi Jiki Kogyo Kk Defect inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011039019A (en) * 2009-08-14 2011-02-24 International Institute Of Universality Superconductive sensor for electromagnetic diagnostic apparatus
JP2019105457A (en) * 2017-12-08 2019-06-27 株式会社日立ビルシステム Bearing inspection device
WO2021000294A1 (en) * 2019-07-03 2021-01-07 Hamlin Electronics (Suzhou) Ltd. Apparatus for detection of angular movement of a ferromagnetic vane

Similar Documents

Publication Publication Date Title
KR101766919B1 (en) Lateral, angular and torsional vibration monitoring of rotordynamic systems
US8095324B2 (en) Permanent magnet rotor crack detection
JP5190464B2 (en) Non-contact blade vibration measurement method
US7392713B2 (en) Monitoring system for turbomachinery
US20100171491A1 (en) Eddy current sensors
KR19990087391A (en) Multiple sensor device and method for monitoring turbomachinery
WO2019003699A1 (en) System for specifying cause of abnormality in device having rotating member
CN113195949A (en) Mechanical seal with sensor
Mandache et al. Aircraft engine blade tip monitoring using pulsed eddy current technology
CN109163797A (en) One kind being based on pulsed shafting torsional vibration test system and method
Przysowa et al. Inductive sensors for blade tip-timing in gas turbines
JP2010151773A (en) Compound sensor for monitoring state of rotation device
JP2008096410A (en) State monitoring technique for rotary machine using electromagnetic phenomenon
SK500282010A3 (en) Non-contact method for monitoring turbine blade particular individual steam or gas turbines in power system and system thereof
JP2015010525A (en) Method and apparatus for monitoring turbine blade state
CN110573845B (en) Method for detecting defects in a vibration sensor, associated device and computer program
JP2014524570A (en) Rotating rheometer with dual read head optical encoder
EP3783319B1 (en) Flow meter
CN107923803A (en) Contactless torque measuring method
SK500462010U1 (en) System for contactless diagnosis turbines, especially the individual blades of steam or gas turbine power plants
KR101378868B1 (en) Apparatus of diagnosing a state of a wind turbine generator and method thereof
CN207610853U (en) The measuring device of rotating machinery beat amount
JP4771820B2 (en) Detection member deterioration diagnosis device
JP2011039019A (en) Superconductive sensor for electromagnetic diagnostic apparatus
JP2008151700A (en) Torque measuring method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080604

Free format text: JAPANESE INTERMEDIATE CODE: A621

A621 Written request for application examination

Effective date: 20080604

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208