JP2008092829A - Grain flow detector - Google Patents

Grain flow detector Download PDF

Info

Publication number
JP2008092829A
JP2008092829A JP2006276403A JP2006276403A JP2008092829A JP 2008092829 A JP2008092829 A JP 2008092829A JP 2006276403 A JP2006276403 A JP 2006276403A JP 2006276403 A JP2006276403 A JP 2006276403A JP 2008092829 A JP2008092829 A JP 2008092829A
Authority
JP
Japan
Prior art keywords
grain
collision plate
flow rate
collision
grain flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006276403A
Other languages
Japanese (ja)
Inventor
Atsushi Kimura
敦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Agricultural Machinery Co Ltd
Original Assignee
Mitsubishi Agricultural Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Agricultural Machinery Co Ltd filed Critical Mitsubishi Agricultural Machinery Co Ltd
Priority to JP2006276403A priority Critical patent/JP2008092829A/en
Publication of JP2008092829A publication Critical patent/JP2008092829A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Threshing Machine Elements (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain flow detector with high detection accuracy through avoiding the insufficient turning displacement level of a collision plate in the case of low-grain-flow levels while suppressing varying grain collision angle corresponding to the collision plate's turning displacement even in the case of mounting such an identical detector on grain conveyors considerably differing in grain conveyance flow from each other or using such a detector in works considerably differing in grain flow from each other. <P>SOLUTION: The grain flow detector 100 comprises the collision plate 101 subjected to collision with grains inside a grain flow channel and turning correspondingly to the collision force, a turning member 102 to which the turning displacement level of the collision plate 101 is transmitted, a potentiometer 106 for detecting the turning displacement level of the turning member 102 out of the grain flow channel, and a spring 107 applying turning load onto the collision plate 101. The turning load on the collision plate 101 is made variable based on exchanging the spring 107 with another one. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱穀選別装置などの穀粒流路において穀粒の流量を検出する穀粒流量検出装置に関する。   The present invention relates to a grain flow rate detection device that detects the flow rate of a grain in a grain channel such as a threshing sorter.

脱穀選別装置などに設けられ、穀粒の流量を検出する穀粒流量検出装置が知られている。例えば、特許文献1〜3に記載される脱穀選別装置は、二番還元される穀粒の流量を穀粒流量検出装置で検出し、該検出流量に応じてグレンシーブやチャフシーブの開度量を自動制御するように構成されている。これらの穀粒流量検出装置は、いずれも穀粒との衝突に応じて回動する衝突板を備えており、該衝突板の回動変位量をポテンショメータなどの変位センサで検出する変位量検出方式となっている。
実開平4−136031号公報 特許第2721083号公報 特開平9−322640号公報
There is known a grain flow rate detection device that is provided in a threshing sorter or the like and detects the flow rate of a grain. For example, the threshing sorter described in Patent Documents 1 to 3 detects the flow rate of the second reduced grain with a grain flow rate detection device, and automatically controls the opening amount of the grain sieve and chaff sheave according to the detected flow rate. Is configured to do. These grain flow rate detection devices each include a collision plate that rotates in response to a collision with the grain, and a displacement amount detection system that detects a rotational displacement amount of the collision plate by a displacement sensor such as a potentiometer. It has become.
Japanese Utility Model Publication No.4-136031 Japanese Patent No. 2721083 JP-A-9-322640

ところで、変位量検出方式の穀粒流量検出装置では、穀粒との衝突力に抗する方向の回動負荷を衝突板に付与する必要がある。このような回動負荷は、変位センサの内部又は外部に設けられるバネによって容易に付与することが可能であるが、回動負荷が小さすぎると、衝突板の回動変位に応じた穀粒の衝突角度変化が大きくなり、検出精度が低下するという問題が生じる一方、回動負荷が大きすぎると、衝突板の回動変位量が不足し、低流量での検出精度が低下するという問題が生じる。従って、これらの相反する問題を解消するために、中立的な回動負荷を選択することになるが、中立的な回動負荷を一義的に決定すると、処理能力の変更に対応できない可能性がある。例えば、穀粒の搬送流量が大きく相違する機種に同じ穀粒流量検出装置を搭載した場合や、穀粒流量が大きく相違する作業に用いた場合に、衝突板の回動負荷が適正でなくなり、検出精度が低下する惧れがある。   By the way, in the grain flow rate detection device of the displacement amount detection method, it is necessary to apply a rotational load in a direction against the collision force with the grain to the collision plate. Such a rotational load can be easily applied by a spring provided inside or outside the displacement sensor. However, if the rotational load is too small, the rotation of the grains corresponding to the rotational displacement of the collision plate On the other hand, there is a problem that the change in the collision angle becomes large and the detection accuracy is lowered. On the other hand, if the rotational load is too large, the amount of rotational displacement of the collision plate is insufficient and the detection accuracy at a low flow rate is lowered. . Therefore, in order to solve these conflicting problems, a neutral rotational load is selected. However, if the neutral rotational load is uniquely determined, there is a possibility that it cannot cope with a change in processing capacity. is there. For example, when the same grain flow rate detection device is installed in a model with a significantly different grain flow rate, or when used for work where the grain flow rate is significantly different, the rotation load of the collision plate is not appropriate, There is a possibility that the detection accuracy is lowered.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、穀粒の流量を検出する穀粒流量検出装置であって、穀粒流路の内部で穀粒と衝突し、その衝突力に応じて回動する衝突板と、衝突板の回動変位量が伝達される回動部材と、穀粒流路の外部で回動部材の回動変位量を検出する変位センサと、衝突板に回動負荷を付与するバネとを備え、該バネの交換に基づいて衝突板の回動負荷が変更されることを特徴とする。このようにすると、穀粒の搬送流量が大きく相違する機種に同じ穀粒流量検出装置を搭載する場合や、穀粒流量が大きく相違する作業に用いる場合は、バネの交換により衝突板の回動負荷を適正化することができる。その結果、衝突板の回動変位に応じた穀粒の衝突角度変化を抑制しつつ、低流量時における衝突板の回動変位量不足を回避し、良好な検出精度が得られる。
また、前記回動部材は、衝突板の回動変位量を増幅して変位センサに伝達することを特徴とする。このようにすると、衝突板の回動変位量が小さい低流量時であっても、穀粒の流量を精度良く検出することができる。
The present invention was created for the purpose of solving these problems in view of the above circumstances, and is a kernel flow rate detection device for detecting the flow rate of a kernel, and the inside of the grain flow path. The collision plate that collides with the grain and rotates according to the collision force, the rotation member that transmits the rotation displacement amount of the collision plate, and the rotation displacement of the rotation member outside the grain flow path A displacement sensor for detecting the amount and a spring for applying a rotation load to the collision plate are provided, and the rotation load of the collision plate is changed based on replacement of the spring. In this case, when the same grain flow rate detection device is installed in a model having a greatly different grain flow rate, or when the grain flow rate is greatly different, the collision plate is rotated by replacing the spring. The load can be optimized. As a result, it is possible to avoid an insufficient rotation displacement amount of the collision plate at a low flow rate while suppressing a change in the collision angle of the grain according to the rotation displacement of the collision plate, and to obtain a good detection accuracy.
Further, the rotating member amplifies the amount of rotational displacement of the collision plate and transmits it to the displacement sensor. If it does in this way, even if it is the time of the low flow volume with the small amount of rotation displacement of a collision board, the flow volume of a grain can be detected accurately.

[第一実施形態]
次に、本発明の実施形態について、図面に基づいて説明する。図1において、1は本発明の第一実施形態に係る穀粒流量検出装置100が設けられる脱穀選別装置であって、該脱穀選別装置1は、茎稈を扱室2に沿って搬送する脱穀フィードチェン3と、脱穀済みの茎稈を後処理部4まで搬送する排藁搬送装置5と、扱室2に回転自在に内装され、搬送茎稈から処理物(混合物を含む穀粒)を脱穀する扱胴6と、ここで脱穀された処理物を漏下する第一受網7と、第一受網7から漏下せずに扱室2の終端まで達した処理物を単粒化処理する処理胴8と、ここで単粒化された処理物を漏下させる第二受網9と、第一受網7や第二受網9から漏下した処理物を揺動選別する揺動選別体10と、該揺動選別体10の前方で選別風を起風する圧風ファン11と、一番物を回収する一番ラセン12と、二番物を回収する二番ラセン13と、二番ラセン13の前方で二番選別風を起風する二番選別ファン14と、揺動選別体10の終端部上方に設けられる排塵室15と、該排塵室15に回転自在に内装される排塵ファン16とを備えて構成されている。そして、一番ラセン12によって回収された一番物は、揚穀筒17を介して穀粒タンク18に貯留され、二番ラセン13によって回収された二番物は、二番還元筒19を介して揺動選別体10上に還元されるようになっている。
[First embodiment]
Next, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, reference numeral 1 denotes a threshing / sorting device provided with a grain flow rate detection device 100 according to the first embodiment of the present invention, and the threshing / sorting device 1 carries threshing along a handling chamber 2. A feed chain 3, a waste transporting device 5 for transporting threshed stalks to the post-processing unit 4, and a handle room 2 are rotatably mounted, and threshing a processed product (grains including a mixture) from the transported stalks Treatment barrel 6, first receiving net 7 for leaking the processed product threshed here, and processing to reach the end of the handling chamber 2 without leaking from the first receiving net 7 A processing cylinder 8 to be processed, a second receiving network 9 for letting the processed material singulated here leak, and a swing for swinging and sorting the processing material leaked from the first receiving network 7 and the second receiving network 9 A sorting body 10, a compressed air fan 11 for generating a sorting wind in front of the swinging sorting body 10, a first spiral 12 for collecting the first thing, and a second thing are collected. The second spiral 13, the second sorting fan 14 for generating the second sorting wind in front of the second spiral 13, the dust discharge chamber 15 provided above the terminal end of the swing sorter 10, and the dust discharge A dust exhaust fan 16 is provided in the chamber 15 so as to be freely rotatable. And the first thing collected by the first helix 12 is stored in the grain tank 18 via the milled cylinder 17, and the second thing collected by the second helix 13 is passed through the second reducing cylinder 19. Thus, it is reduced onto the rocking sorter 10.

揺動選別体10は、第一受網7から漏下した処理物を後方へ順次搬送する揺動流板20と、該揺動流板20の終端部で処理物を複数並列するフィン部材で篩い選別するチャフシーブ21と、該チャフシーブ21から漏下した処理物を網部材で篩い選別するグレンシーブ22と、チャフシーブ21の後方に配置されるストロラック23とを備える揺動アッセンブリであり、図示しない駆動機構(クランク機構、カム機構など)によって所定の周期で連続的に往復揺動される。   The oscillating sorter 10 includes an oscillating flow plate 20 that sequentially conveys the processed material leaked from the first receiving net 7 to the rear, and a fin member that juxtaposes a plurality of processed materials at the end of the oscillating flow plate 20. A swing assembly including a chaff sheave 21 for sieving, a granule sheave 22 for sieving the processed material leaked from the chaff sheave 21 with a net member, and a strok rack 23 disposed behind the chaff sheave 21. By a mechanism (crank mechanism, cam mechanism, etc.), it is continuously reciprocated at a predetermined cycle.

チャフシーブ21は、前後方向に所定間隔を存して並列する複数のフィン21aを備えて構成されている。各フィン21aは、前低後高状に傾斜しており、揺動選別体10の揺動に伴って処理物を後方へ移送しつつ、フィン21a間の隙間から穀粒を漏下させる。本実施形態のチャフシーブ21は、フィン21a間の隙間(フィン開度)を調整可能であり、このフィン開度調整によって揺動選別体10の処理能力が調整されるようになっている。例えば、二番還元筒19の二番還元口24に、本発明の実施形態に係る穀粒流量検出装置100を設けると共に、該穀粒流量検出装置100により検出される二番還元穀粒量が一定になるように、チャフシーブ21のフィン開度を自動制御することができる。以下、二番還元筒19及び穀粒流量検出装置100の構成について、図2〜図5を参照して説明する。   The chaff sheave 21 includes a plurality of fins 21a arranged in parallel at a predetermined interval in the front-rear direction. Each fin 21a is inclined in a front-rear and a rear-high state, and the grains are leaked from the gaps between the fins 21a while the processed material is transferred rearward along with the swing of the swing sorter 10. The chaff sheave 21 of the present embodiment can adjust the gap (fin opening) between the fins 21a, and the processing capability of the rocking sorter 10 is adjusted by adjusting the fin opening. For example, the second reduction port 24 of the second reduction cylinder 19 is provided with the grain flow rate detection device 100 according to the embodiment of the present invention, and the second reduction kernel amount detected by the grain flow rate detection device 100 is determined. The fin opening of the chaff sheave 21 can be automatically controlled so as to be constant. Hereinafter, the structure of the 2nd reduction | restoration cylinder 19 and the grain flow volume detection apparatus 100 is demonstrated with reference to FIGS.

二番還元筒19は、二番ラセン13の終端から二番還元口24に至る二番還元用の穀粒流路を形成しており、その内部には、二番物を揚上搬送するラセン搬送体25が回転自在に内装されている。また、ラセン搬送体25の上端部には、二番物を外周方向に投擲する放出板26と、投擲された二番物を二番還元口24に向けて放出ガイドする円弧状の放出ガイド27とが設けられており、二番還元筒19の上端部まで搬送された二番物は、放出板26の投擲作用並びに放出ガイド27のガイド作用を受けて、二番還元口24から積極的に放出されるようになっている。   The second reduction cylinder 19 forms a grain passage for second reduction from the terminal end of the second helix 13 to the second reduction port 24, in which the helix that lifts and conveys the second thing is formed. A carrier 25 is rotatably mounted. Further, at the upper end portion of the helical transport body 25, a discharge plate 26 for throwing the second thing in the outer peripheral direction, and an arc-shaped discharge guide 27 for guiding the thrown second thing toward the second return port 24. The second item conveyed to the upper end of the second reduction cylinder 19 is positively received from the second reduction port 24 by receiving the throwing action of the discharge plate 26 and the guide action of the discharge guide 27. To be released.

本実施形態の穀粒流量検出装置100は、二番還元筒19の終端部に形成される穀粒流路(二番物放出流路)において穀粒の流量を検出するように設けられており、穀粒流路の内部で穀粒と衝突し、その衝突力に応じて回動する衝突板101と、衝突板101の回動変位量が伝達される回動部材102と、衝突板101及び回動部材102を回動自在に支持する支点軸103と、支点軸103をベアリング104を介して支持するベアリングホルダ105と、穀粒流路の外部で回動部材102の回動変位量を検出するポテンショメータ(変位センサ)106と、衝突板101に回動負荷を付与するバネ107と、回動部材102の初期位置を規定するストッパ108とを備えて構成されている。   The grain flow rate detection device 100 of the present embodiment is provided so as to detect the grain flow rate in a grain channel (second product discharge channel) formed at the terminal portion of the second reduction cylinder 19. The collision plate 101 that collides with the grain inside the grain flow path and rotates according to the collision force, the rotating member 102 to which the amount of rotational displacement of the collision plate 101 is transmitted, the collision plate 101, A fulcrum shaft 103 that rotatably supports the rotation member 102, a bearing holder 105 that supports the fulcrum shaft 103 via a bearing 104, and a rotational displacement amount of the rotation member 102 outside the grain channel. A potentiometer (displacement sensor) 106, a spring 107 that applies a rotational load to the collision plate 101, and a stopper 108 that defines the initial position of the rotational member 102.

具体的に説明すると、二番還元筒19の天板28(仕切壁)には、穀粒流量検出装置100の取付孔28aが形成されており、この取付孔28aを塞ぐようにベアリングホルダ105が取り付けられる。ベアリングホルダ105に支持される支点軸103は、取付孔28aを介して天板28を貫通しており、穀粒流路の内部に位置する支点軸103の一端部に衝突板101の一端部が一体的に固定される一方、穀粒流路の外部に位置する支点軸103の他端部に回動部材102の基端部が一体的に固定される。本実施形態では、放出ガイド27の延長線に沿って衝突板101を配置することにより、比較的流れ方向が安定した穀粒を衝突板101に衝突させるようになっている。尚、放出ガイド27の裏側には、送風装置29が設けられており、この送風装置29の送風により、衝突板101の裏側に溜まった物が選別室内に向けて吹き飛ばされるようになっている。   More specifically, the top plate 28 (partition wall) of the second reduction cylinder 19 is formed with a mounting hole 28a of the grain flow rate detection device 100, and the bearing holder 105 is closed so as to close the mounting hole 28a. It is attached. The fulcrum shaft 103 supported by the bearing holder 105 penetrates the top plate 28 through the mounting hole 28a, and one end of the collision plate 101 is connected to one end of the fulcrum shaft 103 located inside the grain flow path. While fixed integrally, the base end part of the rotation member 102 is integrally fixed to the other end part of the fulcrum shaft 103 located outside the grain flow path. In the present embodiment, by arranging the collision plate 101 along the extension line of the discharge guide 27, grains having a relatively stable flow direction are caused to collide with the collision plate 101. A blower device 29 is provided on the back side of the discharge guide 27, and the air collected by the blower device 29 is blown away toward the sorting chamber.

本実施形態の回動部材102は、扇ギヤで構成されており、先端に形成される円弧状ギヤ部には、ポテンショメータ106の入力軸(図示せず)に設けられるピニオンギヤ109が噛み合っている。つまり、穀粒との衝突に応じて衝突板101が回動すると、回動部材102も一体的に回動し、先端の円弧状ギヤ部がピニオンギヤ109を回転させる。これにより、穀粒との衝突に応じた衝突板101の回動変位量がポテンショメータ106で検出される。また、回動部材102の長さ寸法(径寸法)や、円弧状ギヤ部とピニオンギヤ109のギヤ比は、ポテンショメータ106に伝達される衝突板101の回動変位量が可及的に増幅されるように設定することが好ましい。このようにすると、衝突板101の回動変位量が小さい低流量時であっても、穀粒の流量を精度良く検出することが可能になる。尚、回動部材102の基端部は、支点軸103に回動不能に外嵌するボス部102aを有しており、支点軸103に外嵌されたボス部102aは、支点軸103の上端にねじ込まれるボルト110とワッシャ111で抜止めされるようになっている。   The rotating member 102 of the present embodiment is configured by a fan gear, and a pinion gear 109 provided on an input shaft (not shown) of the potentiometer 106 is engaged with an arcuate gear portion formed at the tip. That is, when the collision plate 101 rotates according to the collision with the grain, the rotation member 102 also rotates integrally, and the arcuate gear portion at the tip rotates the pinion gear 109. Thereby, the amount of rotational displacement of the collision plate 101 according to the collision with the grain is detected by the potentiometer 106. Further, the length dimension (diameter dimension) of the rotating member 102 and the gear ratio between the arcuate gear portion and the pinion gear 109 amplify the rotational displacement amount of the collision plate 101 transmitted to the potentiometer 106 as much as possible. It is preferable to set so. If it does in this way, even if it is the time of the low flow volume with the small amount of rotation displacement of the collision board 101, it will become possible to detect the flow volume of a grain with sufficient precision. Note that the base end portion of the rotation member 102 has a boss portion 102 a that is fitted on the fulcrum shaft 103 so as not to rotate. The bolt 110 and the washer 111 to be screwed in are secured.

ストッパ108は、ベアリングホルダ105とは別体であり、天板28に個別に取り付けられる。ストッパ108の一端部には、第一ストッパ片108aが設けられており、この第一ストッパ片108aとの当接により回動部材102の初期位置が規定される。また、ストッパ108の他端部には、第二ストッパ片108bが設けられており、この第二ストッパ片108bとの当接によりバネ107の他端部が係止される。   The stopper 108 is separate from the bearing holder 105 and is individually attached to the top plate 28. A first stopper piece 108a is provided at one end of the stopper 108, and the initial position of the rotating member 102 is defined by contact with the first stopper piece 108a. A second stopper piece 108b is provided at the other end portion of the stopper 108, and the other end portion of the spring 107 is locked by contact with the second stopper piece 108b.

本実施形態のバネ107は、捻りコイルバネからなり、回動部材102のボス部102aの外周部に装着される。そして、バネ107の一端部は、回動部材102に形成される係合孔102bに係合し、他端部はストッパ108の第二ストッパ片108bで係止される。このようにバネ107を設けると、回動部材102及び支点軸103を介して、衝突板101に回動負荷が付与される。   The spring 107 according to the present embodiment is a torsion coil spring, and is attached to the outer peripheral portion of the boss portion 102 a of the rotating member 102. One end of the spring 107 is engaged with an engagement hole 102 b formed in the rotating member 102, and the other end is locked by the second stopper piece 108 b of the stopper 108. When the spring 107 is provided in this way, a rotation load is applied to the collision plate 101 via the rotation member 102 and the fulcrum shaft 103.

本発明に係る穀粒流量検出装置100では、バネ107の交換に基づいて衝突板101の回動負荷が変更されるようになっている。例えば、本実施形態では、ボルト110を外すと、支点軸103から回動部材102及びバネ107が外れるので、バネ力が異なるバネ107への交換が可能になる。このようにすると、穀粒の搬送流量が大きく相違する機種に同じ穀粒流量検出装置100を搭載する場合や、穀粒流量が大きく相違する作業に同じ穀粒流量検出装置100を用いる場合に、バネ107の交換により衝突板101の回動負荷を適正化することができる。その結果、衝突板101の回動変位に応じた穀粒の衝突角度変化を抑制しつつ、低流量時における衝突板101の回動変位量不足を回避し、良好な検出精度が得られることになる。   In the grain flow rate detection device 100 according to the present invention, the rotational load of the collision plate 101 is changed based on the replacement of the spring 107. For example, in this embodiment, when the bolt 110 is removed, the rotating member 102 and the spring 107 are detached from the fulcrum shaft 103, so that the spring 107 having a different spring force can be replaced. In this case, when the same grain flow rate detection device 100 is mounted on a model in which the grain flow rate is greatly different, or when the same grain flow rate detection device 100 is used for work where the grain flow rate is greatly different, By replacing the spring 107, the rotational load of the collision plate 101 can be optimized. As a result, while suppressing the change in the collision angle of the grain according to the rotational displacement of the collision plate 101, the shortage of the rotational displacement amount of the collision plate 101 at a low flow rate is avoided, and good detection accuracy is obtained. Become.

また、本実施形態の脱穀選別装置1には、図1に示すように、三番飛散粒の量を検出する三番センサ30が設けられている。三番センサ30は、シート状又はプレート状の感圧センサからなり、排塵室15の後部壁面にマウント用ゴム31を介して取り付けられ、穀粒の衝突力を検出するようになっている。しかしながら、検出対象である穀粒の衝突エネルギーが微小であるため、センサ出力も小さくなり、ノイズ(藁などの屑の衝突エネルギーや風圧)との識別が難しいという問題があった。これは、三番センサ30として用いる感圧センサがセンサ自体の変形を検出するものであり、穀粒の衝突では感圧センサに大きな変形を生じさせることができないからである。   Moreover, as shown in FIG. 1, the threshing sorting apparatus 1 of this embodiment is provided with the 3rd sensor 30 which detects the quantity of the 3rd scattered grain. The third sensor 30 is composed of a sheet-like or plate-like pressure sensor, and is attached to the rear wall surface of the dust removal chamber 15 via a mounting rubber 31 so as to detect the collision force of the grains. However, since the collision energy of the grains to be detected is very small, the sensor output is also small, and there is a problem that it is difficult to distinguish from noise (collision energy and wind pressure of debris such as straw). This is because the pressure sensor used as the third sensor 30 detects the deformation of the sensor itself, and a large deformation cannot be caused in the pressure sensor due to the collision of the grains.

そこで、本実施形態では、図6に示すように、三番センサ30の背面を支持しているマウント用ゴム31に、三番センサ30の背面との接触を避けるために孔31a(又は凹部)を形成している。つまり、三番センサ30は、背面全域がマウント用ゴム31に接触していると、穀粒が衝突しても変形し難いが、上記の孔31aによって背後に空間を確保すると、三番センサ30の変形が促進され、穀粒の衝突力を精度良く検出することが可能になる。   Therefore, in the present embodiment, as shown in FIG. 6, the mounting rubber 31 supporting the back surface of the third sensor 30 has a hole 31 a (or a recess) to avoid contact with the back surface of the third sensor 30. Is forming. That is, the third sensor 30 is difficult to be deformed even if the grain collides when the entire rear surface is in contact with the mounting rubber 31, but if a space is secured behind the hole 31 a, the third sensor 30. This makes it possible to detect the collision force of the grains with high accuracy.

マウント用ゴム31に形成する孔31aの形状及び寸法は、図6の(A)に示すように、穀粒や藁屑の形状や寸法を考慮することなく決めてもよいが、図6の(B)及び(C)に示すように、穀粒の大きさL1よりも大きく、かつ、藁屑の大きさL2よりも小さい径寸法Aの孔31aを多数形成することが好ましい。このようにすると、藁屑の衝突による三番センサ30の変形を抑制しつつ、穀粒の衝突による三番センサ30の変形を促進し、三番飛散粒の量を精度良く検出することが可能になる。   As shown in FIG. 6A, the shape and dimensions of the hole 31a formed in the mounting rubber 31 may be determined without taking into account the shape and dimensions of the grains and sawdust, As shown in B) and (C), it is preferable to form a large number of holes 31a having a diameter A that is larger than the grain size L1 and smaller than the size L2 of the sawdust. In this way, it is possible to promote the deformation of the third sensor 30 due to the collision of the grains and accurately detect the amount of the third scattered particles while suppressing the deformation of the third sensor 30 due to the collision of the sawdust. become.

叙述の如く構成された本実施形態の穀粒流量検出装置100は、穀粒流路の内部で穀粒と衝突し、その衝突力に応じて回動する衝突板101と、衝突板101の回動変位量が伝達される回動部材102と、穀粒流路の外部で回動部材102の回動変位量を検出するポテンショメータ106と、衝突板101に回動負荷を付与するバネ107とを備え、該バネ107の交換に基づいて衝突板101の回動負荷が変更されるようにしたので、穀粒の搬送流量が大きく相違する機種に同じ穀粒流量検出装置100を搭載する場合や、穀粒流量が大きく相違する作業に同じ穀粒流量検出装置100を用いる場合は、バネ107の交換により衝突板101の回動負荷を適正化することができる。その結果、衝突板101の回動変位に応じた穀粒の衝突角度変化を抑制しつつ、低流量時における衝突板101の回動変位量不足を回避し、良好な検出精度が得られる。   The grain flow rate detection device 100 of the present embodiment configured as described above collides with the grain inside the grain flow path, and rotates according to the collision force. A rotation member 102 to which the amount of dynamic displacement is transmitted, a potentiometer 106 for detecting the amount of rotation displacement of the rotation member 102 outside the grain flow path, and a spring 107 for applying a rotation load to the collision plate 101 Since the rotation load of the collision plate 101 is changed based on the exchange of the spring 107, when the same grain flow rate detection device 100 is mounted on a model in which the grain flow rate is greatly different, When the same grain flow rate detection device 100 is used for work in which the grain flow rate is greatly different, the rotation load of the collision plate 101 can be optimized by replacing the spring 107. As a result, while suppressing a change in the collision angle of the grain according to the rotational displacement of the collision plate 101, a shortage of the rotational displacement amount of the collision plate 101 at a low flow rate is avoided, and good detection accuracy is obtained.

また、回動部材102は、衝突板101の回動変位量を増幅してポテンショメータ106に伝達するように構成されているので、衝突板101の回動変位量が小さい低流量時であっても、穀粒の流量を精度良く検出できるという利点がある。   Further, since the rotation member 102 is configured to amplify the rotation displacement amount of the collision plate 101 and transmit it to the potentiometer 106, even when the collision plate 101 has a small rotation displacement amount and a low flow rate. There is an advantage that the flow rate of the grain can be detected with high accuracy.

[第二実施形態]
次に、本発明の第二実施形態に係る穀粒流量検出装置200について、図7を参照して説明する。ただし、前記実施形態と共通の構成については、前記実施形態と同じ符号を付け、前記実施形態の説明を援用する。
図7に示すように、第二実施形態の穀粒流量検出装置200は、回動部材202がアーム部材で構成されている点と、回動部材202の回動変位量を検出する変位センサとしてストロークセンサ206を用いる点が前記実施形態と相違している。具体的には、アーム部材からなる回動部材202の先端部に、ストロークセンサ206の検出ロッド206aを連結し、回動部材202の先端変位量を検出するようにしている。
[Second Embodiment]
Next, the grain flow rate detection device 200 according to the second embodiment of the present invention will be described with reference to FIG. However, about the structure common to the said embodiment, the same code | symbol as the said embodiment is attached | subjected and description of the said embodiment is used.
As shown in FIG. 7, the grain flow rate detection device 200 according to the second embodiment is a displacement sensor that detects a rotational displacement amount of the rotational member 202 and a point that the rotational member 202 is configured by an arm member. The point which uses the stroke sensor 206 is different from the said embodiment. Specifically, the detection rod 206a of the stroke sensor 206 is connected to the distal end portion of the rotating member 202 made of an arm member, and the displacement amount of the distal end of the rotating member 202 is detected.

このように構成された第二実施形態の穀粒流量検出装置200であっても、第一実施形態の穀粒流量検出装置100と同様に、バネ107の交換により衝突板101の回動負荷を適正化できるという効果が得られる。また、回動部材102をアーム部材で構成しても、衝突板101の回動変位量を増幅してストロークセンサ206に伝達することができるので、衝突板101の回動変位量が小さい低流量時であっても、穀粒の流量を精度良く検出できる。   Even in the grain flow rate detection device 200 of the second embodiment configured as described above, the rotational load of the collision plate 101 is changed by replacing the spring 107 as in the case of the grain flow rate detection device 100 of the first embodiment. The effect that it can be optimized is obtained. Further, even if the rotating member 102 is constituted by an arm member, the amount of rotation displacement of the collision plate 101 can be amplified and transmitted to the stroke sensor 206, so that the low flow rate with a small amount of rotation displacement of the collision plate 101 is small. Even at times, the flow rate of the grains can be detected with high accuracy.

尚、本発明は、前記実施形態に限定されないことは勿論であって、例えば、本発明の穀粒流量検出装置の用途は、二番還元される穀粒の流量検出に限定されず、様々な穀粒流路の流量検出に適用することができる。また、回動部材の回動変位量を検出する変位センサは、ポテンショメータとストロークセンサに限定されないことは言うまでもない。   Of course, the present invention is not limited to the above-described embodiment. For example, the use of the grain flow rate detection device of the present invention is not limited to the flow rate detection of the second reduced grain, and various It can be applied to flow rate detection in a grain flow path. Needless to say, the displacement sensor for detecting the rotational displacement amount of the rotational member is not limited to the potentiometer and the stroke sensor.

[第一参考例]
次に、第一参考例に係る穀粒流量検出装置300について、図8を参照して説明する。図8に示すように、第一参考例に係る穀粒流量検出装置300は、穀粒流路の内部で穀粒と衝突する衝突板301と、穀粒流路内で衝突板301を支持する撓み部材302と、穀粒流路の内外に通じる孔に張設されるゴムプレート303と、穀粒流路の外部に配置されるストロークセンサ304とを備えて構成されている。
[First Reference Example]
Next, the grain flow rate detection apparatus 300 according to the first reference example will be described with reference to FIG. As shown in FIG. 8, the grain flow rate detection device 300 according to the first reference example supports a collision plate 301 that collides with the grain inside the grain flow channel, and the collision plate 301 within the grain flow channel. The flexible member 302 includes a rubber plate 303 stretched in a hole that communicates with the inside and outside of the grain channel, and a stroke sensor 304 that is disposed outside the grain channel.

衝突板301は、背面に突起部301aを有し、その先端がゴムプレート303を介してストロークセンサ304の検出ロッド304aに当接されている。
撓み部材302は、穀粒の衝突力に応じた衝突板301の変位を撓み変形(弾性変形)により許容する部材であるが、衝突板301を吊り下げ支持するために、比較的バネ力が強い板バネなどが使用される。
ゴムプレート303は、仕切壁の孔を塞ぎつつ、衝突板301の変位量をストロークセンサ304に伝達する部材であるが、ある程度の耐久性を確保するために、比較的厚みのあるものが使用される。
The collision plate 301 has a protrusion 301 a on the back surface, and the tip of the collision plate 301 is in contact with the detection rod 304 a of the stroke sensor 304 via the rubber plate 303.
The bending member 302 is a member that allows displacement of the collision plate 301 according to the collision force of the grains by bending deformation (elastic deformation), but has a relatively strong spring force in order to suspend and support the collision plate 301. A leaf spring or the like is used.
The rubber plate 303 is a member that transmits the amount of displacement of the collision plate 301 to the stroke sensor 304 while closing the hole in the partition wall, but a relatively thick one is used to ensure a certain degree of durability. The

このように構成される第一参考例の穀粒流量検出装置300でも、穀粒流路の外部に配置されたストロークセンサ304で衝突板301の変位量を検出することが可能である。
しかしながら、第一参考例の穀粒流量検出装置300では、衝突板301を吊り下げ支持するために、比較的バネ力が強い板バネなどで撓み部材302を構成する必要があるため、低流量での検出精度に問題がある。
また、ストロークセンサ304は、ゴムプレート303を介して衝突力を検出するので、ゴムプレート303の弾性変形により、検出精度が低下するという問題もある。
Even in the grain flow rate detection device 300 of the first reference example configured as described above, the displacement amount of the collision plate 301 can be detected by the stroke sensor 304 disposed outside the grain flow path.
However, in the grain flow rate detection device 300 of the first reference example, in order to suspend and support the collision plate 301, it is necessary to configure the bending member 302 with a plate spring or the like having a relatively strong spring force. There is a problem with the detection accuracy.
Further, since the stroke sensor 304 detects a collision force via the rubber plate 303, there is a problem that detection accuracy is lowered due to elastic deformation of the rubber plate 303.

[第二参考例]
次に、第二参考例に係る穀粒流量検出装置400について、図9を参照して説明する。ただし、前記参考例と共通の構成については、前記参考例と同じ符号を付け、前記参考例の説明を援用する。
図9に示すように、第二参考例に係る穀粒流量検出装置400は、衝突板301の変位量をポテンショメータ404で検出する点が第一参考例と相違している。具体的には、穀粒流路の外部にポテンショメータ404を配置し、その検出アーム404aをゴムプレート303の外面に当接させている。
[Second Reference Example]
Next, the grain flow rate detection apparatus 400 according to the second reference example will be described with reference to FIG. However, the same reference numerals as those in the reference example are given to configurations common to the reference example, and the description of the reference example is incorporated.
As shown in FIG. 9, the grain flow rate detection device 400 according to the second reference example is different from the first reference example in that the displacement amount of the collision plate 301 is detected by a potentiometer 404. Specifically, a potentiometer 404 is disposed outside the grain flow path, and its detection arm 404 a is brought into contact with the outer surface of the rubber plate 303.

このように構成される第二参考例の穀粒流量検出装置400でも、穀粒流路の外部に配置されたポテンショメータ404で衝突板301の変位量を検出することが可能である。
しかしながら、第二参考例の穀粒流量検出装置400では、第一参考例と同様、衝突板301を吊り下げ支持するために、比較的バネ力が強い板バネなどで撓み部材302を構成する必要があるため、低流量での検出精度に問題がある。
また、ポテンショメータ404は、ゴムプレート303を介して衝突力を検出するので、ゴムプレート303の弾性変形により、検出精度が低下するという問題もある。
Even in the grain flow rate detection device 400 of the second reference example configured as described above, the displacement amount of the collision plate 301 can be detected by the potentiometer 404 arranged outside the grain flow path.
However, in the grain flow rate detection device 400 of the second reference example, in order to suspend and support the collision plate 301, it is necessary to configure the bending member 302 with a leaf spring having a relatively strong spring force, as in the first reference example. Therefore, there is a problem in detection accuracy at a low flow rate.
Further, since the potentiometer 404 detects a collision force via the rubber plate 303, there is a problem that detection accuracy is lowered due to elastic deformation of the rubber plate 303.

脱穀選別装置の内部側面図である。It is an internal side view of a threshing sorter. 第一実施形態に係る穀粒流量検出装置が設けられた二番還元筒の側面図である。It is a side view of the 2nd reduction cylinder provided with the grain flow rate detection device concerning a first embodiment. 第一実施形態に係る穀粒流量検出装置が設けられた二番還元筒のA矢視断面図である。It is A arrow sectional drawing of the 2nd reduction | restoration cylinder provided with the grain flow volume detection apparatus which concerns on 1st embodiment. 第一実施形態に係る穀粒流量検出装置の平面図である。It is a top view of the grain flow rate detection apparatus concerning a first embodiment. 第一実施形態に係る穀粒流量検出装置の断面図である。It is sectional drawing of the grain flow rate detection apparatus which concerns on 1st embodiment. (A)三番センサのマウント用ゴムを示す正面図、(B)はマウント用ゴムの他例を示す正面図、(C)は穀粒や藁との寸法関係を示す説明図である。(A) The front view which shows the rubber | gum for mounting of a 3rd sensor, (B) is a front view which shows the other example of the rubber | gum for mounting, (C) is explanatory drawing which shows the dimensional relationship with a grain or a koji. 第二実施形態に係る穀粒流量検出装置の平面図である。It is a top view of the grain flow rate detection apparatus which concerns on 2nd embodiment. 第一参考例に係る穀粒流量検出装置の側面図である。It is a side view of the grain flow rate detection apparatus which concerns on a 1st reference example. 第二参考例に係る穀粒流量検出装置の側面図である。It is a side view of the grain flow rate detection apparatus which concerns on a 2nd reference example.

符号の説明Explanation of symbols

1 脱穀選別装置
19 二番還元筒
24 二番還元口
25 ラセン搬送体
26 放出板
27 放出ガイド
28 天板
29 送風装置
100 穀粒流量検出装置
101 衝突板
102 回動部材
103 支点軸
106 ポテンショメータ
107 バネ
200 穀粒流量検出装置
202 回動部材
206 ストロークセンサ
DESCRIPTION OF SYMBOLS 1 Threshing sorting device 19 Second reduction cylinder 24 Second reduction port 25 Spiral carrier 26 Release plate 27 Release guide 28 Top plate 29 Blower 100 Grain flow rate detection device 101 Collision plate 102 Rotating member 103 Support shaft 106 Potentiometer 107 Spring 200 Grain flow rate detection device 202 Rotating member 206 Stroke sensor

Claims (2)

穀粒の流量を検出する穀粒流量検出装置であって、
穀粒流路の内部で穀粒と衝突し、その衝突力に応じて回動する衝突板と、
衝突板の回動変位量が伝達される回動部材と、
穀粒流路の外部で回動部材の回動変位量を検出する変位センサと、
衝突板に回動負荷を付与するバネとを備え、該バネの交換に基づいて衝突板の回動負荷が変更される
ことを特徴とする穀粒流量検出装置。
A grain flow rate detection device for detecting a grain flow rate,
A collision plate that collides with the grain inside the grain flow path and rotates according to the collision force;
A rotating member to which the rotational displacement amount of the collision plate is transmitted;
A displacement sensor that detects the amount of rotational displacement of the rotational member outside the grain flow path;
A grain flow rate detection device comprising: a spring for applying a rotational load to the collision plate; and the rotation load of the collision plate is changed based on the exchange of the spring.
前記回動部材は、衝突板の回動変位量を増幅して変位センサに伝達することを特徴とする請求項1記載の穀粒流量検出装置。   The grain flow rate detection device according to claim 1, wherein the rotating member amplifies a rotational displacement amount of the collision plate and transmits the amplified displacement amount to the displacement sensor.
JP2006276403A 2006-10-10 2006-10-10 Grain flow detector Pending JP2008092829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276403A JP2008092829A (en) 2006-10-10 2006-10-10 Grain flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276403A JP2008092829A (en) 2006-10-10 2006-10-10 Grain flow detector

Publications (1)

Publication Number Publication Date
JP2008092829A true JP2008092829A (en) 2008-04-24

Family

ID=39376360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276403A Pending JP2008092829A (en) 2006-10-10 2006-10-10 Grain flow detector

Country Status (1)

Country Link
JP (1) JP2008092829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060085A (en) * 2009-09-11 2011-03-24 Fujitsu Ltd Mobile robot
JP2018061457A (en) * 2016-10-11 2018-04-19 三菱マヒンドラ農機株式会社 combine
JP2018102209A (en) * 2016-12-26 2018-07-05 三菱マヒンドラ農機株式会社 combine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060085A (en) * 2009-09-11 2011-03-24 Fujitsu Ltd Mobile robot
JP2018061457A (en) * 2016-10-11 2018-04-19 三菱マヒンドラ農機株式会社 combine
JP2018102209A (en) * 2016-12-26 2018-07-05 三菱マヒンドラ農機株式会社 combine

Similar Documents

Publication Publication Date Title
WO2006076226A3 (en) High speed coin processing machine
JP2008092829A (en) Grain flow detector
EP1220045A3 (en) Automatic original feeding apparatus and image forming apparatus provided with the same
JP5016273B2 (en) Threshing device sorter structure
JP4627293B2 (en) Kernel flow detector
JP2009027934A (en) Threshing and separating apparatus
JP2005196124A5 (en)
JPH06101965B2 (en) All culm input threshing equipment
JP2007074923A (en) Threshing and sorting apparatus
JP7423438B2 (en) threshing equipment
WO2020262530A1 (en) Threshing device
JP6051018B2 (en) Threshing device
JP2008199995A (en) Threshing and sorting apparatus
JP3203297B2 (en) Raw material supply device
JP2008283919A (en) Combine
JP2007074924A (en) Threshing and sorting apparatus
JP2006006205A (en) Threshing and sorting apparatus
JP2009055825A (en) Shaking separation apparatus in threshing apparatus
JP4821953B2 (en) Threshing device
JP2008005705A (en) Threshing apparatus
JP2000139180A (en) Screening controller in thresher
JP2009225767A (en) Thresher
JPS63107788A (en) Cereal-grain layer thickness detector for cereal grain selector
JP2011004659A (en) Automatically threshing-type threshing apparatus
JP2019024358A (en) Thresher