JP2008095715A - Bearing unit - Google Patents

Bearing unit Download PDF

Info

Publication number
JP2008095715A
JP2008095715A JP2006274711A JP2006274711A JP2008095715A JP 2008095715 A JP2008095715 A JP 2008095715A JP 2006274711 A JP2006274711 A JP 2006274711A JP 2006274711 A JP2006274711 A JP 2006274711A JP 2008095715 A JP2008095715 A JP 2008095715A
Authority
JP
Japan
Prior art keywords
raceway surface
caulking
inner ring
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274711A
Other languages
Japanese (ja)
Inventor
Hiroshige Sakota
裕成 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006274711A priority Critical patent/JP2008095715A/en
Publication of JP2008095715A publication Critical patent/JP2008095715A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing unit having an extended bearing life and excellent in load resisting performance with high rigidity. <P>SOLUTION: The bearing unit comprises a rotary ring (inner ring) 4 which can be fitted to a hub (spindle) 12 for rotatably connecting a wheel to a vehicle body, a stationary ring (outer ring) 2 which can be disposed oppositely to the inner ring so as to be relatively rotatable, and a plurality of rolling elements 6 and 8 incorporated between raceway surfaces (a stationary raceway surface 2s and a rotary raceway surface 4s) formed on opposed surfaces of the inner and outer rings, respectively, to be rollable, the inner ring (rotary ring constituent 16) being fixed to the spindle by caulking a shaft end portion of the spindle while fitting the inner ring (rotary ring constituent 16) to the spindle. The curvature radius R1 of raceway surface of the inner ring (rotary ring constituent) before caulking is set large, compared with the curvature radius R2 of raceway surface of the inner ring (rotary ring constituent) after caulking. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の車輪を懸架装置に対して回転自在に支持する軸受ユニットに関し、特に、加締め処理後における内輪の軌道溝の変形防止を図るための技術に関する。   The present invention relates to a bearing unit that rotatably supports a vehicle wheel with respect to a suspension device, and more particularly to a technique for preventing deformation of a raceway groove of an inner ring after a caulking process.

従来、自動車の車輪(例えば、ディスクホイール)を車体(例えば、懸架装置(サスペンション))に対して回転自在に支持するための各種の軸受ユニットが知られている。その一例として図1(a)には、駆動輪用の軸受ユニットが示されており、当該軸受ユニットは、車体側に固定されて常時非回転状態に維持される静止輪(外輪)2と、静止輪2の内側に対向して設けられ且つ車輪側に接続されて車輪と共に回転する回転輪(内輪)4と、静止輪2と回転輪4との間に複列(例えば2列)で回転可能に組み込まれた複数の転動体6,8とを備えている。   2. Description of the Related Art Conventionally, various bearing units are known for rotatably supporting a vehicle wheel (for example, a disc wheel) with respect to a vehicle body (for example, a suspension device (suspension)). As an example, FIG. 1 (a) shows a bearing unit for a driving wheel, which is fixed to the vehicle body side and is always kept in a non-rotating state, and a stationary wheel (outer ring) 2; A rotating wheel (inner ring) 4 provided opposite to the inside of the stationary wheel 2 and connected to the wheel side and rotating together with the wheel, and rotating between the stationary wheel 2 and the rotating wheel 4 in a double row (for example, two rows). A plurality of rolling elements 6 and 8 which are incorporated as possible are provided.

この場合、静止輪2は中空円筒状を成しており、回転輪4の外周を覆うように配置されており、静止輪2と回転輪4との間には、軸受ユニット内部を密封するためのシール部材(車輪側のリップシール10a、車体側のパックシール10b)が設けられている。なお、リップシール10aは、静止輪2の車輪側の固定面2n-1に固定され、回転輪4の摺動面4n-1に対して摺動自在に位置決めされており、一方、パックシール10bは、静止輪2の車体側の固定面2n-2に固定され、後述する回転輪構成体16に対して摺動自在に位置決めされている。また、転動体6,8として図面では、玉を例示しているが、軸受ユニットの構成や種類に応じて、コロが適用される場合もある。   In this case, the stationary wheel 2 has a hollow cylindrical shape and is disposed so as to cover the outer periphery of the rotating wheel 4, so that the inside of the bearing unit is sealed between the stationary wheel 2 and the rotating wheel 4. Are provided (lip seal 10a on the wheel side, pack seal 10b on the vehicle body side). The lip seal 10a is fixed to the stationary surface 2n-1 on the wheel side of the stationary wheel 2 and is slidably positioned with respect to the sliding surface 4n-1 of the rotating wheel 4, while the pack seal 10b. Is fixed to the stationary surface 2n-2 on the vehicle body side of the stationary wheel 2 and is slidably positioned with respect to the rotating wheel component 16 described later. In the drawings, balls are illustrated as the rolling elements 6 and 8, but rollers may be applied depending on the configuration and type of the bearing unit.

