JP2008089586A - 物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法 - Google Patents
物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法 Download PDFInfo
- Publication number
- JP2008089586A JP2008089586A JP2007234242A JP2007234242A JP2008089586A JP 2008089586 A JP2008089586 A JP 2008089586A JP 2007234242 A JP2007234242 A JP 2007234242A JP 2007234242 A JP2007234242 A JP 2007234242A JP 2008089586 A JP2008089586 A JP 2008089586A
- Authority
- JP
- Japan
- Prior art keywords
- data
- sample
- values
- matrix
- profile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/30—Prediction of properties of chemical compounds, compositions or mixtures
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06018856 | 2006-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008089586A true JP2008089586A (ja) | 2008-04-17 |
Family
ID=38959705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007234242A Pending JP2008089586A (ja) | 2006-09-08 | 2007-09-10 | 物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080077374A1 (zh) |
JP (1) | JP2008089586A (zh) |
CN (1) | CN101173918A (zh) |
CA (1) | CA2600772A1 (zh) |
SG (1) | SG141319A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105510372A (zh) * | 2016-01-27 | 2016-04-20 | 江苏出入境检验检疫局动植物与食品检测中心 | 建立dpls-bs-uve快速鉴别蜂蜜真假的模型方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2000935A3 (en) * | 2007-05-10 | 2012-07-18 | F. Hoffmann-La Roche AG | Method of processing protein peptide data and system |
CN103728330B (zh) * | 2014-01-09 | 2016-06-01 | 上海微谱信息技术有限公司 | 利用核磁共振碳谱数据确定有机化合物结构的方法及系统 |
DE102014218354B4 (de) * | 2014-09-12 | 2016-08-11 | Numares Ag | Verfahren zur Gewinnung von in einem Ergebnis einer NMR-Messung kodierter Information |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001057495A2 (en) * | 2000-02-01 | 2001-08-09 | The Government Of The United States Of America As Represented By The Secretary, Department Of Health & Human Services | Methods for predicting the biological, chemical, and physical properties of molecules from their spectral properties |
CA2445106A1 (en) * | 2001-04-23 | 2002-10-31 | Metabometrix Limited | Methods for analysis of spectral data and their applications: osteoporosis |
US7425700B2 (en) * | 2003-05-22 | 2008-09-16 | Stults John T | Systems and methods for discovery and analysis of markers |
EP1762954B1 (en) * | 2005-08-01 | 2019-08-21 | F.Hoffmann-La Roche Ag | Automated generation of multi-dimensional structure activity and structure property relationships |
-
2007
- 2007-08-17 SG SG200706057-7A patent/SG141319A1/en unknown
- 2007-08-31 US US11/897,584 patent/US20080077374A1/en not_active Abandoned
- 2007-09-06 CA CA002600772A patent/CA2600772A1/en not_active Abandoned
- 2007-09-07 CN CNA2007101460731A patent/CN101173918A/zh active Pending
- 2007-09-10 JP JP2007234242A patent/JP2008089586A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105510372A (zh) * | 2016-01-27 | 2016-04-20 | 江苏出入境检验检疫局动植物与食品检测中心 | 建立dpls-bs-uve快速鉴别蜂蜜真假的模型方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2600772A1 (en) | 2008-03-08 |
SG141319A1 (en) | 2008-04-28 |
US20080077374A1 (en) | 2008-03-27 |
CN101173918A (zh) | 2008-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grissa et al. | Feature selection methods for early predictive biomarker discovery using untargeted metabolomic data | |
Chen et al. | Random forest in clinical metabolomics for phenotypic discrimination and biomarker selection | |
Gromski et al. | The influence of scaling metabolomics data on model classification accuracy | |
Beaulieu-Jones et al. | Semi-supervised learning of the electronic health record for phenotype stratification | |
Chen et al. | Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models | |
Assfalg et al. | Evidence of different metabolic phenotypes in humans | |
Berk et al. | A statistical framework for biomarker discovery in metabolomic time course data | |
CN112201330A (zh) | 结合DRGs工具和贝叶斯模型的医疗质量监测评估方法 | |
Corsaro et al. | NMR in metabolomics: From conventional statistics to machine learning and neural network approaches | |
Lombardi et al. | Brain age prediction with morphological features using deep neural networks: Results from predictive analytic competition 2019 | |
Olivetti et al. | ADHD diagnosis from multiple data sources with batch effects | |
Wang et al. | Predicting Protein Interactions Using a Deep Learning Method‐Stacked Sparse Autoencoder Combined with a Probabilistic Classification Vector Machine | |
JP2008089586A (ja) | 物質の生物学的、生化学的、生物物理学的、又は薬理学的特徴の予測方法 | |
Chardin et al. | Learning a confidence score and the latent space of a new supervised autoencoder for diagnosis and prognosis in clinical metabolomic studies | |
Doron et al. | Unbiased single-cell morphology with self-supervised vision transformers | |
CN117373546A (zh) | 基于血浆蛋白标志物与机器学习的阿尔茨海默症诊断方法 | |
Rao et al. | Partial correlation based variable selection approach for multivariate data classification methods | |
WO2024042164A2 (en) | Method and system of predicting a clinical outcome or characteristic | |
Kim et al. | Controlling the false discovery rate for feature selection in high‐resolution NMR Spectra | |
De Iorio et al. | Statistical techniques in metabolic profiling | |
KR20240046481A (ko) | 지문 분석을 이용하여 화합물을 생리학적 조건과 연관시키는 시스템 및 방법 | |
Hornung et al. | Full versus incomplete cross-validation: measuring the impact of imperfect separation between training and test sets in prediction error estimation | |
Kim et al. | Automated differentiation of atypical parkinsonian syndromes using brain Iron patterns in susceptibility weighted imaging | |
Maddalena et al. | A framework based on metabolic networks and biomedical images data to discriminate glioma grades | |
Koleini et al. | Biomarker discovery in multi-omics datasets using tensor decompositions; A comprehensive review |