JP2008093082A - Warmed toilet seat - Google Patents

Warmed toilet seat Download PDF

Info

Publication number
JP2008093082A
JP2008093082A JP2006276212A JP2006276212A JP2008093082A JP 2008093082 A JP2008093082 A JP 2008093082A JP 2006276212 A JP2006276212 A JP 2006276212A JP 2006276212 A JP2006276212 A JP 2006276212A JP 2008093082 A JP2008093082 A JP 2008093082A
Authority
JP
Japan
Prior art keywords
power supply
toilet seat
supply circuit
heater
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006276212A
Other languages
Japanese (ja)
Other versions
JP4797922B2 (en
Inventor
Takashi Niwa
孝 丹羽
Hideki Yamakawa
秀樹 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006276212A priority Critical patent/JP4797922B2/en
Publication of JP2008093082A publication Critical patent/JP2008093082A/en
Application granted granted Critical
Publication of JP4797922B2 publication Critical patent/JP4797922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toilet Supplies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a warmed toilet seat which can be warmed up instantly and causes no noise disturbance at the warm-up time. <P>SOLUTION: This warmed toilet seat includes an AC power supply circuit which switches on and off according to a triac 8, and a low-voltage power supply circuit 11 for supplying lower-voltage power than the AC power supply circuit. At the instant warm-up time when a toilet seat 2 is quickly warmed up, electric power is supplied to a highly-resistant temperature characteristic heater 5 from the AC power supply circuit, while at the heat-retention time when the toilet seat 2 is kept at a prescribed temperature after reaching a certain temperature, electric power is supplied to the highly-resistant temperature characteristic heater 5 from the low-voltage power supply circuit 11. Therefore, this warmed toiled seat can realize both instant warm-up capability and heat-retention capability by causing no noise or unexpected heat generation by parts, by curbing intermittent energization during the heat-retention time especially. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、速暖性を有する暖房便座の電力供給に関するものである。   The present invention relates to power supply for a heating toilet seat having quick warming properties.

従来、この種の暖房便座は即暖性を有するヒータを設置し、使用直前から通電することによって、待機電力を抑制し、省エネルギー効果を得ようとするものであった。速暖性のヒータとしてはランプヒータが優れた性能を有している。しかし、ランプヒータはフィラメントが赤熱した時に所定の抵抗値になり、フィラメントが冷えている時は、所定の抵抗値の1/10にも満たない小さな抵抗であるという高抵抗温度特性を有するものが多かった。従って、一旦便座が温まった後、使用者が便座に座っていて冷たさを感じない程度に電力を絞って間欠的に通電する保温動作を行う時には、抵抗値が小さいために、通電時に突入電流が多く流れ、フーリエ級数展開すると高次の高調波電流成分が多く発生する波形となり、規制値を上回る可能性があったり、電磁ノイズとなって周辺に設置した他の機器に悪影響を与えたり、電源電圧の変動を誘発したりする可能性もあった。そのような不具合を抑制するために、図10に示すようにランプヒータ101を使用して保温動作を行う時には、マイコン102のout出力端子からの信号によって、リレー103を駆動し、抵抗値の温度特性の比較的少ないダミー抵抗104をランプヒータ101と直列に接続する構成とし、通電時の突入電流を抑圧する提案がなされている(例えば、特許文献1参照)。
特開2005-110752号公報
Conventionally, this type of heated toilet seat is designed to obtain an energy saving effect by installing a heater having immediate warming properties and energizing immediately before use to suppress standby power. A lamp heater has excellent performance as a quick warming heater. However, the lamp heater has a high resistance temperature characteristic that a predetermined resistance value is obtained when the filament is heated red, and a small resistance that is less than 1/10 of the predetermined resistance value when the filament is cold. There were many. Therefore, once the toilet seat is warmed up, when the user is sitting on the toilet seat and performing the heat-retaining operation in which power is intermittently applied with the power reduced to such an extent that the user does not feel cold, the inrush current during energization is due to the small resistance value. When the Fourier series is expanded, it becomes a waveform that generates many high-order harmonic current components, which may exceed the regulation value, or may cause electromagnetic noise and adversely affect other devices installed in the vicinity. There was also the possibility of inducing fluctuations in the power supply voltage. In order to suppress such a problem, as shown in FIG. 10, when performing a heat retaining operation using the lamp heater 101, the relay 103 is driven by a signal from the out output terminal of the microcomputer 102, and the resistance temperature There has been proposed a configuration in which a dummy resistor 104 having relatively low characteristics is connected in series with the lamp heater 101 to suppress an inrush current during energization (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2005-110752

しかしながら、このような構成では、温度特性の少ないダミー抵抗104によって、回路を流れる突入電流は確かに抑制されるが、今度はダミー抵抗104が通電によって発熱し、その発熱のエネルギーをどこに放散するかが大きな問題となってくる。またダミー抵抗104の容積も大きくなるので、便座の内部に大きなダミー抵抗104を収納することは難しく、また暖房便座の機械室内部に収納しても、発熱によって周囲の部品に悪影響を及ぼす恐れもあった。   However, in such a configuration, the inrush current flowing through the circuit is surely suppressed by the dummy resistor 104 having a low temperature characteristic, but this time, the dummy resistor 104 generates heat by energization, and where the energy of the generated heat is dissipated. Becomes a big problem. In addition, since the volume of the dummy resistor 104 is increased, it is difficult to store the large dummy resistor 104 inside the toilet seat, and even if it is stored in the machine room of the heated toilet seat, there is a possibility that the surrounding parts may be adversely affected by heat generation. there were.

前記従来の課題を解決するため、本発明の暖房便座は、トライアックにより供給電力を入り切りするAC電源回路と、AC電源回路よりも供給電圧の低い低電圧電源回路を備え、便座を短時間に昇温する速暖加熱時にはAC電源回路より前記高抵抗温度特性ヒータへ電力を供給し、所定温度に昇温後に便座を設定温度に保温する保温加熱時には低電源回路より前記高抵抗温度特性ヒータへ電力を供給するものである。   In order to solve the above-mentioned conventional problems, the heating toilet seat of the present invention includes an AC power supply circuit that turns on and off the supply power by a triac and a low-voltage power supply circuit that has a lower supply voltage than the AC power supply circuit, and raises the toilet seat in a short time. Electric power is supplied from the AC power supply circuit to the high resistance temperature characteristic heater at the time of rapid warming heating, and electric power is supplied from the low power supply circuit to the high resistance temperature characteristic heater at the time of heat insulation heating to keep the toilet seat at a set temperature after raising the temperature to a predetermined temperature. Supply.

これによって、速暖時および保温時いずれの状態において最適な加熱状態が得られ、特に保温時の間欠的な通電を抑制することができるため、ノイズの発生や部品の意図せぬ発熱などのない、速暖性能と保温性能が両立した暖房便座を提供することが可能となる。   As a result, an optimal heating state can be obtained in either the fast warming state or the warming state, and since intermittent energization especially during the warming can be suppressed, there is no generation of noise or unintentional heat generation of parts, It becomes possible to provide a heated toilet seat that has both quick warming performance and heat retaining performance.

本発明の暖房便座は、高抵抗温度特性ヒータに最適な電力供給を行い、通電にともなうノイズの発生や、周辺機器への悪影響を抑制することができる。   The heating toilet seat of the present invention can supply electric power optimal to the high resistance temperature characteristic heater, and can suppress the generation of noise accompanying energization and the adverse effects on peripheral devices.

第1の発明は、使用者が着座する便座と、前記便座内部に設置し便座を加熱する高抵抗
温度特性ヒータと、トライアックにより供給電力を入り切りするAC電源回路と、前記AC電源回路よりも供給電圧の低い低電圧電源回路と、前記高抵抗温度特性ヒータへの電力の供給を切り換える電力切換手段と、前記便座の温度を検知する温度検知手段と、前記高抵抗温度特性ヒータへの電力の供給を制御するヒータ制御手段を備え、前記ヒータ制御手段は前記便座を短時間に昇温する速暖加熱時には前期AC電源回路より前記高抵抗温度特性ヒータへ電力を供給し、所定温度に昇温後に前記便座を設定温度に保温する保温加熱時には前記低電源回路より前記高抵抗温度特性ヒータへ電力を供給することにより、速暖性が求められる速暖加熱時は、AC100Vを連続的に通電して短時間に便座を昇温し、保温加熱時においても低電圧電源から低い電圧で連続的に電力を供給することができるので、いずれの場合も通電にともなうノイズの発生や、周辺機器への悪影響を抑制し、速暖性能と保温性能が両立した暖房便座を提供することが可能となる。
The first invention is a toilet seat on which a user is seated, a high resistance temperature characteristic heater that is installed inside the toilet seat and heats the toilet seat, an AC power supply circuit that turns on and off the supply power by a triac, and a supply from the AC power supply circuit A low voltage power supply circuit having a low voltage; power switching means for switching power supply to the high resistance temperature characteristic heater; temperature detection means for detecting the temperature of the toilet seat; and power supply to the high resistance temperature characteristic heater The heater control means supplies power to the high resistance temperature characteristic heater from the AC power supply circuit in the previous period at the time of rapid warming to raise the temperature of the toilet seat in a short time, and after raising the temperature to a predetermined temperature At the time of heat-retaining heating in which the toilet seat is kept at a set temperature, power is supplied from the low power supply circuit to the high resistance temperature characteristic heater. Since 100V is continuously energized to raise the toilet seat in a short time and power can be continuously supplied at a low voltage from a low-voltage power source even during heat insulation heating, in both cases the noise caused by energization It is possible to provide a heated toilet seat that suppresses occurrence and adverse effects on peripheral devices and has both quick warming performance and heat retaining performance.

第2の発明は、特に第1の発明において、AC電源回路はAC電源のゼロ点を検出するゼロクロス検出回路を有し、前記ゼロクロス検出回路の出力に同期してトライアックを制御して高抵抗温度特性ヒータへの供給電力を入り切りすることにより、AC電源の入り切りは必ずゼロVの時点で行われるため、ノイズの発生を最小限度の抑制することができる。 第3の発明は、特に第1または第2の発明において、低電圧電源回路はAC電源回路から降圧し、DC電源化を行う降圧インバータ回路で構成したもので、インバータ電源で波形のひずみの少ない低電圧電源回路を構成することによって回路の効率を向上させることと、高調波電流の低減を図ることが可能となる。   According to a second aspect of the invention, in particular, in the first aspect of the invention, the AC power supply circuit has a zero-cross detection circuit that detects a zero point of the AC power supply, and the triac is controlled in synchronization with the output of the zero-cross detection circuit to increase the high resistance temperature. By turning on and off the power supplied to the characteristic heater, the AC power supply is always turned on and off at the time of zero V, so that the generation of noise can be minimized. In the third invention, particularly in the first or second invention, the low-voltage power supply circuit is composed of a step-down inverter circuit that steps down from an AC power supply circuit and converts to a DC power supply. By configuring the low voltage power supply circuit, it is possible to improve the efficiency of the circuit and reduce the harmonic current.

第4の発明は、特に第3の発明において、ヒータ制御手段は降圧インバータ回路のスイッチング用トランジスタの導通非導通の比率を変更する手段を有するもので、導通非導通の比率を変更することで保温時の電力の微調節ができる。   In a fourth aspect of the invention, particularly in the third aspect of the invention, the heater control means has means for changing the conduction / non-conduction ratio of the switching transistor of the step-down inverter circuit, and the temperature is maintained by changing the conduction / non-conduction ratio. You can fine-tune the power of the hour.

第5の発明は、特に第1から第4のいずれか1つの発明において、電力切換手段は高抵抗温度特性ヒータの両端に設置された両切りリレー接点で構成したもので、高抵抗温度特性ヒータに印加される電源の経路がリレー接点で完全に切り換えられ、回路上の異電位の接触の危険を避けることが可能となる。   According to a fifth aspect of the invention, in particular, in any one of the first to fourth aspects of the invention, the power switching means is constituted by double-cut relay contacts installed at both ends of the high resistance temperature characteristic heater. The path of the applied power supply is completely switched by the relay contact, and it is possible to avoid the danger of contact of different potentials on the circuit.

第6の発明は、特に第1から第5のいずれか1つの発明において、低電圧電源回路と高抵抗温度特性ヒータ間に接点手段を設置したもので、高抵抗温度特性ヒータに印加される電源の経路がリレー接点で完全に切り換えられ、高抵抗温度特性ヒータ側の切り換えが終了してから接点手段を動作させることによって、切り換え時の異電位の接触を防ぐことが可能である。   According to a sixth aspect of the present invention, in particular, in any one of the first to fifth aspects, a contact means is provided between the low voltage power supply circuit and the high resistance temperature characteristic heater. It is possible to prevent the contact of different potentials at the time of switching by operating the contact means after the switching of the high resistance temperature characteristic heater side is completed after the path is completely switched by the relay contact.

第7の発明は、特に第1から第6のいずれか1つの発明において、AC電源回路と低電圧電源回路間に接点手段を設置したもので、低電圧電源回路不使用時は、回路の入力を切ることで、低電圧電源回路の電力消費を減らし、待機電力を減らすことができる。   According to a seventh invention, in particular, in any one of the first to sixth inventions, a contact means is provided between the AC power supply circuit and the low voltage power supply circuit. When the low voltage power supply circuit is not used, the input of the circuit is provided. By turning off, it is possible to reduce the power consumption of the low-voltage power supply circuit and reduce the standby power.

第8の発明は、特に第1から第7のいずれか1つの発明において、ヒータ制御手段のトライアックへの通電指示は、電力切換手段の接点開閉信号が出されて、完全に接点の移動動作が完了した後に開始されるようにするものであり、回路の切換動作が完了してから電力制御がなされることにより、切り換え時の異電位の接触を防ぐことが可能である。   In the eighth aspect of the invention, in particular, in any one of the first to seventh aspects of the invention, the energization instruction to the triac of the heater control means is such that the contact open / close signal of the power switching means is output and the contact moving operation is completely performed. The operation is started after the completion, and the power control is performed after the circuit switching operation is completed, so that it is possible to prevent contact of different potentials at the time of switching.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の第1の実施の形態における暖房便座の構成図であり、図2はランプヒータ
5に供給される電力の波形を示すタイムチャートであり、(a)はAC100Vが印加されている状態の波形を示し、(b)は低電圧電源回路11から印加されている状態の波形を示すものである。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heating toilet seat according to the first embodiment of the present invention. FIG. 2 is a time chart showing a waveform of electric power supplied to the lamp heater 5. FIG. (B) shows the waveform in the state where it is applied from the low-voltage power supply circuit 11.

図1において、便器1の上に設置された便座2に使用者3が座っている。便座2の内部空洞部(図示せず)には高抵抗温度特性ヒータであるランプヒータ5が設置され、輻射熱で便座2を暖める。ランプヒータは速暖性を有するものの、非通電時の抵抗と通電時の抵抗の比が1:10以上あり、通電初期の抵抗が極めて低いという特徴がある。また便座2と一体になった便座本体4の内部には、ランプヒータ5を制御する回路部品が納められている。マイコン6(ヒータ制御手段)は、通常の商用電源であるAC100V電源のゼロクロス点をゼロクロス検知回路7からのゼロクロス信号出力をZEROinポートから入力することにより検知し、ゼロクロス信号出力に同期したトライアック8への駆動信号をTRIAポートからドライバー9を介してトライアック8のG端子へ出力する。この時、ランプヒータ5の両端のリレー接点10a、10b(電力切換手段)はAC100V電源側に接続されており、トライアック8のゲートGに信号が入力されてから次のゼロクロス時点までのAC電源の半サイクルだけトライアック8のT1とT2の間が導通し、ランプヒータ5にAC100Vが印加される。ゼロクロス信号出力を検出する毎にこの動作を繰り返せば、ランプヒータ5にはAC100V電源が印加され続けることになる。   In FIG. 1, a user 3 sits on a toilet seat 2 installed on a toilet 1. A lamp heater 5 which is a high resistance temperature characteristic heater is installed in an internal cavity (not shown) of the toilet seat 2 to warm the toilet seat 2 with radiant heat. Although the lamp heater has a quick warming property, the ratio of the resistance when not energized to the resistance when energized is 1:10 or more, and the resistance at the initial energization is extremely low. A circuit component for controlling the lamp heater 5 is housed in the toilet seat body 4 integrated with the toilet seat 2. The microcomputer 6 (heater control means) detects the zero cross point of the AC 100V power supply, which is a normal commercial power supply, by inputting the zero cross signal output from the zero cross detection circuit 7 from the ZEROin port, and sends it to the triac 8 synchronized with the zero cross signal output. Is output from the TRIA port to the G terminal of the triac 8 via the driver 9. At this time, the relay contacts 10a and 10b (power switching means) at both ends of the lamp heater 5 are connected to the AC100V power supply side, and the AC power supply from the time when the signal is input to the gate G of the triac 8 until the next zero crossing point is reached. Only half cycle is conducted between T1 and T2 of the triac 8 and AC100V is applied to the lamp heater 5. If this operation is repeated every time the zero cross signal output is detected, the AC heater 100V is continuously applied to the lamp heater 5.

一方、マイコン6のRY1ポートからの信号が出力されると、リレーコイル(図示せず)が励磁され、リレー接点10a、10bは低電圧電源回路11の出力側とランプヒータ5を接続し、ランプヒータ5には摺動トランスでAC100Vを降圧する低電圧電源回路11の出力電圧が印加される。またマイコン6のTRoutポートからの信号で低電圧電源回路11の出力電圧を変えることができるようにしている。   On the other hand, when a signal from the RY1 port of the microcomputer 6 is output, a relay coil (not shown) is excited, and the relay contacts 10a and 10b connect the output side of the low voltage power supply circuit 11 and the lamp heater 5, The heater 5 is applied with the output voltage of the low-voltage power supply circuit 11 that steps down AC100V with a sliding transformer. The output voltage of the low voltage power supply circuit 11 can be changed by a signal from the TRout port of the microcomputer 6.

また便座2の温度、即ち人が感じる温度は、便座2の内部空洞部に設置された温度検知手段であるサーミスタ12の抵抗変化によって検知され、サーミスタ12の抵抗値と分割抵抗13で分圧された電圧をマイコン6はTHin端子より取り込んでいる。その温度が快適温度より高い時は、ランプヒータ5への電力供給は停止される。また便座本体4には便座2への使用者3の着座を検出する着座センサ14が設置されており、その信号はマイコン6のSITinポートからマイコン6に取り込まれる。また便器1の外部には、トイレを使おうという人15を検知する、CMOSカメラなどで構成された人体センサ15が設置され、人16の情報は、無線あるいは有線情報としてマイコン6のHUMANinポートに取り込まれる構成となっている。   The temperature of the toilet seat 2, that is, the temperature felt by a person, is detected by a resistance change of the thermistor 12, which is a temperature detecting means installed in the internal cavity of the toilet seat 2, and divided by the resistance value of the thermistor 12 and the dividing resistor 13. The microcomputer 6 takes in the voltage from the THin terminal. When the temperature is higher than the comfortable temperature, the power supply to the lamp heater 5 is stopped. The seat body 4 is provided with a seating sensor 14 for detecting the seating of the user 3 on the toilet seat 2, and the signal is taken into the microcomputer 6 from the SITin port of the microcomputer 6. In addition, a human body sensor 15 configured by a CMOS camera or the like that detects a person 15 who wants to use the toilet is installed outside the toilet 1, and information about the person 16 is transmitted to the HUMANin port of the microcomputer 6 as wireless or wired information. It is configured to be captured.

上記構成において、人体センサ15が人16を検出した時、マイコン6のHUMANinポートにその情報が入り、ランプヒータ5の両端のリレー接点10a、10bはAC100V電源側に接続された状態にあり、トライアック8のゲートGに信号が入力されてから次のゼロクロス時点までのAC電源の半サイクルだけトライアック8のT1とT2の間が導通し、ランプヒータ5にAC100Vが印加される。ゼロクロス信号出力を検出する毎にこの動作を繰り返しランプヒータ5にはAC100V電源が印加され続けることになる。このことによって、ランプヒータ5は急速に便座2を暖める。この動作は、サーミスタ12によって、所定の温度に達したことが、マイコン6に認識されるまで続く。また人16が使用者3になったことが着座センサ14で検出され、マイコン6に認識されるまで続く。   In the above configuration, when the human body sensor 15 detects the person 16, the information is entered in the HUMANin port of the microcomputer 6, and the relay contacts 10a and 10b at both ends of the lamp heater 5 are connected to the AC100V power supply side. 8, the T1 and T2 of the triac 8 are brought into conduction for a half cycle of the AC power supply from when the signal is input to the gate G to the next zero crossing point, and 100 V AC is applied to the lamp heater 5. This operation is repeated every time the zero cross signal output is detected, and the AC heater 100V is continuously applied to the lamp heater 5. As a result, the lamp heater 5 rapidly warms the toilet seat 2. This operation continues until the microcomputer 6 recognizes that the thermistor 12 has reached a predetermined temperature. The process continues until the seating sensor 14 detects that the person 16 has become the user 3 and is recognized by the microcomputer 6.

マイコン6が所定の温度に達したことを認識、あるいは着座センサ14で使用者3が検出されると、マイコン6はランプヒータ5の両端のリレー接点10a、10bを低電圧電源回路11側に切り換え、ランプヒータ5へはピーク値が30Vの保温のための電力が供給される。この状態でもサーミスタ12は便座2の温度を検出し続け、一定の温度を上回
った時は、供給電力をマイコン6のTRoutポートからの出力の制御により供給電力を落としたり、あるいは停止することは言うまでもない。
When the microcomputer 6 recognizes that the predetermined temperature has been reached or the user 3 is detected by the seating sensor 14, the microcomputer 6 switches the relay contacts 10a and 10b at both ends of the lamp heater 5 to the low voltage power circuit 11 side. The lamp heater 5 is supplied with electric power for heat insulation having a peak value of 30V. Even in this state, the thermistor 12 continues to detect the temperature of the toilet seat 2, and when it exceeds a certain temperature, it goes without saying that the supplied power is reduced or stopped by controlling the output from the TRout port of the microcomputer 6. Yes.

着座センサ14からの信号がSITinに入らなくなったことを検知したら、マイコンは使用者3が使用を終了したと判断して、低電力電源回路からの保温の電力供給を停止する。   When it is detected that the signal from the seating sensor 14 does not enter the SITin, the microcomputer determines that the user 3 has finished using it, and stops the supply of the warming power from the low power supply circuit.

図2(b)示すように保温時には低電圧電源回路11からピーク値が30Vの保温のための電力をランプヒータ5へ通電するようにリレー接点10a、10bによって切り換えることにより、突入電流の少ないランプヒータ5の駆動が実現でき、従って周囲の機器に障害を与えることもない暖房便座が実現できる。   As shown in FIG. 2 (b), a lamp with a small inrush current can be obtained by switching the relay heaters 10a and 10b so that electric power for keeping the peak value of 30V is supplied from the low voltage power supply circuit 11 to the lamp heater 5 when keeping warm. The heater 5 can be driven, and thus a heated toilet seat that does not impede surrounding equipment can be realized.

また、ランプヒータ5の片側でなく両端をリレー接点10a、10bで一旦回路から切り離しその後切り換えることから、回路上の異電位の接触の危険を避けることが可能となる。   Further, since both ends of the lamp heater 5 instead of one side are once disconnected from the circuit by the relay contacts 10a and 10b and then switched, it is possible to avoid the danger of contact of different potentials on the circuit.

さらに低電圧電源回路11から最初からAC100Vよりも落とした適切な電圧をランプヒータ5に供給することから、部品の異常発熱などのない効率的な機器の実現をも図ることができる。   Furthermore, since an appropriate voltage lower than AC 100 V is supplied from the low voltage power supply circuit 11 to the lamp heater 5 from the beginning, it is possible to realize an efficient device without abnormal heat generation of components.

なお、本実施の形態においては、高抵抗温度特性ヒータとしてランプヒータを採用したが、これに限るものではなく、石英管ヒータやニクロム線ヒータ等を使用することも可能である。   In the present embodiment, the lamp heater is employed as the high resistance temperature characteristic heater, but the present invention is not limited to this, and a quartz tube heater, a nichrome wire heater, or the like can also be used.

また、本実施の形態においては、AC電源として日本国内の商用電源であるAC100Vを使用したが、これに限るものではなく、諸外国の商用電源に対応する構成と作用および効果を同様に得ることができる。   In the present embodiment, AC 100 V, which is a commercial power source in Japan, is used as the AC power source. However, the present invention is not limited to this, and the configuration, operation, and effects corresponding to commercial power sources in other countries can be obtained similarly. Can do.

(実施の形態2)
図3は本発明の第2の実施の形態における低電圧電源回路11である降圧インバータ回路の回路図である。
(Embodiment 2)
FIG. 3 is a circuit diagram of a step-down inverter circuit which is a low-voltage power supply circuit 11 in the second embodiment of the present invention.

図3でAC100Vの電圧は、整流ダイオード17によって全波整流され、チョークコイル18、コンデンサ19とトランス20の一次側に直列にスイッチング用トランジスタであるドレーン-ソース間が接続されたMOSFET21によって構成されたインバータ回路によって高周波化(その周波数はMOSFET21のゲート電圧Vgの周波数)され、そのパルス列はマイコン6のTRout端子より出力される。トランス20の二次側では巻線比(一次側>二次側)やMOSFET21の駆動周波数で決まる電圧を、ダイオード22とコンデンサ23、チョークコイル24によって平滑化して低電圧電源回路11の出力電圧Vsを作り出している。またMOSFET21のドレーン-ソース間に並列に接続されているコンデンサ25と抵抗26はMOSFET21のスイッチング時の電圧変動を和らげ、回路部品の電圧破壊を防ぐスナバー回路27を形成している。   In FIG. 3, the voltage of AC100V is full-wave rectified by the rectifier diode 17, and is constituted by the choke coil 18, the capacitor 19, and the MOSFET 21 in which the drain-source which is a switching transistor is connected in series to the primary side. The frequency is increased (the frequency is the frequency of the gate voltage Vg of the MOSFET 21) by the inverter circuit, and the pulse train is output from the TRout terminal of the microcomputer 6. On the secondary side of the transformer 20, the voltage determined by the winding ratio (primary side> secondary side) and the driving frequency of the MOSFET 21 is smoothed by the diode 22, the capacitor 23, and the choke coil 24, and the output voltage Vs of the low-voltage power supply circuit 11. Is producing. A capacitor 25 and a resistor 26 connected in parallel between the drain and source of the MOSFET 21 form a snubber circuit 27 that softens voltage fluctuations during switching of the MOSFET 21 and prevents voltage breakdown of circuit components.

図4は図3の低電圧電源回路(降圧インバータ回路)11の電圧波形のタイムチャートであり、(a)はゲートパルスのON/OFFのデューティー比が50%の時、(b)はゲートパルスのON/OFFのデューティー比が20%の時を示し、波形はそれぞれ上からMOSFET21のゲート電圧Vg、MOSFET21のドレイン-ソース間電圧Vds、降圧インバータ回路の出力波形Vsを示している。   FIG. 4 is a time chart of the voltage waveform of the low voltage power supply circuit (step-down inverter circuit) 11 of FIG. 3, where (a) is the gate pulse ON / OFF duty ratio is 50%, and (b) is the gate pulse. When the ON / OFF duty ratio is 20%, the waveforms show the gate voltage Vg of the MOSFET 21, the drain-source voltage Vds of the MOSFET 21, and the output waveform Vs of the step-down inverter circuit, respectively.

図3においてマイコン6からHigh信号が出力されるとMOSFET21は導通し、
トランス20の一次側を電流が流れ、Vdsの電圧はほぼゼロになる。マイコン6からの信号がLOWに転ずると、VdsはMOSFET21のスイッチングに伴い過渡的にピーク電圧を示した後、コンデンサ19の容量とトランス20の一次側のリアクタンス、スナバー回路27大きさなどによって決まる共振電圧を示す。また降圧インバータ回路11の出力電圧Vsは一次側のゲートパルスのON/OFFのデューティー比によってその実効値が決まる。従って、ゲートパルスのON/OFFのデューティー比を調整することによって、ランプヒータ5に適切な電力を供給することが可能となる。
In FIG. 3, when a High signal is output from the microcomputer 6, the MOSFET 21 is turned on,
A current flows through the primary side of the transformer 20, and the voltage of Vds becomes almost zero. When the signal from the microcomputer 6 changes to LOW, Vds shows a peak voltage transiently as the MOSFET 21 is switched, and then the resonance determined by the capacitance of the capacitor 19, the reactance of the primary side of the transformer 20, the size of the snubber circuit 27, and the like. Indicates voltage. The effective value of the output voltage Vs of the step-down inverter circuit 11 is determined by the ON / OFF duty ratio of the primary gate pulse. Accordingly, it is possible to supply appropriate power to the lamp heater 5 by adjusting the ON / OFF duty ratio of the gate pulse.

また一旦AC電圧を平滑してランプヒータ5の供給電圧としているので、トライアック8で位相制御を行うような、急峻な電圧波形を供給することはない。従って高調波電流も抑制でき、周囲の電機機器に妨害を与えることも少なくすることができる。   In addition, since the AC voltage is once smoothed and used as the supply voltage of the lamp heater 5, a steep voltage waveform such as the phase control performed by the triac 8 is not supplied. Therefore, harmonic current can be suppressed, and interference with surrounding electrical equipment can be reduced.

(実施の形態3)
図5は本発明の第3の実施の形態における暖房便座の構成図である。
(Embodiment 3)
FIG. 5 is a configuration diagram of a heating toilet seat according to the third embodiment of the present invention.

第1の実施例との違いは、低電圧電源回路11の出力と電力切換手段であるリレー接点10a、10bのうちの一つリレー接点10bの間にリレー接点30を設置したところである。このリレー接点30はマイコン6のRY2outポートからの出力で接点の開/閉が制御される。   The difference from the first embodiment is that a relay contact 30 is installed between the output of the low-voltage power supply circuit 11 and one of the relay contacts 10a and 10b serving as power switching means. The relay contact 30 is controlled by the output from the RY2out port of the microcomputer 6 to open / close the contact.

図6にマイコン6のRY1outポートおよびRY2outポートから出力される接点制御電圧のタイミングチャートを示す。リレー接点10a、10bを切換えるRY1outポートからの出力が出力された後、リレー接点の動作時間のばらつきを考慮した遅延時間τが過ぎてから、RY2outポートからの出力が出力され、低電圧電源回路11の出力がランプヒータ5に印加される。遅延時間τはリレーの仕様により異なるが、20〜30ミリ秒も考慮すれば十分である。   FIG. 6 is a timing chart of contact control voltages output from the RY1out port and the RY2out port of the microcomputer 6. After the output from the RY1out port for switching the relay contacts 10a and 10b is output, the output from the RY2out port is output after the delay time τ considering the variation in the operation time of the relay contacts, and the low voltage power circuit 11 Is applied to the lamp heater 5. Although the delay time τ varies depending on the relay specifications, it is sufficient to consider 20 to 30 milliseconds.

このように低電圧電源回路11の出力を接点を介してランプヒータ5の供給することによって、より一層、回路上の異電位の接触の危険を避けることができ、制御の安定性が向上する。   In this way, by supplying the output of the low voltage power supply circuit 11 to the lamp heater 5 via the contacts, the danger of contact of different potentials on the circuit can be further avoided, and the stability of the control is improved.

(実施の形態4)
図7は本発明の第4の実施の形態における暖房便座の構成図である。
(Embodiment 4)
FIG. 7 is a configuration diagram of a heating toilet seat according to the fourth embodiment of the present invention.

第3の実施例との違いは、AC電源と低電圧電源回路11の入力の間にリレー接点31を設置したところである。このリレー接点31はマイコン6のRY3outポートからの出力で接点の開/閉が制御される。   The difference from the third embodiment is that a relay contact 31 is provided between the input of the AC power supply and the low voltage power supply circuit 11. The relay contact 31 is controlled by the output from the RY3out port of the microcomputer 6 to open / close the contact.

図8にマイコン6のRY1outポートおよびRY3outポートから出力される接点制御電圧のタイミングチャートを示す。リレー接点10a、10bを切換えるRY1outポートからの出力が出された後、リレー接点の動作時間のばらつきを考慮した遅延時間τが過ぎてから、RY3outポートからの出力が出力され、AC100Vが低電圧電源回路11に印加される。遅延時間τはリレーの仕様により異なるが、20〜30ミリ秒も考慮すれば十分である。   FIG. 8 shows a timing chart of contact control voltages output from the RY1out port and the RY3out port of the microcomputer 6. After the output from the RY1out port for switching the relay contacts 10a and 10b is output, the output from the RY3out port is output after the delay time τ considering the variation in the operation time of the relay contacts, and the AC100V is a low voltage power supply. Applied to the circuit 11. Although the delay time τ varies depending on the relay specifications, it is sufficient to consider 20 to 30 milliseconds.

このように低電圧電源回路11の出力が接点を介してランプヒータ5に接続された後でAC100Vを低電圧電源回路11に供給することによって、より一層、回路上の異電位の接触の危険を避けることができ、制御の安定性が向上する。また、低電圧電源回路11を使用しない時は、AC100Vが印加されていないので、待機電力が少なくなり、省エネルギー性能も向上する。   Thus, by supplying AC100V to the low-voltage power supply circuit 11 after the output of the low-voltage power supply circuit 11 is connected to the lamp heater 5 through the contact, the risk of contact of different potentials on the circuit is further increased. This can be avoided and the stability of the control is improved. Further, when the low voltage power supply circuit 11 is not used, since AC 100 V is not applied, standby power is reduced and energy saving performance is improved.

(実施の形態5)
図9は本発明の第5の実施の形態における制御回路の電圧、電流のタイミングチャートであり、波形は上からそれぞれ、RY1out電圧波形、ZEROin電圧波形、TRIA電圧波形、ランプヒータ5電流波形である。
(Embodiment 5)
FIG. 9 is a timing chart of the voltage and current of the control circuit in the fifth embodiment of the present invention. The waveforms are the RY1out voltage waveform, the ZEROin voltage waveform, the TRIA voltage waveform, and the lamp heater 5 current waveform from the top, respectively. .

リレー接点10a、10bの制御信号RY1outがONからOFFに変化して、ランプヒータ5がAC電源源側に切り換わる。その後、電源電圧の1サイクル以上(時間τ)経過してから、トライアック8の駆動信号がTRIAポートから出力される。時間τの遅延の後、トライアック8の駆動を行う事により、安全に回路を切り換え、ランプヒータ5への通電を行う事が可能となる。   The control signal RY1out of the relay contacts 10a and 10b changes from ON to OFF, and the lamp heater 5 is switched to the AC power source side. Thereafter, after one cycle (time τ) of the power supply voltage has elapsed, the drive signal for the triac 8 is output from the TRIA port. By driving the triac 8 after the delay of time τ, the circuit can be switched safely and the lamp heater 5 can be energized.

このように本発明によれば、即暖時と保温時、それそれの状態において最適なランプヒータの加熱状態が得られ、ノイズの発生や部品の意図せぬ発熱などのない、速暖性能と保温性能が両立した暖房便座を提供することが可能となる。   As described above, according to the present invention, the optimum heating state of the lamp heater can be obtained at the time of immediate warming and warming, and the rapid warming performance without generation of noise or unintentional heat generation of parts can be obtained. It becomes possible to provide a heated toilet seat with both heat insulation performance.

また、電位の異なる複数の電源を切り換えてランプヒータに印加するときの安全性を確保することも可能となる。   It is also possible to ensure safety when switching between a plurality of power sources having different potentials and applying them to the lamp heater.

以上のように、本発明にかかる暖房便座は、複数の電位の異なる電源を、熱源に供給することを可能にするもので、熱機器全般の制御に応用することが可能である。   As described above, the heating toilet seat according to the present invention makes it possible to supply a plurality of power sources having different potentials to a heat source, and can be applied to the control of general thermal equipment.

本発明の実施の形態1における暖房便座の構成図The block diagram of the heating toilet seat in Embodiment 1 of this invention (a)本発明の実施の形態1におけるAC電源回路からランプヒータに供給される電力のタイムチャート(b)低電圧電源回路からランプヒータに供給される電力のタイムチャート(A) Time chart of power supplied from the AC power supply circuit to the lamp heater in Embodiment 1 of the present invention (b) Time chart of power supplied from the low voltage power supply circuit to the lamp heater 本発明の実施の形態2における低電圧電源であるインバータ回路の回路図Circuit diagram of an inverter circuit which is a low-voltage power supply in Embodiment 2 of the present invention (a)本発明の実施の形態2における低電圧電源回路のゲートパルスのON/OFFのデューティー比が50%の時の電圧波形のタイムチャート(b)ゲートパルスのON/OFFのデューティー比が20%の時の電圧波形のタイムチャート(A) Time chart of voltage waveform when the ON / OFF duty ratio of the gate pulse of the low voltage power supply circuit in the second embodiment of the present invention is 50% (b) The ON / OFF duty ratio of the gate pulse is 20 Time chart of voltage waveform at% 本発明の実施の形態3における暖房便座の構成図The block diagram of the heating toilet seat in Embodiment 3 of this invention 本発明の実施の形態3におけるマイコンポートから出力される接点制御電圧のタイミングチャートTiming chart of contact control voltage output from microcomputer port in Embodiment 3 of the present invention 本発明の実施の形態4における暖房便座の構成図The block diagram of the heating toilet seat in Embodiment 4 of this invention 本発明の実施の形態4におけるマイコンポートから出力される接点制御電圧のタイミングチャートTiming chart of contact control voltage output from microcomputer port in embodiment 4 of the present invention 本発明の実施の形態5における制御回路の電圧、電流のタイミングチャートTiming chart of voltage and current of control circuit in embodiment 5 of the present invention 従来の暖房便座の構成図Configuration diagram of a conventional heated toilet seat

符号の説明Explanation of symbols

2 便座
5 ランプヒータ(高抵抗温度特性ヒータ)
6 マイコン(ヒータ制御手段)
7 ゼロクロス検知回路
8 トライアック
10a、10b リレー接点(電力切換手段)
11 低電圧電源回路
12 サーミスタ(温度検知手段)
21 MOSFET(スイッチング用トランジスタ)
30、31 リレー接点(接点手段)
2 Toilet seat 5 Lamp heater (High resistance temperature characteristic heater)
6 Microcomputer (heater control means)
7 Zero cross detection circuit
8 Triac 10a, 10b Relay contact (power switching means)
11 Low voltage power supply circuit 12 Thermistor (temperature detection means)
21 MOSFET (Switching transistor)
30, 31 Relay contact (contact means)

Claims (8)

使用者が着座する便座と、前記便座内部に設置し便座を加熱する高抵抗温度特性ヒータと、トライアックにより供給電力を入り切りするAC電源回路と、前記AC電源回路よりも供給電圧の低い低電圧電源回路と、前記高抵抗温度特性ヒータへの電力の供給を切り換える電力切換手段と、前記便座の温度を検知する温度検知手段と、前記高抵抗温度特性ヒータへの電力の供給を制御するヒータ制御手段を備え、前記ヒータ制御手段は前記便座を短時間に昇温する速暖加熱時には前期AC電源回路より前記高抵抗温度特性ヒータへ電力を供給し、所定温度に昇温後に前記便座を設定温度に保温する保温加熱時には前記低電源回路より前記高抵抗温度特性ヒータへ電力を供給する暖房便座。 A toilet seat on which a user is seated, a high resistance temperature characteristic heater that is installed inside the toilet seat and heats the toilet seat, an AC power supply circuit that turns on and off the supply power by a triac, and a low-voltage power supply that has a lower supply voltage than the AC power supply circuit A circuit, power switching means for switching power supply to the high resistance temperature characteristic heater, temperature detection means for detecting the temperature of the toilet seat, and heater control means for controlling power supply to the high resistance temperature characteristic heater The heater control means supplies electric power from the AC power supply circuit to the high resistance temperature characteristic heater at the time of rapid heating to raise the toilet seat in a short time, and after raising the temperature to a predetermined temperature, the toilet seat is set to a set temperature. A heating toilet seat that supplies electric power from the low power supply circuit to the high resistance temperature characteristic heater during heat insulation heating. AC電源回路はAC電源のゼロ点を検出するゼロクロス検出回路を有し、前記ゼロクロス検出回路の出力に同期してトライアックを制御して高抵抗温度特性ヒータへの供給電力を入り切りする請求項1に記載の暖房便座。 The AC power supply circuit has a zero cross detection circuit for detecting a zero point of the AC power supply, and controls the triac in synchronization with the output of the zero cross detection circuit to turn on and off the power supplied to the high resistance temperature characteristic heater. Heated toilet seat as described. 低電圧電源回路はAC電源回路から降圧し、DC電源化を行う降圧インバータ回路で構成した請求項1または2に記載の暖房便座。 The heating toilet seat according to claim 1 or 2, wherein the low-voltage power supply circuit comprises a step-down inverter circuit that steps down from an AC power supply circuit and performs DC power supply. 制御手段は降圧インバータ回路のスイッチング用トランジスタの導通非導通の比率を変更する手段を有する請求の範囲3に記載の暖房便座。 The heating toilet seat according to claim 3, wherein the control means includes means for changing a conduction / non-conduction ratio of the switching transistor of the step-down inverter circuit. 電力切換手段は高抵抗温度特性ヒータの両端に設置された両切りリレー接点で構成した請求の範囲1〜4のいずれか1項に記載の暖房便座。 The heating toilet seat according to any one of claims 1 to 4, wherein the power switching means is constituted by double-cut relay contacts installed at both ends of the high resistance temperature characteristic heater. 低電圧電源回路と高抵抗温度特性ヒータ間に接点手段を設置した請求の範囲1〜5のいずれか1項に記載の暖房便座。 The heating toilet seat according to any one of claims 1 to 5, wherein a contact means is installed between the low voltage power supply circuit and the high resistance temperature characteristic heater. AC電源回路と低電圧電源回路間に接点手段を設置した請求の範囲1〜6のいずれか1項に記載の暖房便座。 The heating toilet seat according to any one of claims 1 to 6, wherein a contact means is installed between the AC power supply circuit and the low voltage power supply circuit. 制御手段のトライアックへの通電指示は、電力切換手段の接点開閉信号が出されて、完全に接点の移動動作が完了した後に開始される請求項1〜7のいずれか1項に記載の暖房便座。 The heating toilet seat according to any one of claims 1 to 7, wherein the energization instruction to the TRIAC by the control means is started after the contact open / close signal of the power switching means is output and the contact moving operation is completely completed. .
JP2006276212A 2006-10-10 2006-10-10 Heating toilet seat Expired - Fee Related JP4797922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276212A JP4797922B2 (en) 2006-10-10 2006-10-10 Heating toilet seat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276212A JP4797922B2 (en) 2006-10-10 2006-10-10 Heating toilet seat

Publications (2)

Publication Number Publication Date
JP2008093082A true JP2008093082A (en) 2008-04-24
JP4797922B2 JP4797922B2 (en) 2011-10-19

Family

ID=39376580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276212A Expired - Fee Related JP4797922B2 (en) 2006-10-10 2006-10-10 Heating toilet seat

Country Status (1)

Country Link
JP (1) JP4797922B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206927A (en) * 1981-06-15 1982-12-18 Matsushita Electric Works Ltd Temperature controlling circuit
JP2000126085A (en) * 1998-10-26 2000-05-09 Inax Corp Heating toilet seat device
JP2006025814A (en) * 2004-07-12 2006-02-02 Matsushita Electric Ind Co Ltd Heated toilet seat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206927A (en) * 1981-06-15 1982-12-18 Matsushita Electric Works Ltd Temperature controlling circuit
JP2000126085A (en) * 1998-10-26 2000-05-09 Inax Corp Heating toilet seat device
JP2006025814A (en) * 2004-07-12 2006-02-02 Matsushita Electric Ind Co Ltd Heated toilet seat

Also Published As

Publication number Publication date
JP4797922B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
KR100856889B1 (en) Temperature control apparatus for electric heating mattresses
KR20060043177A (en) A motor starter device having reduced power consumption
JP2007007016A (en) Toilet seat device
JP2010117431A5 (en)
CN101282607A (en) Power supply for halogen lamp
JP4797922B2 (en) Heating toilet seat
JP5249563B2 (en) Toilet seat temperature controller
JP2009125190A (en) Toilet seat device
JP3631703B2 (en) Induction heating rice cooker
JP3914184B2 (en) Burning appliance
JP2003217794A (en) Rush current preventing device
JP2006320608A5 (en)
JP2006320608A (en) Heater, heated toilet seat, and toilet device using the heated toilet seat
TW201244681A (en) Heated toilet seat apparatus
JP4158115B2 (en) Electric cooker
JP2009099324A (en) Induction heating cooker
JP4747821B2 (en) Heating toilet seat
JP2007007017A (en) Toilet seat device
JP4285320B2 (en) Induction heating cooker
JP2007111164A (en) Toilet seat device
JPH11249485A (en) Temperature controller for fixing heater of electrophotographic device
JP2004171934A (en) Induction heating device
JP5469362B2 (en) Lighting control device
JP2009106568A (en) Toilet seat apparatus
JP2009050486A (en) Toilet seat device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees