JP2008092685A - Power system monitor and control system - Google Patents

Power system monitor and control system Download PDF

Info

Publication number
JP2008092685A
JP2008092685A JP2006271372A JP2006271372A JP2008092685A JP 2008092685 A JP2008092685 A JP 2008092685A JP 2006271372 A JP2006271372 A JP 2006271372A JP 2006271372 A JP2006271372 A JP 2006271372A JP 2008092685 A JP2008092685 A JP 2008092685A
Authority
JP
Japan
Prior art keywords
value
state
power
observation
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006271372A
Other languages
Japanese (ja)
Other versions
JP4453106B2 (en
Inventor
Tsutomu Suzuki
努 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006271372A priority Critical patent/JP4453106B2/en
Publication of JP2008092685A publication Critical patent/JP2008092685A/en
Application granted granted Critical
Publication of JP4453106B2 publication Critical patent/JP4453106B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the accuracy of determining a system state that seems to be the surest, with regard to a power system monitor and control system. <P>SOLUTION: The power system monitor and control system, which is configured to obtain the state of a power system which seems to be surest using observation values collected from the power system and to perform the monitor and control from the conditions, is provided with a system state calculation device 3. This device obtains a state variable which seems to be surest in the power system as an estimated value by estimating the state using the observation values by a state estimate means 13. Then, the system state which seems to be surest is obtained by performing a power flow calculation by a power flow calculation means 14. In that power flow calculation, the estimated value is used as a specified value for a node to which a generator or a load is connected, while 0.0 is used for the other node. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力系統の監視制御システムに関する。   The present invention relates to a power system monitoring control system.

電力系統の監視制御システムでは、一般に、監視制御対象の系統についてそのノード(母線)やブランチ(インピーダンス要素)における有効電力や無効電力などの観測値を例えばテレメータのような観測手段で観測して収集し、それらの観測値を用いて当該系統の最も確からしい状態を求め、それに基づいて監視制御を行うようにされている。このような電力系統監視制御システムについては、系統の最も確からしい状態を求める手法として、状態推定法と潮流計算法があり、従来ではこれらの手法のいずれかを用いて最も確からしい系統状態を求めるようにされていた(例えば特許文献1〜特許文献6)。   In a power system supervisory control system, in general, observation values such as active power and reactive power at nodes (busbars) and branches (impedance elements) of a system to be monitored and controlled are collected by observing with an observation means such as a telemeter. The most probable state of the system is obtained using these observation values, and monitoring control is performed based on the most probable state. For such a power system monitoring and control system, there are two methods for determining the most probable state of the system: the state estimation method and the tidal current calculation method. Conventionally, the most probable system state is determined using either of these methods. (For example, Patent Documents 1 to 6).

状態推定、潮流計算いずれの手法で最も確からしい系統状態を求めるにしても、それには一定数以上の観測値を必要とする。しかるに一般的な電力系統では十分な数の観測値を収集できない場合が少なくないのが実情である。観測値を十分に得られない場合、観測値の不足分について補完値(補完による観測値)で補完する必要があるが、その補完値として、従来では監視制御対象の系統における発電パターンや負荷パターンから得られる値、あるいは監視制御対象の系統における発電機の有効電力設定値や電圧設定値を用いるようにしていた。   Regardless of the method of state estimation or tidal current calculation, the most probable system state is required for that purpose. However, there are many cases where a sufficient number of observation values cannot be collected in a general power system. If sufficient observations cannot be obtained, it is necessary to supplement the shortage of observations with supplementary values (observation values by supplementation). As supplementary values, power generation patterns and load patterns in the system to be monitored and controlled are conventionally used. Or the active power set value or voltage set value of the generator in the system to be monitored and controlled.

特開2006−87177号公報JP 2006-87177 A 特開2005−287128号公報JP-A-2005-287128 特開2002−51464号公報JP 2002-51464 A 特開2001−177991号公報JP 2001-177991 A 特開平6−327155号公報JP-A-6-327155 特開平6−351163号公報JP-A-6-351163

上述のように従来の電力系統監視制御システムでは、状態推定法と潮流計算法のいずれかにより系統の最も確からしい状態を求めるようにしており、またそれについて、観測値の不足分を補完する補完値として、発電パターンなどから得られる値や発電機の有効電力設定値などの「外部データ」を用いるようにしている。このような電力系統監視制御システムについては、そこで求められる最も確からしい系統状態の精度を改善する余地がある。すなわち状態推定法や潮流計算法で補完値として用いる外部データは、実際の観測値に比べてそれに伴う誤差が大きいのが一般的であり、そのために状態推定法や潮流計算法のいずれであっても、それらで求められる系統状態の確からしさには必ずしも高い精度が得られず、改善の余地がある。   As described above, in the conventional power system monitoring and control system, the most probable state of the system is obtained by either the state estimation method or the tidal current calculation method. As the value, “external data” such as a value obtained from a power generation pattern or an active power set value of a generator is used. For such a power system monitoring and control system, there is room for improving the most probable system state accuracy required there. In other words, external data used as supplementary values in the state estimation method and the tidal current calculation method generally has a larger error than the actual observation value. Therefore, either the state estimation method or the tidal current calculation method is used. However, the accuracy of the system state required by them does not necessarily provide high accuracy, and there is room for improvement.

本発明は、以上のような事情を背景になされたものであり、電力系統監視制御システムについて、最も確からしい系統状態の決定精度をより高めることができるようにすることを課題としている。   The present invention has been made in the background as described above, and it is an object of the present invention to make it possible to further increase the most probable system state determination accuracy of the power system monitoring control system.

本願の発明者等は、電力系統監視制御システムにおける系統状態の決定精度を高める方策について鋭意検討を重ねてきた。その結果、状態推定で得られた推定値を潮流計算の指定値として用いるようにして状態推定と潮流計算を組み合わせて系統状態を求めるようにすることで、系統状態の決定精度を高めることができるとの知見が得られた。また観測値の数が状態推定に不十分な場合に必要となる観測値補完における補完値として0.0を用いるようにすることで、状態推定と潮流計算を組み合わせる場合について、系統状態の決定精度をより一層高めることができるとの知見が得られた。   The inventors of the present application have made extensive studies on measures for increasing the determination accuracy of the system state in the power system monitoring and control system. As a result, it is possible to improve the determination accuracy of the system state by using the estimated value obtained by the state estimation as the specified value for the power flow calculation and obtaining the system state by combining the state estimation and the power flow calculation. And the knowledge was obtained. In addition, by using 0.0 as the supplement value in the observation value interpolation that is necessary when the number of observation values is insufficient for state estimation, the accuracy of determination of the system state is determined when combining state estimation and tidal current calculation. The knowledge that it can raise further is obtained.

本発明は、上記のような知見に基づいており、電力系統から収集した観測値を用いて当該電力系統の最も確からしい状態を求め、それに基づいて監視制御を行うようにされている電力系統監視制御システムにおいて、前記観測値を用いて状態推定を行うことで前記電力系統における最も確からしい状態変数を推定値として求め、それから潮流計算を行うことで最も確からしい系統状態を求めるようにされており、そして前記潮流計算では、その指定値として、発電機や負荷が接続しているノードについては前記推定値を用い、他のノードについては0.0を用いるようにされていることを特徴としている。   The present invention is based on the knowledge as described above, finds the most probable state of the power system using observation values collected from the power system, and performs power control monitoring based on the most probable state. In the control system, the most probable state variable in the power system is obtained as an estimated value by estimating the state using the observed value, and then the most probable system state is obtained by performing a power flow calculation. In the tidal current calculation, as the specified value, the estimated value is used for a node to which a generator or a load is connected, and 0.0 is used for the other nodes. .

また本発明は、上記のような電力系統監視制御システムについて、前記観測値の数が前記状態推定に不十分な場合に必要となる観測値補完における補完値として0.0を用いるようにしたことを特徴としている。   Further, the present invention uses 0.0 as the supplement value in the observation value complementation required when the number of the observation values is insufficient for the state estimation in the power system monitoring control system as described above. It is characterized by.

