JP2008094831A - New dideoxynucleoside derivative - Google Patents

New dideoxynucleoside derivative Download PDF

Info

Publication number
JP2008094831A
JP2008094831A JP2007222152A JP2007222152A JP2008094831A JP 2008094831 A JP2008094831 A JP 2008094831A JP 2007222152 A JP2007222152 A JP 2007222152A JP 2007222152 A JP2007222152 A JP 2007222152A JP 2008094831 A JP2008094831 A JP 2008094831A
Authority
JP
Japan
Prior art keywords
amino
double
protecting group
fluoro
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007222152A
Other languages
Japanese (ja)
Other versions
JP5205873B2 (en
Inventor
Yukio Kitade
幸夫 北出
Yoshihito Ueno
義仁 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP2007222152A priority Critical patent/JP5205873B2/en
Publication of JP2008094831A publication Critical patent/JP2008094831A/en
Application granted granted Critical
Publication of JP5205873B2 publication Critical patent/JP5205873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Saccharide Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new dideoxynucleoside derivative suitable for the raw material for synthesis of antisense nucleic acid, and to provide a thermally stable oligonucleotide analog into which the above derivative is introduced. <P>SOLUTION: The invention relates to a 5'-amino-2'-fluoro-2', 5'-dideoxynucleoside derivative represented by formula [1] (wherein R<SB>1</SB>is a nucleic acid base which may have a protecting group; R<SB>2</SB>is H or a protecting group of an amino group; and R<SB>3</SB>is H or a protecting group of a hydroxy group). There are also provided a dideoxynucleoside-insoluble carrier bound substance obtained by binding the above derivative to an insoluble carrier, and an oligonucleotide analog into which the derivative is introduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規なジデオキシヌクレオシド誘導体、及びこれを用いたアミダイト試薬、並びに該ジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログに関する。   The present invention relates to a novel dideoxynucleoside derivative, an amidite reagent using the same, and an oligonucleotide analog into which the dideoxynucleoside derivative is introduced.

以下の本明細書の記載において、核酸塩基を示す場合のAはアデニン、Cはシトシン、Gはグアニン、Tはチミン、Uはウラシルを表す。また、「オリゴヌクレオチド」という場合、「ポリヌクレオチド」をも含む場合がある。   In the following description of the present specification, when A represents nucleobase, A represents adenine, C represents cytosine, G represents guanine, T represents thymine, and U represents uracil. The term “oligonucleotide” may also include “polynucleotide”.

二本鎖RNAを細胞に導入すると、これと相補的な塩基配列を持ったmRNA(メッセンジャーRNA)が分解され、mRNAが不活化される現象(「RNA干渉」、RNA interference、「RNAi」と略される。)が起こることが知られている。この現象は以下のような機構で起こると考えられている。   When double-stranded RNA is introduced into a cell, mRNA with a complementary base sequence (messenger RNA) is degraded and mRNA is inactivated (abbreviated as “RNA interference”, RNA interference, or “RNAi”). Is known to occur. This phenomenon is considered to occur by the following mechanism.

すなわち、まず細胞に比較的長い2本鎖RNA(dsRNA)が導入されると、これがダイサー(Dicer)と呼ばれるRNaseIII様のヌクレアーゼによって21〜23塩基の大きさにまで分解され、siRNAを生じる。次いでその低分子のsiRNAが複数のタンパク質と結合してRISC(RNA induced silencing complex)と呼ばれる複合体を形成する。この複合体はsiRNAと同じ配列を持つmRNAを認識して結合し、siRNAの中央部でmRNAが切断される。この結果、当該遺伝子が不活化されると考えられている。   That is, when a relatively long double-stranded RNA (dsRNA) is first introduced into a cell, it is degraded to a size of 21 to 23 bases by an RNaseIII-like nuclease called Dicer to produce siRNA. The small siRNA then binds to a plurality of proteins to form a complex called RISC (RNA induced silencing complex). This complex recognizes and binds to mRNA having the same sequence as siRNA, and mRNA is cleaved at the center of siRNA. As a result, it is believed that the gene is inactivated.

RNAi法(RNA干渉法)は、この現象を利用し、人工的に合成したRNAを細胞に導入することにより、特定の遺伝子の発現を抑制する方法であり、簡便でしかも強力な遺伝子機能阻害法として広く用いられている(Fire, A. et. al., Nature, 1998, vol.391, pp.806-811、Svobada, P. et al., Development, 2000, vol.127, pp.4147-4156、Elbashir, S. M., Lendeckel, W. and Tuschl, T., Genes and Dev., 2001, vol.15, pp.188-200、Zamore, P. D. et al., Cell, 2000, vo.101, pp.25-33、Bernstein, E. et al., Nature, 2001, vol.409, pp.363-366等)。   The RNAi method (RNA interference method) is a method that suppresses the expression of specific genes by introducing artificially synthesized RNA into cells using this phenomenon, and is a simple and powerful method for inhibiting gene function. (Fire, A. et. Al., Nature, 1998, vol.391, pp.806-811, Svobada, P. et al., Development, 2000, vol.127, pp.4147- 4156, Elbashir, SM, Lendeckel, W. and Tuschl, T., Genes and Dev., 2001, vol.15, pp.188-200, Zamore, PD et al., Cell, 2000, vo.101, pp. 25-33, Bernstein, E. et al., Nature, 2001, vol.409, pp.363-366).

また、RNAi法は、後述するアンチセンス法と比較して、生体が本来持っている機構を使うため、効率よく低濃度で発現を抑制できる、毒性が低い、塩基配列による特異性が高い、実験が容易等の利点がある。また、細胞における内在性遺伝子のノックダウンにも幅広く利用されてきている。更に、異常な遺伝子のmRNAを特異的に分解することによる遺伝子治療への利用も期待されている。   In addition, compared to the antisense method described later, the RNAi method uses a mechanism inherent in living organisms, so it can efficiently suppress expression at low concentrations, has low toxicity, and has high specificity by nucleotide sequence. There are advantages such as easy. It has also been widely used for knockdown of endogenous genes in cells. Furthermore, it is expected to be used for gene therapy by specifically degrading mRNA of abnormal genes.

しかし一方で、従来用いられているdsRNAやsiRNA等の低分子のRNAは、ヌクレアーゼ等の核酸分解酵素の働きで容易に分解されてしまうので、取扱いが難しいという問題がある。   However, on the other hand, conventionally used low molecular weight RNAs such as dsRNA and siRNA are easily decomposed by the action of nucleases such as nucleases, so that they are difficult to handle.

一方、遺伝子の発現を制御する他の方法として、アンチセンス法という技術も知られている。   On the other hand, a technique called an antisense method is also known as another method for controlling gene expression.

蛋白質を合成する(合成を指示する)mRNAの塩基配列をセンス配列といい、この配列に対して相補的な塩基配列をアンチセンスという。また、アンチセンスの塩基配列を持つ核酸をアンチセンス核酸という。   The base sequence of mRNA that synthesizes protein (instructs synthesis) is called a sense sequence, and the base sequence complementary to this sequence is called antisense. A nucleic acid having an antisense base sequence is called an antisense nucleic acid.

アンチセンス法とは、ある標的遺伝子から転写されたmRNAに対して相補的なアンチセンス核酸を細胞に投与し、mRNAと投与したアンチセンス核酸とで二本鎖を形成させ、標的遺伝子の発現のみを塩基配列特異的に抑制しようとする遺伝子発現制御法の1つである。アンチセンス核酸による標的遺伝子の阻害効果を調べることで、標的遺伝子の働きを知ることができる。   Antisense is a method in which an antisense nucleic acid complementary to mRNA transcribed from a target gene is administered to a cell, a double strand is formed between the mRNA and the administered antisense nucleic acid, and only the target gene is expressed. Is one of the gene expression control methods which intend to suppress the nucleotide sequence specifically. By examining the inhibitory effect of the target gene by the antisense nucleic acid, it is possible to know the function of the target gene.

また、アンチセンス法は医薬品の分野にも応用することができる。例えば、アンチセンス核酸を、ある疾病発症の因子であるタンパク質の合成プロセスに関与するmRNAに結合させることで、当該遺伝子が機能することを遺伝子レベルで防ぐことが期待できる。そこで、アンチセンス核酸を用いることにより、疾患を引き起こす遺伝子の働きを抑える治療を行うことができると期待される。例えば、現在、ISIS Pharmaceuticals Inc.が米国FDAから認可を受けた、サイトメガロウイルス網膜炎を対象とするformivirsen等の医薬品が、この例の一つである。   Antisense methods can also be applied in the field of pharmaceuticals. For example, by binding an antisense nucleic acid to mRNA involved in the synthesis process of a protein that is a factor causing a disease, it can be expected to prevent the gene from functioning at the gene level. Accordingly, it is expected that treatment using an antisense nucleic acid to suppress the function of a gene causing a disease can be performed. For example, a drug such as formivirsen currently targeted to cytomegalovirus retinitis, for which ISIS Pharmaceuticals Inc. has been approved by the US FDA, is one example.

アンチセンス核酸に求められる性質としては、標的RNAと安定な二本鎖を形成すること、mismatch塩基を含む配列に結合しない塩基配列認識能、ヌクレアーゼに対する耐性、細胞膜透過性などである。また、アンチセンス核酸を医薬品として用いるためには、特異的な塩基配列認識能、ヌクレアーゼ耐性、代謝性、細胞内移行性が重要である。   Properties required for an antisense nucleic acid include formation of a stable double strand with a target RNA, ability to recognize a base sequence that does not bind to a sequence containing mismatched bases, resistance to nucleases, and permeability to a cell membrane. In addition, in order to use an antisense nucleic acid as a pharmaceutical product, specific base sequence recognition ability, nuclease resistance, metabolism, and intracellular migration are important.

しかし、アンチセンス核酸として天然型のオリゴヌクレオチドを用いると、そのヌクレアーゼ耐性をはじめとする上述した如き求められる性質が満足されない等の問題がある。   However, when a natural oligonucleotide is used as an antisense nucleic acid, there are problems that the above-mentioned required properties such as nuclease resistance are not satisfied.

そこで、天然型のオリゴヌクレオチドの欠点を克服し、またその他の性質も満足するようなオリゴヌクレオチドを得るために、今日までに、多くの核酸の修飾が試みられている。例えば、核酸塩基部位の修飾(N. Haginoya et al., Bioconjugate Chem., 1997, vol.8, pp.271-280.)、リボースの修飾(M. Aoyagi et al., Bioorg. Med. Chem. Lett., 1996, vol.6, pp.1573-1576.)、リボース環自体の改変(A. Kakefuda et al., Tetrahedron, 1996, vol.52, pp.2863-2876.)、リン酸ジエステルへの修飾(M. Shimizu et al., 2006, vol.71, pp.4262-4269.)、リン酸ジエステル結合の改変(A. Waldner et al., Bioorg. Med. Chem. Lett., 1994, vol.4, pp.405-408.)などである。これらを組み合わせることで、上記の如き性質を満たすアンチセンス核酸の多様化が期待できる。例えば、S. M. Gryaznov等は、5'-ホスホロアミダート(5'-phosphoramidate)型DNAを合成している(非特許文献1)が、このものはヌクレアーゼ等の核酸分解酵素に対して抵抗性であるが、標的mRNAに対する結合親和性が十分でない等の問題がある。S. Obika等は、標的mRNAに対する結合親和性の問題を解決するために、糖部の5'-位にアミノ基を導入し、2',4'-位を酸素原子を介して環化したヌクレオチドを含有する5'-amino-2',4'-bridged nucleic acid (BNA)を合成している(非特許文献2)。また、同じくS. Obika等は、5'-アミノ基と3'-位をメチレン基で架橋した5'-amino-3',5'-BNAを合成している(非特許文献3)。これらのBNAは、標的mRNAに対する結合親和性が高く、かつ、ヌクレアーゼ等の核酸分解酵素に対して抵抗性である。しかし、これらのBNAをsiRNAに導入した場合のタンパク抑制活性は報告されていない。   Thus, many nucleic acid modifications have been attempted to date to obtain oligonucleotides that overcome the disadvantages of natural oligonucleotides and that also satisfy other properties. For example, modification of the nucleobase site (N. Haginoya et al., Bioconjugate Chem., 1997, vol.8, pp.271-280.), Modification of ribose (M. Aoyagi et al., Bioorg. Med. Chem. Lett., 1996, vol.6, pp.1573-1576., Modification of the ribose ring itself (A. Kakefuda et al., Tetrahedron, 1996, vol.52, pp.2863-2876.), To phosphodiester Modification (M. Shimizu et al., 2006, vol. 71, pp. 4262-4269.), Modification of phosphodiester bond (A. Waldner et al., Bioorg. Med. Chem. Lett., 1994, vol. .4, pp.405-408). By combining these, diversification of antisense nucleic acids satisfying the above properties can be expected. For example, SM Gryaznov et al. Have synthesized 5′-phosphoramidate type DNA (Non-patent Document 1), which is resistant to nucleases such as nucleases. However, there are problems such as insufficient binding affinity for the target mRNA. S. Obika et al. Introduced an amino group at the 5'-position of the sugar moiety and cyclized the 2 ', 4'-position via an oxygen atom to solve the problem of binding affinity for the target mRNA. 5'-amino-2 ', 4'-bridged nucleic acid (BNA) containing nucleotides has been synthesized (Non-patent Document 2). Similarly, S. Obika et al. Synthesized 5′-amino-3 ′, 5′-BNA in which the 5′-amino group and the 3′-position are bridged with a methylene group (Non-patent Document 3). These BNAs have a high binding affinity for the target mRNA and are resistant to nucleolytic enzymes such as nucleases. However, protein inhibitory activity when these BNAs are introduced into siRNA has not been reported.

WO03/093472号公報WO03 / 093472 Publication S. M. Gryaznov et al., Nucleic Acids Res., 1992, vol.20, pp.3403-3409S. M. Gryaznov et al., Nucleic Acids Res., 1992, vol.20, pp.3403-3409 S. Obika, et.al., Chem. Commun., 2003, pp.2202-2203S. Obika, et.al., Chem. Commun., 2003, pp.2202-2203 S. Obika, et al., Angew. Chem. Int. Ed., 2005, vol.44, pp.1945-1947S. Obika, et al., Angew. Chem. Int. Ed., 2005, vol.44, pp.1945-1947 A. M. Kawasaki et al., J. Med. Chem., 1993, vol.36, pp.831-841A. M. Kawasaki et al., J. Med. Chem., 1993, vol.36, pp.831-841 S. Helmling et al., Nucleosides, Nucleotides & Nucleic Acids, 2003, vol.22, Nos.5-8, pp.1035-1038S. Helmling et al., Nucleosides, Nucleotides & Nucleic Acids, 2003, vol.22, Nos.5-8, pp.1035-1038 J. Shi et al., Bioorg. Med. Chem., 2005, vol.13, pp.1641-1652J. Shi et al., Bioorg. Med. Chem., 2005, vol.13, pp.1641-1652 S. M. Gryaznov et al., Nucleic Acids Res., 1992, vol.20, pp.3403-3409S. M. Gryaznov et al., Nucleic Acids Res., 1992, vol.20, pp.3403-3409

本発明は、上記した如き状況に鑑みなされたもので、アンチセンス核酸の合成原料として好適な、新規なジデオキシヌクレオシド誘導体、並びに該ジデオキシヌクレオシド誘導体を導入した、熱的に安定なオリゴヌクレオチドアナログを提供することをその課題とする。   The present invention has been made in view of the circumstances as described above, and provides a novel dideoxynucleoside derivative suitable as a synthetic raw material for antisense nucleic acid, and a thermally stable oligonucleotide analog incorporating the dideoxynucleoside derivative. The task is to do.

本発明は、上記課題を解決する目的でなされたものであり、以下の構成よりなる。
(1)下記式[1]

Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基、Rは水素原子又は水酸基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体。 The present invention has been made for the purpose of solving the above-described problems, and has the following configuration.
(1) The following formula [1]
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a protecting group for a hydrogen atom or an amino group, and R 3 represents a protecting group for a hydrogen atom or a hydroxyl group.)
A 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by:

(2)下記式[6]

Figure 2008094831
(式中、R1は保護基を有していていもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体を不溶性担体に結合させてなる、ジデオキシヌクレオシド−不溶性担体結合物。 (2) The following formula [6]
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group.)
A dideoxynucleoside-insoluble carrier conjugate obtained by binding a 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by the formula:

(3)下記式[1]

Figure 2008094831
(式中、R1は保護基を有していていもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基、Rは水素原子又は水酸基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログ。 (3) The following formula [1]
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group, and R 3 represents a hydrogen atom or a hydroxyl protecting group.)
An oligonucleotide analog into which a 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by the formula:

すなわち本発明者等は、安定で、アンチセンス法やRNAi法にも利用できうる新しいオリゴヌクレオチドの合成を目指し、鋭意研究を行った。   That is, the present inventors have conducted intensive research aimed at synthesizing new oligonucleotides that are stable and can be used in antisense methods and RNAi methods.

核酸の二本鎖のらせん構造には主にA型とB型が存在し、一本鎖の状態では、立体配座にゆらぎがあるが、相補鎖とハイブリダイズすることで、A型、B型といった立体配座が固定される。A型らせん構造をとるには、糖部の立体配座がN型(3'-endo)に固定された核酸が必要である。また反対に、B型らせん構造をとるには、S型(2'-endo)に固定された核酸が必要である。DNA-DNA二本鎖はB型の傾向があり、RNA-RNA二本鎖はA型の傾向がある。また、RNA-DNA二本鎖の場合は、A型をとる。   The nucleic acid double-stranded helical structure mainly has A type and B type, and in the single-stranded state, there are fluctuations in the conformation, but by hybridizing with the complementary strand, the A type and B type A conformation such as a mold is fixed. In order to adopt an A-type helical structure, a nucleic acid in which the conformation of the sugar moiety is fixed to the N-type (3'-endo) is required. Conversely, in order to adopt a B-type helical structure, a nucleic acid immobilized on S-type (2'-endo) is required. DNA-DNA duplexes tend to be B-type, and RNA-RNA duplexes tend to be A-type. In the case of RNA-DNA double strand, it takes A type.

本発明者等は、アンチセンス核酸の場合、標的がRNAであるので、アンチセンス核酸の立体配座をA型で固定すること、すなわちアンチセンス核酸を構成するヌクレオシドの糖部の立体配座をN型(3'-endo)に固定することで、アンチセンス核酸と相補鎖RNAとの二本鎖の安定性(結合親和性)が向上するのではと考えた。   Since the target is RNA in the case of antisense nucleic acid, the present inventors fixed the conformation of the antisense nucleic acid in the A type, that is, the conformation of the sugar moiety of the nucleoside constituting the antisense nucleic acid. We thought that fixing to N-type (3'-endo) would improve the stability (binding affinity) of double strands of antisense nucleic acid and complementary RNA.

そして、本発明者等は、DNAを構成するヌクレオシドの糖部の2'-位に電子吸引性の置換基を導入し糖部の立体配座をN型に固定すると、DNAと相補鎖との二本鎖を安定化する効果がある(非特許文献4)という知見から、5'-アミノ型ヌクレオシドの糖部の2'-位に電子吸引性のフッ素原子を導入すれば、ヌクレオシドの糖部の立体配座をN型に固定するのではないか、そして、固定することで、前記二本鎖の安定性が向上するのではないかと推測した。   Then, the present inventors introduced an electron-withdrawing substituent at the 2′-position of the sugar moiety of the nucleoside constituting DNA, and fixed the conformation of the sugar moiety to the N type. From the knowledge that it has the effect of stabilizing the double strand (Non-patent Document 4), if an electron-withdrawing fluorine atom is introduced at the 2′-position of the sugar moiety of the 5′-amino nucleoside, the sugar moiety of the nucleoside It was speculated that the conformation may be fixed to the N type, and that the stability of the double strand might be improved by fixing.

糖部にフッ素原子を導入したヌクレオシド誘導体としては、これまでに2'-fluoro-L-uridine、2'-fluoro-L-cytidine phosphoramidite(非特許文献5, 特許文献1)、D- and L-2'-deoxy-2'-fluororibonucleoside(非特許文献6)等が知られている。   As nucleoside derivatives having a fluorine atom introduced into the sugar moiety, 2'-fluoro-L-uridine, 2'-fluoro-L-cytidine phosphoramidite (Non-patent Document 5, Patent Document 1), D- and L- 2′-deoxy-2′-fluororibonucleoside (Non-patent Document 6) and the like are known.

また、オリゴヌクレオチドのホスホジエステル結合をリン酸アミデート結合にすることで、二本鎖核酸のヌクレアーゼ耐性が向上するという報告がある(非特許文献7)。しかし、5'-リン酸アミデート結合を持つオリゴヌクレオチドは、ホスホジエステル結合のみを持つオリゴヌクレオチドと比較して、相補鎖との二本鎖の安定性(結合親和性)が低いという問題がある。   In addition, there is a report that the nuclease resistance of a double-stranded nucleic acid is improved by changing the phosphodiester bond of an oligonucleotide to a phosphate amidate bond (Non-patent Document 7). However, the oligonucleotide having a 5′-phosphate amidate bond has a problem that the stability (binding affinity) of a double strand with a complementary strand is lower than that of an oligonucleotide having only a phosphodiester bond.

そこで、本発明者等は、上記の両方の修飾をオリゴヌクレオチドに導入することで、ヌクレアーゼ耐性をもち、さらに相補鎖との二本鎖の安定性(結合親和性)も満足するようなオリゴヌクレオチドが得られるのではないかと考え、更に鋭意研究の結果、糖部の5'-位に-NH-基を、2'-位にフッ素原子を導入した5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体を合成し、このジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログを、常法により合成した。そして、このオリゴヌクレオチドアナログと相補鎖DNA及び相補鎖RNAとの二本鎖核酸の安定性を測定した。すると、この5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログと相補鎖核酸との二本鎖核酸は、熱的に安定化されており、二本鎖の結合親和性も満足するものであること見出し、本発明を完成するに到った。更にこのオリゴヌクレオチドアナログは、リン酸アミデート結合を持つので、該オリゴヌクレオチドアナログ及びこれを用いて得られる二本鎖核酸は、ヌクレアーゼ耐性にも優れていることが期待される。   Therefore, the present inventors introduced both of the above-described modifications to the oligonucleotide so that the oligonucleotide has nuclease resistance and further satisfies the duplex stability (binding affinity) with the complementary strand. As a result of further intensive studies, 5′-amino-2′-fluoro-2 in which a —NH— group was introduced at the 5′-position and a fluorine atom was introduced into the 2′-position of the sugar moiety was obtained. A ', 5'-dideoxynucleoside derivative was synthesized, and an oligonucleotide analog into which this dideoxynucleoside derivative was introduced was synthesized by a conventional method. And the stability of the double-stranded nucleic acid of this oligonucleotide analog and complementary strand DNA and complementary strand RNA was measured. Then, the double-stranded nucleic acid of the oligonucleotide analog into which this 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative is introduced and the complementary strand nucleic acid is thermally stabilized, It has been found that the binding affinity of this chain is also satisfactory, and the present invention has been completed. Furthermore, since this oligonucleotide analog has a phosphate amidate bond, it is expected that the oligonucleotide analog and the double-stranded nucleic acid obtained using the oligonucleotide analog are also excellent in nuclease resistance.

本発明の5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログは、熱的安定性に優れており、二本鎖とした場合の結合親和性も高い。また優れたヌクレアーゼ耐性を持つことも期待される。更にまた、本発明の5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体は核酸合成の際に用いられるアミダイト試薬として、また、このアミダイト試薬を固相に結合させることで核酸の固相合成法に用いられる出発物質として用いることができる。   The oligonucleotide analog introduced with the 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative of the present invention is excellent in thermal stability and also has a binding affinity in the case of a double strand. high. It is also expected to have excellent nuclease resistance. Furthermore, the 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative of the present invention can be used as an amidite reagent used in nucleic acid synthesis, or by binding this amidite reagent to a solid phase. It can be used as a starting material used in the solid phase synthesis method of nucleic acids.

本発明のジデオキシヌクレオシド誘導体は、下記式[1]

Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基、Rは水素原子又は水酸基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体である(以下、「本発明のジデオキシヌクレオシド誘導体」と略記する。)。 The dideoxynucleoside derivative of the present invention has the following formula [1].
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a protecting group for a hydrogen atom or an amino group, and R 3 represents a protecting group for a hydrogen atom or a hydroxyl group.)
5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by the following (hereinafter abbreviated as “dideoxynucleoside derivative of the present invention”)

式[1]において、R1で示される保護基を有していてもよい核酸塩基の核酸塩基としては、アデニン,グアニン,シトシン,チミン,ウラシルから選ばれる天然型の核酸塩基の他、1−メチルアデニン,1−メチルグアノシン,キサンチン,5−メチルシトシン,ジヒドロウラシル等の核酸塩基微量成分、6-メトキシプリン,2-アミノプリン,シュードイソシトシン等の人工核酸塩基等が挙げられる。 In the formula [1], the nucleobase of the nucleobase which may have a protecting group represented by R 1 is a natural nucleobase selected from adenine, guanine, cytosine, thymine, uracil, 1- Examples include nucleobase minor components such as methyladenine, 1-methylguanosine, xanthine, 5-methylcytosine, and dihydrouracil, and artificial nucleobases such as 6-methoxypurine, 2-aminopurine, and pseudoisocytosine.

また、上記核酸塩基は、必要であれば核酸合成の際に通常用いられている自体公知の保護基で適宜保護されていてもよい。具体的には、例えばベンゾイル基、アセチル基等のアミノ基の保護基が挙げられるが、特に限定されない。   Further, the nucleobase may be appropriately protected with a protecting group known per se that is usually used in nucleic acid synthesis, if necessary. Specific examples include amino-protecting groups such as benzoyl group and acetyl group, but are not particularly limited.

におけるアミノ基の保護基としては、通常この分野で用いられるヌクレオシド合成のためのアミノ基の保護基が挙げられ、具体的には例えば4-Methoxytriphenylmethyl (MMTr)基、4,4'-Dimethoxytriphenylmethyl (DMTr)基、Triphenylmethyl (Tr)基等が挙げられる。 Examples of the amino-protecting group for R 2 include amino-protecting groups for nucleoside synthesis that are usually used in this field, such as 4-Methoxytriphenylmethyl (MMTr) group, 4,4′-Dimethoxytriphenylmethyl. (DMTr) group, Triphenylmethyl (Tr) group, etc. are mentioned.

における水酸基の保護基としては、通常この分野で用いられるヌクレオシド合成のための水酸基の保護基が挙げられ、具体的には例えば4,4'-Dimethoxytriphenylmethyl基、2-cyanoethoxyldiisopropylaminophosphinyl基、tert-Butyldimethylsilyl基等が挙げられる。 Examples of the hydroxyl-protecting group for R 3 include those usually used in this field for the synthesis of nucleosides, such as 4,4′-Dimethoxytriphenylmethyl group, 2-cyanoethoxyldiisopropylaminophosphinyl group, tert-Butyldimethylsilyl Groups and the like.

本発明のジデオキシヌクレオシド誘導体として、例えば下記式[2]

Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。)で表されるものが挙げられる。R1で表される保護基を有していてもよい核酸塩基の、保護基及び核酸塩基の具体例は前記したとおりである。 As the dideoxynucleoside derivative of the present invention, for example, the following formula [2]
Figure 2008094831
(Wherein R 1 represents a nucleobase optionally having a protecting group). Specific examples of the protecting group and the nucleobase of the nucleobase optionally having the protecting group represented by R 1 are as described above.

式[2]で表される化合物の具体例としては、5'−アミノ−2'−フルオロ−2',5'−ジデオキシウリジン、5'−アミノ−2'−フルオロ−2',5'−ジデオキシアデノシン、5'−アミノ−2'−フルオロ−2',5'−ジデオキシグアノシン、5'−アミノ−2'−フルオロ−2',5'−ジデオキシシチジン、5'−アミノ−2'−フルオロ−2',5'−ジデオキシチミジン等が挙げられる。   Specific examples of the compound represented by the formula [2] include 5′-amino-2′-fluoro-2 ′, 5′-dideoxyuridine, 5′-amino-2′-fluoro-2 ′, 5′-. Dideoxyadenosine, 5'-amino-2'-fluoro-2 ', 5'-dideoxyguanosine, 5'-amino-2'-fluoro-2', 5'-dideoxycytidine, 5'-amino-2'-fluoro -2 ', 5'-dideoxythymidine and the like.

本発明のジデオキシヌクレオシド誘導体の別の例としては、例えば下記式[3]

Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。)
で表されるものが挙げられる。R1で表される保護基を有していてもよい核酸塩基の保護基及び核酸塩基の具体例、及びRにおけるアミノ基の保護基の具体例は前記したとおりである。 As another example of the dideoxynucleoside derivative of the present invention, for example, the following formula [3]
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group.)
The thing represented by is mentioned. Specific examples of the nucleobase protecting group and nucleobase optionally having a protecting group represented by R 1 , and specific examples of the amino group protecting group in R 2 are as described above.

式[3]で表される化合物の具体例としては、5'-amino -2'-fluoro-2',5'-dideoxy-5'-N-monomethoxytrityluridine、5'-amino -2'-fluoro-2',5'-dideoxy-5'-N-monomethoxytrityladenosine、5'-amino -2'-fluoro-2',5'-dideoxy-5'-N-monomethoxytritylguanosine、5'-amino -2'-fluoro-2',5'-dideoxy-5'-N-monomethoxytritylcytidine、5'-amino -2'-fluoro-2',5'-dideoxy-5'-N-monomethoxytritylthymidine等が挙げられる。   Specific examples of the compound represented by the formula [3] include 5'-amino-2'-fluoro-2 ', 5'-dideoxy-5'-N-monomethoxytrityluridine, 5'-amino-2'-fluoro- 2 ', 5'-dideoxy-5'-N-monomethoxytrityladenosine, 5'-amino -2'-fluoro-2', 5'-dideoxy-5'-N-monomethoxytritylguanosine, 5'-amino -2'-fluoro- 2 ', 5'-dideoxy-5'-N-monomethoxytritylcytidine, 5'-amino-2'-fluoro-2', 5'-dideoxy-5'-N-monomethoxytritylthymidine, and the like.

本発明のジデオキシヌクレオシド誘導体の更に別の例としては、例えば下記式[4]

Figure 2008094831

(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。2個のRはそれぞれ独立して炭素数1〜5の低級アルキル基を表す。Rは炭素数1〜3の低級アルキレン基を表す。
で表されるものが挙げられる。 As another example of the dideoxynucleoside derivative of the present invention, for example, the following formula [4]
Figure 2008094831

(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a protecting group for a hydrogen atom or an amino group. Two R 4 s each independently have 1 to 5 carbon atoms. R 5 represents a lower alkylene group having 1 to 3 carbon atoms.
The thing represented by is mentioned.

1で表される置換基を有していてもよい核酸塩基の置換基及び核酸塩基の具体例、及びRにおけるアミノ基の保護基の具体例は前記したとおりである。 Specific examples of the nucleobase substituent and nucleobase which may have a substituent represented by R 1 , and specific examples of the amino group protecting group in R 2 are as described above.

で表される炭素数1〜5の低級アルキル基の具体例としては、例えばエチル基、プロピル基、イソプロピル基等が挙げられる。 Specific examples of the lower alkyl group having 1 to 5 carbon atoms represented by R 4 include an ethyl group, a propyl group, and an isopropyl group.

で表される炭素数1〜3の低級アルキレン基の具体例としては、例えばエチレン基、プロピレン基等が挙げられる。 Specific examples of the lower alkylene group having 1 to 3 carbon atoms represented by R 5 include an ethylene group and a propylene group.

本発明のジデオキシヌクレオシド誘導体の更に別の例としては、例えば下記式[5]

Figure 2008094831

(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。i-Prはイソプロピル基を表す。)
で表されるものが挙げられる。R1で表される置換基を有していてもよい核酸塩基の置換基及び核酸塩基の具体例、及びRにおけるアミノ基の保護基の具体例は前記したとおりである。 As another example of the dideoxynucleoside derivative of the present invention, for example, the following formula [5]
Figure 2008094831

(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group. I-Pr represents an isopropyl group.)
The thing represented by is mentioned. Specific examples of the nucleobase substituent and nucleobase which may have a substituent represented by R 1 , and specific examples of the amino group protecting group in R 2 are as described above.

式[4]で表される化合物及び式[5]で表される化合物は、核酸合成における、いわゆるアミダイト試薬として用いることができる。   The compound represented by the formula [4] and the compound represented by the formula [5] can be used as a so-called amidite reagent in nucleic acid synthesis.

式[5]で表される化合物の具体例としては、5'-amino -N-monomethoxytrityl -2',5'-dideoxy-2'-fluorouridine-3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite、5'-amino -N-monomethoxytrityl -2',5'-dideoxy-2'-fluoroadenosine-3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite、5'-amino -N-monomethoxytrityl -2',5'-dideoxy-2'-fluoroguanosine-3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite、5'-amino -N-monomethoxytrityl -2',5'-dideoxy-2'-fluorocytidine-3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite、5'-amino -N-monomethoxytrityl -2',5'-dideoxy-2'-fluorothymidine-3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite、等が挙げられる。   Specific examples of the compound represented by the formula [5] include 5′-amino-N-monomethoxytrityl-2 ′, 5′-dideoxy-2′-fluorouridine-3′-O-[(2-cyanoethyl)-( N, N-diisopropyl)]-phosphoramidite, 5'-amino -N-monomethoxytrityl -2 ', 5'-dideoxy-2'-fluoroadenosine-3'-O-[(2-cyanoethyl)-(N, N-diisopropyl )]-phosphoramidite, 5'-amino -N-monomethoxytrityl -2 ', 5'-dideoxy-2'-fluoroguanosine-3'-O-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite, 5'-amino -N-monomethoxytrityl -2 ', 5'-dideoxy-2'-fluorocytidine-3'-O-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite, 5'-amino- N-monomethoxytrityl-2 ', 5'-dideoxy-2'-fluorothymidine-3'-O-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite, and the like.

本発明のジデオキシヌクレオシド誘導体の合成方法としては、例えば下記の方法が挙げられる。   Examples of the method for synthesizing the dideoxynucleoside derivative of the present invention include the following methods.

まず、原料となる核酸塩基を、炭酸ジフェニル((PhO)2CO)等の縮合剤を用いて塩基部のカルボニル基と糖部の2'水酸基を環化させて、2,2'-アンヒドロ-1-β-D-アラビノフラノシルヌクレオシドを得る。 First, the nucleobase used as a raw material is cyclized from the carbonyl group of the base part and the 2 ′ hydroxyl group of the sugar part using a condensing agent such as diphenyl carbonate ((PhO) 2 CO), and 2,2′-anhydro- 1-β-D-arabinofuranosyl nucleoside is obtained.

次いで、4-ジメチルアミノピリジン(DMAP)等の触媒の存在下、4,4'-ジメトキシトリチルクロライド (DMTrCl)等のトリチル化剤と不活性ガス雰囲気下で反応させて2,2'-アンヒドロ-1-β-D-アラビノフラノシルヌクレオシドの3',5'-ヒドロキシル基をトリチル化し、2,2'-アンヒドロ-3',5'-di-O-(4,4'-ジメトキシトリチル)- 1-β-D-アラビノフラノシルヌクレオシドを得る。   Next, in the presence of a catalyst such as 4-dimethylaminopyridine (DMAP), a reaction with a tritylating agent such as 4,4'-dimethoxytrityl chloride (DMTrCl) in an inert gas atmosphere is performed to produce 2,2'-anhydro- Tritylated 3 ', 5'-hydroxyl group of 1-β-D-arabinofuranosyl nucleoside, 2,2'-anhydro-3', 5'-di-O- (4,4'-dimethoxytrityl) -1-β-D-arabinofuranosyl nucleoside is obtained.

次いでこれにNaOH等の塩基を反応させて開環させ、3',5'-di-O-(4,4'-ジメトキシトリチル)-ヌクレオシドを得る。   This is then reacted with a base such as NaOH to open the ring to obtain 3 ′, 5′-di-O- (4,4′-dimethoxytrityl) -nucleoside.

更に、不活性ガス雰囲気下、(dimethylamino)sulfur trifluoride(DAST)等のフッ素化剤を反応させて3',5'-ジ-O-(4,4'-ジメトキシトリチル)-ヌクレオシドの糖部の2'-位をフッ素化させ、2'-デオキシ-3',5'-di-O-(4,4'-ジメトキシトリチル)-2'-フルオロヌクレオシドを得る。   Furthermore, in an inert gas atmosphere, a fluorinating agent such as (dimethylamino) sulfur trifluoride (DAST) is reacted to form a 3 ', 5'-di-O- (4,4'-dimethoxytrityl) -nucleoside sugar moiety. Fluorination of the 2'-position yields 2'-deoxy-3 ', 5'-di-O- (4,4'-dimethoxytrityl) -2'-fluoro nucleoside.

次いでこれに酢酸等の酸を反応させて糖部の3'-位を脱トリチル化させることで、2'-フルオロ-2',5'-ジデオキシヌクレオシドを得る。   Next, this is reacted with an acid such as acetic acid to detritylate the 3′-position of the sugar moiety to obtain 2′-fluoro-2 ′, 5′-dideoxynucleoside.

不活性ガス雰囲気下、得られた2'-フルオロ-2',5'-ジデオキシヌクレオシドにアジ化ナトリウム、トリフェニルホスフィン((Ph)3P)、CBr4を用い、糖部の5'-ヒドロキシル基のブロモ化を経て、アジド化して、5'-アジド-2'-フルオロ-2',5'-ジデオキシヌクレオシドを得る。 Under inert gas atmosphere, 5'-hydroxyl of the sugar part was obtained using sodium azide, triphenylphosphine ((Ph) 3 P) and CBr 4 for the obtained 2'-fluoro-2 ', 5'-dideoxynucleoside. Via group bromination, azidation yields 5'-azido-2'-fluoro-2 ', 5'-dideoxynucleoside.

得られた5'-アジド-2'-フルオロ-2',5'-ジデオキシヌクレオシドを、パラジウムカーボン(Pd-C)等の触媒存在下にH2雰囲気下で反応させることにより還元すると、本発明の下記式[2]

Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。)で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシドが得られる。 When the obtained 5′-azido-2′-fluoro-2 ′, 5′-dideoxynucleoside is reduced by reaction in the presence of a catalyst such as palladium carbon (Pd—C) in an H 2 atmosphere, the present invention The following formula [2]
Figure 2008094831
(Wherein R 1 represents a nucleobase optionally having a protecting group), 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside represented by the following formula is obtained.

次に、S. Obika et al., Angew. Chem. Int. Ed., 2005, vol.44, pp.1944-1947等に記載された自体公知の方法により、式[2]で示される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシドに、DMAP等の触媒の存在下、4-メトキシトリフェニルメチルクロライド(MMTrCl)等のトリチル化剤を反応させてトリチル化すると、本発明の下記式[3]

Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。)
で表される5'-アミノ-2'-フルオロ-2',5'-ジデオキシ-5'-N-モノエトキシトリチルヌクレオシドが得られる。 Next, 5 ′ represented by the formula [2] is obtained by a method known per se described in S. Obika et al., Angew. Chem. Int. Ed., 2005, vol.44, pp.1944-1947, etc. -Amino-2'-fluoro-2 ', 5'-dideoxynucleoside is tritylated by reacting with a tritylating agent such as 4-methoxytriphenylmethyl chloride (MMTrCl) in the presence of a catalyst such as DMAP. The following formula [3] of the invention
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group.)
5′-amino-2′-fluoro-2 ′, 5′-dideoxy-5′-N-monoethoxytrityl nucleoside represented by the following formula is obtained.

更に、得られた5'-アミノ-2'-フルオロ-2',5'-ジデオキシ-5'-N-モノメトキシトリチルヌクレオシドをジイソプロピルエチルアミン(DIPEA)等の塩基の存在下、2-cyanoethyldiisopropylchloro-phosphoramidite(i-Pr2NP(Cl)OCE)等の亜リン酸化剤と反応させて亜リン酸化すれば、下記式[5]

Figure 2008094831

(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。i-Prはイソプロピル基を表す。)で表される、5'-アミノ-N-モノメトキシトリチル-2'-フルオロ-2',5'-ジデオキシヌクレオシド・アミダイトユニットが得られる。 Further, the obtained 5′-amino-2′-fluoro-2 ′, 5′-dideoxy-5′-N-monomethoxytrityl nucleoside was converted to 2-cyanoethyldiisopropylchloro-phosphoramidite in the presence of a base such as diisopropylethylamine (DIPEA). When phosphorylated by reacting with a phosphorylating agent such as (i-Pr 2 NP (Cl) OCE), the following formula [5]
Figure 2008094831

(Wherein R 1 represents a nucleobase optionally having a protecting group; R 2 represents a hydrogen atom or an amino group protecting group; i-Pr represents an isopropyl group); A 5′-amino-N-monomethoxytrityl-2′-fluoro-2 ′, 5′-dideoxynucleoside amidite unit is obtained.

次に、式[1]におけるR1がウラシルの場合を例にとって、本発明のジデオキシヌクレオシド誘導体の合成方法を更に具体的に説明する。下記に、その合成スキームを記載する(合成スキームA)。 Next, the method for synthesizing the dideoxynucleoside derivative of the present invention will be described more specifically by taking as an example the case where R 1 in formula [1] is uracil. The synthesis scheme is described below (Synthesis scheme A).

下記合成スキームAにおいて使用される略称の正式名は下記の通りである。
(Ph)2CO:炭酸ジフェニル
DMF:N,N-ジメチルホルムアミド
DMTrCl:4,4'-ジメトキシトリチルクロライド
DMAP:4-ジメチルアミノピリジン
MeOH:メタノール
DAST:(diethylamino)sulfur trifluoride
AcOH:酢酸
(Ph)3P:トリフェニルホスフィン
Pd/C:パラジウムカーボン
MMTrCl:4-Methoxytriphenylmethyl chloride
i-Pr2NP(Cl)OCE:2-cyanoethyldiisopropylchloro-phosphoramidite
i-Pr2Net:diisopropylethylamine
The formal names of the abbreviations used in the following synthesis scheme A are as follows.
(Ph) 2 CO: Diphenyl carbonate
DMF: N, N-dimethylformamide
DMTrCl: 4,4'-dimethoxytrityl chloride
DMAP: 4-dimethylaminopyridine
MeOH: methanol
DAST: (diethylamino) sulfur trifluoride
AcOH: Acetic acid
(Ph) 3 P: Triphenylphosphine
Pd / C: Palladium carbon
MMTrCl: 4-Methoxytriphenylmethyl chloride
i-Pr 2 NP (Cl) OCE: 2-cyanoethyldiisopropylchloro-phosphoramidite
i-Pr 2 Net: diisopropylethylamine

[反応スキームA]

Figure 2008094831
[Reaction Scheme A]
Figure 2008094831

まず、材料のuridineを、縮合剤として炭酸ジフェニル((PhO)2CO)を用いて環化させて、2,2'-anhydro-1-β-D-arabinofuranosyluridine (1) (上記反応スキームAで(1)で示される化合物を表す。以下同じ)を得る。 First, the material uridine is cyclized using diphenyl carbonate ((PhO) 2 CO) as a condensing agent to give 2,2'-anhydro-1-β-D-arabinofuranosyluridine (1) (in reaction scheme A above). (1) represents the compound represented by (1), the same applies hereinafter).

次いで、触媒として4-ジメチルアミノピリジン(DMAP)の存在下、4,4'-ジメトキシトリチルクロライド (DMTrCl)とAr雰囲気下で反応させて2,2'-anhydro-1-β-D-arabinofuranosyluridine (1)の3',5'-ヒドロキシル基をトリチル化し、2,2'-anhydro-3',5'-di-O-(4,4'-dimethoxytrityl)-1-β-D-arabinofuranosyluridineを得る(図示せず)。   Next, in the presence of 4-dimethylaminopyridine (DMAP) as a catalyst, it was reacted with 4,4'-dimethoxytrityl chloride (DMTrCl) in an Ar atmosphere to give 2,2'-anhydro-1-β-D-arabinofuranosyluridine ( Tritylate the 3 ', 5'-hydroxyl group of 1) to obtain 2,2'-anhydro-3', 5'-di-O- (4,4'-dimethoxytrityl) -1-β-D-arabinofuranosyluridine (Not shown).

次いでこれにNaOH(40ml)を反応させて開環させて、3',5'-di-O-(4,4'-dimethoxytrityl)-uridine (2)を得る。   This is then reacted with NaOH (40 ml) to open the ring, yielding 3 ′, 5′-di-O- (4,4′-dimethoxytrityl) -uridine (2).

更に、Ar雰囲気下、(diethylamino)sulfur trifluoride (DAST)を反応させて3',5'-di-O-(4,4'-dimethoxytrityl)-uridine (2)の糖部の2'-位をフッ素化させ、2'-deoxy-3',5'-di-O-(4,4'-dimethoxytrityl)-2'-fluorouridineを得る(図示せず)。   Furthermore, (2) -position of the sugar part of 3 ', 5'-di-O- (4,4'-dimethoxytrityl) -uridine (2) is reacted with (diethylamino) sulfur trifluoride (DAST) under Ar atmosphere. Fluorination yields 2′-deoxy-3 ′, 5′-di-O- (4,4′-dimethoxytrityl) -2′-fluorouridine (not shown).

次いでこれに酢酸を反応させて、糖部の3'-位を脱トリチル化させることで、2'-fluoro-2',5'-dideoxyuridine (3)を得る。   This is then reacted with acetic acid to detritylate the 3′-position of the sugar moiety to obtain 2′-fluoro-2 ′, 5′-dideoxyuridine (3).

Ar雰囲気下、得られた2'-fluoro-2',5'-dideoxyuridine (3)にアジ化ナトリウム、トリフェニルホスフィン((Ph)3P)、CBr4を共に反応させて、糖部の5'-ヒドロキシル基をアジド化して、5'-azide-2'-fluoro-2',5'-dideoxyuridine (4)を得る。 Under an Ar atmosphere, the obtained 2'-fluoro-2 ', 5'-dideoxyuridine (3) is reacted with sodium azide, triphenylphosphine ((Ph) 3 P), and CBr 4 together to form the sugar 5 The '-hydroxyl group is azidated to give 5'-azide-2'-fluoro-2', 5'-dideoxyuridine (4).

得られた5'-azide-2'-fluoro-2',5'-dideoxyuridine (4)にパラジウムカーボン(Pd-C)触媒の存在下にH2雰囲気下で反応させることにより還元すれば、目的の5'-amino-2'-fluoro-2',5'-dideoxyuridine (5)が得られる。 If the obtained 5'-azide-2'-fluoro-2 ', 5'-dideoxyuridine (4) is reduced by reacting in the presence of palladium carbon (Pd-C) catalyst in H 2 atmosphere, 5'-amino-2'-fluoro-2 ', 5'-dideoxyuridine (5) is obtained.

次に、得られた5'-amino-2'-fluoro-2',5'-dideoxyuridine (5)に、DMAPの存在下、4-Methoxytriphenylmethyl chloride (MMTrCl)を反応させてトリチル化し、5'-amino-2'-fluoro-2',5'-dideoxy-5'-N-monomethoxytrityluridine (6)を得る。   Next, the obtained 5'-amino-2'-fluoro-2 ', 5'-dideoxyuridine (5) is tritylated by reacting 4-Methoxytriphenylmethyl chloride (MMTrCl) in the presence of DMAP to produce 5'- Amino-2'-fluoro-2 ', 5'-dideoxy-5'-N-monomethoxytrityluridine (6) is obtained.

更に、得られた5'-amino-2'-fluoro-2',5'-dideoxy-5'-N-monomethoxytrityluridineをジイソプロピルエチルアミン(DIPEA)の存在下、2-cyanoethyldiisopropylchloro-phosphoramidite(i-Pr2NP(Cl)OCE)と反応させて亜リン酸化すれば、亜リン酸基を有する5'-amino-N-monomethoxytrityl-2'-fluoro-2',5'-dideoxyuridine -3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (7)が得られる。 Furthermore, the obtained 5′-amino-2′-fluoro-2 ′, 5′-dideoxy-5′-N-monomethoxytrityluridine was converted to 2-cyanoethyldiisopropylchloro-phosphoramidite (i-Pr 2 NP) in the presence of diisopropylethylamine (DIPEA). (Cl) OCE) and phosphorylation, 5'-amino-N-monomethoxytrityl-2'-fluoro-2 ', 5'-dideoxyuridine -3'-O-[( 2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite (7) is obtained.

本発明のジデオキシヌクレオシド−不溶性担体結合物に用いられる不溶性担体としては、この分野で一般に広く用いられているものであれば、特に限定されないが、例えばポリスチレン、ガラスビーズ等が挙げられる。特に、多孔性の粉末状ガラスビーズであるCPG(controlled pore glass)が、一般によく用いられる。   The insoluble carrier used in the dideoxynucleoside-insoluble carrier conjugate of the present invention is not particularly limited as long as it is generally used in this field, and examples thereof include polystyrene and glass beads. In particular, CPG (controlled pore glass), which is a porous powdery glass bead, is commonly used.

本発明のジデオキシヌクレオシド−不溶性担体結合物の具体例としては、例えば、CPGの表面に、本発明のヌクレオシド誘導体、すなわち下記式[1]

Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基、R2は水素原子又は水酸基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体が、その5単糖の3'-O-部分が、コハク酸等の有機分子のスペーサーを介してエステル型で結合しているものが挙げられる。 Specific examples of the dideoxynucleoside-insoluble carrier conjugate of the present invention include, for example, a nucleoside derivative of the present invention, that is, the following formula [1] on the surface of CPG.
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group, and R 2 represents a hydrogen atom or a hydroxyl group protecting group.)
5'-amino-2'-fluoro-2 ', 5'-dideoxynucleoside derivative represented by the formula, wherein the 5'-saccharide 3'-O- moiety is esterified via a spacer of an organic molecule such as succinic acid. Examples include those linked by type.

即ち、本発明のジデオキシヌクレオシド−不溶性担体結合物は、不溶性担体に、要すれば適当なスペーサーを介して、下記式[6]

Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体が結合したものである。式[6]において、R1で表される置換基を有していてもよい核酸塩基の置換基及び核酸塩基の具体例、及びRにおけるアミノ基の保護基の具体例は前記したとおりである。 That is, the dideoxynucleoside-insoluble carrier conjugate of the present invention has the following formula [6] via an insoluble carrier and, if necessary, an appropriate spacer.
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group.)
And a 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by the formula: In the formula [6], specific examples of the nucleobase substituent and nucleobase which may have a substituent represented by R 1 , and specific examples of the amino group protecting group in R 2 are as described above. is there.

本発明のジデオキシヌクレオシド誘導体を不溶性担体に結合させたジデオキシヌクレオシド−不溶性担体結合物は、自体公知の核酸の固相合成法に用いられる出発物質として用いることができる。   The dideoxynucleoside-insoluble carrier conjugate obtained by binding the dideoxynucleoside derivative of the present invention to an insoluble carrier can be used as a starting material used in the solid-phase synthesis method of nucleic acids known per se.

本発明のジデオキシヌクレオシド誘導体を不溶性担体(例えばCPG)に結合させる方法としては、例えばR. Kierzek et al., Biochemistry, 1986, vol.25, pp.7840-7846等に記載された、自体公知の方法が挙げられる。   The method for binding the dideoxynucleoside derivative of the present invention to an insoluble carrier (for example, CPG) is known per se as described in, for example, R. Kierzek et al., Biochemistry, 1986, vol.25, pp.7840-7846. A method is mentioned.

また、本発明のジデオキシヌクレオシド誘導体は、オリゴヌクレオチドアナログを製造するための原料として用いることもできる。   The dideoxynucleoside derivative of the present invention can also be used as a raw material for producing an oligonucleotide analog.

本発明のジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログを製造するには、原料に本発明のジデオキシヌクレオシド誘導体を用いる以外は、自体公知の化学合成法により合成を行えばよい。例えば、DNAの合成に通常行われている、DNAシンセサイザーを用い、通常のホスホアミダイト法又は固相ホスホルアミダイト法(R. Kierzek et al., Biochemistry, 1986, vol.25, pp.7840-7846)にてオリゴヌクレオチドアナログを合成し、陰イオン交換カラムクロマトグラフィーを用いる常法により精製すれば、目的とする本発明のジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログを得ることができる。   In order to produce an oligonucleotide analog into which the dideoxynucleoside derivative of the present invention has been introduced, synthesis may be carried out by a chemical synthesis method known per se, except that the dideoxynucleoside derivative of the present invention is used as a raw material. For example, using a DNA synthesizer, which is commonly used for DNA synthesis, the usual phosphoramidite method or solid phase phosphoramidite method (R. Kierzek et al., Biochemistry, 1986, vol.25, pp.7840-7846 ) And is purified by a conventional method using anion exchange column chromatography, the target oligonucleotide analog into which the dideoxynucleoside derivative of the present invention is introduced can be obtained.

また、本発明のジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログを含有する二本鎖核酸(DNA/DNA、DNA/RNA、RNA/RNA)は、通常この分野で行われている自体公知の方法により合成すればよい。また市販のキットを用いても得ることができる。   In addition, double-stranded nucleic acids (DNA / DNA, DNA / RNA, RNA / RNA) containing an oligonucleotide analog into which the dideoxynucleoside derivative of the present invention has been introduced are usually synthesized by methods known per se that are carried out in this field. do it. It can also be obtained using a commercially available kit.

本発明のジデオキシヌクレオシド誘導体は、前記したように糖部の2'-位にフッ素原子を導入して、糖部立体配座をN型にしているので、該ジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログを用いた二本鎖核酸は、その二本鎖が熱的に安定化されており、結合親和性も満足するものである。また、本発明のジデオキシヌクレオシド誘導体は、その糖部の5'-位に−NH−基を導入している。これにより、これを用いてオリゴヌクレオシドアナログを合成した場合、該ジデオキシヌクレオシド誘導体由来のヌクレオチドはリン酸アミデート結合で、前のヌクレオチドに結合することになる。そのため、該ジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログは、該ジデオキシヌクレオシド誘導体を導入した部分のホスホジエステル結合がリン酸アミデート結合になっている。このことから、このオリゴヌクレオチドアナログを用いた二本鎖核酸は、ヌクレアーゼ耐性が向上することが期待される。   Since the dideoxynucleoside derivative of the present invention introduces a fluorine atom at the 2′-position of the sugar moiety and makes the sugar moiety conformation N-type as described above, the oligonucleotide analog into which the dideoxynucleoside derivative is introduced In the double-stranded nucleic acid using the double-stranded nucleic acid, the double-stranded nucleic acid is thermally stabilized and satisfies the binding affinity. Further, the dideoxynucleoside derivative of the present invention has an —NH— group introduced at the 5′-position of the sugar moiety. Thus, when an oligonucleoside analog is synthesized using this, nucleotides derived from the dideoxynucleoside derivative are bound to the previous nucleotides by phosphate amidate linkages. Therefore, in the oligonucleotide analog into which the dideoxynucleoside derivative is introduced, the phosphodiester bond at the part into which the dideoxynucleoside derivative is introduced is a phosphate amidate bond. From this, double-stranded nucleic acid using this oligonucleotide analog is expected to have improved nuclease resistance.

更に、以上の特長を持つため、この本発明のジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログは、アンチセンス法における優れたアンチセンス核酸として、また、これを用いて得られた二本鎖核酸(DNA/DNA、DNA/RNA、RNA/RNA)は、RNAi法に於けるsiRNA又はdsRNAとして用いることができる。更に、医薬品分野への応用も期待できる。   Furthermore, since it has the above features, the oligonucleotide analog introduced with the dideoxynucleoside derivative of the present invention is a double-stranded nucleic acid (DNA) obtained by using this as an excellent antisense nucleic acid in the antisense method. / DNA, DNA / RNA, RNA / RNA) can be used as siRNA or dsRNA in the RNAi method. Furthermore, application to the pharmaceutical field is also expected.

以下に実施例を挙げて、本発明を更に具体的に説明するが、本発明はこれらにより何等限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.

(1)実験機器
各実施例及び比較例において、以下の実験機器を用いた。
DNA合成およびRNA 合成は、3400 DNA Synthesizer (Applied Biosystems 社製、核酸合成機)を用いて行った。
NMRスペクトルの測定は、JEOL JNM AL400 spectrometer(日本電子データム(株) 社製)を用いて行った。
(1) Experimental equipment In each example and comparative example, the following experimental equipment was used.
DNA synthesis and RNA synthesis were performed using 3400 DNA Synthesizer (Applied Biosystems, nucleic acid synthesizer).
The NMR spectrum was measured using a JEOL JNM AL400 spectrometer (manufactured by JEOL Datum Co., Ltd.).

(2)各実施例及び比較例において、以下の試薬を用いた。 (2) In each Example and Comparative Example, the following reagents were used.

Uridine:SIGMA社製
Thymidine:SIGMA社製
パラジウムカーボン:ナカライテスク(株)社製
4-メトキシトリフェニルメチルクロライド:東京化成工業(株)社製
ジイソプロピルエチルアミン:和光純薬工業(株)社製
炭酸ジフェニル、ジクロロメタン(脱水)、ピリジン、:和光純薬工業(株)製
N,N-ジメチルホルムアミド、水酸化ナトリウム、パラジウムカーボン(Pd-C)、無水酢酸:ナカライテスク(株)製
クロロホルム:(株)トクヤマ製
単離精製用クロロホルム:ALDRICH社製、クロロホルム-d,99.8 atom % D
酢酸エチル、n-ヘキサン、メタノール:三協化学工業(株)製
4-ジメチルアミノピリジン:東京化成工業(株)製
4,4'-ジメトキシトリチルクロライド、(diethylamino) sulfur trifluoride:SIGMA- ALDRICH Corp.社製
テトラヒドロフラン:関東化学(株)製
シリカゲルカラムクロマトグラフィー:関東化学(株)製のシリカゲル60N(球状、中性)
2-cyanoethyldiisopropylchloro-phosphoramidite:Lancaster社製
Uridine: made by SIGMA
Thymidine: SIGMA Palladium carbon: Nacalai Tesque
4-methoxytriphenylmethyl chloride: manufactured by Tokyo Chemical Industry Co., Ltd. diisopropylethylamine: manufactured by Wako Pure Chemical Industries, Ltd. diphenyl carbonate, dichloromethane (dehydrated), pyridine, manufactured by Wako Pure Chemical Industries, Ltd.
N, N-dimethylformamide, sodium hydroxide, palladium carbon (Pd-C), acetic anhydride: manufactured by Nacalai Tesque Co., Ltd. chloroform: manufactured by Tokuyama Co., Ltd. chloroform for isolation and purification: manufactured by ALDRICH, chloroform-d, 99.8 atom% D
Ethyl acetate, n-hexane, methanol: Sankyo Chemical Industry Co., Ltd.
4-Dimethylaminopyridine: manufactured by Tokyo Chemical Industry Co., Ltd.
4,4'-dimethoxytrityl chloride, (diethylamino) sulfur trifluoride: manufactured by SIGMA-ALDRICH Corp. tetrahydrofuran: manufactured by Kanto Chemical Co., Ltd. silica gel column chromatography: silica gel 60N manufactured by Kanto Chemical Co., Ltd. (spherical, neutral)
2-cyanoethyldiisopropylchloro-phosphoramidite: Lancaster

(3)各実施例及び比較例において、下記の略号を使用した。 (3) The following abbreviations were used in each example and comparative example.

(PhO)2CO:炭酸ジフェニル
DMF:N,N-ジメチルホルムアミド
MeOH:メタノール
DMAP:4-ジメチルアミノピリジン
DMTrCl:4,4'-ジメトキシトリチルクロライド
THF:テトラヒドロフラン
DAST:(diethylamino)sulfur trifluoride
(Ph)3P:トリフェニルホスフィン
Pd-C:パラジウムカーボン
MMTrCl:4-メトキシトリフェニルメチルクロライド
DIPEA:ジイソプロピルエチルアミン
i-Pr2NP(Cl)OCE:2-cyanoethyldiisopropylchloro-phosphoramidite
i-Pr2Net:diisopropylethylamine
(PhO) 2 CO: Diphenyl carbonate
DMF: N, N-dimethylformamide
MeOH: methanol
DMAP: 4-dimethylaminopyridine
DMTrCl: 4,4'-dimethoxytrityl chloride
THF: tetrahydrofuran
DAST: (diethylamino) sulfur trifluoride
(Ph) 3 P: Triphenylphosphine
Pd-C: Palladium carbon
MMTrCl: 4-methoxytriphenylmethyl chloride
DIPEA: Diisopropylethylamine
i-Pr 2 NP (Cl) OCE: 2-cyanoethyldiisopropylchloro-phosphoramidite
i-Pr 2 Net: diisopropylethylamine

実施例1.5'-amino-2'-deoxy-2'-fluoriuridine amidite unitの合成
(i)2,2'-anhydro-1-β-D-arabinofuranosyluridine(1)(前記反応スキームAにおける(1)の化合物を意味する。以下同じ。)の合成
uridine(5.00g)、(PhO)2CO(5.7g)をDMF(17ml)に溶解させ、NaHCO3(120mg)を加え、130℃で4時間反応させた後、反応を停止した。クロロホルム(30 ml)で3回洗浄し、水層を溶媒留去した。残渣をMeOH(400 ml)に溶解させて再結晶を行い、化合物(1)の白色結晶を得た (収量3.58 g, 15.84 mmol, 77%)。
Example 1. Synthesis of 5′-amino-2′-deoxy-2′-fluoriuridine amidite unit (i) 2,2′-anhydro-1-β-D-arabinofuranosyluridine (1) ((1 in the above reaction scheme A) ), The same shall apply hereinafter))
Uridine (5.00 g) and (PhO) 2 CO (5.7 g) were dissolved in DMF (17 ml), NaHCO 3 (120 mg) was added and reacted at 130 ° C. for 4 hours, and then the reaction was stopped. The extract was washed 3 times with chloroform (30 ml), and the aqueous layer was evaporated. The residue was dissolved in MeOH (400 ml) and recrystallized to obtain white crystals of compound (1) (yield 3.58 g, 15.84 mmol, 77%).

1H NMR(400MHz)(DMSO) δ:3.16-3.28 (m, 2H, 5'-H ), 4.06 (s, 3'-H),4.37 (d, 1H, 4'-H), 4.98 (t, 1H, J=4.80Hz, 3'-OH), 5.18 (d, 1H, J=6.00Hz, 2'-H), 5.83 (d, 1H, J=7.20Hz, 5-H), 5.87 (d, 1H, J=4.40Hz, 5'-OH), 6.29 (d, 1H, J=6.00Hz, 1'-H), 7.83 (d, 1H, J=7.20Hz, 6-H)。 1 H NMR (400 MHz) (DMSO) δ: 3.16-3.28 (m, 2H, 5'-H), 4.06 (s, 3'-H), 4.37 (d, 1H, 4'-H), 4.98 (t , 1H, J = 4.80Hz, 3'-OH), 5.18 (d, 1H, J = 6.00Hz, 2'-H), 5.83 (d, 1H, J = 7.20Hz, 5-H), 5.87 (d , 1H, J = 4.40Hz, 5'-OH), 6.29 (d, 1H, J = 6.00Hz, 1'-H), 7.83 (d, 1H, J = 7.20Hz, 6-H).

(ii)2,2'-anhydro-3',5'-di-O-(4,4'-dimethoxytrityl)-1-β-D-arabinofuranosyluridineの合成
上記(i)で得られた化合物(1) (3g)、DMAP(0.4 g)、をピリジン(68 ml)に溶解させた後、DMTrCl(13.76 g)を加え、アルゴン(Ar)雰囲気下で撹拌した。144 時間後、sat. NaHCO3(sat.:飽和水溶液、以下同じ)を加えて反応を停止した。酢酸エチルで希釈して、H2O(200 ml)で3回、sat. NaHCO3 (200 ml)で1回、sat. NaCl (200 ml)で1回ずつ抽出、洗浄を行い、有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。残渣を酢酸エチル(15 ml)に溶解させた後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1〜0:1)で単離精製を行った。溶媒留去することにより白色結晶を得た。
(Ii) Synthesis of 2,2'-anhydro-3 ', 5'-di-O- (4,4'-dimethoxytrityl) -1-β-D-arabinofuranosyluridine Compound (1) obtained in (i) above (3 g) and DMAP (0.4 g) were dissolved in pyridine (68 ml), DMTrCl (13.76 g) was added, and the mixture was stirred under an argon (Ar) atmosphere. After 144 hours, sat. NaHCO 3 (sat .: saturated aqueous solution, the same applies hereinafter) was added to stop the reaction. Dilute with ethyl acetate, extract and wash 3 times with H 2 O (200 ml), once with sat. NaHCO 3 (200 ml) and once with sat. NaCl (200 ml). It was dried with sodium sulfate and the solvent was distilled off. The residue was dissolved in ethyl acetate (15 ml), followed by isolation and purification by silica gel column chromatography (hexane: ethyl acetate = 9: 1 to 0: 1). White crystals were obtained by distilling off the solvent.

(iii)3',5'-di-O-(4,4'-dimethoxytrityl)-uridine (2)の合成
上記(ii)で得られた白色結晶残渣をTHF (150 ml)に溶解させて、1N NaOH (40 ml)を滴下し、オイルバス95℃で3 時間反応させた後、酢酸エチル(80 ml)で希釈し、H2O(120 ml)で3回、sat NaHCO3(120 ml)で1回、sat NaCl(120 ml)で1回ずつ抽出、洗浄を行い、有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。残渣を酢酸エチル(15 ml)に溶解させた後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1〜0:1)で単離精製を行った。溶媒留去することにより化合物(2)の白色結晶を得た(収量 10.7 g, 43.1 mmol, 95%)。
(iii) Synthesis of 3 ', 5'-di-O- (4,4'-dimethoxytrityl) -uridine (2) The white crystal residue obtained in (ii) above was dissolved in THF (150 ml), 1N NaOH (40 ml) was added dropwise and reacted at 95 ° C in an oil bath for 3 hours, diluted with ethyl acetate (80 ml), 3 times with H 2 O (120 ml), sat NaHCO 3 (120 ml). And once with sat NaCl (120 ml), and washed, and the organic layer was dried over sodium sulfate and evaporated. The residue was dissolved in ethyl acetate (15 ml), and then isolated and purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1 to 0: 1). The solvent was distilled off to obtain white crystals of compound (2) (yield 10.7 g, 43.1 mmol, 95%).

1H NMR(400MHz)(CDCl3) δ: 3.51 (dd, 1H, J=14.40Hz, 5'-H), 3.33 (d, 1H, J=9.28Hz, 2'-OH), 3.43 (dd, 1H, J=13.44Hz, 5'-H), 3.66 (dd, 1H, J=12.2Hz, 2'-H), 3.93 (s, 1H, 3'-H), 4.04 (s, 1H, 4'-H), 5.58 (dd, J=10.28Hz, 5-H), 6.09 (d, J=2.96, 1'-H), 7.14-7.35 (m, 26H, DMTr), 7.61 (d, J=8.32Hz, 6-H), 8.35 (s,1H, 5-NH)。 1 H NMR (400 MHz) (CDCl 3 ) δ: 3.51 (dd, 1H, J = 14.40Hz, 5'-H), 3.33 (d, 1H, J = 9.28Hz, 2'-OH), 3.43 (dd, 1H, J = 13.44Hz, 5'-H), 3.66 (dd, 1H, J = 12.2Hz, 2'-H), 3.93 (s, 1H, 3'-H), 4.04 (s, 1H, 4 ' -H), 5.58 (dd, J = 10.28Hz, 5-H), 6.09 (d, J = 2.96, 1'-H), 7.14-7.35 (m, 26H, DMTr), 7.61 (d, J = 8.32 Hz, 6-H), 8.35 (s, 1H, 5-NH).

(iv)2'-deoxy-3',5'-di-O-(4,4'-dimethoxytrityl)-2'-fluorouridineの合成
Ar雰囲気下、上記(iii)で得られた化合物(2)をCHCN(185 ml)に溶解後、DMF(14 ml)を加えた。ここに冷氷下でDAST(14 ml)を滴下して反応を開始した。24 時間後、冷氷下でsat NaHCO3 (180 ml)を加えて、反応を停止させた。反応液を酢酸エチルで希釈して、H2O(180 ml)で3回、sat NaHCO3(180 ml)で1回、sat NaCl(180 ml)で1回ずつで抽出、洗浄を行い、有機層を硫酸ナトリウムで乾燥させた後、溶媒留去して、残渣を得た。
(iv) Synthesis of 2'-deoxy-3 ', 5'-di-O- (4,4'-dimethoxytrityl) -2'-fluorouridine
Under an Ar atmosphere, the compound (2) obtained in (iii) above was dissolved in CH 3 CN (185 ml), and then DMF (14 ml) was added. DAST (14 ml) was dripped here under cold ice, and reaction was started. After 24 hours, sat NaHCO 3 (180 ml) was added under cold ice to quench the reaction. The reaction solution was diluted with ethyl acetate, extracted and washed 3 times with H 2 O (180 ml), 1 time with sat NaHCO 3 (180 ml), 1 time with sat NaCl (180 ml), and organic The layer was dried over sodium sulfate and then evaporated to give a residue.

(v) 2'-fluoro-2',5'-dideoxyuridine (3)の合成
上記(iv)で得られた残渣をMeOHに溶解させ、80% 酢酸 (100 ml) を加え、80 ℃で6時間撹拌させた後、反応液を濃縮し、H2O(150 ml)に溶解させた。次いで、CHCl3(150 ml)で3回で抽出、洗浄を行い、水層を溶媒留去した。残渣をクロロホルム(15 ml)に溶解させた後、シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=1:0〜7:1) で単離精製を行った。溶媒留去することにより化合物(3)の白色結晶を得た(収量 1.68 g, 6.8 mmol, 58 %)。
(v) Synthesis of 2'-fluoro-2 ', 5'-dideoxyuridine (3) The residue obtained in (iv) above was dissolved in MeOH, 80% acetic acid (100 ml) was added, and the mixture was heated at 80 ° C for 6 hours. After stirring, the reaction mixture was concentrated and dissolved in H 2 O (150 ml). Subsequently, extraction and washing were performed 3 times with CHCl 3 (150 ml), and the aqueous layer was evaporated. The residue was dissolved in chloroform (15 ml), and then isolated and purified by silica gel column chromatography (chloroform: methanol = 1: 0 to 7: 1). The solvent was distilled off to obtain white crystals of compound (3) (yield 1.68 g, 6.8 mmol, 58%).

1H NMR(400MHz)(DMSO) δ:3.57 (dd, 2H, 5'-H), 3.75(dd, J=8.00Hz, 3'-H),3.85-3.87 (m, 1H, 4'-H), 4.09-4.18 (m, 1H, 5-H), 4.94-5.09 (dq, 1H, 2'-H), 5.61 (dd, 1H, 5'-OH), 5.89 (dd, 1H, 1'-H), 7.90 (d, 1H, J=8.08Hz, 6-H), 11.38 (s, 1H, 3-NH)。 1 H NMR (400 MHz) (DMSO) δ: 3.57 (dd, 2H, 5'-H), 3.75 (dd, J = 8.00Hz, 3'-H), 3.85-3.87 (m, 1H, 4'-H ), 4.09-4.18 (m, 1H, 5-H), 4.94-5.09 (dq, 1H, 2'-H), 5.61 (dd, 1H, 5'-OH), 5.89 (dd, 1H, 1'- H), 7.90 (d, 1H, J = 8.08Hz, 6-H), 11.38 (s, 1H, 3-NH).

(vi) 5'-azide-2'-fluoro-2',5'-dideoxyuridine (4)の合成
Ar雰囲気下、上記(v)で得られた化合物(3)を(600 mg)、(Ph)3P (908 mg)、NaN3 (793 mg)をDMF(12ml)に溶解後、CBr4(972mg)を加え、オイルバス85℃で反応させ、48時間後反応を停止した。反応産物を濃縮し、シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=1:0〜19:1)で単離精製を行った。溶媒留去することにより化合物(4)の白色結晶を得た(収量 0.48 g, 1.8 mmol, 73 %)。
(vi) Synthesis of 5'-azide-2'-fluoro-2 ', 5'-dideoxyuridine (4)
In an Ar atmosphere, the compound (3) obtained in (v) above was dissolved in (600 mg), (Ph) 3 P (908 mg), and NaN 3 (793 mg) in DMF (12 ml), then CBr 4 ( 972 mg) was added, the mixture was reacted at 85 ° C. in an oil bath, and the reaction was stopped after 48 hours. The reaction product was concentrated and isolated and purified by silica gel column chromatography (chloroform: methanol = 1: 0 to 19: 1). The solvent was distilled off to obtain white crystals of compound (4) (yield 0.48 g, 1.8 mmol, 73%).

1H NMR(400MHz)(DMSO) δ:3.52 (dd, 1H, 5'-H),3.73 (dd, 1H, 5'-H), 3.91-3.95(m, 1H, 3'-H), 4.17-4.28 (m, 1H, 4'-H), 5.19 (dq, 1H, 2'-H), 5.65 (d, 1H, J=8.00Hz, 3'-OH), 5.73 (d, 1H, J=6.4, 5-H), 5.85 (dd, 1H, 1'-H), 7.66 (d,1H, J=8.4, 6-H), 11.43 (s, 1H, 3-NH)。 1 H NMR (400 MHz) (DMSO) δ: 3.52 (dd, 1H, 5′-H), 3.73 (dd, 1H, 5′-H), 3.91-3.95 (m, 1H, 3′-H), 4.17 -4.28 (m, 1H, 4'-H), 5.19 (dq, 1H, 2'-H), 5.65 (d, 1H, J = 8.00Hz, 3'-OH), 5.73 (d, 1H, J = 6.4, 5-H), 5.85 (dd, 1H, 1'-H), 7.66 (d, 1H, J = 8.4, 6-H), 11.43 (s, 1H, 3-NH).

(vii)5'-amino-2'-fluoro-2',5'-dideoxyuridine (5)の合成
上記(vi)で得られた化合物(4) (507 mg)をMeOH(10ml)に溶解させて、Pd-C(123 mg)を加え、H2雰囲気下で反応させた。15時間後、反応物をセライト濾過することによりPd-Cを取りのぞき、更に溶媒留去することで、化合物(5)の白色結晶を得た(収量 0.39 mg, 1.6 mmol, 85 %)。
(vii) Synthesis of 5'-amino-2'-fluoro-2 ', 5'-dideoxyuridine (5) Compound (4) (507 mg) obtained in (vi) above was dissolved in MeOH (10 ml). , Pd-C (123 mg) was added, and the mixture was reacted under H 2 atmosphere. After 15 hours, the reaction product was filtered through Celite to remove Pd—C, and the solvent was distilled off to obtain white crystals of compound (5) (yield 0.39 mg, 1.6 mmol, 85%).

1H NMR(400MHz)(DMSO) δ:2.82 (ddd,2H , J=3.60Hz J=3.20Hz J=4.80Hz J=5.20Hz ,5'-H), 3.76 (m, 1H, 3'-H), 4.11 (ddd, 1H, J=7.20Hz J=7.20Hz J=7.20 Hz J=7.20Hz, 4'-H), 5.06 (ddd, 1H, J=2.00Hz J=2.00Hz J=2.40Hz J=2.00Hz, 2'-H), 5.60(d,1H, J=8.00, 5-H), 5.86 (dd,1H, J=2.00Hz J=2.00Hz, 1'-H), 7.91 (d, 1H, J=8.00, 6-H)。 1 H NMR (400 MHz) (DMSO) δ: 2.82 (ddd, 2H, J = 3.60Hz J = 3.20Hz J = 4.80Hz J = 5.20Hz, 5'-H), 3.76 (m, 1H, 3'-H ), 4.11 (ddd, 1H, J = 7.20Hz J = 7.20Hz J = 7.20 Hz J = 7.20Hz, 4'-H), 5.06 (ddd, 1H, J = 2.00Hz J = 2.00Hz J = 2.40Hz J = 2.00Hz, 2'-H), 5.60 (d, 1H, J = 8.00, 5-H), 5.86 (dd, 1H, J = 2.00Hz J = 2.00Hz, 1'-H), 7.91 (d, 1H, J = 8.00, 6-H).

(viii)5'-amino -2'-fluoro-2',5'-dideoxy-5'-N-monomethoxytrityluridine (6)の合成
上記(vii)で得られた化合物(5) (555 mg)をpyridine (12 ml)に溶解させて、MMTrCl(1 g)、DMAP(28 mg)を加えて、反応させた。210時間後、酢酸エチル(40 ml)で希釈し、H2O(40 ml)で3回、sat NaHCO3(40 ml)で1回、sat NaCl(40 ml)で1回ずつ抽出、洗浄を行い、有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。残渣を酢酸エチル(5 ml)に溶解させた後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=2:1〜0:1)で単離精製を行い、白色結晶(6)を得た(収量 0.69 g, 1.3 mmol, 59 %)。
(viii) Synthesis of 5'-amino-2'-fluoro-2 ', 5'-dideoxy-5'-N-monomethoxytrityluridine (6) Compound (5) (555 mg) obtained in (vii) above is pyridine (12 ml) was dissolved, and MMTrCl (1 g) and DMAP (28 mg) were added and reacted. After 210 hours, dilute with ethyl acetate (40 ml), extract three times with H 2 O (40 ml), once with sat NaHCO 3 (40 ml), once with sat NaCl (40 ml) and washed. And the organic layer was dried over sodium sulfate and evaporated. The residue was dissolved in ethyl acetate (5 ml) and isolated and purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1 to 0: 1) to give white crystals (6) (yield 0.69). g, 1.3 mmol, 59%).

1H NMR(400MHz)(DMSO) δ:2.43-2.70 (ddd, 2H, J=3.40Hz J=3.40Hz J=6.08Hz J=6.08Hz, 5'-H), 4.06 (m, 1H, 3'-H), 5.10 (ddd,1H, 2'-H), 5.69 (d,1H, J=8.04Hz, 5-H), 5.79 (dd, 1H ,1'-H), 6.80-7.46 (17H, m, MMTr)。 1 H NMR (400 MHz) (DMSO) δ: 2.43-2.70 (ddd, 2H, J = 3.40Hz J = 3.40Hz J = 6.08Hz J = 6.08Hz, 5'-H), 4.06 (m, 1H, 3 ' -H), 5.10 (ddd, 1H, 2'-H), 5.69 (d, 1H, J = 8.04Hz, 5-H), 5.79 (dd, 1H, 1'-H), 6.80-7.46 (17H, m, MMTr).

(ix) 5'-amino-N-monomethoxytrityl-2'-fluoro-2',5'-dideoxyuridine -3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (7)の合成
上記(viii)で得られた化合物(6) (400 mg)を、ジクロロメタン (脱水、3.9 ml)に溶解させ、DIPEA(0.41 ml)を加えて攪拌し、次いでi-Pr2NP(Cl)OCEを滴下した(0.26 ml)。1時間後、酢酸エチル(30 ml)で希釈し、H2O(40 ml)で3回、sat NaHCO3(40 ml)で1回、sat NaCl(40 ml)で1回ずつ抽出、洗浄を行い、有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。残渣を酢酸エチル(5 ml)に溶解させた後、シリカゲルカラムクロマトグラフィー(酢酸エチル)で単離精製を行い、化合物(7)の白色泡状結晶を得た(収量 0.51 mg, 0.70 mol, 91 %)。
31P NMR(400MHz)(DMSO) δ:(151.14,151.58)
(ix) 5'-amino-N-monomethoxytrityl-2'-fluoro-2 ', 5'-dideoxyuridine -3'-O-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite (7) Compound (6) (400 mg) obtained in (viii) above was dissolved in dichloromethane (dehydrated, 3.9 ml), DIPEA (0.41 ml) was added and stirred, and then i-Pr 2 NP (Cl ) OCE was added dropwise (0.26 ml). After 1 hour, dilute with ethyl acetate (30 ml), extract three times with H 2 O (40 ml), once with sat NaHCO 3 (40 ml), once with sat NaCl (40 ml) and washed. And the organic layer was dried over sodium sulfate and evaporated. The residue was dissolved in ethyl acetate (5 ml), and then isolated and purified by silica gel column chromatography (ethyl acetate) to obtain white foam crystals of compound (7) (yield 0.51 mg, 0.70 mol, 91 %).
31 P NMR (400 MHz) (DMSO) δ: (151.14, 151.58)

比較例1.5'-aminothymidine amidite unit の合成
5'-aminothymidine amidite unit の合成スキームを下記(合成スキームB)に示す。下記合成スキームB中の各略号の正式名称は、前記したとおりである。この方法で得られるヌクレオシド誘導体及びアミダイトユニットは、糖部分の2'-位がフッ素化されていないものである。
Comparative Example 1. Synthesis of 5'-aminothymidine amidite unit
A synthesis scheme of 5′-aminothymidine amidite unit is shown below (Synthesis scheme B). The formal names of the abbreviations in the following synthesis scheme B are as described above. The nucleoside derivative and amidite unit obtained by this method are those in which the 2′-position of the sugar moiety is not fluorinated.

[合成スキームB]

Figure 2008094831
[Synthesis Scheme B]
Figure 2008094831

(i)5'-azidethymidine (8)(上記合成スキームBで(8)で示される化合物。以下同じ。)の合成
Thymidine (3 g)、(Ph)3P (4.6 g)をDMF (62 ml)に溶解させて、CBr3(4.9 g)を加えて撹拌させた。4時間後、NaN3 (4.0 g)を加えてオイルバス60 ℃で反応させた。23時間後、エバポレーターにより濃縮した。濃縮物をクロロホルム(15 ml)に溶解後、シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=1:0〜9:1)で単離精製を行った。溶媒留去することにより化合物(8)の白色結晶を得た(収量 2.26 g, 8.46 mmol, 68 %)。
(I) Synthesis of 5′-azidethymidine (8) (compound represented by (8) in the above synthesis scheme B, the same shall apply hereinafter)
Thymidine (3 g) and (Ph) 3 P (4.6 g) were dissolved in DMF (62 ml), and CBr 3 (4.9 g) was added and stirred. After 4 hours, NaN 3 (4.0 g) was added and reacted at 60 ° C. in an oil bath. After 23 hours, the mixture was concentrated by an evaporator. After the concentrate was dissolved in chloroform (15 ml), it was isolated and purified by silica gel column chromatography (chloroform: methanol = 1: 0 to 9: 1). The solvent was distilled off to obtain white crystals of compound (8) (yield 2.26 g, 8.46 mmol, 68%).

1H NMR(400MHz)(DMSO) δ:1.78 (3H, s, 5-CH3), 2.05-2.28 (2H, m, 2'-H), 3.54-3.55 (2H, m, 5'-H), 3.82-3.83 (1H, m, 3'-OH), 4.18 (1H, m, 4'-H), 5.40-5.41 (1H, m, 3'-H), 6.20 (1H, t, J=7.00Hz, 1'-H), 7.48 (1H, s, 6-H), 11.3 (1H, s, 3-NH)。 1 H NMR (400 MHz) (DMSO) δ: 1.78 (3H, s, 5-CH 3 ), 2.05-2.28 (2H, m, 2'-H), 3.54-3.55 (2H, m, 5'-H) , 3.82-3.83 (1H, m, 3'-OH), 4.18 (1H, m, 4'-H), 5.40-5.41 (1H, m, 3'-H), 6.20 (1H, t, J = 7.00 Hz, 1'-H), 7.48 (1H, s, 6-H), 11.3 (1H, s, 3-NH).

(ii)5'-aminothymidine (9)の合成
上記(i)で得られた化合物(8)を(2.26 g)をメタノール(84 ml)に溶解させて、Pd-Cを(558 mg)加え、H2雰囲気下で反応させた。13時間後、セライト濾過することによりPd-Cを取りのぞき、溶媒留去することで、化合物(9)の白色結晶を得た(収量 2.02 g, 8.35 mmol, 99 %)。
(Ii) Synthesis of 5'-aminothymidine (9) Compound (8) obtained in (i) above was dissolved in (2.26 g) in methanol (84 ml), and Pd-C (558 mg) was added. The reaction was carried out under H 2 atmosphere. After 13 hours, Pd—C was removed by celite filtration, and the solvent was distilled off to obtain white crystals of compound (9) (yield 2.02 g, 8.35 mmol, 99%).

1H NMR(400MHz)(DMSO) δ:1.77 (s, 3H, 5-CH3), 1.99-2.15 (m, 1H, 2'-H), 2.71 (d, 1H, J=5.6Hz, 5'-H), 3.15 (s, 1H, 3'-OH), 3.63 (m, 1H, 4'-H), 4.16-4.19 (m, 1H, 3'-H), 6.27 (t, 1H, 1'-H), 7.64 (s, 1H, 6-H)。 1 H NMR (400 MHz) (DMSO) δ: 1.77 (s, 3H, 5-CH 3 ), 1.99-2.15 (m, 1H, 2'-H), 2.71 (d, 1H, J = 5.6 Hz, 5 ' -H), 3.15 (s, 1H, 3'-OH), 3.63 (m, 1H, 4'-H), 4.16-4.19 (m, 1H, 3'-H), 6.27 (t, 1H, 1 ' -H), 7.64 (s, 1H, 6-H).

(iii)5'-amino-5'-N--monomethoxytritylthymidine (10)の合成
上記(ii)で得られた化合物(9)(400 mg)をpyridine(8.7ml)に溶解させて、MMTrCl (709mg)、DMAP (20 mg)を加えて、反応させた。48時間後、酢酸エチル(30 ml)で希釈し、H2O(30 ml)で3回、sat NaHCO3(30 ml)で1回、sat NaCl(30 ml)で1回ずつ抽出、洗浄を行い、有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。残渣をクロロホルム(5 ml)に溶解させた後、シリカゲルカラムクロマトグラフィー (クロロホルム:メタノール=1:0〜23:2)で単離精製を行い、化合物(10)の白色結晶を得た (収量 715 mg, 1.39 mmol, 84 %)。
(iii) Synthesis of 5'-amino-5'-N-monomethoxytritylthymidine (10) Compound (9) (400 mg) obtained in (ii) above was dissolved in pyridine (8.7 ml) and MMTrCl (709 mg ), DMAP (20 mg) was added and reacted. After 48 hours, dilute with ethyl acetate (30 ml), extract three times with H 2 O (30 ml), once with sat NaHCO 3 (30 ml), once with sat NaCl (30 ml) and washed. And the organic layer was dried over sodium sulfate and evaporated. The residue was dissolved in chloroform (5 ml) and isolated and purified by silica gel column chromatography (chloroform: methanol = 1: 0 to 23: 2) to obtain white crystals of compound (10) (yield 715 mg, 1.39 mmol, 84%).

1H NMR(400MHz)(DMSO) δ:1.84 (s, 3H, 5-CH3), 2.05-2.15 (m, 1H, 2'-H), 2.33-2.60 (m, 1H, 5'-H), 3.97-3.99 (m, 1H, 3'-OH), 3.62 (q, 1H, 4'-H), 4.31-4.33 (m, 1H, 3'-H), 6.80-7.46 (m, 17H, MMTr), 8.43 (s, 1H, 6-H)。 1 H NMR (400 MHz) (DMSO) δ: 1.84 (s, 3H, 5-CH 3 ), 2.05-2.15 (m, 1H, 2'-H), 2.33-2.60 (m, 1H, 5'-H) , 3.97-3.99 (m, 1H, 3'-OH), 3.62 (q, 1H, 4'-H), 4.31-4.33 (m, 1H, 3'-H), 6.80-7.46 (m, 17H, MMTr ), 8.43 (s, 1H, 6-H).

(iv)5'-amino-N-monomethoxytritylthymidine-3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (11)の合成
上記(iii)で得られた化合物(10)(295 mg)を、ジクロロメタン (脱水用、2.87 ml)に溶解させ、DIPEA(0.3 ml)を加えて攪拌し、i-Pr2NP(Cl)OCE(0.19 ml)を滴下した。1時間後、酢酸エチル(20 ml)で希釈し、H2O(20 ml)で3回、sat NaHCO3(20 ml)で1回、sat NaCl(20 ml)で1回ずつ抽出、洗浄を行い、有機層を硫酸ナトリウムで乾燥させ、溶媒留去した。残渣を酢酸エチル(5 ml)に溶解させた後、シリカゲルカラムクロマトグラフィー(酢酸エチル)で単離精製を行い、化合物(11)の白色泡状結晶を得た(収量 357 mg, 0.752 mmol, 87 %)。
31P NMR(400MHz)(DMSO) δ(149.58 , 149.83)。
(iv) Synthesis of 5'-amino-N-monomethoxytritylthymidine-3'-O-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite (11) Compound (10) obtained in (iii) above ) (295 mg) was dissolved in dichloromethane (for dehydration, 2.87 ml), DIPEA (0.3 ml) was added and stirred, and i-Pr 2 NP (Cl) OCE (0.19 ml) was added dropwise. After 1 hour, dilute with ethyl acetate (20 ml), extract three times with H 2 O (20 ml), once with sat NaHCO 3 (20 ml), once with sat NaCl (20 ml) and washed. And the organic layer was dried over sodium sulfate and evaporated. The residue was dissolved in ethyl acetate (5 ml), and isolated and purified by silica gel column chromatography (ethyl acetate) to obtain white foam crystals of compound (11) (yield 357 mg, 0.752 mmol, 87 %).
31 P NMR (400 MHz) (DMSO) δ (149.58, 149.83).

実施例2.固相ホスホルアミダイト法によるオリゴヌクレオチドの合成
下記の方法で、本発明の5'-amino-2'-fluoro-2',5'-dideoxyuridineを導入したオリゴヌクレオチドアナログを合成した。
Example 2 Synthesis of Oligonucleotide by Solid Phase Phosphoramidite Method An oligonucleotide analog into which 5′-amino-2′-fluoro-2 ′, 5′-dideoxyuridine of the present invention was introduced was synthesized by the following method.

まず、材料として実施例1で合成した5'-amino-N-monomethoxytrityl-2'-fluoro-2',5'-dideoxyuridine -3'-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (7)と、市販のdA-CE phosphoramidite [化学名:(5'-Dimethoxytrityl-N-benzoyl-2'-deoxyAdenosine,3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite)]、dG-CE phosphoramidite [化学名:5'-Dimethoxytrityl-N-isobutyryl-2'-deoxyGuanosine,3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite](いずれもGlen research Corp.製)を用いた。また出発物質として3'-dA-CPG (CPGはControlled Pore Glassを意味する。Glen research Corp.製)、1μmolを column に充填したものを用い、オリゴヌクレオチドアナログを合成した。合成機器として3400 DNA Synthesizer (Applied Biosystems 社製、核酸合成機)を用いた。   First, 5'-amino-N-monomethoxytrityl-2'-fluoro-2 ', 5'-dideoxyuridine-3'-O-[(2-cyanoethyl)-(N, N-diisopropyl) synthesized in Example 1 was used as a material. )]-phosphoramidite (7) and commercially available dA-CE phosphoramidite [chemical name: (5'-Dimethoxytrityl-N-benzoyl-2'-deoxyAdenosine, 3 '-[(2-cyanoethyl)-(N, N-diisopropyl )]-phosphoramidite)], dG-CE phosphoramidite [Chemical name: 5'-Dimethoxytrityl-N-isobutyryl-2'-deoxyGuanosine, 3 '-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite] (Both manufactured by Glen research Corp.) were used. In addition, 3'-dA-CPG (CPG means Controlled Pore Glass, manufactured by Glen research Corp.) and 1 μmol packed in column were synthesized as starting materials. A 3400 DNA Synthesizer (Applied Biosystems, nucleic acid synthesizer) was used as a synthesizer.

得られた2種のオリゴヌクレオチドアナログについて、AXIMA(島津社製)を用い、MALDI TOF/MASで構造の確認を行った。   The structure of the two obtained oligonucleotide analogs was confirmed by MALDI TOF / MAS using AXIMA (manufactured by Shimadzu Corporation).

得られた2種のオリゴヌクレオチドアナログをUNF-1及びUNF-2と名付けた。UNF-1の塩基配列(配列番号1)、UND-2の塩基配列(配列番号2)、それぞれの分子量の理論値(calculated)及び実測値(observed)を表1に示す。表1において、塩基配列中、5'-amino-2'-fluoro-2',5'-dideoxyuridineの導入された位置を「UNF」で示す。 The resulting two oligonucleotide analogues were named UNF-1 and UNF-2. Table 1 shows the base sequence of UNF-1 (SEQ ID NO: 1), the base sequence of UND-2 (SEQ ID NO: 2), the theoretical value (calculated) and the observed value (observed) of each molecular weight. In Table 1, the position where 5′-amino-2′-fluoro-2 ′, 5′-dideoxyuridine was introduced in the base sequence is indicated by “U NF ”.

Figure 2008094831
Figure 2008094831

比較例2.
実施例1で合成した5'-amino-N-monomethoxytrityl-2’-fluoro-2’,5’-dideoxy -uridine -3’-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (7)の代わりに、比較例1で合成した5’-amino-N-monomethoxytritylthymidine-3’-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite (11)を材料として用いる以外は実施例2と同様の方法で、5’-aminothymidineを導入した2種類のオリゴヌクレオチドアナログを合成した。
Comparative Example 2
5'-amino-N-monomethoxytrityl-2'-fluoro-2 ', 5'-dideoxy-uridine-3'-O-[(2-cyanoethyl)-(N, N-diisopropyl)] synthesized in Example 1 Instead of -phosphoramidite (7), 5'-amino-N-monomethoxytritylthymidine-3'-O-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite (11) synthesized in Comparative Example 1 was used. Two kinds of oligonucleotide analogs into which 5′-aminothymidine was introduced were synthesized in the same manner as in Example 2 except that they were used as materials.

得られた2種類のオリゴヌクレオチドアナログをTN-1及びTN-2と名付けた。また、実施例2と同様に、MALDI TOF/MASで構造の確認を行った。TN-1の塩基配列(配列番号3)及びTN-2の塩基配列(配列番号4)、それぞれの分子量の理論値(calculated)及び実測値(observed)を表1に併せて示す。表1において、塩基配列中、5’-aminothymidineの導入位置を「TN」で示す。 The obtained two types of oligonucleotide analogs were named TN-1 and TN-2. Further, the structure was confirmed by MALDI TOF / MAS as in Example 2. Table 1 shows the base sequence of TN-1 (SEQ ID NO: 3) and the base sequence of TN-2 (SEQ ID NO: 4), the theoretical value (calculated) and the actually measured value (observed) of each molecular weight. In Table 1, the introduction position of 5′-aminothymidine is indicated by “T N ” in the base sequence.

また、材料として市販のdT-CE phosphoramidite [化学名:5'-Dimethoxytrityl-2'-deoxyThymidine,3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite]、dA-CE phosphoramidite、dG-CE phosphoramidite
(いずれもGlen research Corp.製)を用い、また出発物質として3'-dA-CPG の充填された3'-dA-CPG 500 1μmol column (Glen research Corp.製)を用い、実施例2と同様の方法でオリゴヌクレオチドを合成し、天然のヌクレオシドのみから成るオリゴヌクレオチドを得た。得られた2種類のオリゴヌクレオチドをT-1 (control)及びT-2 (control)と名付けた。また、実施例2と同様に、MALDI TOF/MASで構造の確認を行った。T-1 (control)の塩基配列(配列番号5)、及びT-2 (control)の塩基配列(配列番号6)を、表1に併せて示す。
In addition, commercially available dT-CE phosphoramidite [chemical name: 5'-Dimethoxytrityl-2'-deoxyThymidine, 3 '-[(2-cyanoethyl)-(N, N-diisopropyl)]-phosphoramidite], dA-CE phosphoramidite , DG-CE phosphoramidite
(Both from Glen research Corp.) and 3′-dA-CPG 500 1 μmol column (manufactured by Glen research Corp.) filled with 3′-dA-CPG as the starting material. The oligonucleotide was synthesized by the method described above to obtain an oligonucleotide consisting only of natural nucleosides. The obtained two types of oligonucleotides were named T-1 (control) and T-2 (control). Further, the structure was confirmed by MALDI TOF / MAS as in Example 2. The base sequence of T-1 (control) (SEQ ID NO: 5) and the base sequence of T-2 (control) (SEQ ID NO: 6) are also shown in Table 1.

実施例3.Tm値(融解温度)の測定 (DNA/DNA match duplex)
(i)相補的なオリゴヌクレオチドの合成
材料として市販のdT-CE phosphoramidite、dA-CE phosphoramidite (いずれもGlen research Corp.製)を用い、また出発物質として3'-dT-CPG (Glen research Corp.製)1μmolを columnに充填し、実施例2と同様の方法で、実施例2で合成したUNF-1とUNF-2それぞれに相補的なオリゴヌクレオチドを合成した。UNF-1に相補的なオリゴヌクレオチドの塩基配列(配列番号7)と、UNF-2に相補的なオリゴヌクレオチドの塩基配列(配列番号8)を、下記表2に示す。
Example 3 Measurement of Tm value (melting temperature) (DNA / DNA match duplex)
(I) Synthesis of complementary oligonucleotides Commercially available dT-CE phosphoramidite and dA-CE phosphoramidite (both manufactured by Glen research Corp.) were used as materials, and 3'-dT-CPG (Glen research Corp.) was used as a starting material. 1 μmol was packed in a column and oligonucleotides complementary to UNF-1 and UNF-2 synthesized in Example 2 were synthesized in the same manner as in Example 2. Table 2 below shows the nucleotide sequence of the oligonucleotide complementary to UNF-1 (SEQ ID NO: 7) and the nucleotide sequence of the oligonucleotide complementary to UNF-2 (SEQ ID NO: 8).

Figure 2008094831
Figure 2008094831

(ii)熱的安定性試験
次いで、実施例2で合成したUNF-1、UNF-2及び得られた表2に記載のこれらに相補的なオリゴヌクレオチドを材料として二本鎖DNA /DNAを常法(R. Kierzek et al., Biochemistry, 1986, vol.25, pp.7840-7846)により得た。
(Ii) Thermal Stability Test Next, double-stranded DNA / DNA was usually used using the UNF-1, UNF-2 synthesized in Example 2 and the oligonucleotides complementary to these obtained in Table 2 as materials. (R. Kierzek et al., Biochemistry, 1986, vol. 25, pp. 7840-7846).

得られた二本鎖DNA/DNAを用いて、常法による熱的安定性試験を行った。   The obtained double-stranded DNA / DNA was subjected to a thermal stability test by a conventional method.

すなわち、窒素雰囲気下において、10mm 8連セル中で、温度可変装置を備えたUV-2450 SPECTROPHOTOMETER ( SHIMADZU 社製) を用い、オリゴヌクレオチドが3μMになるように、リン酸ナトリウム緩衝液10 mM、塩化ナトリウム100 mM(pH 7.0)を加え調整し、1分間あたり0.5 ℃の割合で20℃から90℃まで上昇させ、260nmに於ける吸光度を測定した。   That is, using a UV-2450 SPECTROPHOTOMETER (manufactured by SHIMADZU) equipped with a variable temperature device in a 10 mm 8-series cell under a nitrogen atmosphere, so that the oligonucleotide is 3 μM, sodium phosphate buffer 10 mM, chloride Sodium 100 mM (pH 7.0) was added for adjustment, the temperature was raised from 20 ° C. to 90 ° C. at a rate of 0.5 ° C. per minute, and the absorbance at 260 nm was measured.

結果を図1に示す。
図1において、●はUNF-1を用いた二本鎖DNA/DNAについてられた結果を、○はUNF-2を用いた二本鎖DNA/DNAについてられた結果をそれぞれ示す。
また、図1の結果から得られた各二本鎖DNA/DNAのTm値及び△Tm値を表3に示す。
The results are shown in FIG.
In FIG. 1, ● represents the results obtained for double-stranded DNA / DNA using UNF-1, and ○ represents the results obtained for double-stranded DNA / DNA using UNF-2.
Table 3 shows the Tm value and ΔTm value of each double-stranded DNA / DNA obtained from the results of FIG.

Figure 2008094831
Figure 2008094831

比較例3.Tm値の測定 (DNA/DNA match duplex)
実施例3と同様の方法により、比較例2で合成したTN-1とそれに相補的な配列番号7で表される塩基配列のオリゴヌクレオチドとの二本鎖DNA/DNA、及びTN-2とそれに相補的な配列番号8で表される塩基配列のオリゴヌクレオチドとの二本鎖DNA/DNAを合成し、得られた二本鎖の熱的安定性を実施例3と同様の方法により調べた。結果を図1に併せて示す。
図1において、■はTN-1を用いた二本鎖DNA/DNAについて得られた結果を、□はTN-2を用いた二本鎖DNA/DNAについて得られた結果をそれぞれ示す。
また、図1の結果から得られた各二本鎖DNA/DNAのTm値及び△Tm値を表3に併せて示す。
Comparative Example 3 Measurement of Tm value (DNA / DNA match duplex)
In the same manner as in Example 3, double-stranded DNA / DNA of TN-1 synthesized in Comparative Example 2 and an oligonucleotide having a nucleotide sequence represented by SEQ ID NO: 7 complementary thereto, and TN-2 and the same Double-stranded DNA / DNA was synthesized with a complementary oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 8, and the thermal stability of the obtained double-stranded DNA was examined in the same manner as in Example 3. The results are also shown in FIG.
In FIG. 1, ▪ represents the results obtained for double-stranded DNA / DNA using TN-1, and □ represents the results obtained for double-stranded DNA / DNA using TN-2.
In addition, Table 3 shows the Tm value and ΔTm value of each double-stranded DNA / DNA obtained from the results of FIG.

また、実施例3と同様の方法により、比較例2で合成したT-1 (control)とそれに相補的な配列番号7で表される塩基配列のオリゴヌクレオチドとの二本鎖DNA、及びT-2 (control)とそれに相補的な配列番号8で表される塩基配列のオリゴヌクレオチドとの二本鎖DNAを合成し、得られた二本鎖の熱的安定性を実施例3と同様の方法により調べた。結果を図1に併せて示す。
図1において、▲はT-1 (control)を用いた二本鎖DNA/DNAについてられた結果を、△はT-2 (Control)を用いた二本鎖DNA/DNAについてられた結果をそれぞれ示す。
また、図1の結果から得られた各二本鎖DNA/DNAのTm値を表3に併せて示す。
Further, in the same manner as in Example 3, double-stranded DNA comprising T-1 (control) synthesized in Comparative Example 2 and an oligonucleotide having a base sequence represented by SEQ ID NO: 7 complementary thereto, and T- 2 (control) and a complementary double-stranded DNA with an oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 8 were synthesized, and the resulting double-stranded thermal stability was determined in the same manner as in Example 3. We investigated by. The results are also shown in FIG.
In Fig. 1, ▲ indicates the results for double-stranded DNA / DNA using T-1 (control), and △ indicates the results for double-stranded DNA / DNA using T-2 (control). Show.
In addition, Table 3 shows the Tm value of each double-stranded DNA / DNA obtained from the results of FIG.

図1及び表3の結果から明らかな如く、本発明の5'-amino-2'-fluoro-2',5'-dideoxyuridineを導入したオリゴヌクレオチドアナログ(UNF-1及びUNF-2)を含む二本鎖DNA/DNAのTm値は、天然型のヌクレオシドのみから成るオリゴヌクレオチド(T-1 (control)及びT-2 (control))を含む二本鎖DNA/DNAのTm値と同等であり、二本鎖核酸の熱的安定性が互いに同等であることが判る。これに対し、糖部分の2'-位がフッ素化されていない5'-aminothymidine を導入したオリゴヌクレオチドアナログ(TN-1及びTN-2)を含む二本鎖DNA/DNAのTm値は、天然型のヌクレオシドのみから成るオリゴヌクレオチド(T-1 (control)及びT-2 (control))を含む二本鎖DNA/DNAのTm値より低いことから、熱的安定性が低いことが判る。   As is apparent from the results in FIG. 1 and Table 3, two oligonucleotides (UNF-1 and UNF-2) containing 5′-amino-2′-fluoro-2 ′, 5′-dideoxyuridine of the present invention were introduced. The Tm value of double-stranded DNA / DNA is equivalent to the Tm value of double-stranded DNA / DNA containing oligonucleotides (T-1 (control) and T-2 (control)) consisting only of natural nucleosides, It can be seen that the thermal stability of the double-stranded nucleic acids is equivalent to each other. In contrast, the Tm value of double-stranded DNA / DNA containing oligonucleotide analogs (TN-1 and TN-2) introduced with 5'-aminothymidine that is not fluorinated at the 2'-position of the sugar moiety is Since it is lower than the Tm value of double-stranded DNA / DNA containing oligonucleotides (T-1 (control) and T-2 (control)) consisting only of a type of nucleoside, it can be seen that the thermal stability is low.

実施例4.Tm値の測定 (DNA/RNA match duplex)
(i)相補的なオリゴヌクレオチドの合成
市販のrA-CE phosphoramidite, rU-CE phosphoramidite, rC-CE phosphoramiditeを用い、また出発物質として3'-dU-CPG (いずれもGlen research Corp.製)を用い、実施例2と同様の方法で、実施例2で合成したUNF-1及びUNF-2それぞれに相補的なオリゴヌクレオチドを合成した。
Example 4 Measurement of Tm value (DNA / RNA match duplex)
(I) Synthesis of complementary oligonucleotide Using commercially available rA-CE phosphoramidite, rU-CE phosphoramidite, rC-CE phosphoramidite, and 3'-dU-CPG (all manufactured by Glen research Corp.) as starting materials In the same manner as in Example 2, oligonucleotides complementary to each of UNF-1 and UNF-2 synthesized in Example 2 were synthesized.

得られた、UNF-1に相補的なオリゴヌクレオチドの塩基配列(配列番号9)と、UNF-2に相補的なオリゴヌクレオチドの塩基配列(配列番号10)を、下記表4に示す。   Table 4 below shows the nucleotide sequence of the oligonucleotide complementary to UNF-1 (SEQ ID NO: 9) and the nucleotide sequence of the oligonucleotide complementary to UNF-2 (SEQ ID NO: 10).

Figure 2008094831
Figure 2008094831

(ii)熱的安定性試験
次いで、実施例2で合成したUNF-1、UNF-2及び上記で得られた表4に記載のこれらに相補的なオリゴヌクレオチドを材料として二本鎖DNA/RNAを常法(R. Kierzek et al., Biochemistry, 1986, vol.25, pp.7840-7846)により得た。
(Ii) Thermal Stability Test Next, double-stranded DNA / RNA using UNF-1, UNF-2 synthesized in Example 2 and oligonucleotides complementary to them listed in Table 4 obtained above as materials. Was obtained by a conventional method (R. Kierzek et al., Biochemistry, 1986, vol. 25, pp. 7840-7846).

得られた二本鎖DNA/RNAを用い、実施例3と同様の方法で熱的安定性試験を行った。   Using the obtained double-stranded DNA / RNA, a thermal stability test was conducted in the same manner as in Example 3.

結果を図2に示す。
図2において、●はUNF-1を用いた二本鎖DNA/RNAについてられた結果を、○はUNF-2を用いた二本鎖DNA/RNAについてられた結果をそれぞれ示す。
また、図2の結果から得られた各二本鎖DNA/RNAのTm値及び△Tmを表5に示す。
The results are shown in FIG.
In FIG. 2, ● represents the results obtained for double-stranded DNA / RNA using UNF-1, and ○ represents the results obtained for double-stranded DNA / RNA using UNF-2.
Table 5 shows the Tm value and ΔTm of each double-stranded DNA / RNA obtained from the results of FIG.

Figure 2008094831
Figure 2008094831

比較例4.Tm値の測定 (DNA/RNA match duplex)
実施例4と同様の方法により、比較例2で合成したTN-1とそれに相補的な配列番号9で表される塩基配列のオリゴヌクレオチドとの二本鎖DNA/RNA、及びTN-2とそれに相補的な配列番号10で表される塩基配列のオリゴヌクレオチドとの二本鎖DNA/RNAを合成し、得られた二本鎖の熱的安定性を実施例4と同様の方法により調べた。結果を図2に併せて示す。
図2において、■はTN-1を用いた二本鎖DNA/RNAについて得られた結果を、□はTN-2を用いた二本鎖DNA/RNA/について得られた結果をそれぞれ示す。
また、図2の結果から得られた各二本鎖DNA/RNAのTm値及び△Tm値を表5に併せて示す。
Comparative Example 4 Measurement of Tm value (DNA / RNA match duplex)
In the same manner as in Example 4, double-stranded DNA / RNA of TN-1 synthesized in Comparative Example 2 and the oligonucleotide having the base sequence represented by SEQ ID NO: 9 complementary thereto, and TN-2 and the same A double-stranded DNA / RNA was synthesized with a complementary oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 10, and the thermal stability of the resulting double-stranded was examined by the same method as in Example 4. The results are also shown in FIG.
In FIG. 2, ▪ represents the results obtained for double-stranded DNA / RNA using TN-1, and □ represents the results obtained for double-stranded DNA / RNA / using TN-2.
In addition, Table 5 shows the Tm value and ΔTm value of each double-stranded DNA / RNA obtained from the results of FIG.

また、比較例2で合成したT-1 (control)とそれに相補的な配列番号9で表される塩基配列のオリゴヌクレオチドとの二本鎖DNA/RNA、及びT-2 (control)とそれに相補的な配列番号10で表される塩基配列のオリゴヌクレオチドとの二本鎖DNA/RNAを合成し、得られた二本鎖の熱的安定性を実施例4と同様の方法により調べた。結果を図2に併せて示す。
図2において、▲はT-1 (control)を用いた二本鎖DNA/RNAについてられた結果を、△はT-2 (Control)を用いた二本鎖DNA/RNAについてられた結果をそれぞれ示す。
また、図2の結果から得られた各二本鎖DNA/RNAのTm値を表5に併せて示す。
In addition, double-stranded DNA / RNA of T-1 (control) synthesized in Comparative Example 2 and the oligonucleotide of the base sequence represented by SEQ ID NO: 9 complementary thereto, and T-2 (control) and complement thereof A double-stranded DNA / RNA was synthesized with an oligonucleotide having the base sequence represented by SEQ ID NO: 10, and the thermal stability of the resulting double-stranded was examined by the same method as in Example 4. The results are also shown in FIG.
In Fig. 2, ▲ indicates the results for double-stranded DNA / RNA using T-1 (control), and △ indicates the results for double-stranded DNA / RNA using T-2 (control). Show.
In addition, Table 5 shows the Tm values of each double-stranded DNA / RNA obtained from the results of FIG.

図2及び表5の結果から明らかな如く、本発明の5'-amino-2'-fluoro-2',5'-dideoxyuridineを導入したオリゴヌクレオチドアナログ(UNF-1及びUNF-2)を含む二本鎖DNA/RNAのTm値は、天然型のヌクレオシドのみから成るオリゴヌクレオチド(T-1 (control)及びT-2 (control))を含む二本鎖DNA/DNAのTm値と同等であり、二本鎖核酸の熱的安定性が互いに同等であることが判る。これに対し、糖部分の2'-位がフッ素化されていない5'-aminothymidine を導入したオリゴヌクレオチドアナログ(TN-1及びTN-2)を含む二本鎖DNA/RNAのTm値は、天然型のヌクレオシドのみから成るオリゴヌクレオチド(T-1 (control)及びT-2 (control))を含む二本鎖DNA/DNAのTm値より低いことから、熱的安定性が低いことが判る。   As is apparent from the results of FIG. 2 and Table 5, two oligonucleotides (UNF-1 and UNF-2) containing 5′-amino-2′-fluoro-2 ′, 5′-dideoxyuridine of the present invention were used. The Tm value of double-stranded DNA / RNA is equivalent to the Tm value of double-stranded DNA / DNA containing oligonucleotides (T-1 (control) and T-2 (control)) consisting only of natural nucleosides, It can be seen that the thermal stability of the double-stranded nucleic acids is equivalent to each other. In contrast, the Tm value of double-stranded DNA / RNA containing oligonucleotide analogs (TN-1 and TN-2) introduced with 5'-aminothymidine that is not fluorinated at the 2'-position of the sugar moiety is Since it is lower than the Tm value of double-stranded DNA / DNA containing oligonucleotides (T-1 (control) and T-2 (control)) consisting only of a type of nucleoside, it can be seen that the thermal stability is low.

また、表3及び表5の結果から、UNFを一つ含むUNF-1よりも、UNFを二つ含むUNF-2の方が、Tm値が増加していることがわかる。このことから、オリゴヌクレオチド中の、本発明のジデオキヌクレオチド誘導体の導入数を増やすことによって、さらに二本鎖核酸が安定化することが期待される。   Further, from the results of Tables 3 and 5, it can be seen that UNF-2 including two UNFs has a higher Tm value than UNF-1 including one UNF. From this, it is expected that the double-stranded nucleic acid is further stabilized by increasing the number of introduction of the dideoxynucleotide derivative of the present invention in the oligonucleotide.

本発明の5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体は、核酸合成におけるホスホアミダイト試薬として、また該ジデオキシヌクレオシド誘導体を固相に結合させることで核酸の固相合成法に用いられる出発物質として用いることができる。また、該誘導体を導入したオリゴヌクレオチドアナログは、熱的安定性に優れ、また優れたヌクレアーゼ耐性を持つことも期待される。そのため、該オリゴヌクレオチドアナログはアンチセンス法において使用する、ヌクレアーゼ耐性を持つ優れたアンチセンス核酸として用いることができる。また、RNAi法において細胞に導入するdsRNA及びsiRNAとして用いることができる。更に、標的遺伝子をノックアウトする方法において用いられるアンチセンスオリゴヌクレオチドアナログとしても用いられ得る。更にまた、医薬品分野への使用や、遺伝子多型解析用のプローブとしても期待される。   The 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative of the present invention is used as a phosphoramidite reagent in nucleic acid synthesis and by solid-phase synthesis of nucleic acid by binding the dideoxynucleoside derivative to a solid phase. It can be used as a starting material used in the method. In addition, the oligonucleotide analog into which the derivative is introduced is expected to have excellent thermal stability and excellent nuclease resistance. Therefore, the oligonucleotide analog can be used as an excellent antisense nucleic acid having nuclease resistance used in the antisense method. It can also be used as dsRNA and siRNA introduced into cells in the RNAi method. Furthermore, it can be used as an antisense oligonucleotide analog used in a method of knocking out a target gene. Furthermore, it is also expected to be used in the pharmaceutical field and as a probe for gene polymorphism analysis.

実施例3で得られた、二本鎖DNA/DNAについて熱安定性試験を行って得られた結果、および比較例3で得られた、二本鎖DNA/DNAについて熱安定性試験を行って得られた結果である。The results obtained by conducting the thermal stability test on the double-stranded DNA / DNA obtained in Example 3 and the thermal stability test on the double-stranded DNA / DNA obtained in Comparative Example 3 It is the obtained result. 実施例4で得られた、二本鎖DNA/RNAについて熱安定性試験を行って得られた結果、及び比較例4で得られた、二本鎖DNA/RNAについて熱安定性試験を行って得られた結果である。The results obtained by conducting the thermal stability test on the double-stranded DNA / RNA obtained in Example 4 and the thermal stability test on the double-stranded DNA / RNA obtained in Comparative Example 4 It is the obtained result.

符号の説明Explanation of symbols

図1において、▲はT-1 (control)を用いた二本鎖DNA/DNAについてられた結果を、△はT-2 (Control)を用いた二本鎖DNA/DNAについてられた結果を、●はUNF-1を用いた二本鎖DNA/DNAについてられた結果を、○はUNF-2を用いた二本鎖DNA/DNAについてられた結果を、■はTN-1を用いた二本鎖DNA/DNAについて得られた結果を、□はTN-2を用いた二本鎖DNA/DNAについて得られた結果をそれぞれ示す。   In FIG. 1, ▲ indicates the results for double-stranded DNA / DNA using T-1 (control), and △ indicates the results for double-stranded DNA / DNA using T-2 (control). ● shows results for double-stranded DNA / DNA using UNF-1, ○ shows results for double-stranded DNA / DNA using UNF-2, ■ shows results for double-stranded DNA / DNA using UNF-2 The results obtained for the stranded DNA / DNA and the squares the results obtained for the double stranded DNA / DNA using TN-2, respectively.

図2において、▲はT-1 (control)を用いた二本鎖DNA/RNAについてられた結果を、△はT-2 (Control)を用いた二本鎖DNA/RNAについてられた結果を、●はUNF-1を用いた二本鎖DNA/RNAについてられた結果を、○はUNF-2を用いた二本鎖DNA/RNAについてられた結果を、■はTN-1を用いた二本鎖DNA/RNAについて得られた結果を、□はTN-2を用いた二本鎖DNA/RNA/について得られた結果をそれぞれ示す。   In FIG. 2, ▲ indicates the results obtained for double-stranded DNA / RNA using T-1 (control), and △ indicates the results obtained for double-stranded DNA / RNA using T-2 (Control). ● shows results for double-stranded DNA / RNA using UNF-1, ○ shows results for double-stranded DNA / RNA using UNF-2, ■ ■ shows results for double-stranded DNA / RNA using UNF-2 The results obtained for the stranded DNA / RNA and the squares the results obtained for the double stranded DNA / RNA / using TN-2, respectively.

Claims (5)

下記式[1]
Figure 2008094831
(式中、R1は保護基を有していてもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基、Rは水素原子又は水酸基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体。
Following formula [1]
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a protecting group for a hydrogen atom or an amino group, and R 3 represents a protecting group for a hydrogen atom or a hydroxyl group.)
A 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by:
式[1]で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体が、下記式[3]
Figure 2008094831
(式中、R1は保護基を有していていもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。)
で表されるものである、請求項1に記載の誘導体。
The 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by the formula [1] is represented by the following formula [3].
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group.)
The derivative | guide_body of Claim 1 which is represented by these.
式[1]で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体が、下記式[5]
Figure 2008094831

(式中、R1は保護基を有していていもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。i-Prはイソプロピル基を表す。)で表されるものである、請求項1に記載の誘導体。
The 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by the formula [1] is represented by the following formula [5].
Figure 2008094831

(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group. I-Pr represents an isopropyl group.) The derivative according to claim 1, wherein
下記式[6]
Figure 2008094831
(式中、R1は保護基を有していていもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体を不溶性担体に結合させてなる、ジデオキシヌクレオシド−不溶性担体結合物。
Following formula [6]
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group.)
A dideoxynucleoside-insoluble carrier conjugate obtained by binding a 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by the formula:
下記式[1]
Figure 2008094831
(式中、R1は保護基を有していていもよい核酸塩基を表す。Rは水素原子又はアミノ基の保護基、Rは水素原子又は水酸基の保護基を表す。)
で表される5'−アミノ−2'−フルオロ−2',5'−ジデオキシヌクレオシド誘導体を導入したオリゴヌクレオチドアナログ。
Following formula [1]
Figure 2008094831
(In the formula, R 1 represents a nucleobase which may have a protecting group. R 2 represents a hydrogen atom or an amino group protecting group, and R 3 represents a hydrogen atom or a hydroxyl protecting group.)
An oligonucleotide analog into which a 5′-amino-2′-fluoro-2 ′, 5′-dideoxynucleoside derivative represented by the formula:
JP2007222152A 2006-09-12 2007-08-29 Novel dideoxynucleoside derivatives Expired - Fee Related JP5205873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222152A JP5205873B2 (en) 2006-09-12 2007-08-29 Novel dideoxynucleoside derivatives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006246844 2006-09-12
JP2006246844 2006-09-12
JP2007222152A JP5205873B2 (en) 2006-09-12 2007-08-29 Novel dideoxynucleoside derivatives

Publications (2)

Publication Number Publication Date
JP2008094831A true JP2008094831A (en) 2008-04-24
JP5205873B2 JP5205873B2 (en) 2013-06-05

Family

ID=39378046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222152A Expired - Fee Related JP5205873B2 (en) 2006-09-12 2007-08-29 Novel dideoxynucleoside derivatives

Country Status (1)

Country Link
JP (1) JP5205873B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010035A (en) * 2017-06-29 2019-01-24 国立大学法人岐阜大学 Rna introduction agent and use thereof
JP2019119739A (en) * 2017-12-28 2019-07-22 国立大学法人岐阜大学 Method for producing nucleoside derivative

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351384A (en) * 1986-08-18 1988-03-04 エフ・ホフマン―ラ ロシユ アーゲー Pyrimidine derivative
WO1997006178A1 (en) * 1995-08-04 1997-02-20 F. Hoffmann-La Roche Ag Pyrimidine nucleosides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351384A (en) * 1986-08-18 1988-03-04 エフ・ホフマン―ラ ロシユ アーゲー Pyrimidine derivative
WO1997006178A1 (en) * 1995-08-04 1997-02-20 F. Hoffmann-La Roche Ag Pyrimidine nucleosides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6012056140; J.Med.Chem. vol.36, 1993, pp.831-841 *
JPN6012056143; Tetrahedron Letters 31(22), 1990, pp.3205-3208 *
JPN6012056146; Journal of Supercritical Fluids vol.15, 1999, pp.157-164 *
JPN7012004398; Nucleic Acids Research 20(13), 1992, 3403-3409 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019010035A (en) * 2017-06-29 2019-01-24 国立大学法人岐阜大学 Rna introduction agent and use thereof
JP7231147B2 (en) 2017-06-29 2023-03-01 国立大学法人東海国立大学機構 RNA introduction reagent and its use
JP2019119739A (en) * 2017-12-28 2019-07-22 国立大学法人岐阜大学 Method for producing nucleoside derivative

Also Published As

Publication number Publication date
JP5205873B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
KR101304071B1 (en) 6-modified bicyclic nucleic acid analogs
KR101718406B1 (en) - 3- rna synthesis phosphoramidites for synthetic rna in the reverse direction and application in convenient introduction of ligands chromophores and modifications of synthetic rna at the 3-end
Langkjær et al. UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability
AU2007249349B2 (en) 5&#39;-Modified bicyclic nucleic acid analogs
US20110275793A1 (en) Chemical RNA Synthesis Method
JP2002521310A (en) Oligonucleotide analogues
WO2011005861A9 (en) Oligonucleotide end caps
WO2009023855A2 (en) Tetrahydropyran nucleic acid analogs
JP2002543214A (en) L-ribo-LNA analog
JPH11510790A (en) Improved method for oligonucleotide synthesis
CN110023322B (en) Novel bicyclic nucleosides and oligomers prepared therefrom
Saito et al. C8-alkynyl-and alkylamino substituted 2′-deoxyguanosines: a universal linker for nucleic acids modification
EP2006293B1 (en) 2&#39;-hydroxyl-modified ribonucleoside derivative
JP5205873B2 (en) Novel dideoxynucleoside derivatives
WO2002018406A1 (en) Alkylated hexitol nucleoside analogues and oligomers thereof
WO2018110678A1 (en) Nucleoside derivative and use therefor
EP4108670A1 (en) Bridged nucleoside and nucleotide using same
US7629447B2 (en) Dideoxynucleoside derivatives
Osawa et al. Synthesis and properties of oligonucleotides bearing thymidine derivatives with 1, 6-dioxaspiro [4.5] decane skeleton
Yamaguchi et al. Synthesis and duplex-forming ability of oligonucleotides modified with 4′-C, 5′-C-methylene-bridged nucleic acid (4′, 5′-BNA)
Jabgunde et al. Synthesis of 3′-fluoro-4′-amino-hexitol nucleosides with a pyrimidine nucleobase as building blocks for oligonucleotides
Kajino et al. Synthesis, gene silencing activity, thermal stability, and serum stability of siRNA containing four (S)-5′-C-aminopropyl-2′-O-methylnucleosides (A, adenosine; U, uridine; G, guanosine; and C, cytidine)
Islam et al. Bridged Nucleic Acids for Therapeutic Oligonucleotides
WO2010072146A1 (en) Isonucleoside compound, its preparation method and modified oligonucleotide
WO2024112877A1 (en) Methods of synthesizing a targeting ligand-conjugated nucleotide phosphoramidite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees