JP2008089586A - 物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法 - Google Patents

物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法 Download PDF

Info

Publication number
JP2008089586A
JP2008089586A JP2007234242A JP2007234242A JP2008089586A JP 2008089586 A JP2008089586 A JP 2008089586A JP 2007234242 A JP2007234242 A JP 2007234242A JP 2007234242 A JP2007234242 A JP 2007234242A JP 2008089586 A JP2008089586 A JP 2008089586A
Authority
JP
Japan
Prior art keywords
data
sample
values
matrix
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007234242A
Other languages
English (en)
Japanese (ja)
Inventor
Endre Laczko
エンドレ・ラクツコ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2008089586A publication Critical patent/JP2008089586A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/70Machine learning, data mining or chemometrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
JP2007234242A 2006-09-08 2007-09-10 物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法 Pending JP2008089586A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06018856 2006-09-08

Publications (1)

Publication Number Publication Date
JP2008089586A true JP2008089586A (ja) 2008-04-17

Family

ID=38959705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007234242A Pending JP2008089586A (ja) 2006-09-08 2007-09-10 物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法

Country Status (5)

Country Link
US (1) US20080077374A1 (zh)
JP (1) JP2008089586A (zh)
CN (1) CN101173918A (zh)
CA (1) CA2600772A1 (zh)
SG (1) SG141319A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510372A (zh) * 2016-01-27 2016-04-20 江苏出入境检验检疫局动植物与食品检测中心 建立dpls-bs-uve快速鉴别蜂蜜真假的模型方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000935A3 (en) * 2007-05-10 2012-07-18 F. Hoffmann-La Roche AG Method of processing protein peptide data and system
CN103728330B (zh) * 2014-01-09 2016-06-01 上海微谱信息技术有限公司 利用核磁共振碳谱数据确定有机化合物结构的方法及系统
DE102014218354B4 (de) * 2014-09-12 2016-08-11 Numares Ag Verfahren zur Gewinnung von in einem Ergebnis einer NMR-Messung kodierter Information

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057495A2 (en) * 2000-02-01 2001-08-09 The Government Of The United States Of America As Represented By The Secretary, Department Of Health & Human Services Methods for predicting the biological, chemical, and physical properties of molecules from their spectral properties
CA2445106A1 (en) * 2001-04-23 2002-10-31 Metabometrix Limited Methods for analysis of spectral data and their applications: osteoporosis
US7425700B2 (en) * 2003-05-22 2008-09-16 Stults John T Systems and methods for discovery and analysis of markers
EP1762954B1 (en) * 2005-08-01 2019-08-21 F.Hoffmann-La Roche Ag Automated generation of multi-dimensional structure activity and structure property relationships

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105510372A (zh) * 2016-01-27 2016-04-20 江苏出入境检验检疫局动植物与食品检测中心 建立dpls-bs-uve快速鉴别蜂蜜真假的模型方法

Also Published As

Publication number Publication date
CA2600772A1 (en) 2008-03-08
SG141319A1 (en) 2008-04-28
US20080077374A1 (en) 2008-03-27
CN101173918A (zh) 2008-05-07

Similar Documents

Publication Publication Date Title
Grissa et al. Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data
Chen et al. Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection
Gromski et al. The influence of scaling metabolomics data on model classification accuracy
Beaulieu-Jones et al. Semi-supervised learning of the electronic health record for phenotype stratification
Chen et al. Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models
Assfalg et al. Evidence of different metabolic phenotypes in humans
Berk et al. A statistical framework for biomarker discovery in metabolomic time course data
CN112201330A (zh) 结合DRGs工具和贝叶斯模型的医疗质量监测评估方法
Corsaro et al. NMR in metabolomics: From conventional statistics to machine learning and neural network approaches
Lombardi et al. Brain age prediction with morphological features using deep neural networks: Results from predictive analytic competition 2019
Olivetti et al. ADHD diagnosis from multiple data sources with batch effects
Wang et al. Predicting Protein Interactions Using a Deep Learning Method‐Stacked Sparse Autoencoder Combined with a Probabilistic Classification Vector Machine
JP2008089586A (ja) 物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法
Chardin et al. Learning a confidence score and the latent space of a new supervised autoencoder for diagnosis and prognosis in clinical metabolomic studies
Doron et al. Unbiased single-cell morphology with self-supervised vision transformers
CN117373546A (zh) 基于血浆蛋白标志物与机器学习的阿尔茨海默症诊断方法
Rao et al. Partial correlation based variable selection approach for multivariate data classification methods
WO2024042164A2 (en) Method and system of predicting a clinical outcome or characteristic
Kim et al. Controlling the false discovery rate for feature selection in high‐resolution NMR Spectra
De Iorio et al. Statistical techniques in metabolic profiling
KR20240046481A (ko) 지문 분석을 이용하여 화합물을 생리학적 조건과 연관시키는 시스템 및 방법
Hornung et al. Full versus incomplete cross-validation: measuring the impact of imperfect separation between training and test sets in prediction error estimation
Kim et al. Automated differentiation of atypical parkinsonian syndromes using brain Iron patterns in susceptibility weighted imaging
Maddalena et al. A framework based on metabolic networks and biomedical images data to discriminate glioma grades
Koleini et al. Biomarker discovery in multi-omics datasets using tensor decompositions; A comprehensive review