上記のような電力系統監視制御システムについては、前記観測値が前記状態推定で必要な数以上であるか否かを示す指標である冗長度を判定する冗長度判定手段を設け、当該冗長度判定手段で前記冗長度が一定よりも小さいと判定された場合に前記観測値補完を行うようにするのが好ましい。このようにすることにより、無駄な補完処理を行わずに済み、システムの処理負担を軽減することができる。   For the power system monitoring control system as described above, redundancy determination means is provided for determining redundancy that is an index indicating whether or not the observed value is greater than or equal to the number necessary for the state estimation, and the redundancy determination It is preferable to perform the observation value complementation when it is determined by the means that the redundancy is smaller than a certain level. By doing in this way, it is not necessary to perform useless complement processing, and the processing burden on the system can be reduced.

以上のような本発明によれば、電力系統監視制御システムについて、最も確からしい系統状態の決定精度をより高めることが可能となる。   According to the present invention as described above, the most probable system state determination accuracy can be further increased in the power system monitoring control system.

以下、本発明を実施するための形態について説明する。図1に、一実施形態による電力系統監視制御システムの要部の構成を模式化して示す。本実施形態の電力系統監視制御システムは、複数のITC(インテリジェントテレコミュニケータ)1(1-1〜1-n)、データ加工装置2、系統状態算出装置3およびデータ保存装置4を備え、また第1〜第3の各LAN(ローカルエリアネットワーク)5〜7を備えている。   Hereinafter, modes for carrying out the present invention will be described. In FIG. 1, the structure of the principal part of the electric power system monitoring control system by one Embodiment is typically shown. The power system monitoring and control system of the present embodiment includes a plurality of ITCs (intelligent telecommunicators) 1 (1-1 to 1-n), a data processing device 2, a system state calculation device 3, and a data storage device 4. First to third LANs (local area networks) 5 to 7 are provided.

ITC1は、監視制御対象の系統における観測値取得箇所であるノードやブランチに設置されるテレメータなどの観測手段による観測値を収集する観測値収集装置であり、例えば監視制御対象の系統における発電所や変電所などに設置され、その配下にある複数の観測機器からそれぞれによる観測値を収集する。このITC1が収集した観測値は、第1のLAN(ITC用LAN)5を介してデータ加工装置2に送られる。   The ITC 1 is an observation value collection device that collects observation values by observation means such as a telemeter installed in a node or a branch that is an observation value acquisition location in the system to be monitored and controlled. It collects observation values from multiple observation devices that are installed in substations. The observation values collected by the ITC 1 are sent to the data processing device 2 via the first LAN (ITC LAN) 5.

データ加工装置2は、コンピュータシステムで構成されており、ITC1-1〜1-nから送られてくる観測値を工学値変換などの演算によりデータ加工する。このデータ加工装置2によるデータ加工で得られた加工済み観測値は、第2のLAN(データ加工装置/系統状態算出装置間オンライン用LAN)6を介して系統状態算出装置3に送られる。   The data processing device 2 is configured by a computer system, and processes data observed by ITC 1-1 to 1-n by calculation such as engineering value conversion. The processed observation value obtained by the data processing by the data processing device 2 is sent to the system state calculation device 3 via the second LAN (LAN for data processing device / system state calculation device online LAN) 6.

系統状態算出装置3は、同じくコンピュータシステムで構成されており、状態推定と潮流計算を組み合わせて系統状態(最も確からしい系統状態)を算出する。この系統状態算出装置3による算出結果、つまり系統状態データは、第3のLAN(系統状態算出装置/データ保存装置間オンライン用LAN)7を介してデータ保存装置4に送られる。   The system state calculation device 3 is also configured by a computer system, and calculates a system state (most probable system state) by combining state estimation and power flow calculation. The calculation result by the system state calculation device 3, that is, the system state data is sent to the data storage device 4 via a third LAN (LAN for system state calculation device / data storage device online) 7.

データ保存装置4は、同じくコンピュータシステムで構成されており、系統状態算出装置3で求められた系統状態データを保存するのに機能する。   The data storage device 4 is also configured by a computer system, and functions to store the system state data obtained by the system state calculation device 3.

以下では、系統状態算出装置3における系統状態算出処理の詳細について説明する。系統状態算出装置3は、上述のように状態推定と潮流計算を組み合わせて系統状態を求めるようにされている。具体的には、まず観測値(加工済み観測値と補完値)を用いて状態推定計算を行なう。この状態推定計算は、例えば重みつき最小自乗法を使用した線形状態推定法で行われ、その計算により観測値における誤差の影響が適切に除かれることで系統における最も確からしい状態変数が推定値として求められる。状態推定で推定値が得られたら、それを潮流計算における指定値(これは観測値を用いて潮流計算を行う場合の観測値に相当する)として潮流計算を行って系統状態を求める。また系統状態算出装置3は、上記のような状態推定を行うにあたって、観測値の冗長度を判定し、その冗長度が一定よりも小さい場合には観測値の補完を行う。   Below, the detail of the system state calculation process in the system state calculation apparatus 3 is demonstrated. As described above, the system state calculation device 3 is configured to obtain the system state by combining state estimation and power flow calculation. Specifically, first, state estimation calculation is performed using observed values (processed observed values and complementary values). This state estimation calculation is performed by, for example, a linear state estimation method using a weighted least square method, and the influence of the error in the observation value is appropriately removed by the calculation, so that the most probable state variable in the system is the estimated value. Desired. When the estimated value is obtained by the state estimation, the power flow calculation is performed as the specified value in the power flow calculation (this corresponds to the observed value when the power flow calculation is performed using the observation value), and the system state is obtained. In addition, the system state calculation device 3 determines the redundancy of the observed value when performing the state estimation as described above, and supplements the observed value when the redundancy is smaller than a certain value.

こうした一連の処理を行う系統状態算出装置3は、図2に示すように、冗長度判定手段11、補完手段12、状態推定手段13および潮流計算手段14を備えている。   As shown in FIG. 2, the system state calculation device 3 that performs such a series of processing includes a redundancy determination unit 11, a complement unit 12, a state estimation unit 13, and a power flow calculation unit 14.

冗長度判定手段11は、観測値の冗長度を判定するのに用いられる。観測値の冗長度は、観測値が必要数以上にあるか否かを示す指標である。この冗長度Rは、ノードにつての観測値の数をNn、ブランチについての観測値の数をNb、ノード数をNとして、下記の(1)式で与えられる。冗長度判定手段11は、(1)式で系統の冗長度Rを求め、これを冗長度しきい値Rtと比較し、R<Rtである場合に補完要信号を出力する。   The redundancy determination unit 11 is used to determine the redundancy of the observed value. The redundancy of the observed value is an index indicating whether or not the observed value is more than the necessary number. The redundancy R is given by the following equation (1), where Nn is the number of observation values for the node, Nb is the number of observation values for the branch, and N is the number of nodes. The redundancy determination means 11 obtains the redundancy R of the system by the equation (1), compares it with the redundancy threshold Rt, and outputs a complementary signal when R <Rt.

R=(Nn+Nb)/(2*N-1) ……… (1)
補完手段12は、冗長度判定手段11から補完用信号が出力された場合に、観測値の補完を行う。観測値補完のための補完値(補完による観測値)には、例えば監視制御対象の系統における発電パターンや負荷パターンから得られる値、あるいは監視制御対象の系統における発電機の有効電力設定値や電圧設定値など、任意の値を用いることができるが、電力系統の物理的特性に見合った値を用いるのが特に好ましい。そのような補完値は0.0である。補完値として0.0を用いる場合の補完の例を図3〜図5に示す。
R = (Nn + Nb) / (2 * N-1) (1)
The complementing unit 12 supplements the observation value when a complementing signal is output from the redundancy determining unit 11. The supplement value for observation value complementation (observed value by complement) is, for example, a value obtained from the power generation pattern or load pattern in the system to be monitored and controlled, or the active power setting value or voltage of the generator in the system to be monitored and controlled Although any value such as a set value can be used, it is particularly preferable to use a value that matches the physical characteristics of the power system. Such a complementary value is 0.0. Examples of complementation when 0.0 is used as the complement value are shown in FIGS.

図3は、有効電力と無効電力それぞれの観測値が得られていない送電線の両端について補完する場合で、この場合は、どちらかの片端における有効電力Pと無効電力Qのそれぞれに補完値「0.0」を適用する。これが図3におけるP(1200)、Q(1201)、P(1202)、Q(1203)である。
図4は、変圧器の三次側母線について補完する場合で、この場合も母線から流出する有効電力Pと無効電力Qのそれぞれに補完値「0.0」を適用する。これが図4におけるP(1210)、Q(1211)である。
図5は、変圧器の中性点に流入する有効電力と無効電力を補完する場合で、この場合も中性点に流入する有効電力Pと無効電力Qのそれぞれに補完値「0.0」を適用する。これが図4におけるP(1220)、Q(1221)である。
FIG. 3 shows a case where both ends of the transmission line for which the observed values of the active power and the reactive power are not obtained are obtained. In this case, the complementary value “ 0.0 ”is applied. This is P (1200), Q (1201), P (1202), and Q (1203) in FIG.
FIG. 4 shows a case where the tertiary bus of the transformer is complemented. In this case, the complement value “0.0” is applied to each of the active power P and the reactive power Q flowing out from the bus. This is P (1210) and Q (1211) in FIG.
FIG. 5 shows a case where the active power and reactive power flowing into the neutral point of the transformer are complemented. In this case also, the complementary value “0.0” is added to each of the active power P and reactive power Q flowing into the neutral point. Apply. This is P (1220) and Q (1221) in FIG.

以上のように補完値として0.0を用いることにより、監視制御対象の系統内の各サブ系統間に独立性を与えることができ、このことにより系統状態の算出をより高い精度で行えるようになる。   As described above, by using 0.0 as the complementary value, independence can be given between the sub-systems in the system to be monitored and controlled, so that the system state can be calculated with higher accuracy. Become.

状態推定手段13は、観測値と補完値を用いて状態推定を行う。ただし補完値は、冗長度判定手段11により補完を必要と判定されて観測値補完がなされた場合に用いられる。   The state estimation means 13 performs state estimation using the observed value and the complementary value. However, the complement value is used when the redundancy determination unit 11 determines that complement is necessary and the observed value is supplemented.

状態推定は、上述のように、重みつき最小自乗法を使用した線形状態推定法で行うことができる。重みつき最小自乗法を使用した線形状態推定法では、以下のようにして推定値(最も確からしい状態変数)を決定する。   As described above, the state estimation can be performed by the linear state estimation method using the weighted least square method. In the linear state estimation method using the weighted least square method, an estimated value (the most probable state variable) is determined as follows.

下記の(2)式で表される観測方程式に対し、下記の(3)式で表される評価関数を最小化するxを推定値とする。したがって推定値は、下記の(4)式で求まる。   For the observation equation represented by the following equation (2), x that minimizes the evaluation function represented by the following equation (3) is set as an estimated value. Therefore, the estimated value is obtained by the following equation (4).

Z=Hx+v ……… (2)
ただし、v:観測雑音、Z:観測ベクトル(観測値と補完値)、H:観測行列、x:状態変数。
Z = Hx + v (2)
Where v: observation noise, Z: observation vector (observed value and complementary value), H: observation matrix, x: state variable.

J=(Z−Hx)−1(Z−Hx) ……… (3)
推定値(x)=(H−1 H)−1−1 Z ……… (4)
ただし、R:観測雑音の共分散行列。
以上の式について計算を繰り返すことにより、推定値を求めることができる。
J = (Z−Hx) T R −1 (Z−Hx) (3)
Estimated value (x) = (H T R −1 H) −1 H T R −1 Z (4)
Where R: observation noise covariance matrix.
An estimated value can be obtained by repeating the calculation for the above formula.

潮流計算手段14は、潮流計算を行う。その潮流計算では、それに必要となる指定値として、発電機や負荷が接続されているノード(母線)については上記状態推定で求められる推定値を用い、他のノードについては0.0を用いる。この指定値の設定についての例を図6〜図8に示す。図6は、系統末端の母線、つまり負荷が接続している母線についての指定値として、有効電力の推定値と無効電力の推定値を適用する場合であり、図7は、発電機が接続している母線についての指定値として、有効電力の推定値と電圧の推定値を適用する場合であり、図8は、系統末端の母線と発電機が接続している母線以外の母線、つまり中間系統の母線について有効電力の値と無効電力の値のそれぞれに0.0を適用する場合である。   The tidal current calculation means 14 performs tidal current calculation. In the tidal current calculation, the estimated value obtained by the above state estimation is used for the node (bus) to which the generator and the load are connected, and 0.0 is used for the other nodes. Examples of setting of the designated value are shown in FIGS. FIG. 6 shows a case where an estimated value of active power and an estimated value of reactive power are applied as specified values for a bus at the end of the system, that is, a bus connected to a load. FIG. 7 shows a case where a generator is connected. FIG. 8 shows a case where the estimated value of the active power and the estimated value of the voltage are applied as the specified values for the connected bus. FIG. 8 shows a bus other than the bus connected to the generator bus and the generator, that is, the intermediate system. This is a case where 0.0 is applied to each of the active power value and the reactive power value for each bus.

潮流計算手段14での潮流計算は、一例としてニュートン・ラプソン法を適用して行うことができる。具体的には以下のとおりである。
母線iの有効電力、無効電力Pi、Qiは、電圧を直行座標表示にして、

Figure 2008092685
ただしj=1、・・・、n
となり、したがって

Figure 2008092685

となる。 The tidal current calculation in the tidal current calculating means 14 can be performed by applying the Newton-Raphson method as an example. Specifically, it is as follows.
The active power, reactive power Pi, and Qi of the bus line i are displayed in the direct coordinate display.
Figure 2008092685
Where j = 1,..., N
And therefore

Figure 2008092685

It becomes.

P−Q指定母線では、
is−P(e,f,・・・,e,f)=0 ……… (8)
is−Q=Q(e,f,・・・,e,f) ……… (9)
P−V指定母線では、
is−P(e,f,・・・,e,f)=0 ……… (10)
is −(e +f )=0 ……… (11)
(8)式から(11)式までの2n個の変数を、x=e、x=f、……x2n=fとおき、(6)式と(7)式を
(x,・・・,x2n
(x,・・・,x2n
とおけば、
下記の(12)式が得られる。
In the PQ designated bus,
Pis− P i (e i , f i ,..., E n , f n ) = 0 (8)
Q is −Q i = Q i (e i , f i ,..., E n , f n ) (9)
On the PV designated bus,
Pis− P i (e i , f i ,..., E n , f n ) = 0 (10)
V is 2 − (e i 2 + f i 2 ) = 0 (11)
2n variables from (8) to (11) are set as x 1 = e 1 , x 2 = f 1 ,... X 2n = f n , and (6) and (7) are changed to f 1 (x 1 ,..., X 2n )
f 2 (x 1 ,..., x 2n )
If you
The following equation (12) is obtained.

Figure 2008092685

そしてこの(12)式についてΔx (k+1)からΔx2n (k+1)を求め、解が収束するまで繰り返す。これにより監視制御対象の系統における電圧と位相差として最も確からしい系統状態が求まる。
Figure 2008092685

Then, Δx 1 (k + 1) to Δx 2n (k + 1) is obtained for this equation (12), and the process is repeated until the solution converges. As a result, the most probable system state is obtained as the voltage and phase difference in the system to be monitored and controlled.

以上のように本実施形態の電力系統監視制御システムでは、状態推定で得られた推定値を潮流計算の指定値として用いるようにして状態推定と潮流計算を組み合わせることで、監視制御対象の系統についてその状態を求めるようにしている。このため状態推定や潮流計算のいずれかで系統状態を求める従来の電力系統監視制御システムに比べて算出系統状態の確からしさを高めることができる。また本実施形態では、観測値について補完を必要とする場合に、その補完における補完値として0.0を用いるようにしており、これにより系統状態の算出精度をさらに一層高めることができる。さらに本実施形態では、観測値の冗長度を判定し、それに基づいて必要な場合にだけ観測値補完を行うようにしている。このため無駄な補完処理を行わずに済み、システムの処理負担を軽減することができる。   As described above, in the power system monitoring and control system according to the present embodiment, the estimated value obtained by the state estimation is used as the specified value for the power flow calculation, and the state estimation and the power flow calculation are combined, so that The state is requested. For this reason, it is possible to increase the certainty of the calculated system state as compared with the conventional power system monitoring and control system that obtains the system state by either state estimation or power flow calculation. In the present embodiment, when the observation value needs to be supplemented, 0.0 is used as the complement value in the complementation, thereby further improving the calculation accuracy of the system state. Further, in the present embodiment, the redundancy of the observation value is determined, and the observation value interpolation is performed only when necessary based on the determination. For this reason, it is not necessary to perform useless complementary processing, and the processing load on the system can be reduced.

以上、本発明を実施するための形態の1つについて説明したが、これは代表的な例に過ぎず、本発明は、その趣旨を逸脱することのない範囲で様々な形態で実施することができる。   As mentioned above, although one of the forms for implementing this invention was demonstrated, this is only a representative example and this invention can be implemented with various forms in the range which does not deviate from the meaning. it can.

一実施形態による電力系統監視制御システムの要部の構成を示す図である。It is a figure which shows the structure of the principal part of the electric power system monitoring control system by one Embodiment. 系統状態算出装置の構成を示す図である。It is a figure which shows the structure of a system state calculation apparatus. 送電線の両端に観測値がない場合の観測値補完処理をイメージ化して示す図である。It is a figure which makes an image and shows an observation value complementation process in case there is no observation value in the both ends of a power transmission line. 変圧器の三次側母線についての観測値補完処理をイメージ化して示す図である。It is a figure which visualizes and shows the observation value complementation process about the tertiary side bus of a transformer. 変圧器の中性点に流入する有効電力と無効電力についての観測値補完処理をイメージ化して示す図である。It is a figure which visualizes and shows the observation value complementation process about the active power and reactive power which flow into the neutral point of a transformer. 系統末端の母線に有効電力の推定値と無効電力の推定値を適用する処理をイメージ化して示す図である。It is a figure which imageizes and shows the process which applies the estimated value of active power, and the estimated value of reactive power to the bus | bath of a system | strain terminal. 発電機が接続している母線に有効電力の推定値と電圧の推定値を適用する処理をイメージ化して示す図である。FIG. 5 is a diagram illustrating an image of a process of applying an estimated value of active power and an estimated value of voltage to a bus connected to a generator. 中間系統の母線に有効電力の値と無効電力の値を適用する処理をイメージ化して示す図である。It is a figure which imageizes and shows the process which applies the value of active power and the value of reactive power to the bus of an intermediate system.

符号の説明Explanation of symbols

3 系統状態算出装置
11 冗長度判定手段
12 補完手段
13 状態推定手段
14 潮流計算手段
3 System state calculation device 11 Redundancy determination means 12 Supplementary means 13 State estimation means 14 Power flow calculation means

Claims (3)

電力系統から収集した観測値を用いて当該電力系統の最も確からしい状態を求め、それに基づいて監視制御を行うようにされている電力系統監視制御システムにおいて、
前記観測値を用いて状態推定を行うことで前記電力系統における最も確からしい状態変数を推定値として求め、それから潮流計算を行うことで最も確からしい系統状態を求めるようにされており、そして前記潮流計算では、その指定値として、発電機や負荷が接続しているノードについては前記推定値を用い、他のノードについては0.0を用いるようにされていることを特徴とする電力系統監視制御システム。
In the power system monitoring and control system that uses the observation values collected from the power system to determine the most probable state of the power system and to perform monitoring and control based on it,
The most probable state variable in the power system is obtained as an estimated value by performing state estimation using the observed value, and then the most probable system state is obtained by performing power flow calculation, and the power flow In the calculation, the estimated value is used for the node to which the generator or load is connected as the specified value, and 0.0 is used for the other nodes. system.
前記観測値の数が前記状態推定に不十分な場合に必要となる観測値補完における補完値として0.0を用いるようにしたことを特徴とする請求項1に記載の電力系統監視制御システム。   The power system monitoring and control system according to claim 1, wherein 0.0 is used as a supplement value in observation value complementation that is necessary when the number of observation values is insufficient for the state estimation. 前記観測値が前記状態推定で必要な数以上であるか否かを示す指標である冗長度を判定する冗長度判定手段を備えており、当該冗長度判定手段で前記冗長度が一定よりも小さいと判定された場合に前記観測値補完を行うようにされていることを特徴とする請求項1または請求項2に記載の電力系統監視制御システム。

It is provided with a redundancy determining means for determining redundancy that is an index indicating whether or not the observed value is greater than or equal to the number necessary for the state estimation, and the redundancy is smaller than a certain value by the redundancy determining means. The power system monitoring and control system according to claim 1, wherein the observation value complementation is performed when it is determined that

JP2006271372A 2006-10-03 2006-10-03 Power system monitoring and control system Expired - Fee Related JP4453106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271372A JP4453106B2 (en) 2006-10-03 2006-10-03 Power system monitoring and control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271372A JP4453106B2 (en) 2006-10-03 2006-10-03 Power system monitoring and control system

Publications (2)

Publication Number Publication Date
JP2008092685A true JP2008092685A (en) 2008-04-17
JP4453106B2 JP4453106B2 (en) 2010-04-21

Family

ID=39376243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271372A Expired - Fee Related JP4453106B2 (en) 2006-10-03 2006-10-03 Power system monitoring and control system

Country Status (1)

Country Link
JP (1) JP4453106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024286A (en) * 2009-07-13 2011-02-03 Mitsubishi Electric Corp Power system monitoring control system and control method
JP2012016213A (en) * 2010-07-02 2012-01-19 Mitsubishi Electric Corp Power grid monitoring and control system
JP2013017272A (en) * 2011-07-01 2013-01-24 Mitsubishi Electric Corp Power system state estimation calculation device, power system monitoring control system and power system state estimation calculation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598864B2 (en) 2009-01-29 2010-12-15 ファナック株式会社 Parallel robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011024286A (en) * 2009-07-13 2011-02-03 Mitsubishi Electric Corp Power system monitoring control system and control method
JP2012016213A (en) * 2010-07-02 2012-01-19 Mitsubishi Electric Corp Power grid monitoring and control system
JP2013017272A (en) * 2011-07-01 2013-01-24 Mitsubishi Electric Corp Power system state estimation calculation device, power system monitoring control system and power system state estimation calculation method

Also Published As

Publication number Publication date
JP4453106B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
Huang et al. Multiple open-circuit fault diagnosis based on multistate data processing and subsection fluctuation analysis for photovoltaic inverter
JP6839769B2 (en) Medium pressure power distribution circuit How to evaluate the safety of network closed loop operation
Chen et al. Dimensionality reduction and early event detection using online synchrophasor data
CN107093895B (en) online transient state safety and stability assessment method based on automatic screening of expected fault set
JP4371062B2 (en) Method and apparatus for estimating power system impedance
JP2013208051A (en) Method and system for determining state of bus of power system
CN111652479B (en) Data driving method for dynamic security assessment of power system
CN107621594A (en) A kind of electric network failure diagnosis method based on fault recorder data and Bayesian network
JP4453106B2 (en) Power system monitoring and control system
CN109324261A (en) A kind of power distribution network cable run overheat method for prewarning risk and system
CN112288326A (en) Fault scene set reduction method suitable for toughness evaluation of power transmission system
JP2008154362A (en) Device and method for estimating state of power system
CN113325708B (en) Fault estimation method of multi-unmanned aerial vehicle system based on heterogeneous multi-agent
JP2006162541A (en) Accident point-locating method, system and program
CN109635430A (en) Grid power transmission route transient signal monitoring method and system
KR101988670B1 (en) Device for state estimation of power distribution system
CN106124933B (en) A kind of fault diagnosis method of electric power system based on input nonlinearities method of equal value
CN112993988A (en) Power grid line loss analysis method
JP5971692B2 (en) Method and system for monitoring short-circuit capacity of power system
JP2013017272A (en) Power system state estimation calculation device, power system monitoring control system and power system state estimation calculation method
Zhao et al. The condition monitoring of wind turbine gearbox based on cointegration
Cruz et al. Overview of voltage sag profile estimation
Mahmoud 3-Phase Fault Finding in Oil Field MV Distribution Network Using Fuzzy Clustering Techniques
CN105162114B (en) The distribution network voltage of minimum observation error measures Optimal Configuration Method
Ferdowsi et al. Dynamic behavioral observation in power systems utilizing real-time complexity computation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4453106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees