JP2008089380A - Image reconstruction device - Google Patents

Image reconstruction device Download PDF

Info

Publication number
JP2008089380A
JP2008089380A JP2006269398A JP2006269398A JP2008089380A JP 2008089380 A JP2008089380 A JP 2008089380A JP 2006269398 A JP2006269398 A JP 2006269398A JP 2006269398 A JP2006269398 A JP 2006269398A JP 2008089380 A JP2008089380 A JP 2008089380A
Authority
JP
Japan
Prior art keywords
probe
time
fourier
sampling
reflection function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006269398A
Other languages
Japanese (ja)
Other versions
JP5083859B2 (en
Inventor
Yoshihiro Nishimura
良弘 西村
Akira Sasamoto
明 笹本
Takayuki Suzuki
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006269398A priority Critical patent/JP5083859B2/en
Publication of JP2008089380A publication Critical patent/JP2008089380A/en
Application granted granted Critical
Publication of JP5083859B2 publication Critical patent/JP5083859B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image reconstruction device with image processing time shortened by reducing the number of times of probe scanning at high resolution without extremely increasing storage capacity. <P>SOLUTION: This image reconstruction device comprises a wide-directivityprobe and an arithmetic unit with an image processing method incorporated thereinto, the processing method used for making three-dimensional image information by processing an output signal of the probe. The image processing method has a procedure for obtaining signals by Fourier-transforming time-series output signals obtained through thinned out sampling into time-series data corresponding to the thinned-out sampling, and signals by Fourier-transforming a reflection function corresponding to the thinned-out sampling by using directive function signals of time-series data corresponding to the thinned-out sampling, and for obtaining the distribution of the reflection function in real space by inversely Fourier-transforming the signals obtained through Fourier-transforming the reflection function. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、希望する解像度より粗い間隔で走査サンプリングした場合においても希望する解像度の3次元画像を合成する画像再構成装置に関するものである。   The present invention relates to an image reconstruction apparatus that synthesizes a three-dimensional image having a desired resolution even when scanning is sampled at a coarser interval than the desired resolution.

超音波探傷法/電磁超音波探傷法を用いた画像表示では、xy方向に高指向性シングルプローブを機械走査したり、マルチプローブを電子走査し、時系列データとしての反射波形信号の反射時刻tを深さzと見なすことで3次元表示を行っている。この場合、xy方向の解像度はビーム径、xy方向のサンプリング距離間隔や波長、z方向の解像度は時系列波形のサンプリング時間間隔と波長できまる。波長やプローブ径に比べて十分大きな欠陥を比較的小さな領域で検査観察する場合には、必要なメモリ量に比べて十分大きいコンピュータメモリを用意することで実用上十分であった。 In the image display using the ultrasonic flaw detection method / electromagnetic ultrasonic flaw detection method, the high-directivity single probe is mechanically scanned in the xy direction, or the multi-probe is electronically scanned, and the reflection time t of the reflected waveform signal as time series data is reflected. Is regarded as the depth z, and three-dimensional display is performed. In this case, the resolution in the xy direction is determined by the beam diameter, the sampling distance interval and wavelength in the xy direction, and the resolution in the z direction is determined by the sampling time interval and wavelength of the time series waveform. In the case of inspecting and observing defects that are sufficiently larger than the wavelength and probe diameter in a relatively small area, it is practically sufficient to prepare a computer memory that is sufficiently larger than the necessary memory.

しかし、1000mmx1000mmx30mmのような厚板で0.1mmの欠陥を見つけるためには、単一指向性シングルプローブの場合、10000ライン以上の走査線本数が必要になる。1秒/ラインの走査時間がかかるとすると10000秒の時間を要することになる。また、シングルプローブの場合、収束ビームを用い各深さの検査を行えば検査時間はさらに数十倍になり飛躍的に増大する。
マルチプローブの場合、電子走査の高速性を生かすには大型のプローブを作ることであるが、大型プローブの開発にはコスト的にも技術的にも問題がある。また、フェーズドアレイと呼ばれる方式で試料内部に収束ビームを結んで走査する場合、残響のため連続して波動の発射ができず高速化には限界がある。マルチプローブの場合、分解能を上げるため、周波数を高くすると、隣接プローブと干渉することや各プローブの特性をそろえることもむずかしくなる問題がある。
However, in order to find a defect of 0.1 mm with a thick plate such as 1000 mm × 1000 mm × 30 mm, a unidirectional single probe requires more than 10,000 scanning lines. If it takes 1 second / line scanning time, it will take 10000 seconds. Further, in the case of a single probe, if each depth is inspected by using a convergent beam, the inspection time is further increased by several tens of times and dramatically increased.
In the case of a multi-probe, it is necessary to make a large probe in order to take advantage of the high speed of electronic scanning. However, the development of a large probe has problems in terms of cost and technology. Further, when scanning with a convergent beam inside the sample by a method called a phased array, the wave cannot be continuously emitted due to reverberation, and there is a limit to speeding up. In the case of a multi-probe, if the frequency is increased in order to increase the resolution, there is a problem that it becomes difficult to interfere with adjacent probes and to align the characteristics of each probe.

大物試料の検査ではサンプリング点数が増えるので、走査に時間がかかることは大きな障害である。具体的には、検査時間全体が長くなることを意味するので、実用時間内に製品の全数検査が行えず、抜き取り検査になったり、部分検査に妥協しなければならない問題があった。そのサンプリング点数の多さは大規模メモリを必要とすることも問題である。 In the inspection of a large sample, the number of sampling points increases, so that it takes a long time to scan is a big obstacle. Specifically, this means that the entire inspection time becomes longer, and therefore, all products cannot be inspected within a practical time, and there has been a problem that a sampling inspection or a partial inspection has to be compromised. The large number of sampling points also requires a large-scale memory.

改善策として、必要メモリ量の削減、z方向の走査時間の短縮とxy方向の走査時間の短縮が必要である。
マルチプローブ方式のz方向走査時間の短縮法としては、日本クラウトクレーマ(株)がボリュームフォーカスという方式を提唱している。試料内部の各要素毎に焦点を結ぶ電子走査を行うのではなく、全てのマルチプローブを一度だけ励起し平面波を発信する。そして欠陥からの反射波の時系列データをそれで取得する。そのため、フェーズドアレイと異なり残響の影響を受けなくてすむ。その反射波の時系列データのなかで要素の位置毎の振幅を足し合わせることで各位置に焦点があった場合の反射強度を仮想的に求めるというものである。周波数が高いほど、開口が大きいほど空間分解能は高くなる。この方法は、計測された波形の振幅値をそのまま用いるので単純であるが、要素数が増えると飛躍的に計算量が増大するので、商用機でも高解像度のものは作られていない。各プローブから欠陥までの距離が等距離である他の要素からの反射と区別できないので周辺にゴーストが現れる欠点がある。
As an improvement measure, it is necessary to reduce the required memory amount, shorten the scanning time in the z direction, and shorten the scanning time in the xy direction.
As a method for shortening the z-direction scanning time of the multi-probe method, Nippon Kraut Kramer Co., Ltd. has proposed a method called volume focus. Rather than performing electronic scanning to focus on each element inside the sample, all multiprobes are excited only once and plane waves are transmitted. And the time series data of the reflected wave from a defect are acquired by it. Therefore, unlike the phased array, it is not affected by reverberation. By adding the amplitude for each position of the element in the time-series data of the reflected wave, the reflection intensity when the focus is on each position is virtually obtained. The higher the frequency and the larger the aperture, the higher the spatial resolution. This method is simple because the amplitude value of the measured waveform is used as it is. However, since the amount of calculation increases dramatically as the number of elements increases, a commercial machine with no high resolution has not been made. Since the distance from each probe to the defect is indistinguishable from the reflection from other elements having the same distance, there is a drawback that a ghost appears in the periphery.

他には、逆散乱法を用いた画像再構成法がある。それは、1素子から発信される波動をSH波の円筒波であるとし、それぞれ一度だけ発信しxy平面内で走査する。発信毎に同一の素子で波動の時系列データを受信する。求めたいのは試料中の反射関数の分布であるが。反射関数としては材料力学的に欠陥内部を記述するキルヒホフ近似または欠陥内部を記述するボルン近似としている。反射波の空間フーリエ変換は、試料中の欠陥の空間フーリエ変換とプローブの指向性関数の空間フーリエ変換とのスカラー積になっているので、反射波を測定すれば試料中の欠陥の分布を求めることができる。この場合、プローブの指向性関数は解析しやすい円筒波を仮定したので解析的に計算できる、したがって、少ない要素分割数でも高精度に計算することができ、反射関数の分布を求めることができる。xy方向の分解能はプローブの間隔に、深さ方向zの分解能は送信波周波数によってきまる。1素子の発信する波動は、いつも円筒波で近似できるとは限らないので、うまく近似できないときには、まだ議論の余地があると思われる。プローブ間隔より小さな欠陥を検出するのに難があるのもそのためである。
また、どちらの場合も、上に述べたように、マルチプローブでは周波数を高くすることができないので分解能が上がらないという問題もある
xy方向の走査時間の短縮のためには、小規模のマルチプローブと機械走査を組み合わせるという考えがあるがやはりマルチプローブは重くなるので高速機械走査には向かず、やはり走査時間が長くなる要因となる。
特開2003−121502号公報
There is another image reconstruction method using the inverse scattering method. It is assumed that the wave transmitted from one element is an SH cylindrical wave, and each transmits only once and scans in the xy plane. Wave time-series data is received by the same element for each transmission. What I want to find is the distribution of the reflection function in the sample. The reflection function is a Kirchhoff approximation describing the inside of the defect in terms of material mechanics or a Born approximation describing the inside of the defect. The spatial Fourier transform of the reflected wave is a scalar product of the spatial Fourier transform of the defect in the sample and the spatial Fourier transform of the probe directivity function, so the distribution of the defect in the sample can be obtained by measuring the reflected wave. be able to. In this case, since the directivity function of the probe is assumed to be a cylindrical wave that is easy to analyze, it can be calculated analytically. Therefore, even a small number of element divisions can be calculated with high accuracy, and the distribution of the reflection function can be obtained. The resolution in the xy direction is determined by the probe interval, and the resolution in the depth direction z is determined by the transmission wave frequency. The wave transmitted by a single element cannot always be approximated by a cylindrical wave, so when it cannot be approximated well, it is still controversial. This is why it is difficult to detect defects smaller than the probe interval.
In either case, as described above, there is a problem in that the resolution cannot be increased because the frequency cannot be increased with the multi-probe. To reduce the scanning time in the xy direction, a small-scale multi-probe is required. However, since the multi-probe becomes heavy, it is not suitable for high-speed mechanical scanning, which also causes a longer scanning time.
JP 2003-121502 A

本発明の目的は、記憶容量を極端に増加することなく、高解像度でのプローブ走査回数を少なくし、画像処理の時間を短くした画像再構成装置を提供することにある。 An object of the present invention is to provide an image reconstruction device that reduces the number of probe scans at high resolution and shortens the time for image processing without extremely increasing the storage capacity.

本発明では、上記目的を達成するために、製造ラインで実用的な時間内に計測を行うために次の工夫を行う。
x、y、z方向の解像度を任意の解像度としたとき、このNx、Ny、Nz(但し、Nは試料の分割数)の解像度を実現するため、
広指向性プローブ(この指向性は円筒波ではなくプローブ先端の形状に従って高精度に数値的に計算記述されている)を用い、xy方向に((Nx×Ny)/(nx×ny))箇所を走査し、各点で反射波の時系列情報をNt=nx×ny×nz個受信する。ここで、nはいくつとばしてサンプリングしたかを表す数である。この時系列情報にはx、y、z方向の欠陥の位置情報が含まれている。この場合も、反射波の空間フーリエ変換は、試料中の欠陥の空間フーリエ変換とプローブの指向性関数の空間フーリエ変換とのスカラー積になっているので、反射波を測定すれば試料中の欠陥の分布を求めることができる。これを計算処理することでx方向Nx、y方向Ny、z方向Nzの解像度を得ることができる。xyz方向の解像度は周波数とサンプリング距離周期の積で決まる。
In the present invention, in order to achieve the above object, the following device is devised to perform measurement within a practical time in the production line.
In order to realize the resolution of Nx, Ny, Nz (where N is the number of divisions of the sample) when the resolution in the x, y, z direction is an arbitrary resolution,
Using a wide directional probe (this directivity is numerically calculated and described with high accuracy according to the shape of the probe tip, not a cylindrical wave), and ((Nx × Ny) / (nx × ny)) locations in the xy direction , And Nt = nx × ny × nz pieces of time-series information of reflected waves are received at each point. Here, n is a number indicating how many samples are skipped. This time series information includes position information of defects in the x, y, and z directions. In this case as well, the spatial Fourier transform of the reflected wave is a scalar product of the spatial Fourier transform of the defect in the sample and the spatial Fourier transform of the probe directivity function. Can be obtained. By calculating this, it is possible to obtain resolutions in the x direction Nx, the y direction Ny, and the z direction Nz. The resolution in the xyz direction is determined by the product of the frequency and the sampling distance period.

前記逆散乱法を用いた画像再構成法が比較的指向性の高い円筒波近似を用いx、y、z方向の情報をあまり抽出せずに、プローブから遠く、プローブより大きな欠陥の検出を目指したのと異なり、本発明の画像再構成装置ではプローブ形状に依存した指向性関数を高精度に計算し、それを利用することで反射波形からxy方向の情報を抽出でき、プローブより小さな欠陥を検出できるように解像度を上げることができる。
以上により、サンプリング点数/走査線の本数を減らせ、計測時間の短縮が可能になることを最も主要な特徴とする。
具体的には、画像再構成装置は、広指向性プローブと、前記プローブの出力信号を処理して3次元画像情報を作る画像処理方法を組み込んだ演算装置とからなる画像再構成装置であって、前記画像処理方法は、間引きサンプリングにより得られた時系列の出力信号に、間引きサンプリングに対応したフーリエ変換を施し、前記フーリエ変換で得られた信号と、プローブの指向性関数に間引きサンプリングに対応したフーリエ変換を施した信号とから、間引きサンプリングに対応した反射関数のフーリエ変換したデータを求め、該反射関数のフーリエ変換したデータを逆フーリエ変換して実空間での反射関数を求める手順を有することを特徴とする。
The image reconstruction method using the inverse scattering method uses cylindrical wave approximation with relatively high directivity, and does not extract much information in the x, y, and z directions, and aims to detect defects far from the probe and larger than the probe. Unlike the above, in the image reconstruction apparatus of the present invention, the directivity function depending on the probe shape is calculated with high accuracy, and by using this, information in the xy direction can be extracted from the reflected waveform, and defects smaller than the probe can be extracted. The resolution can be increased so that it can be detected.
As described above, the main feature is that the number of sampling points / the number of scanning lines can be reduced and the measurement time can be shortened.
Specifically, the image reconstruction device is an image reconstruction device comprising a wide directivity probe and an arithmetic device incorporating an image processing method for processing the output signal of the probe to produce three-dimensional image information. The image processing method applies the Fourier transform corresponding to the thinning sampling to the time-series output signal obtained by the thinning sampling, and supports the thinning sampling on the signal obtained by the Fourier transformation and the directivity function of the probe. The Fourier transform data of the reflection function corresponding to the thinning sampling is obtained from the Fourier-transformed signal, and the Fourier transform data of the reflection function is inverse Fourier transformed to obtain the reflection function in real space. It is characterized by that.

本発明は、記憶容量を極端に増加することなく、高解像度でのプローブ走査回数を少なくし、画像処理の時間を短くすることができる。また、xy方向分解能を上げるために狭指向性の小型プローブを使用する必要がなく、サンプリング点数/走査線の本数を減らせるので計測時間の短縮や必要メモリの減少を見込める。   The present invention can reduce the number of probe scans at a high resolution and shorten the image processing time without extremely increasing the storage capacity. Further, it is not necessary to use a small-directed small probe to increase the resolution in the xy direction, and the number of sampling points / number of scanning lines can be reduced, so that the measurement time can be shortened and the required memory can be reduced.

単一指向性プローブでxy方向に走査して3次元画像を再構成した場合と同等の分解能の画像をより少ないxy方向走査回数で得るという目的を、広指向性プローブを用い時系列情報に含まれるxyz方向の情報を利用することで実現した。 The purpose of obtaining images with the same resolution as the number of scans in the xy direction with a smaller number of scans in the xy direction is included in the time-series information using the unidirectional probe to scan in the xy direction and reconstruct a 3D image. This was realized by using information in the xyz direction.

図1は、本発明システムの1実施例の概念図である。
走査プローブ、受発信機およびアンプ、xyスキャナ、受発信の制御や発信スキャナ制御と受信波形のAD変換を行うFAコンピュータ、3次元合成画像を表示する解析コンピュータ、並列FFTコンピュータから構成されている。従来の計測系との違いは、広指向性のプローブを有すること、並列FFT等を行うコンピュータが付属している点である。
FIG. 1 is a conceptual diagram of one embodiment of the system of the present invention.
It consists of a scanning probe, transmitter / receiver and amplifier, xy scanner, FA computer for receiving / transmitting control, transmitting scanner control and AD conversion of received waveform, analysis computer for displaying a three-dimensional composite image, and parallel FFT computer. The difference from the conventional measurement system is that it has a wide directivity probe and a computer that performs parallel FFT and the like.

プローブのxy走査は、図2に示すように単指向性のプローブに比べて大きなサンプリング距離間隔で行うことができ、取得された時系列波形をFFT変換しサンプリング距離間隔以下の解像度で画像を合成することができる。
本発明の主体は広指向性プローブの使用とその信号処理にあるので、受発信機やxyスキャナ、FAコンピュータの説明は省略する。
The xy scan of the probe can be performed at a larger sampling distance interval than the unidirectional probe as shown in FIG. 2, and the obtained time-series waveform is subjected to FFT conversion to synthesize an image with a resolution less than the sampling distance interval. can do.
Since the subject of the present invention is the use of a wide directional probe and its signal processing, description of the transmitter / receiver, the xy scanner, and the FA computer is omitted.

試料上の座標X(ベクトル表示)=(X、Y,0)にあるプローブ上のローカル座標x0(ベクトル表示)=(x0、y0、0)から時刻tに発信される音波をf(t、x0(ベクトル表示))とする。すると試料中のローカル座標x1(ベクトル表示)=(x1、y1、z1)で感じる波動v(t,x1(ベクトル表示))はx(ベクトル表示)に関係なくプローブ全体にわたり
で積分したものなので式(1)のようになる
プローブ上のローカル座標x2(ベクトル表示)=(x2、y2、0)で感じる波動u(t,x2(ベクトル表示),x(ベクトル表示))は、波動v(t,x1(ベクトル表示))にその位置の反射関数ρ(x(ベクトル表示)+x1(ベクトル表示))を乗じて試料内部全体にわたりx1、y1、z1で積分したものであり式(2)のようになる。
プローブ出力w(t、x(ベクトル表示))は波動u(t,x2(ベクトル表示),x(ベクトル表示))をプローブ全体にわたりx2、y2で積分したものなので式(3)のようにかける。
プローブの指向性関数h(t、x1(ベクトル表示))は式(4)のようにかける。
A sound wave transmitted at time t from a local coordinate x0 (vector display) = (x0, y0, 0) on the probe at a coordinate X (vector display) = (X, Y, 0) on the sample is represented by f (t, x0 (vector display)). Then, the wave v (t, x1 (vector display)) felt at local coordinates x1 (vector display) = (x1, y1, z1) in the sample is integrated over the entire probe regardless of x (vector display). The wave u (t, x2 (vector display), x (vector display)) felt at the local coordinates x2 (vector display) = (x2, y2, 0) on the probe as shown in (1) is the wave v (t , X1 (vector display)) is multiplied by the reflection function ρ (x (vector display) + x1 (vector display)) at that position, and integrated over x1, y1, and z1 over the entire interior of the sample. It becomes like this.
Since the probe output w (t, x (vector display)) is obtained by integrating the wave u (t, x2 (vector display), x (vector display)) with x2 and y2 over the entire probe, it is applied as shown in Equation (3). .
The directivity function h (t, x1 (vector display)) of the probe is applied as shown in Equation (4).

上記の数式において、αは減衰係数、cは波動の位相速度である。
In the above formula, α is the attenuation coefficient, and c is the phase velocity of the wave.

積分区間Lの一次元畳み込み積分式(5)が定義されており、Xi,はそれぞれ積Xi分区間Lのm等分点、lm等分点であるとすると、離散値形式は式(6)のようになる。この両辺を区間Lにてフーリエ変換すると式(7)のようになる。ここで関数b(x)、c(x)のフーリエ変換B(S)、C(S)は式(8)、(9)のように定義される。 Assuming that a one-dimensional convolution integral equation (5) of the integration interval L is defined, and X i and x j are m equal and lm equal points of the product X i divided interval L, respectively, the discrete value form is It becomes like (6). When both sides are Fourier-transformed in the section L, the following equation (7) is obtained. Here, the Fourier transforms B i (S h ) and C i (S h ) of the functions b (x) and c (x) are defined as in equations (8) and (9).

以上の変形式(7)を2次元の問題に拡張し、式(3)に適用する。試料表面のサンプリング点の座標Xix、Yiyをxy方向のN/n等分点、N/n等分点とする。また、試料中の座標Xjx、Yjy、jzをxyz方向のNx等分点、Ny等分点、Nz等分点とすると式(3)は式(10)のようになる。式(10)をX、Yについてフーリエ変換すると式(11)のようになる。時間titはn等分点とする。式(11)(12)(13)(14)の関係を図示すると図4のようになる。従って、プローブ出力波形w(tit、ix、Yiy)から反射関数の分布ρ(xix、yiy、iz)を求めることができる。 The modified equation (7) is extended to a two-dimensional problem and applied to equation (3). Coordinates X ix sampling points of the sample surface, the Y iy of xy direction N x / n x equal points, and N y / n y equal points. Further, when the coordinates X jx , Y jy, and Z jz in the sample are Nx equality points, Ny equality points, and Nz equality points in the xyz direction, Expression (3) is expressed as Expression (10). When Expression (10) is Fourier transformed with respect to X and Y, Expression (11) is obtained. The time tit is an n x ny N z equal dividing point. FIG. 4 shows the relationship between the equations (11), (12), (13), and (14). Therefore, the distribution ρ (x ix , y iy, Z iz ) of the reflection function can be obtained from the probe output waveform w ( tit, X ix , Y iy ).

図5は直方体状の欠陥を有する試料の中央断面(xz断面およびyz断面)である。図6は試料の左端面にプローブを密着させてx軸に沿って走査した場合の時系列データとy軸に沿って走査した場合の時系列データを図示したものである。縦軸は走査方向、横軸は時間軸となっている。ブローブの有限な大きさ、およびサンプリング間隔が粗いために欠陥の形状は大きくぼけて表示されていることがわかる。図7は本発明で提案する方法で欠陥形状を計算したものである。よく再現されていることがわかる。 FIG. 5 is a central section (xz section and yz section) of a sample having a rectangular parallelepiped defect. FIG. 6 shows time-series data when the probe is brought into close contact with the left end surface of the sample and scanned along the x-axis, and time-series data when scanned along the y-axis. The vertical axis is the scanning direction, and the horizontal axis is the time axis. It can be seen that the shape of the defect is greatly blurred due to the finite size of the probe and the coarse sampling interval. FIG. 7 shows the defect shape calculated by the method proposed in the present invention. You can see that it is well reproduced.

液晶ディスプレイの電極やセラミクスの半導体作成用XYステージなどは1m以上の大物部材に欠陥が無いことが望まれる。仮に0.1mmの欠陥を見つけるためには10000ライン以上の走査が必要であり、1秒以上/ラインとすると10000秒以上かかることになり製造ラインで検査することには使えない。本発明をシングルプローブまたはマルチプローブに適用することで、サンプリング点数を間引くことができるので検査時間に占める走査時間を大幅に短縮することができる。   It is desirable that electrodes of liquid crystal displays, ceramics XY stages for semiconductor production, etc. have no defects in large members of 1 m or more. To detect a defect of 0.1 mm, it is necessary to scan 10,000 lines or more, and if it is 1 second or more / line, it takes 10,000 seconds or more and cannot be used for inspection on a production line. By applying the present invention to a single probe or a multi-probe, the number of sampling points can be thinned out, so that the scanning time occupying the inspection time can be greatly shortened.

3次元画像合成システムの説明図である。It is explanatory drawing of a three-dimensional image composition system. 単指向性プローブでサンプリングする場合と広指向性プローブでサンプリングする場合の説明図である。It is explanatory drawing in the case of sampling with a unidirectional probe and the case of sampling with a wide directional probe. 試料とプローブの位置関係および座標のとり方の説明図であるIt is explanatory drawing of the positional relationship of a sample and a probe, and how to take a coordinate. プローブ出力と試料の欠陥による反射関数の分布、計算の流れの関係図である。It is a relationship diagram between the probe output, the reflection function distribution due to the sample defect, and the flow of calculation. 欠陥を有する直方体形状の試料のxz断面およびyz断面図であるIt is an xz cross section and a yz cross section of a rectangular parallelepiped sample having defects 左端面でx方向、y方向に広指向性プローブを走査した場合の時系列データ表示である。It is a time-series data display when a wide directional probe is scanned in the x direction and the y direction on the left end surface. 本発明の提案方法を用いて図6から欠陥による反射関数の分布を計算したものである。FIG. 7 shows a distribution of reflection functions due to defects calculated from FIG. 6 using the proposed method of the present invention.

Claims (1)

広指向性プローブと、前記プローブの出力信号を処理して3次元画像情報を作る画像処理方法を組み込んだ演算装置とからなる画像再構成装置であって、前記画像処理方法は、間引きサンプリングにより得られた時系列の出力信号に、間引きサンプリングに対応したフーリエ変換を施し、前記フーリエ変換で得られた信号と、プローブの指向性関数に間引きサンプリングに対応したフーリエ変換を施した信号とから、間引きサンプリングに対応した反射関数のフーリエ変換したデータを求め、該反射関数のフーリエ変換したデータを逆フーリエ変換して実空間での反射関数を求める手順を有することを特徴とする画像再構成装置。

An image reconstruction device comprising a wide directivity probe and an arithmetic device incorporating an image processing method for processing output signals of the probe to produce three-dimensional image information, wherein the image processing method is obtained by thinning sampling. The time-series output signal is subjected to Fourier transform corresponding to decimation sampling, and the signal obtained by the Fourier transform and the signal subjected to Fourier transform corresponding to decimation sampling to the directivity function of the probe are decimation. An image reconstruction apparatus comprising a procedure for obtaining Fourier-transformed data of a reflection function corresponding to sampling and obtaining a reflection function in real space by performing inverse Fourier transform on the Fourier-transformed data of the reflection function.

JP2006269398A 2006-09-29 2006-09-29 Image reconstruction device Expired - Fee Related JP5083859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269398A JP5083859B2 (en) 2006-09-29 2006-09-29 Image reconstruction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006269398A JP5083859B2 (en) 2006-09-29 2006-09-29 Image reconstruction device

Publications (2)

Publication Number Publication Date
JP2008089380A true JP2008089380A (en) 2008-04-17
JP5083859B2 JP5083859B2 (en) 2012-11-28

Family

ID=39373693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269398A Expired - Fee Related JP5083859B2 (en) 2006-09-29 2006-09-29 Image reconstruction device

Country Status (1)

Country Link
JP (1) JP5083859B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424804A (en) * 2015-12-03 2016-03-23 北京工商大学 Ultrasonic detecting method for defect of remanufactured composite part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112699B1 (en) * 2019-06-12 2020-05-19 주식회사 뷰노 Method for visualizing time series signal and apparatus using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318952A (en) * 1988-06-20 1989-12-25 Mitsubishi Electric Corp Method for recognizing shape of three-dimensional body using ultrasonic wave
JPH034164A (en) * 1989-05-31 1991-01-10 Olympus Optical Co Ltd Formation of ultrasonic image
JPH05264518A (en) * 1992-03-19 1993-10-12 Olympus Optical Co Ltd Ultrasonic measuring device
JPH0749398A (en) * 1993-08-06 1995-02-21 Toshiba Corp Ultrasonic imaging system
JPH0792141A (en) * 1993-09-24 1995-04-07 Olympus Optical Co Ltd Method and equipment for determining crystal face index
JP2003121502A (en) * 2001-10-11 2003-04-23 Toppan Printing Co Ltd Probe, multiprobe using the same and electric circuit inspection device
JP2006270725A (en) * 2005-03-25 2006-10-05 Toshiba Corp Ultrasonic probe, and ultrasonographic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01318952A (en) * 1988-06-20 1989-12-25 Mitsubishi Electric Corp Method for recognizing shape of three-dimensional body using ultrasonic wave
JPH034164A (en) * 1989-05-31 1991-01-10 Olympus Optical Co Ltd Formation of ultrasonic image
JPH05264518A (en) * 1992-03-19 1993-10-12 Olympus Optical Co Ltd Ultrasonic measuring device
JPH0749398A (en) * 1993-08-06 1995-02-21 Toshiba Corp Ultrasonic imaging system
JPH0792141A (en) * 1993-09-24 1995-04-07 Olympus Optical Co Ltd Method and equipment for determining crystal face index
JP2003121502A (en) * 2001-10-11 2003-04-23 Toppan Printing Co Ltd Probe, multiprobe using the same and electric circuit inspection device
JP2006270725A (en) * 2005-03-25 2006-10-05 Toshiba Corp Ultrasonic probe, and ultrasonographic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424804A (en) * 2015-12-03 2016-03-23 北京工商大学 Ultrasonic detecting method for defect of remanufactured composite part
CN105424804B (en) * 2015-12-03 2018-09-07 北京工商大学 One kind remanufacturing composite part defect supersonic detection method

Also Published As

Publication number Publication date
JP5083859B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US6840107B2 (en) Acoustic microscope
CN111122700B (en) Method for improving laser ultrasonic SAFT defect positioning speed
JP5402046B2 (en) Ultrasonic measuring device and ultrasonic measuring method
JP2000028589A (en) Three-dimensional ultrasonic imaging device
Amineh et al. Three-dimensional holographic imaging using single frequency microwave data
JP2010266416A (en) Method of processing phased array aperture synthesis and method of evaluating application effect thereof
JP5083859B2 (en) Image reconstruction device
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
Bilodeau et al. Time domain imaging of extended transient noise sources using phase coherence
Song et al. Accelerated noncontact guided wave array imaging via sparse array data reconstruction
JP5575634B2 (en) Ultrasonic surface flaw detector and ultrasonic flaw detection method
Hutt et al. Reconstructing the shape of an object from its mirror image
Krieg et al. SAFT processing for manually acquired ultrasonic measurement data with 3D smartInspect
JP5672674B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
Pluta et al. Fourier inversion of acoustic wave fields in anisotropic solids
JP2019015530A (en) Thinning display method and thinning display device
JP7120896B2 (en) Aperture synthesis processing device, aperture synthesis processing method, and its program
JP2012083130A (en) Ultrasonic inspection method and ultrasonic inspection device
JP5853445B2 (en) Inspection apparatus and inspection method
CN114787655A (en) Target point position detection system and method, programmable circuit and storage medium
CN105548363A (en) Multi-route identification based ultrasonic detection imaging method
Mayer et al. Investigations for the improvement of SAFT imaging quality of a large aperture ultrasonic system
Nishimura et al. Study of 3D image reconstruction using EMAT
Wang et al. Multi-Element Synthetic Aperture Focusing Three-Dimensional Ultrasonic Imaging
JP2023136390A (en) Ultrasonic flaw detection system and ultrasonic flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees