JP2008091064A - 無電極放電灯点灯装置及びその照明器具 - Google Patents

無電極放電灯点灯装置及びその照明器具 Download PDF

Info

Publication number
JP2008091064A
JP2008091064A JP2006267753A JP2006267753A JP2008091064A JP 2008091064 A JP2008091064 A JP 2008091064A JP 2006267753 A JP2006267753 A JP 2006267753A JP 2006267753 A JP2006267753 A JP 2006267753A JP 2008091064 A JP2008091064 A JP 2008091064A
Authority
JP
Japan
Prior art keywords
resonance
capacitor
discharge lamp
electrodeless discharge
resonance capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006267753A
Other languages
English (en)
Inventor
Akira Nakashiro
明 中城
Hiroshi Kido
大志 城戸
Shinji Makimura
紳司 牧村
Shingo Masumoto
進吾 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006267753A priority Critical patent/JP2008091064A/ja
Publication of JP2008091064A publication Critical patent/JP2008091064A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】共振回路を備える電力変換回路の動作周波数を周期的に可変することで出力を制御する無電極放電灯点灯装置において、共振コンデンサの温度変化による共振特性の変化を抑制し、立ち消えを防止する。
【解決手段】誘導コイル15と直列に接続される共振コンデンサCsと、誘導コイル15及び共振コンデンサCsの直列回路と並列に接続される共振コンデンサCpと、共振コンデンサCpと直列に接続される共振チョークLsを近接配置し、共振コンデンサCpはリード端子を結ぶ直線が共振チョークLsとの対向面に対して略垂直に配置され、共振チョークLsから見て共振コンデンサCpよりも共振コンデンサCsの方が離れてプリント基板1上に実装されている。プリント基板1は金属ケース2内部に配置され、共振コンデンサCpと金属ケース2の壁の間に絶縁板7を配置し、その高さを共振コンデンサCpが傾いた時に絶縁板7と接する高さ以上とした。
【選択図】図1

Description

本発明は無電極放電灯点灯装置及びその照明器具に関するものである。
第1の従来例として特開2005−158464号公報に示される無電極放電灯点灯装置がある。これは、共振回路を有する電力変換回路の出力を無電極放電灯に近接する誘導コイルに供給するものであり、図14に示すように、動作周波数finvが徐々に減少して始動周波数fmに達すると、電力変換回路の出力電圧Vcoilが始動電圧に達し、無電極放電灯が点灯して共振特性が無負荷時の曲線イから点灯時の曲線ロへ変化することで出力電圧Vcoilが下降する。さらに無電極放電灯が点灯した後も動作周波数finvは始動終了周波数feまで減少し、その後、動作周波数finvは電力変換回路の共振電流が無電極放電灯の定格点灯時における所望のレベルになるように制御される。
第2の従来例として特開2000−353600号公報に示される無電極放電灯点灯装置がある。これは、無電極放電灯に近接する誘導コイルの両端電圧Vcoilの振幅を間欠的に変化させ、高振幅の期間では無電極放電灯を点灯させ、低振幅の期間では誘導コイルの両端電圧を点灯維持電圧未満とすることで無電極放電灯を消灯させ、高振幅の期間と低振幅の期間の時間比率により無電極放電灯の点滅動作を行い、所望の出力を得ている。
第3の従来例として無電極放電灯の点灯装置ではないが、一般の蛍光灯用のインバータ照明器具の従来例として、特開平8−203682号公報には、インバータ回路を構成する共振用のチョークコイルとコンデンサがプリント基板上で近接して配置されている構成が開示されているが、高温発熱部品である共振用のチョークコイルに近接して配置されたコンデンサは、共振用のコンデンサではなく直流カット用のコンデンサであり、共振用のコンデンサはインバータ回路の外部に配置されている。
特開2005−158464号公報 特開2000−353600号公報 特開平8−203682号公報
無電極放電灯では高い始動電圧を必要とするため、共振回路部のQが高く設計される。そのため、共振コンデンサの僅かな容量値の変化により、共振特性の大きな変化が生じて、立ち消えという問題が発生する。
特に、数百kHz程度の比較的に低い高周波電力で動作する無電極放電灯では、共振回路部に大容量・高耐圧のコンデンサが必要となり、間欠点灯方式で出力電力を制御する場合には、より高耐圧のコンデンサが必要となる。このため、共振コンデンサとしてサイズの大きいフィルムコンデンサを使用することになる。しかも、高い始動電圧を必要とするため、プリント基板上のパターン配線は短くする必要があるので、共振チョークと共振コンデンサを近接して配置することになる。このため、フィルムコンデンサが組み立て工程やランプ点灯中に振動等により傾き、高温発熱部品である共振チョークに近づいたり、または共振チョークと接触した場合、共振コンデンサの温度が上昇するという問題がある。共振コンデンサの温度が上昇すると、温度特性により共振コンデンサの容量値が変化することになり、共振特性が変化して、立ち消えという問題が発生する。
本発明はこのような問題に鑑みてなされたものであり、その目的とするところは、共振回路を備える電力変換回路の動作周波数を周期的に可変することで出力を制御する無電極放電灯点灯装置において、共振コンデンサの温度変化による共振特性の変化を抑制し、立ち消えを防止することにある。
請求項1の発明は、上記の課題を解決するために、図5に示すように、少なくともスイッチング素子Q1,Q2と共振回路(Ls,Cs,Cp)を含み、直流電力VDCを高周波電力Vcoilに変換して無電極放電灯16に近接配置される誘導コイル15に高周波電力Vcoilを供給する電力変換回路13を備え、前記電力変換回路13の動作周波数を周期的に変化させて無電極放電灯16を視覚的に感じない速さで点滅させることで出力を制御する無電極放電灯点灯装置であって、前記共振回路は、前記誘導コイル15と直列に接続される第1の共振コンデンサCsと、前記誘導コイル15及び第1の共振コンデンサCsの直列回路と並列に接続される第2の共振コンデンサCp(Cp1,Cp2)と、第2の共振コンデンサCpと直列に接続される共振チョークLsとを含み、図1〜図4に示すように、第2の共振コンデンサCpが前記共振チョークLsと近接配置されると共に第2の共振コンデンサCpの2本のリード端子6を結ぶ直線が第2の共振コンデンサCpと前記共振チョークLsの対向面に対して略垂直となるよう配置され、第1の共振コンデンサCsは第2の共振コンデンサCpと近接配置され、前記共振チョークLsと第2の共振コンデンサCp間の距離よりも前記共振チョークLsと第1の共振コンデンサCs間の距離の方が離れてプリント基板1上に実装されていることを特徴とするものである。
請求項2の発明は、請求項1において、図1〜図3に示すように、前記プリント基板1が金属ケース2内部に配置され、前記電力変換回路13の共振チョークLsの少なくとも1つと前記共振コンデンサCpの少なくとも1つが前記金属ケース2の壁と近接設置され、該共振コンデンサCpと前記金属ケース2の壁の間に絶縁板7を有し、図2(b)に示すように、前記絶縁板7の高さを前記金属ケース2の壁と近接配置された共振コンデンサが傾いた時に前記絶縁板7と接する高さ以上としたことを特徴とする。
請求項3の発明は、請求項1または2において、図3に示すように、前記共振コンデンサが複数存在し、前記プリント基板1が金属ケース2の内部に配置され、前記金属ケース2に近接配置された共振コンデンサCp1のサイズが、他の共振コンデンサCp2のサイズよりも小さいことを特徴とする。
請求項4の発明は、請求項1〜3のいずれかにおいて、図1(b)または図3(b)に示すように、前記共振コンデンサの本体部分5が樹脂9で埋まらないよう高さ制限を設けて樹脂充填を行うことを特徴とする。
請求項5の発明は、請求項1〜4のいずれかにおいて、図3(a)または図4(a),(b)に示すように、前記共振チョークLsと近接配置された共振コンデンサCpを含め、共振回路を形成する複数個のコンデンサが列状に実装され、すべてのコンデンサの向き及び中心線をおよそ合わせて配置することを特徴とする。
請求項6の発明は、請求項1〜5のいずれかに記載の無電極放電灯点灯装置を備えた照明器具である。
請求項1の発明によれば、共振チョークとこの共振チョークに近接配置された共振コンデンサを略垂直に配置することで、共振コンデンサが傾いても、共振チョークと接触することを防止できる。これにより、共振コンデンサの加熱、温度特性による容量値の変化を防ぎ、Qの大きい共振回路の特性変化を防止して、無電極放電灯の立ち消えを防止できる。また、共振チョーク、第2の共振コンデンサ、第1の共振コンデンサの順で配置することにより、誘導コイルと直接接続される第1の共振コンデンサは、高温発熱部品である共振チョークからの熱を受けにくくなり、温度特性の影響を抑えることができる。これにより、特性変化を防止して、無電極放電灯の立ち消えを防止できる。
請求項2の発明によれば、共振チョークと共振コンデンサを金属ケースに近接させて熱がケース外部に逃げやすい構造にすると共に、共振コンデンサと金属ケース間に所定の高さの絶縁板を設けることで、共振コンデンサが傾いても金属ケースと直接接することがないので、共振コンデンサが金属ケースに地絡する恐れが無い。
請求項3の発明によれば、共振コンデンサのうちサイズが小さい方を金属ケース側に配置することで、全体として温度上昇の影響を受けにくくすることができ、また、サイズの小さいコンデンサは同じ角度の傾きでもサイズの大きいコンデンサに比べて金属ケースに接触しにくいので、より地絡を起こりにくくすることができる。
請求項4の発明によれば、樹脂充填の高さを制限することで、充填材を通じて高温発熱部品である共振チョークから共振コンデンサへの熱伝導を抑えることができ、共振コンデンサの特性変化を抑制できる。
請求項5の発明によれば、すべてのコンデンサの向き及び中心線をおよそ合わせることにより、コンデンサ間の隙間が他のコンデンサによって遮られない構造となるため、コンデンサ周辺の対流をスムーズに流すことができ、コンデンサの温度上昇を抑制し、容量値を一定に保つことが可能となる。
請求項6の発明によれば、照明器具に請求項1〜5のいずれかに示す無電極放電灯点灯装置を用いることにより、特性変化が少なく、立ち消えしにくい、信頼性の高い照明器具を提供することが可能となる。
(実施形態1)
図1は本発明の実施形態1に係る無電極放電灯点灯装置のプリント基板1を金属ケース2に収納した構造を示す図であり、(a)は平面図、(b)は縦断面図である。プリント基板1には、無電極放電灯点灯装置を構成する複数の回路素子が実装されている。
その回路構成の一例を図5に示す。交流電源ACからの電力供給を受けて、直流電圧VDCを出力する直流電源10と、直流電源10からの電力供給を受けて高周波電圧Vcoilを出力するインバータ回路13と、インバータ回路13を駆動するドライブ回路14と、インバータ回路13の出力に接続されるフェライトコアを有する誘導コイル15と、誘導コイル15に近接配置される無電極放電灯16から構成され、無電極放電灯16を装備される照明器具に搭載される。
無電極放電灯16は、透明な球状のガラスバルブまたは内面に蛍光体が塗布された球状のガラスバルブ内に不活性ガス・金属蒸気等の放電ガス(例えば、水銀及び希ガス)が封入されている。
直流電源10は、整流用ダイオードブリッジ11とスイッチング素子Q10、インダクタL10、ダイオードD10、制御回路12及び平滑用コンデンサC10からなる昇圧チョッパ回路で構成される。
インバータ回路13は、スイッチング素子Q1,Q2、共振チョークLs、共振コンデンサCp1,Cp2、Csから構成されており、誘導コイル15に対して数十kHzから数百kHzの高周波電流を流すことにより、誘導コイル15に高周波電磁界を発生させて無電極放電灯16に高周波電力を供給する。これに応じて、無電極放電灯16内に高周波プラズマ電流を発生させて紫外線もしくは可視光を発生させるようになっている。
図1の実装図に戻って、図中のCsは誘導コイル15と直列に接続される第1の共振コンデンサ、Cp1,Cp2は誘導コイル15及び第1の共振コンデンサCsの直列回路と並列に接続される第2の共振コンデンサ、Lsは第2の共振コンデンサCpと直列に接続される共振チョークLsである。
共振回路は高い始動電圧を出すために、共振チョークLs、共振コンデンサCp1,Cp2,Csをコンパクトに配置するのが望ましい。また、同時に共振回路は温度上昇の抑制、特性変化の抑制のため、共振チョークLs、共振コンデンサCp1を金属ケース2に近接させて熱がケース外部に逃げやすい構造にすることが好ましい。
特に共振チョークLsは高温発熱部品であり、少なくとも一辺を金属ケース2と近接させる、また、出来ればケース角部に配置することで二辺を金属ケース2と近接させることで、大きな温度低減効果が得られる。これにより、共振コンデンサCp1,Cp2が共振チョークLsから熱をもらいにくくすることができる。
本実施形態では、高温発熱部品である共振チョークLsの二辺を金属ケース2の角部に配置することで、放熱効果を高めている。また、共振チョークLs、共振コンデンサCp1,Cp2、共振コンデンサCsの順で配置している。共振コンデンサCsは誘導コイル15と直列に接続されるので、出力側の管灯線3の近くに配置されている。入力側の電源線4は管灯線3とは反対側から導出されており、管灯線3の高周波ノイズが電源線4に漏洩しにくい構造となっている。
共振コンデンサCp1,Cp2,Csはフィルムコンデンサよりなり、図2(a)に示すように、コンデンサ本体5から2本のリード端子6が導出されている。各リード端子6はプリント基板1のホールに挿入されて半田付けにより固定される。共振コンデンサCp1は共振チョークLsと近接配置されると共に共振コンデンサCp1の2本のリード端子6を結ぶ直線が共振コンデンサCp1と共振チョークLsの対向面に対して略垂直となるよう配置されている。共振コンデンサCp2についても同様である。
この実施形態によれば、共振チョークLsとこの共振チョークLsに近接配置された共振コンデンサCp1,Cp2を略垂直に配置することで、共振コンデンサCp1,Cp2が傾いても、共振チョークLsと接触することを防止できる。つまり、共振コンデンサCp1,Cp2が傾くとしても、図1(a)の太い矢印に示す方向にのみ傾くので、共振チョークLsと接触することは回避できる。したがって、共振コンデンサCp1,Cp2の加熱、温度特性による共振コンデンサCp1,Cp2の容量値の変化を防止できる。これにより、Qの大きい共振回路の特性変化を防ぎ、立ち消えを防止できる。
次に、第1の共振コンデンサCsは、管灯線3を介して誘導コイル15と直接接続されるため、少しの特性変化でも無電極放電灯の特性が大きく変わる。例えば、共振コンデンサCsの電圧変化がそのまま誘導コイル15の電圧変化になる。これを抑えるため、共振チョークLs、共振コンデンサCp1,Cp2、共振コンデンサCsの順で配置する。これにより共振コンデンサCsは高温発熱部品である共振チョークLsからの熱を受けにくくなり、温度特性の影響を抑えることができる。したがって、より特性変化、立ち消えを起こりにくくすることが可能である。
ところで、図1の配置において、共振コンデンサCp1,Cp2と共振チョークLsを垂直に配置したことで、共振コンデンサCp1が傾くと金属ケース2の壁と接触し、地絡する恐れが生じる。そこで、共振コンデンサCp1と金属ケース2の間に絶縁板7を敷く。絶縁板7の高さは今までとおり導通部のリード端子6までの高さがあればよいのではなく、図2(b)に示すように、共振コンデンサCp1が傾いても金属ケース2と直接接することのない高さまで設ける必要がある。一方、絶縁板7の高さが高すぎると、組み立て時に邪魔になる。よって、絶縁板7の高さは共振コンデンサCp1が傾いたときに絶縁板7に接する高さより若干高い程度にするのが良い。これにより組み立て性が向上する利点がある。
なお、無電極放電灯は用途的に屋外仕様であることが多く、プリント基板1の半田面に設置されたチップ部品8等の湿気対策のため樹脂充填をすることが多い。本実施形態では、プリント基板1の半田面で所定の高さまで樹脂9を充填しており、これによりチップ部品8の防湿効果が得られる。
(実施形態2)
図3は本発明の実施形態2に係る無電極放電灯点灯装置のプリント基板1を金属ケース2に収納した構造を示す図であり、(a)は平面図、(b)は縦断面図である。
本実施形態でも共振コンデンサCp1とCp2が並列接続されており、共振チョークLs、共振コンデンサCp1、Cp2が近接配置されている。実施形態1との相違点として、共振コンデンサCp1,Cp2をアンバランスにし、共振コンデンサCp1,Cp2のうち、サイズが小さい方を金属ケース2側に配置した点が異なる。これはサイズの大きい共振コンデンサCp2が金属ケース2に近接した場合、接触する恐れのある面積が大きくなるうえに、小さな角度の傾きでも金属ケース2に接触してしまうという不利な点があるためである。このように、サイズの小さいコンデンサCp1を金属ケース2側に配置することで、より地絡を起こりにくくすることができる。これにより、安全性を向上させることができる効果がある。さらにサイズの小さいコンデンサCp1の方がサイズの大きいコンデンサCp2よりも温度の影響を受けやすい。よって、このサイズの小さいコンデンサCp1を金属ケース2の壁に近づけることで温度の影響を受けにくくし、全体として温度特性の影響を小さくすることができる。
上述のように、無電極放電灯は用途的に屋外仕様であることが多く、プリント基板1の半田面に設置されたチップ部品8等の湿気対策のため樹脂充填をすることが多い。このとき、樹脂9の充填の高さを、図3(b)に示すように、フィルムコンデンサ本体の一部が埋まらないようフィルムコンデンサ本体の下部以下とする。充填の高さは、充填時に、樹脂硬化前の表面張力による樹脂の吸い上がりでフィルムコンデンサ下部と接触する分は問題ないと言える。この程度であれば、熱が伝わる断面積は小さく、悪影響は無視できる。また、表面張力による樹脂9の吸い上がりを防止するのも困難である。
図3(c)は比較例(悪い例)であり、この高さまで充填材としての樹脂9で共振コンデンサの本体5が埋まると共振コンデンサの表面積が大きいので、共振チョークLsからの熱がかなり伝わってしまう。したがって、共振コンデンサの本体5が樹脂9で埋まらないよう高さ制限を設けて樹脂充填を行うことが好ましい。
もしくは、上述の実施形態1の図1(b)に示したように、プリント基板1の半田面側に薄く充填する方式をとる。これにより共振チョークLsと共振コンデンサCp1,Cp2が近接していても、充填材を通じて高温発熱部品である共振チョークLsの熱が表面積の大きいコンデンサに伝わるのを抑えることができ、よりコンデンサの容量値を一定に保つことが可能となる。これにより特性変化を抑制し、立ち消えを防止できる。
また、図3(a)に示すように、複数の共振コンデンサがある場合、回路図通り、共振チョークLs、コンデンサCp1,Cp2、Csの順にそれぞれ近接させて実装する。このとき、すべてのコンデンサCp1,Cp2、Csの向き及び中心線をおよそ合わせる。それによりコンデンサ間の隙間が他のコンデンサによって遮られない構造となるため、図3(a)の破線の矢印で示すように、コンデンサ周辺の対流をスムーズに流すことができる。これによって、コンデンサの温度を余り上げることなく、容量値を一定に保つことが可能である。
また、同時に共振チョークLsから見て共振コンデンサCp1,Cp2、Csが全て垂直配置かつ隙間が連続して続くのに加え、共振コンデンサCp1,Cp2、Csが共振チョークLsに対し平行配置したときよりも隙間数も多いことで、より共振チョークLsの熱をスムーズに流すことができ、良好な温度低減効果も期待できる。
また、フィルムコンデンサのループの向きを考えると、共振チョークLsとすべての共振コンデンサCp1,Cp2、Csが垂直配置されることで、フィルムコンデンサの作る磁束が共振チョークLsにあたることはなく、インダクタンス値に干渉することはない。よって、共振チョークLsのインダクタンス値変化や誤動作を防ぐことができ、より特性変化を抑制し、立ち消えを防止できる。
図4はその他の配置例を示している。図4(a)は共振コンデンサCp1,Cp2のみならず、共振コンデンサCs1,Cs2も並列構成としたものであり、この場合にも、すべてのコンデンサCp1,Cp2、Cs1,Cs2の向き及び中心線をおよそ合わせることにより、コンデンサ間の隙間が他のコンデンサによって遮られない構造となるため、破線の矢印で示すように、コンデンサ周辺の対流をスムーズに流すことができる。これによって、コンデンサの温度を余り上げることなく、容量値を一定に保つことが可能である。
図4(b)は共振コンデンサCsのみならず共振コンデンサCpも各1個のコンデンサで構成したものであり、この場合にも、共振チョークLs、共振コンデンサCp、共振コンデンサCsの順に配置するのが良い。また、共振コンデンサCpと共振コンデンサCsは、その向き及び中心線をおよそ合わせることが好ましく、これにより、破線の矢印で示すように、コンデンサ周辺の対流をスムーズに流すことができる。
図4(c)は比較例(悪い例)であり、図3の構成において、共振コンデンサCp1,Cp2の向きと垂直に共振コンデンサCsを配置した例である。この場合、共振コンデンサCsの配置が通風の妨げとなっており、対流がスムーズに流れないことが分かる。
(実施形態3)
本実施形態では、実施形態1,2で用いる図5の点灯装置の回路構成について補足説明する。この点灯装置は、電力変換回路としてのインバータ回路13の動作周波数を周期的に変化させて無電極放電灯16を視覚的に感じない速さで点滅させることで出力を制御する無電極放電灯点灯装置である。
間欠点灯しない連続点灯の場合であれば、通常、高い誘導コイル電圧Vcoilが必要となるのは初回始動時のみである。よって、回路素子が劣化しない程度に電圧印加時間を長くとることで、良好な始動性が得られる。しかし、間欠点灯させる場合、通常点灯中も常に高い再点弧電圧が必要となるのに加え、電力を変化させずに間欠点灯のON期間を長くとるとすると、それに合わせて間欠点灯のOFF期間も長くする必要があり、再点弧電圧が上がり、カプラで騒音発生等の問題も生じる。よって、再点弧時間はそれほど長く取ることができず、この分、始動性は不利となる。
さらに回路動作中だと部品温度も高く、ただでさえ共振曲線にずれが生じる。このうえ、上述のような要因でさらに温度特性に変化があった場合、共振曲線のずれはさらに大きくなり、再点弧電圧が出せなくなる。その結果、立ち消えという問題が発生する。また、間欠発振動作では、ただでさえ点灯・消灯を繰り返し、周期的に再点弧電圧が発生するため、電力制御が難しく、電気特性が大きくばらつく。よって、これを抑えるためにも共振曲線を変化させたくない。
さらに、間欠発振動作では、共振曲線のずれによりOFF期間の動作ポイントが共振曲線の高い側にずれた場合、効率の低下、雑音の増大という問題が生じる。また、駆動周波数が共振曲線上の出力の小さい側に変化すると、OFF期間のランプ入力電力は低下する。このとき、生成されるプラズマが少なくなるので、OFF期間でのプラズマ拡散は早くなる。よって、再点弧電圧が上がり、カプラ、回路素子への連続的なストレスの印加、騒音の増大につながる。共振点付近で動作させるときは、共振曲線上の左右どちら側にずれても、この問題が発生する。
本実施形態では、始動スイープ回路17や時定数可変回路18を設けることで、間欠発振動作を安定させている。これにより、上述の各実施形態で述べた温度特性の変化を抑制する手段の効果と相俟って、信頼性の高い点灯装置を実現している。
図5のドライブ回路14は、図6に示すように、ホロワアンプQ11、定電圧源Es、電圧制御発振器VCO、抵抗R10〜R12、ダイオードD11で構成される。電圧制御発振器VCOの入力端子VIには、定電圧源Esの出力電圧が抵抗R10,R11で分圧されて与えられており、その分圧点から後述する制御電圧Vfに応じてホロワアンプQ11が抵抗R12、ダイオードD11を介して電流Ivfを引き抜く。従って、電圧制御発振器VCOの入力端子VIには制御電圧Vfに応じた電圧が入力され、電圧制御発振器VCOはそれに応じた動作周波数finvでHout端子とH−GND端子間、Lout端子とL−GND端子間に、相互に位相が略180°ずれたスイッチング素子Q1、Q2に対する略矩形波状の駆動信号を出力する。
始動スイープ回路17は直流電圧E1、オペアンプQ8、抵抗R1、コンデンサC1からなる積分回路、コンデンサC1の電荷放電のためのスイッチング素子Q7、抵抗R2、R3(R3<R2)等から構成される。
また、点滅調光制御を行うためにPWMの始動制御信号である電圧Vpwmを出力する図外の制御信号発生装置がある。
始動スイープ回路17の動作について説明すると、始動制御信号Vpwmがスイッチング素子Q7の制御端子に入力され、スイッチング素子Q7がON→OFFに変化すると、直流電圧E1からの電力供給を受けて抵抗R1を介してコンデンサC1を充電し、コンデンサC1の両端電圧VC1をオペアンプQ8の非反転入力端子に印加し、その出力である制御電圧Vfをドライブ回路14に出力する。その結果、抵抗R1、コンデンサC1により決定される時定数τ=τ1〔=C1×R1〕に応じて動作周波数finvは開始周波数fsから終了周波数feまで徐々にスイープする(図8参照)。
いま、ドライブ回路14において制御電圧Vfと動作周波数finvの関係が図7の特性に設定されている場合、動作周波数finvは減少方向にスイープすることとなり、インバータ回路13の共振曲線が図14であるとすると、スイープに応じて誘導コイル電圧Vcoilが増加し、無電極放電灯6の点弧始動が可能となる。
一方、スイッチング素子Q7がOFF→ONに変化すると、コンデンサC1の電荷が抵抗R3、スイッチング素子Q7を介して放電され、コンデンサC1の両端電圧VC1のレベルは抵抗R1と抵抗R2//R3の分圧で決定され、誘導コイル電圧Vcoil=Vst1となり、誘導コイル電圧Vcoilが減少するので、無電極放電灯6の点灯維持に必要な電圧より下回ることで消灯する。
従って、始動制御信号Vpwmにより周期的にON、OFFを繰り返すことにより点滅調光が可能となり、始動制御信号VpwmのONデューティを可変することにより、無電極放電灯16に対する平均的な電力が全点灯時よりも低くなり、その結果、無電極放電灯16が調光可能となる。
本回路で注目すべき点は、始動スイープの時定数を可変制御可能な時定数可変回路18を有することである。時定数可変回路18はコンデンサC1に並列接続されたコンデンサC0、トランジスタQ9の直列回路等から構成され、スイープの時定数はトランジスタQ9の制御入力に印加される時定数可変信号Vtによって制御され、トランジスタQ9がONのとき、時定数τ=τ0〔=(C0+C1)×R1〕、OFFの時、時定数τ=τ1〔=C1×R1〕となる。
図8を用いて時定数可変回路13の動作について説明する。時間t=t0で交流電源ACを投入してから一定時間後のt=t4まで、時定数可変信号VtをHレベルとすることでスイープの時定数τ=τ0となり、その後、時定数可変信号VtをLレベルとすることでスイープの時定数τ=τ1(<τ0)と時定数は減少する。
即ち、時間t=t1で始動制御信号VpwmがH→Lレベルになり、無電極放電灯16の初期点弧のスイープを行い、電圧Vcoi=Vign1で点弧するが、このときは時定数τ=τ0である。時間t=t3で始動制御信号VpwmがL→Hレベルになり、誘導コイル電圧Vcoil=Vst1と無電極放電灯16の点灯に必要な電圧以下となり、消灯する。
その後、時間t=t5で再び始動制御信号VpwmがH→Lレベルになり、無電極放電灯16の再点弧のスイープを行い、電圧Vcoil=Vign2で再点弧するが、このときは時定数τ=τ1であり、これ以降は点滅周波数である始動制御信号Vpwmの周波数fpwmが100Hz〜数kHzの一定値で時定数τ=τ1として動作する。
この結果、時定数τ=τ0として初期点弧することによって、時定数τ=τ1で初期点弧する場合と比較して、初期点弧時の最高電圧Vcoil=Vign1を低減することが可能となる。
ただし、点滅調光時における消灯時の誘導コイル電圧Vcoil=Vst1のレベルは、過大に高くしてもインバータ回路13や、誘導コイル15等での損失が増大するため、調光による省エネルギー効果は得られないので、実質的に該損失が僅かとなる程度とする。
なお、点滅調光の消灯については、インバータ回路13の動作周波数finvの制御により誘導コイル15の電圧Vcoilを点灯維持に必要な電圧未満とする方法以外にも、インバータ回路13の出力を停止させる方法(図示はしない)であっても構わない。
この結果、点滅調光を行う無電極放電灯16の初期点弧時において誘導コイル15の最高電圧が抑制でき、インバータ回路13の構成部品の電圧ストレスが小さく、また、誘導コイル15にフェライトコアを用いる場合も磁気飽和を低減できるという効果がある。
図9は発明者が行った実験結果を示している。横軸は時定数τ(ms)、縦軸は始動電圧Vign(kVo−p)と始動時間(ms)である。fpwm:数百Hz〜数kHzの範囲では、再点滅調光時の時定数τ1は数ms以下である必要がある。また、点弧始動時の時定数τ0は点滅調光時(再点弧始動時)の時定数τ1よりも大きく設定し、時定数τ0=35ms、時定数τ1=0.4ms、始動制御信号Vpwmの周波数fpwm=500Hz、インバータ回路13の動作周波数finv=135kHzの条件で従来技術の場合(即ち初期点弧時、再点弧時ともスイープの時定数τ=τ1)は初期点弧時の最高電圧Vign1=1.65kVo−pであったのに対し、本実施形態の場合は、最高電圧Vign1=1.15kVo−pと顕著な発生電圧低減効果を確認した。
始動スイープ回路17の時定数可変手段としては、コンデンサ以外にも図10のように抵抗を可変するものであってもよく、同様の効果が得られる。図10において、図5との相違点は、時定数可変回路18は抵抗R1に並列接続された抵抗R4、トランジスタQ9の直列回路等から構成され、スイープの時定数はトランジスタQ9の制御入力に印加される時定数可変信号Vtによって制御され、トランジスタQ9がONのとき、時定数τ=τ0〔=C1×R1〕、OFFのとき、時定数τ=τ1〔=C0×(R1//R4)〕となり、図5と同様に、τ0>τ1の関係を有する。ただし、このとき、トランジスタQ9のエミッタ・ベース間電流は無視できるくらい小さいものとする。
(実施形態4)
図11は本発明の無電極放電灯点灯装置で用いるバルブの断面図である。この図11に示すように、無電極放電灯16は、断面凹形状の空洞部16bを有し、内部に放電ガスが封入されてなる略球状のバルブ16aから構成されるもので、フェライトコアを有する誘導コイル15は、バルブ16aの空洞部16b内に挿入されるものである。
誘導コイル15は、無電極放電灯16の内部に封入された放電ガスに高周波電磁界を供給するものであり、導電性を有する線材が複数ターン巻回されたコイル本体15aと、コイル本体15aを保持するボビン15bと、ボビン15b内部に収納された略筒状のコア15cとを備えている。コア15cは、例えば高周波磁気特性の良好な、Mn−Znのフェライトからなり、アルミ等の金属材料で形成された放熱体21によって保持される。コア15cの発熱は、放熱体21を介して台座部20に捨てられる。なお、コア15cと放熱体21の間に金属の板材を丸めて渦巻き状にしたバネ部材22を介在させ、コア15cと放熱体21とを熱的に接続してある。
図12は本発明の無電極放電灯点灯装置で用いるカプラの斜視図である。カプラとは誘導コイル15とその周辺部材のことであり、図中、15aはコイル本体、15bはボビン、15cはコア、20は台座である。インバータ回路は金属ケース2に収納されて、管灯線3を介してカプラのコイル本体15aに給電している。このカプラは上述の無電極放電灯16を構成するバルブ16aの空洞部16bに挿入されて、管灯線3を介してインバータ回路からコイル本体15aに高周波電力が供給されることでバルブ16a内に高周波電磁界が発生し、内部の放電ガスが放電するものである。
(実施形態5)
図13は無電極放電灯点灯装置と無電極放電灯16から構成される照明器具の具体的構成例を示している。図示された照明器具は、反射部を構成するプリズム30と、プリズム30の基部に設けられたランプソケット部31と、ランプソケット部31の下方に設けられた回路収納部32と、全体を覆う笠33とを含んで構成されている。ランプソケット部31に無電極放電灯16が装着され、回路収納部32に無電極放電灯点灯装置を構成する回路が収納されるものである。
本実施形態によれば、照明器具に実施形態1〜4の無電極放電灯点灯装置を用いることにより、特性変化が少なく、立ち消えしにくい、信頼性の高い照明器具を提供することが可能である。
本発明の実施形態1の実装状態を示す図であり、(a)は平面図、(b)は正面側から見た断面図である。 本発明の実施形態1の絶縁板の配置を示す図であり、(a)は右側面から見た断面図、(b)は正面側から見たときの作用説明図である。 本発明の実施形態2の実装状態を示す図であり、(a)は平面図、(b)は正面側から見た断面図、(c)は比較例の要部断面図である。 本発明の実施形態2の変形例と比較例を示す平面図である。 本発明の実施形態3の回路図である。 本発明の実施形態3のドライブ回路の回路図である。 本発明の実施形態3の電圧制御発振回路の特性図である。 本発明の実施形態3の動作波形図である。 本発明の実施形態3の時定数可変回路の動作説明図である。 本発明の実施形態3の一変形例の要部回路図である。 本発明の実施形態4のバルブの断面図である。 本発明の実施形態4のカプラとインバータの斜視図である。 本発明の実施形態5の照明器具の一部破断せる正面図である。 従来例の共振特性を示す特性図である。
符号の説明
1 プリント基板
2 金属ケース
7 絶縁板
13 電力変換回路
15 誘導コイル
16 無電極放電灯
Ls 共振チョーク
Cs 第1の共振コンデンサ
Cp 第2の共振コンデンサ

Claims (6)

  1. 少なくともスイッチング素子と共振回路を含み、直流電力を高周波電力に変換して無電極放電灯に近接配置される誘導コイルに高周波電力を供給する電力変換回路を備え、前記電力変換回路の動作周波数を周期的に変化させて無電極放電灯を視覚的に感じない速さで点滅させることで出力を制御する無電極放電灯点灯装置であって、
    前記共振回路は、前記誘導コイルと直列に接続される第1の共振コンデンサと、前記誘導コイル及び第1の共振コンデンサの直列回路と並列に接続される第2の共振コンデンサと、第2の共振コンデンサと直列に接続される共振チョークとを含み、
    第2の共振コンデンサが前記共振チョークと近接配置されると共に第2の共振コンデンサの2本のリード端子を結ぶ直線が第2の共振コンデンサと前記共振チョークの対向面に対して略垂直となるよう配置され、
    第1の共振コンデンサは第2の共振コンデンサと近接配置され、前記共振チョークと第2の共振コンデンサ間の距離よりも前記共振チョークと第1の共振コンデンサ間の距離の方が離れてプリント基板上に実装されていることを特徴とする無電極放電灯点灯装置。
  2. 前記プリント基板が金属ケース内部に配置され、前記電力変換回路の共振チョークの少なくとも1つと前記共振コンデンサの少なくとも1つが前記金属ケース壁と近接設置され、該共振コンデンサと前記金属ケース壁間に絶縁板を有し、前記絶縁板の高さを前記金属ケース壁と近接配置された共振コンデンサが傾いた時に前記絶縁板と接する高さ以上としたことを特徴とする請求項1記載の無電極放電灯点灯装置。
  3. 前記共振コンデンサが複数存在し、前記プリント基板が金属ケース内部に配置され、前記金属ケースに近接配置された共振コンデンサのサイズが、他の共振コンデンサのサイズよりも小さいことを特徴とする請求項1または2のいずれかに記載の無電極放電灯点灯装置。
  4. 前記共振コンデンサの本体部分が樹脂で埋まらないよう高さ制限を設けて樹脂充填を行うことを特徴とする請求項1〜3のいずれかに記載の無電極放電灯点灯装置。
  5. 前記共振チョークと近接配置された共振コンデンサを含め、共振回路を形成する複数個のコンデンサが列状に実装され、すべてのコンデンサの向き及び中心線をおよそ合わせて配置することを特徴とする請求項1〜4のいずれかに記載の無電極放電灯点灯装置。
  6. 請求項1〜5のいずれかに記載の無電極放電灯点灯装置を備えた照明器具。
JP2006267753A 2006-09-29 2006-09-29 無電極放電灯点灯装置及びその照明器具 Pending JP2008091064A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267753A JP2008091064A (ja) 2006-09-29 2006-09-29 無電極放電灯点灯装置及びその照明器具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267753A JP2008091064A (ja) 2006-09-29 2006-09-29 無電極放電灯点灯装置及びその照明器具

Publications (1)

Publication Number Publication Date
JP2008091064A true JP2008091064A (ja) 2008-04-17

Family

ID=39375028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267753A Pending JP2008091064A (ja) 2006-09-29 2006-09-29 無電極放電灯点灯装置及びその照明器具

Country Status (1)

Country Link
JP (1) JP2008091064A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752957A (zh) * 2011-04-20 2012-10-24 乾坤科技股份有限公司 金属芯印刷电路板及电子封装结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752957A (zh) * 2011-04-20 2012-10-24 乾坤科技股份有限公司 金属芯印刷电路板及电子封装结构

Similar Documents

Publication Publication Date Title
US9911589B2 (en) Induction RF fluorescent lamp with processor-based external dimmer load control
US10529551B2 (en) Fast start fluorescent light bulb
US8941304B2 (en) Fast start dimmable induction RF fluorescent light bulb
US9161422B2 (en) Electronic ballast having improved power factor and total harmonic distortion
US9245734B2 (en) Fast start induction RF fluorescent lamp with burst-mode dimming
US9209008B2 (en) Fast start induction RF fluorescent light bulb
US9129792B2 (en) Fast start induction RF fluorescent lamp with reduced electromagnetic interference
US9524861B2 (en) Fast start RF induction lamp
US9305765B2 (en) High frequency induction lighting
US9460907B2 (en) Induction RF fluorescent lamp with load control for external dimming device
US10418233B2 (en) Burst-mode for low power operation of RF fluorescent lamps
US20140145607A1 (en) Dimmable high frequency induction rf fluorescent lamp
US20140145601A1 (en) Dimmable induction rf fluorescent lamp
US20140320009A1 (en) Processor-based dimmable induction rf fluorescent lamp
US20140145608A1 (en) Fast start high frequency induction rf fluorescent lamp
US20140145606A1 (en) High frequency induction rf fluorescent lamp
US20140145602A1 (en) Induction rf fluorescent lamp with burst-mode dimming
US20140145604A1 (en) Induction rf fluorescent lamp
US20140145598A1 (en) High frequency induction rf fluorescent lamp with burst-mode dimming
US20140145618A1 (en) Dimmable induction rf fluorescent light bulb
US20140145600A1 (en) High frequency induction rf fluorescent lamp with reduced electromagnetic interference
US20140145605A1 (en) High frequency induction rf fluorescent lamp with reduced electromagnetic interference
US20140320008A1 (en) Processor-based fast start induction rf fluorescent lamp
US20140145603A1 (en) Induction rf fluorescent lamp with reduced electromagnetic interference
US20140145597A1 (en) Processor-based induction rf fluorescent lamp