静止輪(外輪)2には、その外周側から外方に向って突出した固定フランジ2aが一体成形されており、固定フランジ2aの固定孔2bに固定用ボルト(図示しない)を挿入し、これを車体側に締結することで、静止輪2を図示しない懸架装置(ナックル)に固定することができる。また、回転輪(内輪)4には、例えば自動車のディスクホイール(図示しない)を支持しつつ共に回転する略円筒形状のハブ(スピンドル)12が設けられており、ハブ12には、ディスクホイールが固定されるハブフランジ12aが突設されている。   The stationary ring (outer ring) 2 is integrally formed with a fixing flange 2a protruding outward from the outer peripheral side thereof, and a fixing bolt (not shown) is inserted into the fixing hole 2b of the fixing flange 2a. The stationary wheel 2 can be fixed to a suspension device (knuckle) (not shown). The rotating wheel (inner ring) 4 is provided with a substantially cylindrical hub (spindle) 12 that rotates together with, for example, a disc wheel (not shown) of an automobile, and the hub 12 has a disc wheel. A fixed hub flange 12a is projected.

ハブフランジ12aは、静止輪(外輪)2を越えて外方(ハブ12の半径方向外側)に向って延出しており、その延出縁付近には、周方向に沿って所定間隔で配置された複数のハブボルト14が設けられている。この場合、複数のハブボルト14をディスクホイールに形成されたボルト孔(図示しない)に差し込んでハブナット(図示しない)で締付けることにより、当該ディスクホイールをハブフランジ12aに対して位置決めして固定することができる。このとき、ハブ12の車輪側に突設されたパイロット部12dによって車輪の径方向の位置決めが成される。   The hub flange 12a extends outward (outward in the radial direction of the hub 12) beyond the stationary ring (outer ring) 2, and is arranged at predetermined intervals along the circumferential direction in the vicinity of the extended edge. A plurality of hub bolts 14 are provided. In this case, by inserting a plurality of hub bolts 14 into bolt holes (not shown) formed in the disc wheel and tightening with hub nuts (not shown), the disc wheel can be positioned and fixed with respect to the hub flange 12a. it can. At this time, positioning in the radial direction of the wheel is performed by a pilot portion 12d protruding from the wheel side of the hub 12.

また、ハブ12(回転輪4)には、その車体側の嵌合面4n-2に環状の回転輪構成体16(ハブ12と共に回転輪4を構成する内輪)が嵌合(外嵌)されるようになっている。この場合、例えば静止輪2と回転輪4との間に各転動体6,8を保持器18で保持した状態で、回転輪構成体16を嵌合面4n-2に形成された段部12bまで嵌合(外嵌)した後、ハブ12の車体側端部の加締め領域12cを塑性変形させて、当該加締め領域12cを回転輪構成体16の周端部16sに沿って加締める(密着させる)ことで、当該回転輪構成体16を回転輪4(ハブ12)に固定することができる。   The hub 12 (rotating wheel 4) is fitted (externally fitted) with an annular rotating wheel constituting body 16 (an inner ring constituting the rotating wheel 4 together with the hub 12) on the fitting surface 4n-2 on the vehicle body side. It has become so. In this case, for example, in a state where the rolling elements 6 and 8 are held by the cage 18 between the stationary wheel 2 and the rotating wheel 4, the rotating wheel component 16 is formed on the fitting surface 4n-2. After fitting (external fitting), the caulking region 12c at the end of the hub 12 on the vehicle body side is plastically deformed, and the caulking region 12c is caulked along the peripheral end 16s of the rotating wheel component 16 ( The rotating wheel constituting body 16 can be fixed to the rotating wheel 4 (hub 12).

このとき、軸受ユニットには所定の予圧が付与された状態となり、この状態において、各転動体6,8は、互いに所定の接触角を成して静止輪2と回転輪4の軌道面(静止軌道面2s、回転軌道面4s)にそれぞれ接触して回転可能に組み込まれる。この場合、2つの接触点を結んだ作用線(図示しない)は、各軌道面2s,4sに直交し且つ各転動体6,8の中心を通り、軸受ユニットの中心線上の1点(作用点)で交わる。これにより背面組合せ形(DB)軸受が構成される。   At this time, a predetermined preload is applied to the bearing unit, and in this state, the rolling elements 6 and 8 form a predetermined contact angle with each other so that the raceway surfaces of the stationary wheel 2 and the rotating wheel 4 (stationary). The raceway surface 2s and the rotary raceway surface 4s) are respectively brought into contact with and rotatable. In this case, an action line (not shown) connecting the two contact points is perpendicular to the raceway surfaces 2s and 4s and passes through the centers of the rolling elements 6 and 8, so that one point on the center line of the bearing unit (the action point). ) This constitutes a rear combination (DB) bearing.

なお、このような構成において、自動車走行中に車輪に作用した力は、全てディスクホイールから軸受ユニットを通じて懸架装置に伝達されることになり、その際、軸受ユニットには、各種の荷重(ラジアル荷重、アキシアル荷重、モーメント荷重など)が作用する。しかし、軸受ユニットは、上述したような背面組合せ形(DB)軸受となっているため、各種の荷重に対して高い剛性が維持される。   In such a configuration, all of the force acting on the wheel during traveling of the vehicle is transmitted from the disk wheel to the suspension device through the bearing unit. At that time, various loads (radial loads) are applied to the bearing unit. , Axial load, moment load, etc.). However, since the bearing unit is a back combination (DB) bearing as described above, high rigidity is maintained with respect to various loads.

また、かかる軸受ユニットには、図示しない等速ジョイント(CVJ)が連結されるようになっている。具体的に説明すると、等速ジョイントと軸受ユニットとは、等速ジョイントの外輪(図示しない)を軸受ユニットの回転輪4(ハブ12の加締め領域12c)に当接すると共に、等速ジョイントのスプライン軸(図示しない)を回転輪4(ハブ12)のスプライン孔12hに嵌入し、その嵌入先端をナット(図示しない)でパイロット部12dに固定することで互いに連結されている。この構成において、例えばドライブシャフトの角度の変化に対応して当該等速ジョイントが自由に角度変化することで、所定トルクの駆動力が軸受ユニットを介してディスクホイールに円滑に伝達されることになる。   In addition, a constant velocity joint (CVJ) (not shown) is connected to the bearing unit. More specifically, the constant velocity joint and the bearing unit contact the outer ring (not shown) of the constant velocity joint with the rotating wheel 4 of the bearing unit (the caulking region 12c of the hub 12), and the spline of the constant velocity joint. A shaft (not shown) is fitted into the spline hole 12h of the rotating wheel 4 (hub 12), and the fitting tip is fixed to the pilot portion 12d with a nut (not shown) to be connected to each other. In this configuration, for example, the constant velocity joint freely changes its angle in response to a change in the angle of the drive shaft, so that a driving force of a predetermined torque is smoothly transmitted to the disc wheel via the bearing unit. .

一方、図1(b)には、従動輪用の軸受ユニットの一例が示されており、当該軸受ユニットにおいて、軸受ユニット内部を密封するためのシール部材として、車体側にはパックシールの代わりにカバー10cが設けられている。カバー10cは、車体側における軸受内部を軸受外部から密封するような円板形状を成しており、その基端は静止輪(外輪)2の固定面2n-2に固定されている。なお、他の構成は上述した駆動輪用の軸受ユニット(図1(a))と同一であるため、図1(b)上において同一符号を付して、その説明を省略する。   On the other hand, FIG. 1 (b) shows an example of a bearing unit for a driven wheel. In the bearing unit, a seal member for sealing the inside of the bearing unit is used instead of a pack seal on the vehicle body side. A cover 10c is provided. The cover 10c has a disk shape that seals the inside of the bearing on the vehicle body side from the outside of the bearing, and the base end thereof is fixed to the fixed surface 2n-2 of the stationary ring (outer ring) 2. In addition, since the other structure is the same as the bearing unit for driving wheels (FIG. 1A) described above, the same reference numerals are given on FIG.

ところで、上述したような駆動輪用及び従動輪用の軸受ユニット(図1(a),(b))において、回転輪4の軌道面(静止軌道面2s、回転軌道面4s)は、例えば軸受の転がり疲れ寿命や剛性、限界モーメント荷重などの特性を考慮して、最適な曲率半径に設定されている。具体的に説明すると、軌道面2s,4sの曲率半径を大きくすると、軸受の転がり疲れ寿命と剛性とが低下し、限界モーメント荷重が向上する。これに対して、軌道面2s,4sの曲率半径を小さくすると、軸受の転がり疲れ寿命と剛性とが向上し、限界モーメント荷重が低下する。従って、従来では、このように相反する特性のバランスをとって回転輪4の軌道面2s,4sの曲率半径が設定されている。   By the way, in the bearing unit for driving wheels and driven wheels as described above (FIGS. 1A and 1B), the raceway surface (stationary raceway surface 2s, rotary raceway surface 4s) of the rotary wheel 4 is, for example, a bearing. Considering characteristics such as rolling fatigue life, rigidity, and limit moment load, the optimal radius of curvature is set. More specifically, when the radius of curvature of the raceway surfaces 2s and 4s is increased, the rolling fatigue life and rigidity of the bearing are reduced, and the limit moment load is improved. On the other hand, when the radius of curvature of the raceway surfaces 2s and 4s is reduced, the rolling fatigue life and rigidity of the bearing are improved, and the limit moment load is reduced. Therefore, conventionally, the curvature radii of the raceway surfaces 2s and 4s of the rotating wheel 4 are set in such a way as to balance the contradictory characteristics.

しかしながら、上述した従来の軸受ユニット(図1(a),(b))のように、車体側端部の加締め領域12cを塑性変形させて回転輪構成体16を回転輪4(ハブ12)に加締め固定する場合、そのときの加締め力の大きさによっては回転輪構成体16が変形し、その回転軌道面4sの曲率半径が変化することで、上記特性のバランスが崩れてしまう場合がる。この場合、回転輪構成体16の変形の態様としては、次に2つに大別される。   However, as in the conventional bearing unit described above (FIGS. 1A and 1B), the caulking region 12c at the vehicle body side end portion is plastically deformed so that the rotating wheel structure 16 is rotated into the rotating wheel 4 (hub 12). In the case of fixing by caulking, the balance of the above characteristics may be lost by changing the radius of curvature of the rotating raceway surface 4s depending on the magnitude of the caulking force at that time. Garage. In this case, the deformation mode of the rotating wheel component 16 is roughly divided into two.

即ち、加締め領域12cを塑性変形させた際に回転輪4(ハブ12)の嵌合面4n-2が膨張し、そのときの膨張量や膨張方向に応じて回転輪構成体16がラジアル方向に変形する態様、また、加締め領域12cを塑性変形させる圧力が回転輪構成体16の周端部16sに作用した際に、そのときの圧力分布により回転輪構成体16の外径側が回転軌道面4sに向けて倒れ込むように変形する態様がある。   That is, when the caulking region 12c is plastically deformed, the fitting surface 4n-2 of the rotating wheel 4 (hub 12) expands, and the rotating wheel constituting body 16 changes in the radial direction according to the expansion amount and the expansion direction at that time. When the pressure that plastically deforms the caulking region 12c is applied to the peripheral end portion 16s of the rotating wheel component 16, the outer diameter side of the rotating wheel component 16 is caused to rotate by the pressure distribution at that time. There exists an aspect which deform | transforms so that it may fall down toward the surface 4s.

そこで、例えば特許文献1には、加締め前後の軸受ユニットの軸方向寸法を比較することで、回転輪構成体16の変形状態を測定する技術が提案されている。しかし、かかる技術では、軸受全体の変形を測定することはできるが、回転輪構成体16の回転軌道面4sの曲率半径の変化を測定することはできない。このため、例えば軸受全体に変形が生じなかったとしても回転軌道面4sの曲率半径が変化すると、上述した軸受の転がり疲れ寿命や剛性、限界モーメント荷重などの特性のバランスが崩れてしまう。   Thus, for example, Patent Document 1 proposes a technique for measuring the deformation state of the rotating wheel component 16 by comparing the axial dimensions of the bearing units before and after caulking. However, such a technique can measure the deformation of the entire bearing, but cannot measure the change in the radius of curvature of the rotating raceway surface 4s of the rotating wheel component 16. For this reason, for example, even if the entire bearing is not deformed, if the radius of curvature of the rotating raceway surface 4s changes, the balance of characteristics such as rolling fatigue life, rigidity, and limit moment load of the bearing described above is lost.

特に、回転軌道面4sの曲率半径の変化では、その曲率半径が最適な設計値よりも小さくなる傾向にあり、その場合、限界を超えるモーメント荷重が軸受に負荷されると、転動体8が回転軌道面4sを外れて転動するようになり、その結果、軸受を長期に亘って連続して使用することが困難になってしまう。
特開2001−50832号公報
In particular, when the radius of curvature of the rotating raceway surface 4s changes, the radius of curvature tends to be smaller than the optimum design value. In this case, when a moment load exceeding the limit is applied to the bearing, the rolling element 8 rotates. Rolling off the raceway surface 4s results in difficulty in continuously using the bearing for a long period of time.
JP 2001-50832 A

本発明は、このような問題を解決するためになされており、その目的は、軸受寿命の延命化を図ると共に高剛性で且つ耐荷重性能に優れた軸受ユニットを提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a bearing unit that extends the life of the bearing and has high rigidity and excellent load bearing performance.

このような目的を達成するために、本発明は、車体に対して車輪を回転自在に連結するためのスピンドルに嵌合可能な内輪と、当該内輪に対して相対回転可能に対向配置可能な外輪と、内外輪の対向面にそれぞれ形成された軌道面間に転動自在に組み込まれた複数の転動体とを備え、スピンドルに内輪を嵌合させた状態でスピンドルの軸端部を加締めることにより、内輪をスピンドルに固定している軸受ユニットであって、加締め前における内輪の軌道面の曲率半径は、加締め後における内輪の軌道面の曲率半径に比べて大きく設定されている。   In order to achieve such an object, the present invention provides an inner ring that can be fitted to a spindle for rotatably connecting a wheel to a vehicle body, and an outer ring that can be disposed so as to be relatively rotatable with respect to the inner ring. And a plurality of rolling elements that are rotatably integrated between the raceway surfaces formed on the opposing surfaces of the inner and outer rings, respectively, and crimping the shaft end of the spindle with the inner ring fitted to the spindle Thus, the radius of curvature of the raceway surface of the inner ring before caulking is set larger than the radius of curvature of the raceway surface of the inner ring after caulking.

この場合、加締め前における内輪の軌道面の曲率半径は、加締め後における軌道面の曲率半径に比べて、0.3%〜0.4%程度大きく設定されている。また、加締め前における内輪の軌道面には、その曲率半径が加締め後における軌道面の曲率半径に比べて0.3%〜0.4%程度大きくなるように、研削処理が施される。   In this case, the radius of curvature of the raceway surface of the inner ring before caulking is set larger by about 0.3% to 0.4% than the radius of curvature of the raceway surface after caulking. In addition, the raceway surface of the inner ring before caulking is subjected to a grinding process so that the radius of curvature is about 0.3% to 0.4% larger than the radius of curvature of the raceway surface after caulking. .

本発明によれば、軸受寿命の延命化を図ると共に高剛性で且つ耐荷重性能に優れた軸受ユニットを実現することができる。   According to the present invention, it is possible to realize a bearing unit that extends the life of the bearing and has high rigidity and excellent load bearing performance.

以下、本発明の一実施の形態に係る軸受ユニットについて、添付図面を参照して説明する。
本実施の形態は、上述した駆動輪用及び従動輪用の軸受ユニット(図1(a),(b))と同様に、スピンドル(ハブ)12に内輪(回転輪構成体16)を嵌合させた状態でハブ12の軸端部(車体側端部)を加締めることにより、回転輪構成体16をハブ12に固定する軸受ユニットを想定する。そして、加締め前における回転輪構成体16の軌道面(回転軌道面4s)の曲率半径を、加締め後における回転輪構成体16の回転軌道面4sの曲率半径に比べて大きく設定したことを特徴としている。なお、その他の構成は、上述した軸受ユニット(図1(a),(b))と同様であるため、以下では、特徴部分の説明にとどめる。
Hereinafter, a bearing unit according to an embodiment of the present invention will be described with reference to the accompanying drawings.
In the present embodiment, the inner ring (rotating wheel constituting body 16) is fitted to the spindle (hub) 12 in the same manner as the above-described bearing units for driving wheels and driven wheels (FIGS. 1A and 1B). Assume a bearing unit that fixes the rotating wheel component 16 to the hub 12 by caulking the shaft end portion (vehicle body side end portion) of the hub 12 in this state. The radius of curvature of the raceway surface (rotating raceway surface 4s) of the rotating wheel component 16 before caulking is set to be larger than the radius of curvature of the rotating raceway surface 4s of the rotating wheel component 16 after caulking. It is a feature. Since the other configuration is the same as that of the above-described bearing unit (FIGS. 1A and 1B), only the characteristic part will be described below.

本実施の形態の軸受ユニットにおいて、図2(a)には、加締め前における回転輪構成体16の断面図が示されており、その回転軌道面4sの曲率半径はR1に設定されている。また、図2(b)には、曲率半径R1の回転軌道面4sを有する回転輪構成体16を嵌合面4n-2に形成された段部12bまで嵌合(外嵌)した後、ハブ12の車体側端部の加締め領域12cを塑性変形させて、当該加締め領域12cを回転輪構成体16の周端部16sに沿って加締める(密着させる)ことで、当該回転輪構成体16を回転輪4(ハブ12)に固定した状態が示されている。   In the bearing unit of the present embodiment, FIG. 2A shows a cross-sectional view of the rotating wheel component 16 before caulking, and the radius of curvature of the rotating raceway surface 4s is set to R1. . In FIG. 2B, the rotating wheel component 16 having the rotating raceway surface 4s having the radius of curvature R1 is fitted (externally fitted) to the step portion 12b formed on the fitting surface 4n-2, and then the hub. The caulking region 12c at the end of the vehicle body 12 is plastically deformed, and the caulking region 12c is caulked (adhered) along the peripheral end portion 16s of the rotating wheel component 16, thereby the rotating wheel component. A state in which 16 is fixed to the rotating wheel 4 (hub 12) is shown.

この場合、加締め後における回転軌道面4sの曲率半径をR2とすると、加締め前における回転軌道面4sの曲率半径R1は、加締め後における回転軌道面4sの曲率半径R2に比べて、0.3%〜0.4%程度大きく設定(R1=1.003〜1.004×R2)することが好ましい。このとき、加締め前における回転輪構成体16の回転軌道面4sには、その曲率半径R1が加締め後における回転軌道面4sの曲率半径R2に比べて0.3%〜0.4%程度大きくなるように、研削処理が施される。なお、研削処理は、既存の研削機械を利用して行えば良いので、その説明は省略する。   In this case, if the radius of curvature of the rotating raceway surface 4s after caulking is R2, the radius of curvature R1 of the rotating raceway surface 4s before caulking is 0 compared to the radius of curvature R2 of the rotating raceway surface 4s after caulking. It is preferable to set a larger value by about 3% to 0.4% (R1 = 1.003 to 1.004 × R2). At this time, the radius of curvature R1 of the rotating raceway surface 4s of the rotating wheel component 16 before caulking is about 0.3% to 0.4% compared to the radius of curvature R2 of the rotating raceway surface 4s after caulking. A grinding process is performed to increase the size. Since the grinding process may be performed using an existing grinding machine, the description thereof is omitted.

ここで、加締め前における回転軌道面4sの曲率半径R1の設定方法としては、まず、駆動輪用及び従動輪用の軸受ユニットに用いる回転輪構成体16を複数用意し、それぞれの回転軌道面4sの曲率半径を測定する。この場合、回転軌道面4sは、例えば軸受の転がり疲れ寿命や剛性、限界モーメント荷重などの特性を考慮して、その曲率半径は、予め転動体8の輪郭に合わせた一定の最適値に設定されている。このため、複数の回転輪構成体16の回転軌道面4sの曲率半径は、相互に略同一値をとる。   Here, as a method for setting the radius of curvature R1 of the rotating raceway surface 4s before caulking, first, a plurality of rotating wheel constituting bodies 16 used for bearing units for driving wheels and driven wheels are prepared. Measure the radius of curvature of 4s. In this case, the radius of curvature of the rotating raceway surface 4s is set to a predetermined optimum value that matches the contour of the rolling element 8 in advance in consideration of characteristics such as rolling fatigue life, rigidity, and limit moment load of the bearing. ing. For this reason, the radii of curvature of the rotating raceway surfaces 4s of the plurality of rotating wheel constituting bodies 16 take substantially the same value.

次に、最適値に設定された回転輪構成体16をスピンドル(ハブ)12に嵌合(外嵌)した状態で、ハブ12の車体側端部の加締め領域12cを回転輪構成体16の周端部16sに沿って加締めることで、当該回転輪構成体16を回転輪4(ハブ12)に固定する。なお、加締め処理では、既存の揺動加締め処理を加締め領域12cに施した。このとき、加締め後における回転輪構成体16の回転軌道面4sの曲率半径の変化を測定する。そして、かかる測定を複数の回転輪構成体16の全てについて行った後、各変化量の合計を測定回数で割算することで、曲率半径の変化量の平均値をとる。   Next, in a state where the rotating wheel component 16 set to the optimum value is fitted (externally fitted) to the spindle (hub) 12, the caulking region 12 c at the end of the hub 12 on the vehicle body side is placed on the rotating wheel component 16. By caulking along the peripheral end portion 16s, the rotating wheel constituting body 16 is fixed to the rotating wheel 4 (hub 12). In the caulking process, the existing swing caulking process was performed on the caulking region 12c. At this time, the change in the radius of curvature of the rotating raceway surface 4s of the rotating wheel component 16 after caulking is measured. And after performing this measurement about all the some rotary wheel structure 16, the average value of the variation | change_quantity of a curvature radius is taken by dividing the total of each variation | change_quantity by the frequency | count of a measurement.

出願人の実験結果では、このとき得られた平均値は、最適値よりも0.3%〜0.4%程度小さくなることが判明した。そこで、加締め前における回転輪構成体16の回転軌道面4sに研削処理を施して、その曲率半径R1を最適値よりも0.3%〜0.4%程度大きく設定した。これによれば、加締め後における回転軌道面4sの曲率半径R2を最適値にすることができる。この結果、軸受寿命の延命化を図ると共に高剛性で且つ耐荷重性能に優れた軸受ユニットを実現することができる。   From the applicant's experimental results, it was found that the average value obtained at this time was about 0.3% to 0.4% smaller than the optimum value. Therefore, the rotating raceway surface 4s of the rotating wheel structure 16 before caulking is ground, and the radius of curvature R1 is set to be about 0.3% to 0.4% larger than the optimum value. According to this, the radius of curvature R2 of the rotating raceway surface 4s after caulking can be set to an optimum value. As a result, it is possible to realize a bearing unit that extends the life of the bearing and has high rigidity and excellent load bearing performance.

なお、上述した実施の形態では、静止輪(外輪)2と回転輪(内輪)4の双方にフランジ(固定フランジ2a、ハブフランジ12a)を設けた軸受ユニット(図1(a),(b))を例示したが、これに限定されることは無く、ハブ12の軸端部(車体側端部)を加締めることで回転輪構成体16をハブ12に固定する軸受ユニットであれば、任意の軸受に適用することができる。例えば、外内輪2,4のいずれか一方のフランジを設けたタイプの軸受や、等速ジョイントのスプライン軸を止め輪により回転輪4(ハブ12)のスプライン孔12hに対して抜け止め固定するタイプの軸受にも適用することができる。   In the above-described embodiment, the bearing unit (FIGS. 1A and 1B) in which both the stationary ring (outer ring) 2 and the rotating ring (inner ring) 4 are provided with flanges (fixed flange 2a and hub flange 12a). However, the present invention is not limited to this, and any bearing unit can be used as long as the rotating wheel component 16 is fixed to the hub 12 by caulking the shaft end portion (vehicle body side end portion) of the hub 12. It can be applied to other bearings. For example, a type of bearing in which one of the outer and inner rings 2 and 4 is provided with a flange, or a type in which the spline shaft of a constant velocity joint is fixed to the spline hole 12h of the rotating wheel 4 (hub 12) with a retaining ring. It can also be applied to other bearings.

(a)は、駆動輪用の軸受ユニットの構成を示す断面図、(b)は、従動輪用の軸受ユニットの構成を示す断面図。(a) is sectional drawing which shows the structure of the bearing unit for drive wheels, (b) is sectional drawing which shows the structure of the bearing unit for driven wheels. (a)は、加締め前における回転輪構成体の全体を示す断面図、(b)は、加締め後における回転輪構成体を一部拡大して示す断面図。(a) is sectional drawing which shows the whole rotary wheel structure before caulking, (b) is sectional drawing which expands and shows a part of rotating wheel structure after caulking.

符号の説明Explanation of symbols

2 静止輪(外輪)
4 回転輪(内輪)
6,8 転動体
12 ハブ(スピンドル)
16 内輪(回転輪構成体)
R1 加締め前における内輪(回転輪構成体)の軌道面の曲率半径
R2 加締め後における内輪(回転輪構成体)の軌道面の曲率半径
2 Stationary wheel (outer ring)
4 Rotating wheel (inner ring)
6,8 Rolling element 12 Hub (spindle)
16 Inner ring (Rotating wheel component)
R1 Curvature radius of the raceway surface of the inner ring (rotating ring component) before caulking R2 Curvature radius of the raceway surface of the inner ring (rotating ring component) after caulking

Claims (3)

車体に対して車輪を回転自在に連結するためのスピンドルに嵌合可能な内輪と、当該内輪に対して相対回転可能に対向配置可能な外輪と、内外輪の対向面にそれぞれ形成された軌道面間に転動自在に組み込まれた複数の転動体とを備え、スピンドルに内輪を嵌合させた状態でスピンドルの軸端部を加締めることにより、内輪をスピンドルに固定している軸受ユニットであって、
加締め前における内輪の軌道面の曲率半径は、加締め後における内輪の軌道面の曲率半径に比べて大きく設定されていることを特徴とする軸受ユニット。
An inner ring that can be fitted to a spindle for rotatably connecting the wheel to the vehicle body, an outer ring that can be disposed so as to be relatively rotatable with respect to the inner ring, and a raceway surface formed on opposing surfaces of the inner and outer rings. A bearing unit that includes a plurality of rolling elements that are incorporated so as to be freely rotatable between them, and that fastens the shaft end of the spindle with the inner ring fitted to the spindle, thereby fixing the inner ring to the spindle. And
A bearing unit characterized in that the radius of curvature of the raceway surface of the inner ring before caulking is set larger than the radius of curvature of the raceway surface of the inner ring after caulking.
加締め前における内輪の軌道面の曲率半径は、加締め後における軌道面の曲率半径に比べて、0.3%〜0.4%程度大きく設定されていることを特徴とする請求項1に記載の軸受ユニット。   The radius of curvature of the raceway surface of the inner ring before caulking is set to be about 0.3% to 0.4% larger than the radius of curvature of the raceway surface after caulking. The bearing unit described. 加締め前における内輪の軌道面には、その曲率半径が加締め後における軌道面の曲率半径に比べて0.3%〜0.4%程度大きくなるように、研削処理が施されることを特徴とする請求項2に記載の軸受ユニット。   The raceway surface of the inner ring before caulking is ground so that the radius of curvature is about 0.3% to 0.4% larger than the radius of curvature of the raceway surface after caulking. The bearing unit according to claim 2, wherein
JP2006274711A 2006-10-06 2006-10-06 Bearing unit Pending JP2008095715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274711A JP2008095715A (en) 2006-10-06 2006-10-06 Bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274711A JP2008095715A (en) 2006-10-06 2006-10-06 Bearing unit

Publications (1)

Publication Number Publication Date
JP2008095715A true JP2008095715A (en) 2008-04-24

Family

ID=39378787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274711A Pending JP2008095715A (en) 2006-10-06 2006-10-06 Bearing unit

Country Status (1)

Country Link
JP (1) JP2008095715A (en)

Similar Documents

Publication Publication Date Title
JP2000289403A (en) Rolling bearing unit for wheel support and manufacture thereof
US6883236B2 (en) Vehicle-use bearing apparatus
JP5100056B2 (en) Wheel bearing device
JPH1191308A (en) Rolling bearing unit for wheel
JP3815376B2 (en) Rolling bearing unit for wheel support
JP2008309278A (en) Bearing unit
JP2007002884A (en) Bearing unit
JP5708403B2 (en) Sealing device for bearing
JP2008173995A (en) Bearing device for wheel
JP6957958B2 (en) Hub unit bearing
JP2005119505A (en) Bearing device for wheel
JP2008144861A (en) Bearing unit
JP2008095715A (en) Bearing unit
JP2012255549A (en) Bearing unit
EP2889498A1 (en) Wheel Bearing Device
JP2010230174A (en) Grease filling-up method for bearing device of wheel
JP4899921B2 (en) Bearing assembly method
JP2007069746A (en) Bearing unit
JP2008279860A (en) Bearing unit
JP2007223459A (en) Method of manufacturing power transmission mechanism
JP2001206004A (en) Wheel driving bearing unit
JP2009014181A (en) Sealing structure, manufacturing method therefor, and bearing unit
JP2022134633A (en) Bearing device for wheel
JP2013050119A (en) Bearing sealing device
JP2008145265A (en) Bearing unit for driving wheel