JP2008093800A - Surface coated cemented carbide end mill for rapid feed cutting - Google Patents

Surface coated cemented carbide end mill for rapid feed cutting Download PDF

Info

Publication number
JP2008093800A
JP2008093800A JP2006280141A JP2006280141A JP2008093800A JP 2008093800 A JP2008093800 A JP 2008093800A JP 2006280141 A JP2006280141 A JP 2006280141A JP 2006280141 A JP2006280141 A JP 2006280141A JP 2008093800 A JP2008093800 A JP 2008093800A
Authority
JP
Japan
Prior art keywords
cutting
cemented carbide
end mill
cutting edge
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280141A
Other languages
Japanese (ja)
Other versions
JP5058553B2 (en
Inventor
Minoru Fukunaga
稔 福永
Bunichi Shirase
文一 白瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006280141A priority Critical patent/JP5058553B2/en
Publication of JP2008093800A publication Critical patent/JP2008093800A/en
Application granted granted Critical
Publication of JP5058553B2 publication Critical patent/JP5058553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To more surely restrain chipping of a cutting blade even when the blade is used for rapid-feed cutting. <P>SOLUTION: This surface coated cemented carbide end mill has a cutting blade part made of a tungsten carbide base cemented carbide whose main binder phase is Co, and a hard coating is coated on the surface of the cutting blade. Coercive force Hc(kA/m) of the tungsten carbide base cemented carbide is made to 16.0≤Hc≤34.0, and heat conductivity λ(W/mK) is made to 120-2Hc≤λ≤120. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特に高送り加工に用いて好適な高送り切削用表面被覆超硬合金製エンドミルに関するものである。   The present invention relates to a surface-coated cemented carbide end mill for high-feed cutting that is particularly suitable for high-feed machining.

金型などの切削加工には、Coを主な結合相とする炭化タングステン(WC)基の超硬合金よりなるエンドミルが用いられている。このようなエンドミルとしては、軸線回りに回転される外形略円柱状のエンドミル本体の先端部が切刃部とされ、この切刃部の外周に形成された切屑排出溝の回転方向を向く壁面の辺稜部に切刃が形成された、いわゆるソリッドのエンドミルが、例えば特許文献1などを初めとして多く提案されている。また、このような超硬合金よりなるエンドミル本体の表面にTiの炭化物、窒化物、炭窒化物、TiとAlの複合炭化物、複合窒化物、複合炭窒化物、TiとAlとSiとの複合窒化物などの硬質皮膜を被覆した表面被覆超硬合金製エンドミルも、例えば特許文献2などを初めとして多数提案されている。
特開2005−246492号公報 特開2004−174616号公報
An end mill made of a tungsten carbide (WC) -based cemented carbide having Co as a main binder phase is used for cutting of a mold or the like. As such an end mill, the end portion of an end mill body having an outer shape that is rotated around an axis is a cutting edge portion, and a wall surface that faces the rotation direction of a chip discharge groove formed on the outer periphery of the cutting edge portion. Many so-called solid end mills in which cutting edges are formed at the side ridges have been proposed, for example, starting from Patent Document 1. Also, Ti carbide, nitride, carbonitride, composite carbide of Ti and Al, composite nitride, composite carbonitride, composite of Ti, Al and Si on the surface of the end mill body made of such a cemented carbide A number of surface-coated cemented carbide end mills coated with a hard film such as nitride have been proposed, for example, starting from Patent Document 2.
JP 2005-246492 A JP 2004-174616 A

ところで、近年、上述した金型などの切削加工においては高能率加工に対する要求が強くなってきており、特にエンドミルの送り速度を高めて高能率切削を行う、いわゆる高送り切削が多用されるようになっている。ところが、このような高送り切削用エンドミルでは当然にエンドミル本体に対する負担が大きく、特に切刃に欠損が生じ易いという問題がある。   By the way, in recent years, there has been a strong demand for high-efficiency machining in the above-described cutting of molds, and so-called high-feed cutting, in which high-efficiency cutting is performed by increasing the feed rate of the end mill, is often used. It has become. However, such a high-feed cutting end mill naturally has a large burden on the end mill body, and there is a problem that the cutting edge is particularly likely to be damaged.

ここで、上記特許文献1記載のエンドミルでは、上記切刃のうち外周刃と底刃とが交差するコーナ刃をエンドミル本体の先端外周側に凸となるように湾曲させたラジアスエンドミルにおいて、このコーナ刃の逃げ角を外周刃の先端から底刃の外周端に向けて漸次減少させることにより、切刃強度を確保して高送り切削でも切刃に欠けやチッピングを生じることがないようにしている。一方、特許文献2記載のエンドミルでは、エンドミル本体を形成する超硬合金において結合相となるCoが微細Co粒分散組織となるようにして強靱性をもたせ、高送り切削条件で発生する強い機械的衝撃にも切刃にチッピングが発生するのを防いでいる。   Here, in the end mill described in Patent Document 1, a radius end mill in which a corner blade of which the outer peripheral blade and the bottom blade intersect among the cutting blades is curved so as to protrude toward the outer peripheral end of the end mill body is used. By gradually reducing the clearance angle of the blade from the tip of the outer peripheral blade toward the outer peripheral end of the bottom blade, the cutting blade strength is ensured so that the cutting blade will not be chipped or chipped even in high feed cutting. . On the other hand, in the end mill described in Patent Document 2, the cemented carbide forming the end mill body has toughness so that Co, which is a binder phase, becomes a fine Co grain dispersed structure, and is a strong mechanical component that is generated under high feed cutting conditions. Chipping is also prevented from occurring on the cutting edge due to impact.

しかしながら、特許文献1のように切刃部の形状を改良したり、あるいは特許文献2のようにエンドミル本体を形成する超硬合金の組織を制御したりしたエンドミルでも、高硬度の被削材をより高い送り速度で高送り切削する場合には、切刃の欠損を十分に抑制することは困難であった。そこで、本発明は、このような高送り切削に使用しても、切刃の欠損をより確実に抑制することが可能な高送り切削用表面被覆超硬合金製エンドミルを提供することを目的としている。   However, even with an end mill in which the shape of the cutting edge is improved as in Patent Document 1 or the structure of the cemented carbide forming the end mill body is controlled as in Patent Document 2, a high-hardness work material can be obtained. In the case of high feed cutting at a higher feed rate, it has been difficult to sufficiently suppress chipping of the cutting edge. Accordingly, an object of the present invention is to provide a surface coated cemented carbide end mill for high feed cutting that can more reliably suppress chipping of the cutting edge even when used in such high feed cutting. Yes.

ここで、超硬合金製エンドミルの耐欠損性を高めるためには、一般的にはCo量を増加させて靱性を高めることが考えられる。ただし、Co量を増加させると超硬合金の硬度が低下し、耐摩耗性も低下するため、超硬合金におけるWC粒径を微粒化することにより硬度を高めることが考えられる。   Here, in order to increase the fracture resistance of the cemented carbide end mill, it is generally considered that the toughness is increased by increasing the amount of Co. However, if the amount of Co is increased, the hardness of the cemented carbide decreases and the wear resistance also decreases. Therefore, it is conceivable to increase the hardness by atomizing the WC grain size in the cemented carbide.

一方、本発明の発明者がこうしてCo量を増加させるとともにWC粒径を微粒化した種々の超硬合金製エンドミルによって様々な条件で高送り切削試験を重ねたところ、切刃にかなりの発熱が発生していることが認められた。そこで、本発明の発明者は、これらCo量およびWC粒径との関係で、超硬合金の母材が熱的損傷を受けることが高送り切削における切刃の欠損の要因となるのではないかと考え、エンドミル本体を形成する超硬合金について、そのWC粒径や主な結合相となるCo量、あるいは粒成長抑制剤の種類や量についてさらに様々な実験を行った結果、炭化タングステン基超硬合金においてこれらWC粒径およびCo量と関係する抗磁力と熱的損傷に関係する熱伝導度とが所定の範囲で特定の関係にあるときには、より送り速度の高い高送り切削の条件下でも優れた耐欠損性を発揮することができるという知見を得るに至った。   On the other hand, when the inventors of the present invention repeated high-feed cutting tests under various conditions using various cemented carbide end mills with increased Co content and WC grain size in this way, considerable heat was generated at the cutting edge. It was observed that it occurred. Therefore, the inventors of the present invention do not cause a cutting edge defect in high-feed cutting due to thermal damage to the base material of the cemented carbide in relation to these Co amount and WC grain size. As a result of conducting various experiments on the cemented carbide forming the end mill body, the WC grain size, the amount of Co as the main binder phase, and the type and amount of the grain growth inhibitor, When the coercive force related to the WC grain size and Co content and the thermal conductivity related to thermal damage have a specific relationship within a predetermined range in a hard alloy, even under conditions of high feed cutting with a higher feed rate It came to the knowledge that the outstanding defect resistance could be exhibited.

本発明は、このような知見に基づいてなされたもので、Coを主な結合相とする炭化タングステン基超硬合金よりなる切刃部を有し、該切刃部の表面に硬質皮膜が被覆された表面被覆超硬合金製エンドミルであって、上記炭化タングステン基超硬合金における抗磁力Hc(kA/m)が16.0≦Hc≦34.0の範囲であり、かつ熱伝導度λ(W/m・K)が120−2Hc≦λ≦120の範囲であることを特徴とする。   The present invention has been made based on such knowledge, and has a cutting edge portion made of a tungsten carbide-based cemented carbide containing Co as a main binder phase, and the surface of the cutting edge portion is covered with a hard film. A surface-coated cemented carbide end mill, wherein the coercive force Hc (kA / m) in the tungsten carbide-based cemented carbide is in the range of 16.0 ≦ Hc ≦ 34.0, and the thermal conductivity λ ( W / m · K) is in the range of 120−2Hc ≦ λ ≦ 120.

ここで、炭化タングステン基超硬合金における抗磁力は、結合相であるCoの磁気特性に基づくものであり、Co量が同じであればWC粒径が小さいほど、すなわち超硬合金の硬度が高いほど個々のCoの磁区が細かく分割されてその数が多くなり、抗磁力も大きくなる。従って、エンドミル本体を形成する超硬合金の抗磁力が高くなると、硬度も増大して切刃の耐欠損性は向上するのであるが、この抗磁力が大きくなりすぎると、WC粒径が微粒化されすぎたり、あるいはCo量が少なすぎたりすることになり、エンドミル本体の靱性が不足して却って工具寿命を短縮することになるので、本発明ではこの抗磁力Hc(kA/m)を16.0≦Hc≦34.0の範囲としている。ちなみに、抗磁力Hc(kA/m)が16.0未満であると硬度が不十分で耐摩耗性が不足し、高送り切削を行うことはできない。   Here, the coercive force in the tungsten carbide-based cemented carbide is based on the magnetic properties of Co, which is the binder phase, and the smaller the WC grain size, that is, the higher the hardness of the cemented carbide, if the amount of Co is the same. As the individual Co magnetic domains are finely divided, the number thereof increases and the coercive force also increases. Therefore, when the coercive force of the cemented carbide forming the end mill body is increased, the hardness is also increased and the fracture resistance of the cutting edge is improved. However, if this coercive force is increased too much, the WC particle size is reduced. In other words, the coercive force Hc (kA / m) is set to 16. In the present invention, the coercive force Hc (kA / m) is reduced to 16. The range is 0 ≦ Hc ≦ 34.0. Incidentally, if the coercive force Hc (kA / m) is less than 16.0, the hardness is insufficient and the wear resistance is insufficient, and high-feed cutting cannot be performed.

一方、本発明の発明者による上記実験によると、超硬合金の熱伝導度は抗磁力が高くなるほど略これに比例して低下する傾向にあり、抗磁力が上記範囲内であっても抗磁力に対して熱伝導度が特定の範囲内でなければ、高送り切削条件下では切刃に発生した切削熱が発散されずに、超硬合金の硬度の向上による切刃の耐欠損性を熱的損傷が上回ってしまい、欠損を十分に抑制できないことが分かった。そこで、本発明では抗磁力Hc(kA/m)に対して熱伝導度λ(W/m・K)を120−2Hc≦λの範囲としており、これにより切刃の硬度、強度と熱伝導性、熱発散性とを調和させて欠損の発生を効果的に抑制することが可能となる。ただし、この熱伝導度が高すぎるとやはりCo量が少なくなりすぎることになって靱性の不足を招くため、本発明ではこの熱伝導度λ(W/m・K)の上限を120としている。   On the other hand, according to the above experiment by the inventor of the present invention, the thermal conductivity of the cemented carbide has a tendency to decrease in proportion to the higher the coercive force. On the other hand, if the thermal conductivity is not within a specific range, the cutting heat generated in the cutting edge is not dissipated under high feed cutting conditions, and the cutting edge resistance of the cutting edge is increased by improving the hardness of the cemented carbide. It was found that the damage was excessive and the defect could not be suppressed sufficiently. Therefore, in the present invention, the thermal conductivity λ (W / m · K) with respect to the coercive force Hc (kA / m) is in the range of 120−2Hc ≦ λ, whereby the hardness, strength and thermal conductivity of the cutting edge are set. In addition, it is possible to effectively suppress the occurrence of defects by harmonizing with the heat dissipating property. However, if the thermal conductivity is too high, the amount of Co is too small and the toughness is insufficient. Therefore, in the present invention, the upper limit of the thermal conductivity λ (W / m · K) is set to 120.

なお、エンドミル本体は、切刃が形成されるその先端側の切刃部が少なくともこのような炭化タングステン基超硬合金により形成されていればよく、従って後端側のシャンク部等を含めてエンドミル本体全体がかかる炭化タングステン基超硬合金によって形成されていても勿論構わない。また、このような表面被覆超硬合金製エンドミルによる高送り切削としては、例えば35〜55HRC程度の硬さを有する鉄鋼材料を被削材とした場合に、切刃の外径(直径)Dが3mm以上のときには切刃1刃当たりの送り量が0.3mm/刃以上の送り速度、切刃の外径(直径)Dが3mm未満のときには同じく切刃1刃当たりの送り量がこの外径D(mm)に対して0.05×D/刃以上の送り速度となるような切削条件である。   The end mill main body only needs to be formed of at least the tungsten carbide base cemented carbide on the tip side where the cutting edge is formed, and therefore includes the shank portion on the rear end side. Of course, the entire body may be formed of such a tungsten carbide base cemented carbide. Moreover, as high feed cutting by such a surface-coated cemented carbide end mill, for example, when a steel material having a hardness of about 35 to 55 HRC is used as a work material, the outer diameter (diameter) D of the cutting edge is When it is 3 mm or more, the feed rate per cutting edge is 0.3 mm / feed rate or more, and when the outer diameter (diameter) D of the cutting edge is less than 3 mm, the feed amount per cutting edge is also this outer diameter. The cutting conditions are such that the feed rate is 0.05 × D / tooth or more with respect to D (mm).

一方、超硬合金製エンドミルの切刃部の表面に被覆される硬質皮膜は、切刃の耐摩耗性を高めるとともに耐熱性および耐酸化性を改善することにより切刃の損傷を抑制し、耐欠損性を向上させるものであるが、このような硬質皮膜としては、Al、Si、Ti、V、Crのうちの1種または複数種の元素の窒化物または炭窒化物よりなる皮膜を、単層で、または複数層積層されて被覆されたものとすることが、切刃の耐欠損性を一層向上させるうえで望ましい。さらにまた、こうして硬質皮膜が被覆される上記切刃部の切刃にホーニング幅が5〜30μmのホーニング処理を施すことにより、さらに一層の耐欠損性の向上を図ることができる。   On the other hand, the hard coating coated on the surface of the cutting edge of the cemented carbide end mill increases the wear resistance of the cutting edge and improves heat resistance and oxidation resistance, thereby suppressing damage to the cutting edge and improving resistance. As such a hard film, a film made of a nitride or carbonitride of one or more elements of Al, Si, Ti, V, and Cr is used as such a hard film. In order to further improve the chipping resistance of the cutting blade, it is desirable that the layer is coated with a plurality of layers or a plurality of layers. Furthermore, the fracturing resistance can be further improved by applying a honing treatment with a honing width of 5 to 30 μm to the cutting edge of the above-mentioned cutting edge portion coated with the hard coating.

以上説明したように、本発明によれば、エンドミル本体の切刃部を、所定の範囲の抗磁力と、これと特定の範囲の関係の熱伝導度とを有する炭化タングステン基超硬合金によって形成することにより、切刃の硬度および強度と切刃部の熱伝導性すなわち切削熱の発散性とをバランスさせて、確実かつ効果的に切刃の耐欠損性の向上を図ることができる。従って、被削材が高硬度であってもより高い送り速度で切削加工を行うことができ、近年の金型などの切削加工における高能率加工に対する要求をも十分に満足し得る高送り切削用表面被覆超硬合金製エンドミルを提供することが可能となる。   As described above, according to the present invention, the cutting edge portion of the end mill body is formed of a tungsten carbide base cemented carbide having a predetermined range of coercive force and a specific range of thermal conductivity. By doing so, it is possible to balance the hardness and strength of the cutting edge with the thermal conductivity of the cutting edge, that is, the radiating property of the cutting heat, and to improve the chipping resistance of the cutting edge reliably and effectively. Therefore, even if the work material is high hardness, it is possible to perform cutting at a higher feed rate, and for high-feed cutting that can fully satisfy the demands for high-efficiency machining in cutting such as dies in recent years. It becomes possible to provide a surface-coated cemented carbide end mill.

以下、本発明の実施の形態について、具体的な実施例に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on specific examples.

本実施例では、原料粉末として平均粒径がそれぞれ0.3〜1.5μmのWC粉末、1.1μmのVC粉末、1.3μmのCr粉末、0.9μmのTaC粉末、および1.3μmのCo粉末を用いて、これらを次表1にそれぞれ示す配合組成で適宜配合した。ただし、この表1の配合組成における残部はWCである。 In this example, WC powder having an average particle size of 0.3 to 1.5 μm, 1.1 μm VC powder, 1.3 μm Cr 3 C 2 powder, 0.9 μm TaC powder, and 1 as raw material powders, respectively These were appropriately blended with the blending composition shown in Table 1 below using .3 μm Co powder. However, the balance in the blend composition of Table 1 is WC.

そして、こうして配合した原料粉末それぞれを、アトライタにてアルコールを溶媒として原料粉末に対し1質量%のパラフィンワックスを加えて8時間混合し、混合後乾燥して得られた粉末を金型に充填して100MPaの圧力で所定の寸法の丸棒成形体にプレス成形し、次いで脱ワックス処理した後、1.3Paの真空中で1350〜1450℃に加熱昇温して1時間保持することにより焼結処理し、さらにこの焼結温度のままArを導入して雰囲気圧力を6MPaまで加圧した状態で1時間保持してHIP処理を施すことにより、表1に基体記号A〜Lで示す10種の丸棒状の超硬合金素材を得た。これらの素材の抗磁力および熱伝導度を測定した結果を、表1に合わせて示すとともに、その関係について図1に示す。なお、表1には、測定された抗磁力Hc(kA/m)に対する120−2Hcの値も合わせて示してある。また、この図1における符号Sの直線は、抗磁力Hc(kA/m)に対して熱伝導度λ(W/m・K)が120−2Hc=λの関係である場合を示している。   Each raw material powder thus blended is mixed with an attritor using alcohol as a solvent and 1% by weight of paraffin wax with respect to the raw material powder for 8 hours. After mixing, the resulting powder is filled into a mold. After press-molding into a round bar molded body of a predetermined size at a pressure of 100 MPa, dewaxing treatment, the temperature is raised to 1350-1450 ° C. in a vacuum of 1.3 Pa and sintered for 1 hour. Further, Ar was introduced at this sintering temperature, and the atmosphere pressure was increased to 6 MPa and held for 1 hour to perform HIP treatment. A round bar-shaped cemented carbide material was obtained. The results of measuring the coercive force and thermal conductivity of these materials are shown in Table 1 and the relationship is shown in FIG. In Table 1, the value of 120-2Hc with respect to the measured coercive force Hc (kA / m) is also shown. Further, the straight line S in FIG. 1 indicates a case where the thermal conductivity λ (W / m · K) is 120−2Hc = λ with respect to the coercive force Hc (kA / m).

Figure 2008093800
Figure 2008093800

こうして得られた基体記号A〜Lの丸棒状超硬合金素材に対し、それぞれ研削加工によってその先端部に切屑排出溝を形成して切刃を研ぎ付けることにより、次表2に工具番号1〜12で示す同形同大の12種の2枚刃ボールエンドミルを製造した。なお、これらのボールエンドミルは、切刃の外径(直径)Dが6mmで、底刃R半径は3mmであり、切刃にはホーニング幅が5μmのホーニング処理を施した。さらに、これらのボールエンドミルの切刃部表面に、表2に組成と層厚をそれぞれ示す各硬質被覆層よりなる硬質皮膜をアークイオンプレーティング法によって被覆し、本発明に係わる実施例の表面被覆超硬合金製エンドミル(工具番号1〜6)と、これに対する比較例の表面被覆超硬合金製エンドミル(工具番号7〜12)を製造した。   The round bar-shaped cemented carbide materials of the base symbols A to L thus obtained were each ground to form a chip discharge groove at the tip and sharpen the cutting edge. 12 types of two-blade ball end mills of the same shape and size indicated by 12 were produced. In these ball end mills, the outer diameter (diameter) D of the cutting edge was 6 mm, the radius of the bottom edge R was 3 mm, and the honing treatment was performed on the cutting edge with a honing width of 5 μm. Further, the surface of the cutting edge portion of these ball end mills was coated with a hard coating composed of each hard coating layer having the composition and layer thickness shown in Table 2 by the arc ion plating method. A cemented carbide end mill (tool numbers 1 to 6) and a comparative surface-coated cemented carbide end mill (tool numbers 7 to 12) were manufactured.

Figure 2008093800
Figure 2008093800

そして、これら実施例と比較例の表面被覆超硬合金製エンドミルにより、
被削材:SKD61(硬さ52HRC)、
エンドミル回転速度:16000min−1
送り速度:9600mm/min(1刃当たりの送り量0.3mm)、
切り込み量:軸方向0.3mm、ピックフィード1.8mm、
切削方式:ダウンカット、
冷却方式:エアブロー、
エンドミル突き出し長さ:21mm、
切削長:200m、
の切削条件で第1の切削試験を行い、切削長50mごとに切刃の損傷を観察して、0.2mmを越える摩耗幅の逃げ面摩耗が確認された場合、または0.2mmを越える大きさの欠損が切刃に発生した場合を寿命として、エンドミル寿命を判別した。この切削試験結果を表2に合わせて示す。
And by the surface-coated cemented carbide end mill of these examples and comparative examples,
Work material: SKD61 (hardness 52HRC),
End mill rotational speed: 16000 min −1
Feed rate: 9600 mm / min (feed amount per blade 0.3 mm),
Cutting depth: axial direction 0.3 mm, pick feed 1.8 mm,
Cutting method: down cut,
Cooling method: air blow,
End mill protrusion length: 21mm,
Cutting length: 200m,
The first cutting test was performed under the above cutting conditions, and the cutting edge was observed for every 50 m of cutting length, and flank wear with a wear width exceeding 0.2 mm was confirmed, or the size exceeding 0.2 mm The life of the end mill was determined by assuming the case where a defect in thickness occurred in the cutting edge as the life. The cutting test results are shown in Table 2.

従って、この表2の切削試験結果より、本発明に係わる実施例の工具番号1〜6のボールエンドミルでは切削長200m切削完了時でも寿命には達しておらず、すなわち0.2mmを越えるような逃げ面摩耗や切刃の欠損は認められていなかったのに対し、同じ硬質皮膜を被覆した比較例の工具番号7〜12のボールエンドミルでは、いずれも切削長200mmに達する前に欠損や摩耗により寿命となってしまった。このうち、抗磁力Hc(kA/m)が34.0を上回る基体記号Gよりなる超硬合金素材から製造された工具番号7のボールエンドミルでは切刃の靱性が乏しいために欠損が生じて寿命に達してしまい、逆に抗磁力Hc(kA/m)が16.0を下回る基体記号Iの超硬合金素材から製造された工具番号9のボールエンドミルでは耐摩耗性不足のため逃げ面摩耗の増大により寿命に達していた。一方、抗磁力Hc(kA/m)が16.0≦Hc≦34.0の範囲であっても、熱伝導度λ(W/m・K)が120−2Hcを下回る基体記号H,J,K,Lの超硬合金素材から形成された工具番号8,10,11,12のボールエンドミルでは、いずれも切刃の欠損により工具番号7,9のボールエンドミルよりも早期に寿命が費えていた。   Accordingly, from the results of the cutting test shown in Table 2, the ball end mills having the tool numbers 1 to 6 according to the embodiments of the present invention do not reach the end of their life even when the cutting length is 200 m, that is, exceeds 0.2 mm. While flank wear and cutting edge defects were not observed, the ball end mills of comparative tool numbers 7 to 12 coated with the same hard coating were all damaged and worn before reaching the cutting length of 200 mm. It has become a lifetime. Among these, the ball end mill of the tool number 7 manufactured from the cemented carbide material made of the base symbol G having a coercive force Hc (kA / m) exceeding 34.0 has a shortage due to a lack of toughness of the cutting edge. On the contrary, the ball end mill of the tool number 9 manufactured from the cemented carbide material of the base symbol I whose coercive force Hc (kA / m) is less than 16.0 has flank wear due to insufficient wear resistance. Life has been reached due to the increase. On the other hand, even if the coercive force Hc (kA / m) is in the range of 16.0 ≦ Hc ≦ 34.0, the base symbols H, J, and B having a thermal conductivity λ (W / m · K) lower than 120-2Hc. In the ball end mills of tool numbers 8, 10, 11, and 12 formed of K and L cemented carbide materials, the life was expedited earlier than the ball end mills of tool numbers 7 and 9 due to the missing cutting edge. .

次に、表1に示した基体記号A〜Lの超硬合金素材から、研削加工により次表3に示す切刃外径D(直径)、底刃R半径、および切刃ホーニング量の工具番号13〜22の2枚刃ボールエンドミルを製造した。なお、これらのボールエンドミルにおいては、切刃部の表面に層厚が3μmの単層の(Al,Ti)N硬質被覆層よりなる硬質皮膜をアークイオンプレーティング法によって被覆した。従って、これらのボールエンドミルのうち、工具番号13,15〜17,19,21が本発明に係わる実施例の表面被覆超硬合金製エンドミルとなり、残りの工具番号14,18,20がこれに対する比較例となる。ただし、実施例のうちでも工具番号13のエンドミルはホーニング量が30μmを越える32μmであり、工具番号16のエンドミルはホーニング量が5μmを下回る2μmとされている。   Next, the tool numbers of the cutting edge outer diameter D (diameter), bottom cutting edge R radius, and cutting edge honing amount shown in the following table 3 are obtained by grinding from the cemented carbide materials of the base symbols A to L shown in Table 1. 13 to 22 2-blade ball end mills were produced. In these ball end mills, a hard film made of a single (Al, Ti) N hard coating layer having a layer thickness of 3 μm was coated on the surface of the cutting edge portion by an arc ion plating method. Accordingly, of these ball end mills, tool numbers 13, 15-17, 19, and 21 are the surface-coated cemented carbide end mills of the examples according to the present invention, and the remaining tool numbers 14, 18, and 20 are compared with this. An example. However, among the examples, the end mill with the tool number 13 has a honing amount of 32 μm exceeding 30 μm, and the end mill with the tool number 16 has a honing amount of 2 μm less than 5 μm.

Figure 2008093800
Figure 2008093800

そして、こうして得られた表面被覆超硬合金製エンドミルについて、工具番号13,14のものに対しては表4の切削条件アに基づき、工具番号15〜18のものに対しては表4の切削条件イに基づき、工具番号19,20のものに対しては表4の切削条件ウに基づき、工具番号21,22のものに対しては表4の切削条件エに基づき、それぞれ切削長5mとして第2の切削試験を行い、その際の工具寿命を第1の切削試験の場合と同様の評価で判別した。この切削試験結果を、工具番号13,14のものについては表5に、工具番号15〜18のものについては表6に、工具番号19,20のものについては表7に、工具番号21,22のものについては表8に、それぞれ送り速度(1刃当たりの送り量)とともに示す。   The surface-coated cemented carbide end mill thus obtained is based on the cutting conditions in Table 4 for tools Nos. 13 and 14, and the cutting in Table 4 for tools Nos. 15 to 18. Based on the condition (a), the tool lengths 19 and 20 are based on the cutting conditions in Table 4, and the tool numbers 21 and 22 are based on the cutting conditions in Table 4 and the cutting length is 5 m. A second cutting test was performed, and the tool life at that time was determined by the same evaluation as in the first cutting test. The cutting test results are shown in Table 5 for tool numbers 13 and 14, Table 6 for tool numbers 15 to 18, Table 7 for tool numbers 19 and 20, and tool numbers 21 and 22. Are shown together with the feed rate (feed amount per tooth) in Table 8.

Figure 2008093800
Figure 2008093800

Figure 2008093800
Figure 2008093800

Figure 2008093800
Figure 2008093800

Figure 2008093800
Figure 2008093800

Figure 2008093800
Figure 2008093800

ただし、この第2の切削試験においては、工具番号13〜22の表面被覆超硬合金製エンドミルをそれぞれ3本ずつ用意して同一の各条件に基づいて3回の試験を行い、しかも切削長5mの切削試験を終了した時点で寿命と判定されていない場合には、次に1刃当たりの送り量を表5〜8に示したように順次増大させるようにして同じく切削長5mの切削試験を行い、こうしてすべてのエンドミルが寿命に達するまで切削試験を行った。表5〜8において○印は寿命に達していないことを示し、×印はそのときの送り速度(1刃当たりの送り量)で寿命に達したことを示しており、−印になっているのはその前の切削で寿命に達していることを示している。   However, in this second cutting test, three surface-coated cemented carbide end mills with tool numbers 13 to 22 were prepared and tested three times under the same conditions, and the cutting length was 5 m. If the life is not determined at the time when the cutting test is completed, the cutting test with the cutting length of 5 m is performed by successively increasing the feed amount per blade as shown in Tables 5 to 8. Thus, cutting tests were conducted until all end mills reached the end of their lives. In Tables 5 to 8, a circle indicates that the life has not been reached, and a cross indicates that the life has been reached at the feed speed (feed amount per tooth) at that time, and is marked with-. Indicates that the previous cutting has reached the end of its life.

これら表5〜8の切削試験結果より、まず表5によれば、本発明に係わる実施例の工具番号13のエンドミルの方が、比較例となる工具番号14のエンドミルに比べて寿命が長く、しかも1刃当たりの送り量が大きい高送り切削となっても高い耐欠損性、耐摩耗性が発揮されているのが分かる。また、表6の結果からも、同様に本発明に係わる実施例の工具番号15〜17のエンドミルの方が、比較例となる工具番号18のエンドミルに比べて寿命が長いことが明らかであるが、これら実施例のうちでもホーニング量(ホーニング幅)が5〜30μmの範囲とされた工具番号15,17のエンドミルの方が、この範囲よりも小さなホーニング量とされた工具番号16のエンドミルよりも長寿命であった。さらに、こうして本発明に係わる実施例のエンドミルの方が長寿命であることは、表7,8に示したように切刃の外径(直径)が4mmや1mmの小径のエンドミルにおいても共通するものであった。   From the cutting test results in Tables 5 to 8, first, according to Table 5, the end mill of the tool number 13 of the example according to the present invention has a longer life than the end mill of the tool number 14 of the comparative example, Moreover, it can be seen that high chipping resistance and wear resistance are exhibited even with high feed cutting with a large feed amount per tooth. Also, from the results in Table 6, it is apparent that the end mills of the tool numbers 15 to 17 of the examples according to the present invention have a longer life than the end mill of the tool number 18 of the comparative example. In these examples, the end mills with tool numbers 15 and 17 in which the honing amount (honing width) is in the range of 5 to 30 μm are more than the end mills in tool number 16 in which the honing amount is smaller than this range. Long life. Further, the end mill of the embodiment according to the present invention has a longer life as described above, and is common to end mills having a small outer diameter (diameter) of 4 mm or 1 mm as shown in Tables 7 and 8. It was a thing.

本発明の実施の形態における実施例と比較例に係わる超硬合金素材の抗磁力と熱伝導度との関係を示す図である。It is a figure which shows the relationship between the coercive force and thermal conductivity of the cemented carbide material concerning the Example and comparative example in embodiment of this invention.

符号の説明Explanation of symbols

S 抗磁力Hc(kA/m)に対して熱伝導度λ(W/m・K)が120−2Hc=λの関係である場合を示す直線   S A straight line showing a case where the thermal conductivity λ (W / m · K) is 120−2Hc = λ with respect to the coercive force Hc (kA / m).

Claims (3)

Coを主な結合相とする炭化タングステン基超硬合金よりなる切刃部を有し、該切刃部の表面に硬質皮膜が被覆された高送り切削用表面被覆超硬合金製エンドミルであって、
上記炭化タングステン基超硬合金における抗磁力Hc(kA/m)が
16.0≦Hc≦34.0
の範囲であり、かつ熱伝導度λ(W/m・K)が
120−2Hc≦λ≦120
の範囲であることを特徴とする高送り切削用表面被覆超硬合金製エンドミル。
A surface-coated cemented carbide end mill for high-feed cutting, having a cutting edge portion made of a tungsten carbide-based cemented carbide with Co as the main binder phase, and having a hard coating coated on the surface of the cutting edge portion. ,
The coercive force Hc (kA / m) in the tungsten carbide-based cemented carbide is
16.0 ≦ Hc ≦ 34.0
And the thermal conductivity λ (W / m · K) is
120-2Hc ≦ λ ≦ 120
A surface-coated cemented carbide end mill for high-feed cutting, characterized in that
上記硬質皮膜は、Al、Si、Ti、V、Crのうちの1種または複数種の元素の窒化物または炭窒化物よりなる皮膜が、単層で、または複数層積層されて被覆されたものであることを特徴とする請求項1に記載の高送り切削用表面被覆超硬合金製エンドミル。   The hard coating is a coating made of a nitride or carbonitride of one or more elements of Al, Si, Ti, V, and Cr, which is a single layer or a laminate of multiple layers. The surface-coated cemented carbide end mill for high-feed cutting according to claim 1, wherein the end mill is made of high-feed cutting. 上記切刃部の切刃にホーニング幅が5〜30μmのホーニング処理が施されていることを特徴とする請求項1または請求項2に記載の高送り切削用表面被覆超硬合金製エンドミル。   3. The surface coated cemented carbide end mill for high feed cutting according to claim 1 or 2, wherein a honing treatment having a honing width of 5 to 30 [mu] m is applied to the cutting edge of the cutting edge portion.
JP2006280141A 2006-10-13 2006-10-13 Manufacturing method of surface coated cemented carbide end mill for high feed cutting Active JP5058553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280141A JP5058553B2 (en) 2006-10-13 2006-10-13 Manufacturing method of surface coated cemented carbide end mill for high feed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280141A JP5058553B2 (en) 2006-10-13 2006-10-13 Manufacturing method of surface coated cemented carbide end mill for high feed cutting

Publications (2)

Publication Number Publication Date
JP2008093800A true JP2008093800A (en) 2008-04-24
JP5058553B2 JP5058553B2 (en) 2012-10-24

Family

ID=39377189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280141A Active JP5058553B2 (en) 2006-10-13 2006-10-13 Manufacturing method of surface coated cemented carbide end mill for high feed cutting

Country Status (1)

Country Link
JP (1) JP5058553B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288509A (en) * 1985-10-11 1987-04-23 Hitachi Carbide Tools Ltd Surface coated cemented carbide end mill
JP2005212025A (en) * 2004-01-29 2005-08-11 Sumitomo Electric Hardmetal Corp Surface-coated tool
WO2006104004A1 (en) * 2005-03-28 2006-10-05 Kyocera Corporation Super hard alloy and cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6288509A (en) * 1985-10-11 1987-04-23 Hitachi Carbide Tools Ltd Surface coated cemented carbide end mill
JP2005212025A (en) * 2004-01-29 2005-08-11 Sumitomo Electric Hardmetal Corp Surface-coated tool
WO2006104004A1 (en) * 2005-03-28 2006-10-05 Kyocera Corporation Super hard alloy and cutting tool

Also Published As

Publication number Publication date
JP5058553B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
CN105154744B (en) Cemented carbide and cutting tool using the same
JP5902613B2 (en) Cemented carbide tool
JP5732663B2 (en) Cubic boron nitride sintered tool
JP5454678B2 (en) Cermet and coated cermet
JP6330387B2 (en) Sintered body and manufacturing method thereof
EP3130686B1 (en) Cermet and cutting tool
JP5559575B2 (en) Cermet and coated cermet
JP2017088917A (en) Hard metal alloy and cutting tool
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JP2007092090A (en) Wc-based cemented carbide member
JP2006239792A (en) Hard film coated cemented carbide member
JP5312095B2 (en) Cutting tools
JP5058553B2 (en) Manufacturing method of surface coated cemented carbide end mill for high feed cutting
JPH05320913A (en) Surface coating cutting tool
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP6380016B2 (en) Cermet tools and coated cermet tools
JPH09207008A (en) Wc group cemented carbide alloy tip for cutting ultra heat resistant alloy
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP7216915B2 (en) Diamond-coated cemented carbide tools
JP2017159423A (en) Surface coated cutting tool having excellent chipping resistance and wear resistance
JP3618183B2 (en) Cemented carbide end mill for cutting hard materials
JPH04152004A (en) Cutting tool
JP2009167458A (en) Surface-coated cutting tool made from wc-base hard metal superior in chipping resistance
JPWO2019116614A1 (en) Cemented carbide and cutting tools
JP2006137623A (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5058553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150