JP2008089310A - Radiation measuring apparatus and its measuring method - Google Patents

Radiation measuring apparatus and its measuring method Download PDF

Info

Publication number
JP2008089310A
JP2008089310A JP2006267011A JP2006267011A JP2008089310A JP 2008089310 A JP2008089310 A JP 2008089310A JP 2006267011 A JP2006267011 A JP 2006267011A JP 2006267011 A JP2006267011 A JP 2006267011A JP 2008089310 A JP2008089310 A JP 2008089310A
Authority
JP
Japan
Prior art keywords
measurement
gas
radiation
neutron
measurement chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006267011A
Other languages
Japanese (ja)
Inventor
Shuji Yamamoto
修治 山本
Yukio Yoshimura
幸雄 吉村
Akira Sano
明 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006267011A priority Critical patent/JP2008089310A/en
Publication of JP2008089310A publication Critical patent/JP2008089310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently measure the intensity of radiation of neutrons etc. by a simple constitution. <P>SOLUTION: A radiation measuring apparatus 10 comprises a measuring container 14 in which a measuring chamber 13 for installing an object to be measured 11 is formed; an ionizing particle generating means 15 installed in the measuring chamber 13 for generating ionizing particles in reaction to neutrons; a support means 16 to which ionizing particles have adhered; a gas cleaning means 17 for removing ions in gases flowing in the measuring chamber 13; an ion collection means 21 for guiding ion pairs generated by the ionization of generated ionizing particles with gases in the measuring chamber 13; a power supply means 23 for supplying electric power for an electrode 22 of the ion collecting means 21; a current measuring means 24 for measuring ions collected at the ion collecting means 21 as a current; a data processing means 25 for processing data of measured current values and measuring the intensity of neutrons on the basis of a conversion constant; and a gas transport means 21 for transporting gases in the measuring chamber 13 to the ion collecting means 21. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放射線による電離作用を利用して電流測定により、放射線測定物から放出される放射線を測定する放射線測定技術に係り、特に、中性子等の放射線を効率よく測定でき、簡素化された放射線測定装置およびその測定方法に関する。   The present invention relates to a radiation measurement technique for measuring radiation emitted from a radiation measurement object by current measurement using an ionization action by radiation, and more particularly, radiation that is capable of efficiently measuring radiation such as neutrons and simplified radiation. The present invention relates to a measuring apparatus and a measuring method thereof.

一般に、この種の放射線測定装置は、測定対象物から放出される放射線により、その近傍の気体が電離されてイオン対が生成され、生成されるイオンは数秒から数10秒の寿命をもち、その間は測定対象物の近傍に存在する。放射線による電離作用で生成されるイオン対のイオン数は、放射線の強度に比例するので、生成されるイオン数を測定すれば、放射線の強度を求めることができる。   In general, this type of radiation measuring apparatus has an ion pair formed by ionizing a gas in the vicinity thereof by radiation emitted from a measurement object, and the generated ions have a lifetime of several seconds to several tens of seconds. Exists in the vicinity of the measurement object. Since the number of ions of the ion pair generated by the ionizing action by radiation is proportional to the intensity of the radiation, the intensity of the radiation can be obtained by measuring the number of ions generated.

この種の放射線測定装置として、BF比例計数管、ホウ素被覆比例計数管、He比例計数管等の中性子検出器がある。 As this type of radiation measuring apparatus, there are neutron detectors such as a BF 3 proportional counter, a boron-coated proportional counter, and a 3 He proportional counter.

BF比例計数管は10Bと熱中性子の(n,α)反応の断面積が大きいことを利用した中性子検出器であり、この中性子検出器1は図9に示すように金属の円筒2内にBFガスを充填し、円筒2を陰極として中心の芯線3を絶縁体4a,4bを介し支持し、陽極とした電極構造に構成される。 The BF 3 proportional counter is a neutron detector utilizing the fact that the cross-sectional area of the (n, α) reaction between 10 B and thermal neutrons is large, and this neutron detector 1 is formed in a metal cylinder 2 as shown in FIG. Is filled with BF 3 gas, and the center core wire 3 is supported via the insulators 4a and 4b with the cylinder 2 as a cathode, and an electrode structure is formed with an anode.

中性子検出器1は、金属の円筒の直径15cmφ、長さ180cmまでの製作例が存在するが、一般には、直径2.5cmφ、長さ数10cmである。そのため、大型の中性子検出器が必要な場合には、直径2.5cmφ、長さ数10cmの市販のBF比例計数管を複数本組み合せて使用している。 The neutron detector 1 has a manufacturing example of a metal cylinder having a diameter of 15 cmφ and a length of 180 cm, but generally has a diameter of 2.5 cmφ and a length of several tens of cm. Therefore, when a large neutron detector is required, a combination of a plurality of commercially available BF 3 proportional counters having a diameter of 2.5 cmφ and a length of several tens of cm is used.

また、ホウ素被覆比例計数管は、10B(B−10)の薄膜を円筒内面に被覆したものであり、中性子と10Bの反応で生成したLiとα粒子の電離性粒子(荷電粒子)がガス中を走る際に電離して電気信号を発生させ、この電気信号を測定することで中性子を検出している。中性子は電荷を持たないので、何らかの原子核反応により生成された電離性粒子(荷電粒子)を測定することにより、間接的に計数している。 In addition, the boron-coated proportional counter is a 10 B (B-10) thin film coated on the inner surface of a cylinder, and is an ionizable particle (charged particle) of 7 Li and α particles generated by the reaction of 10 B with neutrons. When the gas runs through the gas, it is ionized to generate an electrical signal, and this electrical signal is measured to detect neutrons. Since neutrons have no charge, they are indirectly counted by measuring ionizing particles (charged particles) generated by some nuclear reaction.

中性子検出器としてのホウ素被覆比例計数管は金属の円筒内面にホウ素(B)を被覆したものであり、He比例計数管はHeと熱中性子の(n,p)反応を利用した反跳陽子比例計数管であり、いずれの中性子検出器も、BF比例計数管と同じ課題を有する。 The boron-coated proportional counter as a neutron detector is a metal cylindrical inner surface coated with boron (B), and the 3 He proportional counter is a recoil using the (n, p) reaction of 3 He and thermal neutrons. Proton proportional counters, both neutron detectors have the same challenges as BF 3 proportional counters.

また、この種の放射線測定装置として、特許文献1に示されたものがある。この放射線測定装置aは、図10に示すように、測定容器b内の測定チャンバcに測定対象物dを収納し、電極eに電源fで電圧を印加したイオン収集手段としてのイオン検出器g、イオン検出器gで収集したイオンを電流として計測する電流測定手段h、測定チャンバc内部の気体を輸送配管iを通してイオン検出器gに輸送する気体輸送手段(吸引手段)jとから主に構成される。この放射線測定装置aは、測定対象物d内に収容された放射線源から放出された放射線により気体が電離され、イオンが生成される。   Moreover, there exists a thing shown by patent document 1 as this kind of a radiation measuring apparatus. As shown in FIG. 10, the radiation measuring apparatus a stores an object to be measured d in a measuring chamber c in a measuring container b, and an ion detector g as an ion collecting means in which a voltage is applied to an electrode e by a power source f. The current measuring means h for measuring the ions collected by the ion detector g as current, and the gas transport means (suction means) j for transporting the gas inside the measurement chamber c to the ion detector g through the transport pipe i. Is done. In the radiation measurement apparatus a, gas is ionized by radiation emitted from a radiation source accommodated in the measurement object d, and ions are generated.

測定チャンバ内の気体は、気体輸送手段jでイオン検出器gまで吸引され、気体中のイオンとともに移送されて電極に収集され、電流測定手段hで電流値として測定される。なお、符号kはデータ処理手段であり、符号lは気体浄化手段である。
特開2006−105872号公報 特開2006−46972号公報 特開2005−134239号公報 特開2004−239762号公報
The gas in the measurement chamber is sucked to the ion detector g by the gas transport means j, transferred together with the ions in the gas, collected by the electrodes, and measured as a current value by the current measurement means h. In addition, the code | symbol k is a data processing means, and the code | symbol 1 is a gas purification means.
JP 2006-105882 A JP 2006-46972 A JP 2005-134239 A JP 2004-239762 A

特許文献1に記載の放射線測定装置aにおいて、測定対象物dの寸法が短い場合、例えば1m以下であれば、測定対象物を測定チャンバ内に収納させることができるので、問題ないが、制御棒や燃料棒のような長さ数mの測定対象物や、測定チャンバc内に設置できない大型の測定対象物の場合には、測定できないという課題がある。   In the radiation measuring apparatus a described in Patent Document 1, when the measurement object d has a short dimension, for example, if it is 1 m or less, the measurement object can be stored in the measurement chamber. In the case of a measurement object having a length of several meters such as a fuel rod or a large measurement object that cannot be installed in the measurement chamber c, there is a problem that measurement cannot be performed.

また、従来の中性子検出器としてBF比例計数管等を採用した放射線測定装置においては、熱中性子との反応、例えば(n,α)反応を起して生成した電離性粒子が、気体中を走って電離させ生成したイオンをその生成装置の電場で収集していた。 Further, in a radiation measuring apparatus that employs a BF 3 proportional counter or the like as a conventional neutron detector, ionizing particles generated by a reaction with thermal neutrons, for example, (n, α) reaction, pass through the gas. Ions generated by running and ionizing were collected by the electric field of the generator.

従来の放射線検出装置では、熱中性子との反応場所と電場のイオン収集場所とが同一場所である。しかも、イオンを効率よく収集するためには、強い電場が必要となり、金属の円筒の直径を大きくすると、電場の強度を保持して電極間に印加する電圧も強度を増加する必要がある。   In the conventional radiation detection apparatus, the reaction place with thermal neutrons and the ion collection place of the electric field are the same place. In addition, in order to collect ions efficiently, a strong electric field is required. When the diameter of the metal cylinder is increased, it is necessary to maintain the strength of the electric field and increase the voltage applied between the electrodes.

ところが、電極間に印加する電圧は電極を保持する絶縁材の耐電圧等に制限があるので、放射線検出装置の大型化には寸法上の制約がある。   However, since the voltage applied between the electrodes is limited by the withstand voltage of the insulating material that holds the electrodes, there is a dimensional limitation in increasing the size of the radiation detection apparatus.

本発明は、上述した事情を考慮してなされたもので、測定対象物から放出される中性子等の放射線の強度を、簡素な構成で、効率的に精度よく、しかも能率的に測定することができる放射線測定装置およびその測定方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and can efficiently and efficiently measure the intensity of radiation such as neutrons emitted from a measurement object with a simple configuration. An object of the present invention is to provide a radiation measuring apparatus and a measuring method thereof.

本発明に係る放射線測定装置は、上述した課題を解決するために、測定対象物を設置する測定チャンバを形成した測定容器と、前記測定チャンバ内に設置され、中性子と反応して電離性粒子生成手段が付着した支持手段と、前記測定チャンバ内に流入する気体中のイオンを除去する気体浄化手段と、生成された電離性粒子が電離して生成されるイオンが、前記測定チャンバ内の気体とともに案内されるイオン収集手段と、上記イオン収集手段の電極に電源を供給する電源供給手段と、前記イオン収集手段で収集されたイオンを電流として測定する電流測定手段と、測定された電流値をデータ処理し、中性子強度の換算定数から中性子を測定するデータ処理手段と、前記測定チャンバ内の気体を前記イオン収集手段に輸送する気体輸送手段とを有することを特徴とするものである。   In order to solve the above-described problems, a radiation measurement apparatus according to the present invention is a measurement container in which a measurement chamber in which a measurement object is placed is formed, and is installed in the measurement chamber to generate ionizable particles by reacting with neutrons. The support means to which the means is attached, the gas purification means for removing ions in the gas flowing into the measurement chamber, and the ions generated by ionization of the generated ionizing particles together with the gas in the measurement chamber Ion collection means to be guided, power supply means for supplying power to the electrodes of the ion collection means, current measurement means for measuring ions collected by the ion collection means as current, and measured current values as data Data processing means for processing and measuring neutrons from a conversion constant of neutron intensity, and gas transport means for transporting the gas in the measurement chamber to the ion collecting means It is characterized in that.

また、本発明に係る放射線測定方法は、上述した課題を解決するために、測定対象物から放出される中性子と電離性粒子生成手段との間の(n,α)反応、(n,p)反応および(n,f)反応の少なくとも1種類の反応で電離性粒子を生成し、生成された電離性粒子が測定チャンバ内の気体を電離させてイオン対を生成し、生成されたイオン対をイオン収集手段に輸送して収集されるイオンを電流または電気量として測定し、この電流値から換算定数を用いて放射線の強度を測定することを特徴とする方法である。   Moreover, in order to solve the above-described problem, the radiation measurement method according to the present invention provides a (n, α) reaction between a neutron emitted from a measurement object and ionizing particle generation means, and (n, p). At least one kind of reaction and (n, f) reaction generates ionizable particles, and the generated ionizable particles ionize the gas in the measurement chamber to generate ion pairs. It is a method characterized in that ions collected by transporting to an ion collecting means are measured as a current or an electric quantity, and the intensity of radiation is measured from the current value using a conversion constant.

本発明に係る放射線測定装置およびその測定方法は、簡素な構成で測定対象物から放出される中性子等の放射線強度を効率的に精度よく、しかも、能率的に測定できる。   The radiation measuring apparatus and the measuring method according to the present invention can efficiently and efficiently measure the radiation intensity of neutrons and the like emitted from the measurement object with a simple configuration.

本発明に係る放射線測定装置の実施の形態について添付図面を参照して説明する。   Embodiments of a radiation measuring apparatus according to the present invention will be described with reference to the accompanying drawings.

[第1の実施形態]
図1は本発明に係る放射線測定装置の第1実施形態を示す概略構成図を示すものである。
[First Embodiment]
FIG. 1 is a schematic configuration diagram showing a first embodiment of a radiation measuring apparatus according to the present invention.

図1に示された放射線測定装置10は、例えば238Uや240Puの自発核分裂中性子や、α線と酸素等の軽元素との(α,n)反応で゛発生した中性子を測定する中性子測定装置であり、測定対象物11からの中性子を測定する中性子測定装置である。測定対象物11は、中性子を放出する放射線源12を備えている。 The radiation measurement apparatus 10 shown in FIG. 1 measures neutron measurement that measures, for example, 238 U or 240 Pu spontaneous fission neutrons or neutrons generated by (α, n) reaction between α-rays and light elements such as oxygen. It is a device, and is a neutron measurement device that measures neutrons from the measurement object 11. The measurement object 11 includes a radiation source 12 that emits neutrons.

この放射線測定装置10は、測定対象物11を収納する測定チャンバ13を形成した本体ケーシングとしての測定容器14と、測定チャンバ13内に設置され、例えば(n,α)反応で電離性粒子を生成する10B(B−10)のような電離性粒子生成手段15と、電離性粒子付着手段15を付着した支持手段16と、測定チャンバ13に流入する気体中のイオンを除去する気体浄化手段17と、測定チャンバ13内で放射線を放出する測定対象物11を設けた設置台(架台)18と、放射線源12を含む測定対象物11からの放射線による電離性粒子生成手段15との反応で生成した電離性粒子が電離させてイオン対を形成し、このイオン対を測定チャンバ13内の気体とともに絞り込んで案内する気体収束手段20と、気体とともに案内されるイオン対を導く気体通過断面積の狭いイオン収集手段21と、イオン収集手段21の電極22に電源を供給する電源供給手段23と、イオン収集手段21で収集したイオンを電流として測定する電流測定手段24と、測定した電流値のデータ処理を行なうデータ処理手段25と、測定チャンバ13内の気体を気体収束手段20を経てイオン収集手段21まで移送する気体輸送手段26と、イオン収集手段21を通過した気体を浄化する気体浄化手段27とから構成される。 This radiation measurement apparatus 10 is installed in a measurement chamber 14 as a main body casing in which a measurement chamber 13 that houses a measurement object 11 is formed, and in the measurement chamber 13, and generates ionizable particles by, for example, (n, α) reaction. The ionizing particle generating means 15 such as 10 B (B-10), the supporting means 16 attached with the ionizing particle attaching means 15, and the gas purifying means 17 for removing ions in the gas flowing into the measurement chamber 13. Generated by a reaction between an installation table (base) 18 provided with a measurement object 11 that emits radiation in the measurement chamber 13 and ionizing particle generation means 15 by radiation from the measurement object 11 including the radiation source 12. The ionized particles are ionized to form ion pairs, and the ion pairs are squeezed and guided together with the gas in the measurement chamber 13, and the gas converging means 20 is guided together with the gas. Ion collection means 21 having a narrow gas passage cross-sectional area for guiding the ion pair, power supply means 23 for supplying power to the electrode 22 of the ion collection means 21, and current measurement for measuring ions collected by the ion collection means 21 as current Means 24, data processing means 25 for processing data of the measured current value, gas transport means 26 for transferring the gas in the measurement chamber 13 to the ion collecting means 21 through the gas converging means 20, and the ion collecting means 21. It is comprised from the gas purification means 27 which purifies the gas which passed.

イオン収集手段21は、陰極を構成するステンレス鋼等の金属製の円筒28内の中心に陽極22を構成する芯線29が設けられ、この芯線29の電極22に測定チャンパ13から気体とともに輸送されるイオンが収集される。なお、イオン収集手段21を通過した気体を気体輸送手段26により図示しない気体循環経路を経て気体浄化手段17に案内し、イオンを除去して測定チャンパ13内に導くようにしてもよい。この場合、気体浄化手段27の設置は不要になる。   The ion collecting means 21 is provided with a core wire 29 constituting the anode 22 in the center of a metal cylinder 28 such as stainless steel constituting the cathode, and is transported together with gas from the measurement chamber 13 to the electrode 22 of the core wire 29. Ions are collected. Note that the gas that has passed through the ion collecting means 21 may be guided by the gas transport means 26 to the gas purification means 17 through a gas circulation path (not shown), and the ions may be removed and guided into the measurement chamber 13. In this case, installation of the gas purification means 27 becomes unnecessary.

また、放射線測定装置10の電離性粒子生成手段15は、10B(B−10)の他に、熱中性子と(n,t)反応を起こすLiや(n,p)反応を起こす例えばHe,(n,f)反応を起こす例えばTh,U,Puおよびこれらの同位体でもよい。 Further, the ionizing particle generating means 15 of the radiation measuring device 10, 10 B in addition to (B-10), thermal neutrons and (n, t) reaction 6 Li and cause (n, p) reacts example 3 For example, Th, U, Pu and their isotopes may be used to cause a He, (n, f) reaction.

なお、電離性粒子生成手段15は、例えば10Bで構成され、支持手段16を構成する対のステンレス製の支持プレート16a,16bの表面に塗布され、装着される。電離性粒子生成手段15(15a,15b)は、支持手段16の表面に薄い被膜、例えば10Bの被膜を施して構成される。イオン収集手段は、ベルマウス状あるいはラッパ状に収集させる構造としてもよい。 The ionizing particle generating means 15 is made of, for example, 10 B, and is applied and mounted on the surfaces of a pair of stainless steel support plates 16a and 16b constituting the support means 16. The ionizable particle generating means 15 (15a, 15b) is configured by applying a thin film, for example, a 10 B film on the surface of the support means 16. The ion collection means may be structured to collect in a bell mouth shape or a trumpet shape.

次に、放射線測定装置10の作用を説明する。   Next, the operation of the radiation measuring apparatus 10 will be described.

測定対象物11の放射線源12から放出された中性子は、測定対象物11および周囲の物体で減速され、熱中性子となる。この熱中性子は、電離性粒子生成手段15が10Bの場合には、以下の反応式で励起状態のLi,α粒子が放出される。 Neutrons emitted from the radiation source 12 of the measurement object 11 are decelerated by the measurement object 11 and surrounding objects to become thermal neutrons. When the ionizable particle generating means 15 is 10 B, the thermal neutron emits excited 7 Li, α particles according to the following reaction formula.

[化1]
10B+n → LiHe 2.31MeV
ここで、Liは0.84MeV、α粒子は1.47MeVのエネルギを有しており、これらのエネルギの電離性粒子が生成した電離性粒子生成手段15の内部で消滅しないように、電離性粒子生成手段15は、支持手段16の表面に施された10Bの薄い被膜で構成される。
[Chemical 1]
10 B + n → 7 Li * + 4 He * 2.31 MeV
Here, 7 Li has an energy of 0.84 MeV, and α particles have an energy of 1.47 MeV, so that the ionizing particles having these energies are not lost inside the ionizing particle generating means 15 generated. The particle generating means 15 is composed of a 10 B thin film applied to the surface of the supporting means 16.

電離性粒子生成手段15によって生成した電離性粒子は、測定チャンバ13内の気体を電離し、イオン対を生成する。生成されたイオンは数秒から数10秒程度の寿命を有し、測定チャンバ13内の気体と共存する。   The ionizing particles generated by the ionizing particle generating means 15 ionize the gas in the measurement chamber 13 to generate ion pairs. The generated ions have a lifetime of several seconds to several tens of seconds and coexist with the gas in the measurement chamber 13.

ここで、α粒子の空気のW値は35.1eVであるので、この値を用いて生成イオン対を概算すると、前述の反応式で生成されたエネルギ2.31MeVの50%が空気の電離に寄与するものと仮定した場合、約33000個のイオン対が生成される。このイオン対を電荷に変換すると、5.3E−15C(5.3×10−15C)となる。この電荷換算エネルギは1個のイオン対の反応当りの生成電荷である。2個の反応では12−14Cとなり、このレベルはエレクトロメータで電気的に測定が可能となる。通常複数個の反応を対象とするので、充分に測定可能なレベルである。 Here, since the W value of the air of α particles is 35.1 eV, when the generated ion pair is estimated using this value, 50% of the energy 2.31 MeV generated by the above reaction formula is converted into the ionization of the air. Assuming that it contributes, about 33000 ion pairs are generated. When this ion pair is converted into electric charge, it becomes 5.3E-15C (5.3 × 10 −15 C). This charge conversion energy is a charge generated per reaction of one ion pair. Two reactions result in 12-14C, and this level can be measured electrically with an electrometer. Usually, since a plurality of reactions are targeted, the level is sufficiently measurable.

この放射線測定装置10において、測定対象物11に含まれる放射線源12から放出され中性子により、測定チャンバ13内に生成されたイオンは、吸引手段としての気体輸送手段26により、測定チャンバ13内の気体とともに、気体収束手段20を経てイオン収集手段21まで輸送される。   In this radiation measurement apparatus 10, ions generated in the measurement chamber 13 by neutrons emitted from the radiation source 12 included in the measurement object 11 are gas in the measurement chamber 13 by the gas transport means 26 as suction means. At the same time, it is transported to the ion collecting means 21 through the gas converging means 20.

このイオン収集手段21を通過中に気体中に含まれるイオンは、電極(陽極)22に収集され、電流測定手段24により電流値として測定される。電流測定手段24は、例えばエレクトロメータである。   Ions contained in the gas while passing through the ion collecting means 21 are collected by the electrode (anode) 22 and measured as a current value by the current measuring means 24. The current measuring unit 24 is, for example, an electrometer.

ここで、測定対象物11に含まれる放射線源12を、中性子のみを放出する放射線源とすると、測定対象物11が測定チャンバ13に存在しない場合の電流を電流測定手段24で事前に測定し、この電流値をバックグラウンド電流値とする。   Here, if the radiation source 12 included in the measurement object 11 is a radiation source that emits only neutrons, the current measurement unit 24 measures the current when the measurement object 11 does not exist in the measurement chamber 13 in advance, This current value is set as a background current value.

また、測定対象物11が測定チャンバ13内にある場合に、電流測定手段24で測定した電流値をグロス電流値として設定し、データ処理手段25によりグロス電流値からバックグラウンド電流値を減算し、この減算値をネット電流値として算出する。このネット電流値を測定し、このネット電流値から中性子強度の換算定数を用いて中性子強度を簡単に求めることができる。   When the measurement object 11 is in the measurement chamber 13, the current value measured by the current measuring unit 24 is set as the gross current value, and the background current value is subtracted from the gross current value by the data processing unit 25. This subtraction value is calculated as a net current value. The net current value is measured, and the neutron intensity can be easily obtained from the net current value by using a conversion constant of neutron intensity.

図1に示された放射線測定装置10によれば、測定チャンバ13および電離性粒子生成手段15は、電離性粒子の生成場所に電場を不要としたので、測定対象物11の寸法や目標とする中性子検出効率に応じて大型化することができる。   According to the radiation measuring apparatus 10 shown in FIG. 1, the measurement chamber 13 and the ionizing particle generating means 15 do not need an electric field at the ionizing particle generation location. The size can be increased according to the neutron detection efficiency.

一方、この放射線測定装置10では、中性子との原子核反応で生成する電離性粒子の生成場所と、測定チャンパ13内の気体が電離され、収集されるイオン収集場所とを分離させることができるので、イオン収集手段21の寸法を測定チャンバの寸法と同一とすることなく小型化することができる。小型化しても、イオン収集手段21は適切な強さの電場を作ることができる寸法に製作することができる。   On the other hand, in this radiation measuring apparatus 10, since the ionization particle production | generation place produced | generated by the nuclear reaction with neutron and the gas in the measurement champ 13 are ionized, the ion collection place collected can be separated. The size of the ion collecting means 21 can be reduced without making it the same as that of the measurement chamber. Even if the device is downsized, the ion collecting means 21 can be manufactured to a size that can generate an electric field having an appropriate strength.

放射線測定装置10として中性子測定効率の高い中性子測定装置が要求される場合、多数の小型中性子検出器を組み合せて使用することなく、1個の大型中性子検出器で中性子測定効率を向上させることができる。また、大型中性子検出器を採用しても、イオン収集手段21は大型化することなく、従来の放射線検出装置より小型化が図れるので、簡素な構成で中性子を高効率に測定することができる。   When a neutron measurement device with high neutron measurement efficiency is required as the radiation measurement device 10, neutron measurement efficiency can be improved with one large neutron detector without using a combination of many small neutron detectors. . Further, even if a large neutron detector is employed, the ion collecting means 21 can be made smaller than the conventional radiation detection device without increasing the size, and therefore, neutrons can be measured with high efficiency with a simple configuration.

[第2の実施形態]
図2は、本発明に係る放射線測定装置の第2実施形態を示す概略構成図である。
[Second Embodiment]
FIG. 2 is a schematic configuration diagram showing a second embodiment of the radiation measuring apparatus according to the present invention.

第2実施形態に示された放射線測定装置10Aは、中性子を放出する放射線源12を含む測定対象物11を測定チャンバ13の外部に設置して中性子を測定する装置である。   The radiation measurement apparatus 10A shown in the second embodiment is an apparatus that measures a neutron by installing a measurement object 11 including a radiation source 12 that emits neutrons outside a measurement chamber 13.

この放射線測定装置10Aは、測定対象物11から放出される中性子を高感度に検出できるように測定対象物11の寸法および形状を考慮して測定チャンバ13の寸法等の条件が決定される。   In this radiation measurement apparatus 10A, conditions such as the dimensions of the measurement chamber 13 are determined in consideration of the size and shape of the measurement object 11 so that neutrons emitted from the measurement object 11 can be detected with high sensitivity.

第2実施形態に示された放射線測定装置10Aを説明するに当り、第1実施形態に示された放射線測定装置10と同じ構成には、同一符号付して重複説明を省略あるいは簡素化する。   In describing the radiation measurement apparatus 10A shown in the second embodiment, the same components as those in the radiation measurement apparatus 10 shown in the first embodiment are denoted by the same reference numerals, and redundant description is omitted or simplified.

図2に示された放射線測定装置10Aは、測定チャンバ13を形成した測定容器14と、測定チャンバ13の外部近傍に設置され、放射線源12を備えた測定対象物11と、測定チャンバ13内に設置され、熱中性子と反応する(n,α)反応で電離性粒子を生成する10B(B−10)のような電離性粒子生成手段15と、電離性粒子生成手段15を付着した支持手段16と、測定チャンバ13に流入する気体中のイオンを除去する気体浄化手段17と、電離性粒子が電離する気体とともに気体輸送経路30を介して輸送されるイオンを収集するイオン収集手段21と、イオン収集手段21の電極22に電源を供給する電源供給手段23と、イオン収集手段21で収集したイオンを電流として測定する電流測定手段24と、測定した電流値のデータ処理を行なうデータ処理手段25と、測定チャンバ13内の気体をイオン収集手段21まで輸送する吸引手段を兼ねる気体輸送手段26と、イオン収集手段21通過後の気体を浄化する気体浄化手段27とで構成される。気体輸送経路30は気体収束手段のようにベルマウス状あるいはラッパ状の気体収束構造を構成してもよい。 A radiation measurement apparatus 10A shown in FIG. 2 is provided in a measurement container 14 in which a measurement chamber 13 is formed, a measurement object 11 provided with a radiation source 12 installed in the vicinity of the outside of the measurement chamber 13, and a measurement chamber 13. An ionizing particle generating means 15 such as 10 B (B-10) which is installed and generates ionizing particles by (n, α) reaction that reacts with thermal neutrons, and a supporting means to which the ionizing particle generating means 15 is attached. 16, gas purifying means 17 for removing ions in the gas flowing into the measurement chamber 13, ion collecting means 21 for collecting ions transported through the gas transport path 30 together with the gas ionizing particles. A power supply means 23 for supplying power to the electrode 22 of the ion collection means 21, a current measurement means 24 for measuring ions collected by the ion collection means 21 as a current, and a measured current value Data processing means 25 that performs data processing, gas transport means 26 that also serves as suction means for transporting the gas in the measurement chamber 13 to the ion collection means 21, and gas purification means 27 that purifies the gas that has passed through the ion collection means 21 Consists of. The gas transport path 30 may constitute a bell mouth-like or trumpet-like gas converging structure like gas converging means.

なお、電離性粒子生成手段15は、支持手段16の対をなす支持プレート16a,16bに被膜した10Bで構成した例を示したが、電離性粒子生成手段15は測定容器14の内面に被膜させてもよい。また、電離性粒子生成手段15を被膜した支持手段16の被膜していない面を測定チャンバ13の内面に向けて設置してもよい。さらに、電離性粒子生成手段15が被膜された支持手段16を電離性粒子生成手段15の表面の気体が流動するようにして測定チャンバ13内に多層にあるいは格子状に配置してもよい。 The ionizable particle generating means 15 is shown as an example of 10 B coated on the support plates 16 a and 16 b forming the pair of the support means 16, but the ionizable particle generating means 15 is coated on the inner surface of the measurement container 14. You may let them. Further, the uncoated surface of the support means 16 coated with the ionizing particle generating means 15 may be placed toward the inner surface of the measurement chamber 13. Further, the support means 16 coated with the ionizing particle generating means 15 may be arranged in multiple layers or in a lattice form in the measurement chamber 13 so that the gas on the surface of the ionizing particle generating means 15 flows.

次に、第2実施形態に示された放射線測定装置10Aの作用を説明する。   Next, the operation of the radiation measuring apparatus 10A shown in the second embodiment will be described.

この放射線測定装置10Aは、測定対象物11の放射線源12から放出された中性子は、測定対象物11あるいは周囲の物体で減速されて熱中性子となる。この熱中性子は測定チャンバ13の内部に入射されて、測定チャンバ13内部の電離性粒子生成手段15と反応する。電離性粒子生成手段15が10Bの場合には、熱中性子と10Bが(n,α)反応(原子核反応)を起こし、励起状態のLiとα粒子が放出される。α粒子はヘリウムの原子核で陽子2個と中性子2個とからなり、電離性粒子を構成している。 In this radiation measurement apparatus 10A, neutrons emitted from the radiation source 12 of the measurement object 11 are decelerated by the measurement object 11 or surrounding objects to become thermal neutrons. This thermal neutron is incident on the inside of the measurement chamber 13 and reacts with the ionizing particle generating means 15 inside the measurement chamber 13. When the ionizing particle generating means 15 is 10 B, thermal neutron and 10 B cause (n, α) reaction (nuclear reaction), and excited 7 Li and α particles are released. Alpha particles are helium nuclei, consisting of two protons and two neutrons, and constitute ionizing particles.

生成された電離性粒子は、測定チャンバ13内の気体を電離し、この電離作用で生成されたイオン対には、気体輸送手段(吸引手段)26の作動により、測定チャンバ13内の気体とともに気体輸送経路30を経てイオン収集手段21に輸送される。輸送されたイオン対は、イオン収集手段21を通過中にイオンは電極29に収集され、電流測定手段24によりグロス電流値として測定される。   The generated ionizing particles ionize the gas in the measurement chamber 13, and the ion pair generated by this ionization action is gasified together with the gas in the measurement chamber 13 by the operation of the gas transport means (suction means) 26. It is transported to the ion collecting means 21 via the transport path 30. While the transported ion pair passes through the ion collecting means 21, the ions are collected on the electrode 29 and measured as a gross current value by the current measuring means 24.

一方、電流測定手段24では、測定対象物11が測定チャンバ13の外部近傍に存在せず、測定対象物11が測定チャンバ13内に影響を及ぼさない状態で測定した電流値をバックグラウンド電流値とする。データ処理手段25は、グロス電流値からバックグラウンド電流値を減算して、ネット電流値を算出する。このネット電流値と前もって得られた中性子強度の換算定数から、測定対象物11の中性子強度を求めることができる。   On the other hand, in the current measuring means 24, the current value measured in a state where the measurement object 11 does not exist in the vicinity of the outside of the measurement chamber 13 and the measurement object 11 does not affect the measurement chamber 13 is referred to as the background current value. To do. The data processing means 25 calculates a net current value by subtracting the background current value from the gross current value. The neutron intensity of the measurement object 11 can be obtained from the net current value and the conversion constant of the neutron intensity obtained in advance.

図2に示された放射線測定装置10Aは、例えば測定対象物11が大きく、測定チャンバ13に収納できない場合にも、測定チャンバ13および電離性粒子生成手段15は、要求される検出効率に応じて測定することができるように大型化することができる。一方、イオン収集手段21の寸法は測定チャンバ13の寸法と同一とすることなく小型化でき、適切な電場を作るような寸法・空間に設置可能である。   In the radiation measuring apparatus 10A shown in FIG. 2, for example, even when the measurement object 11 is large and cannot be accommodated in the measurement chamber 13, the measurement chamber 13 and the ionizing particle generating means 15 are provided according to the required detection efficiency. It can be enlarged so that it can be measured. On the other hand, the size of the ion collecting means 21 can be reduced without making it the same as the size of the measurement chamber 13, and can be installed in a size / space that creates an appropriate electric field.

放射線測定装置10Aに要求される中性子検出効率に応じて、放射線測定装置10Aの簡素化・大型化を図ることができ、複数の中性子検出器と組み合せなくても、中性子を簡便に、しかも高効率に測定することができる。   According to the neutron detection efficiency required for the radiation measuring apparatus 10A, the radiation measuring apparatus 10A can be simplified and enlarged, and neutrons can be easily and highly efficiently without being combined with a plurality of neutron detectors. Can be measured.

[第3の実施形態]
図3は、本発明に係る放射線測定装置10Bの第3実施形態を示す概略構成図である。
[Third Embodiment]
FIG. 3 is a schematic configuration diagram showing a third embodiment of the radiation measuring apparatus 10B according to the present invention.

第3実施形態に示された放射線測定装置10Bを説明するに当り、図1に示された放射線測定装置10と同じ構成には同一符号を付して重複説明を省略あるいは簡素化する。   In describing the radiation measuring apparatus 10B shown in the third embodiment, the same components as those in the radiation measuring apparatus 10 shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted or simplified.

第3実施形態に示された放射線測定装置10Bは、測定チャンバ13の内部に測定対象物11、電離性粒子生成手段15および中性子減速材33を収納し、中性子を測定する中性子測定装置である。   The radiation measurement apparatus 10 </ b> B shown in the third embodiment is a neutron measurement apparatus that stores the measurement object 11, ionizable particle generation means 15, and the neutron moderator 33 inside the measurement chamber 13 and measures neutrons.

放射線測定装置10Bは、測定チャンバ13を形成した測定容器14と、測定チャンバ13内に収納され、放射線源12を備えた測定対象物11と、測定チャンバ13の内部に設置され熱中性子と反応して例えば(n,α)反応で電離性粒子を生成する10Bのような電離性粒子生成手段15と、電離性粒子生成手段15を付着した支持手段16と、測定チャンバ13の内部に設置され測定対象物11から放出された中性子を減速して熱中性子を生成する例えばポリエチレンのような中性子減速手段としての中性子減速材33と、この中性子減速材18の帯電を防止するために周囲を覆った例えばステンレス製のカバー34の帯電防止手段と、測定チャンバ13に流入する気体中のイオンを除去する気体浄化手段17と、前記熱中性子と荷電粒子生成手段15で生成した電離性粒子が電離する気体を気体通過断面積の狭いイオン収集手段21に絞る気体収束手段20と、中心に電極22を有し気体とともに輸送されるイオンを収集するイオン収集手段21と、イオン収集手段21の電極22に電源を供給する電源供給手段23と、イオン収集手段21で収集したイオンを電流として測定する電流測定手段24と、測定した電流値のデータ処理を行なうデータ処理手段25と、測定チャンバ13の気体を気体収束手段20を経てイオン収集手段21まで輸送する気体輸送手段26と、イオン収集手段21を通過後の気体を浄化する気体浄化手段27とから構成される。 The radiation measuring apparatus 10B includes a measuring container 14 that forms a measuring chamber 13, a measuring object 11 that is housed in the measuring chamber 13 and includes a radiation source 12, and is installed inside the measuring chamber 13 to react with thermal neutrons. For example, an ionizing particle generating means 15 such as 10 B that generates ionizing particles by an (n, α) reaction, a supporting means 16 attached with the ionizing particle generating means 15, and an inside of the measurement chamber 13. A neutron moderator 33 as a neutron moderator such as polyethylene that decelerates neutrons emitted from the measurement object 11 to generate thermal neutrons, and the neutron moderator 18 is covered to prevent charging. For example, the antistatic means of the cover 34 made of stainless steel, the gas purification means 17 for removing ions in the gas flowing into the measurement chamber 13, the thermal neutron and the charge A gas converging means 20 that narrows the gas ionized by the ion generating particles generated by the child generating means 15 to an ion collecting means 21 having a narrow gas passage cross-sectional area, and an ion that has an electrode 22 in the center and collects ions that are transported together with the gas Collecting means 21, power supply means 23 for supplying power to the electrodes 22 of the ion collecting means 21, current measuring means 24 for measuring the ions collected by the ion collecting means 21 as current, and data processing of the measured current values. Data processing means 25 to be performed, gas transport means 26 for transporting the gas in the measurement chamber 13 to the ion collecting means 21 through the gas converging means 20, and gas purifying means 27 for purifying the gas after passing through the ion collecting means 21 Composed.

また、測定チャンバ13内に設置される中性子減速材33は、中性子を減速して熱中性子を生成する熱中性子生成手段を構成し、ステンレス製のカバー34は、中性子減速材33への帯電を防止する帯電防止を構成している。   Further, the neutron moderator 33 installed in the measurement chamber 13 constitutes thermal neutron generating means for generating thermal neutrons by decelerating neutrons, and the stainless steel cover 34 prevents the neutron moderator 33 from being charged. Constitutes anti-static.

第3実施形態に示された放射線測定装置10Bの作用を説明する。   The operation of the radiation measuring apparatus 10B shown in the third embodiment will be described.

図3に示された放射線測定装置10Bにおいて、測定対象物11の放射線源12から放出された中性子は、中性子減速材33で減速されて熱中性子となる。この熱中性子は、例えばステンレス製の支持手段16を透過して10Bの電離性粒子生成手段15に到達すると、10Bは熱中性子との(n,α)反応により電離性粒子(荷電粒子)を生成する。 In the radiation measuring apparatus 10 </ b> B shown in FIG. 3, neutrons emitted from the radiation source 12 of the measurement object 11 are decelerated by the neutron moderator 33 and become thermal neutrons. This thermal neutrons reach the ionizing particle generating means 15 of the transmission to 10 B for example stainless steel of the support means 16, 10 B is of thermal neutrons (n, alpha) ionizing particles (charged particles) by reaction Is generated.

生成された電離性粒子は測定チャンバ13内の近傍の気体を電離させ、イオン対が生成される。生成されたイオンは数秒から数10秒程度、気体中に存在し、共存する。   The generated ionizing particles ionize the gas in the vicinity of the measurement chamber 13 to generate ion pairs. The generated ions exist in the gas for about several seconds to several tens of seconds and coexist.

熱中性子により、測定チャンバ13の内部で生成したイオン対は、気体輸送手段26の吸引作用により、測定チャンバ13内の気体とともに気体収束手段20を経てイオン収集手段21まで案内され、輸送される。案内されたイオン対のイオンはイオン収集手段21を通過中に電極22に収集され、収集されたイオンは電流測定手段24にグロス電流値として測定される。   The ion pairs generated inside the measurement chamber 13 by the thermal neutrons are guided and transported to the ion collecting means 21 through the gas converging means 20 together with the gas in the measurement chamber 13 by the suction action of the gas transport means 26. The ions of the guided ion pair are collected by the electrode 22 while passing through the ion collecting means 21, and the collected ions are measured by the current measuring means 24 as a gross current value.

電流測定手段21により電流として測定されたグロス電流値は、第1実施形態と同様なデータ処理をデータ処理手段25で行なうことで、中性子強度を求めることができる。   The gross current value measured as a current by the current measuring means 21 can be obtained by performing data processing similar to that of the first embodiment by the data processing means 25.

第3実施形態に示された放射線測定装置10Bによれば、測定チャンバ13、10Bのような電離性粒子生成手段15およびポリエチレンのような中性子減速材33は、要求される中性子検出効率に応じて大型化することができる。一方、イオン収集手段は測定チャンバ13とは異なり小型化することができ、適切な電場を形成するような寸法に設定できる。したがって、多数の小型中性子検出器を組み合せて複雑な放射線測定装置をすることはなく、簡便で簡素な大型の放射線測定装置を構成することができ、この放射線測定装置10Bで中性子を高効率に精度よく測定することができる。 According to the radiation measuring device 10B shown in the third embodiment, the measurement chamber 13, 10 neutron moderator 33 such as ionizing particle generator 15 and polyethylene, such as B is depending on the required neutron detection efficiency Can be enlarged. On the other hand, unlike the measurement chamber 13, the ion collecting means can be miniaturized and can be set to a size that forms an appropriate electric field. Therefore, it is possible to construct a simple and simple large-sized radiation measuring apparatus without combining a large number of small neutron detectors, and this radiation measuring apparatus 10B can accurately and efficiently produce neutrons. It can be measured well.

[第4の実施形態]
図4は、本発明に係る放射線測定装置の第4実施形態を示す概略構成図である。
[Fourth Embodiment]
FIG. 4 is a schematic configuration diagram showing a fourth embodiment of the radiation measuring apparatus according to the present invention.

この実施形態に示された放射線測定装置10Cを説明するに当り、第1実施形態の放射線測定装置10と同じ構成には、同一符号を付して重複説明を省略あるいは簡素化する。   In describing the radiation measurement apparatus 10C shown in this embodiment, the same components as those in the radiation measurement apparatus 10 of the first embodiment are denoted by the same reference numerals, and redundant description is omitted or simplified.

図4に示された放射線測定装置10Cは、放射線源12を含む測定対象物11を測定チャンバ13の外部に設置し、測定チャンバ13の内部に電離性粒子生成手段15および中性子減速材33を収納した中性子測定装置である。   The radiation measurement apparatus 10 </ b> C shown in FIG. 4 places a measurement object 11 including a radiation source 12 outside the measurement chamber 13, and stores the ionizable particle generating means 15 and the neutron moderator 33 inside the measurement chamber 13. Neutron measuring device.

この放射線測定装置10Cは、測定対象物11を内在させず、外部近傍に設置した測定チャンバ13を有する測定容器14と、測定チャンバ13の内部に設置され、中性子を減速して熱中性子を生成する中性子減速材33と、この中性子減速材33の帯電を防止するために周囲を覆った、例えばステンレス製のカバー34と、熱中性子と(n,α)反応で電離性粒子を生成する10Bのような電離性粒子生成手段15と、この電離性粒子生成手段15を付着した支持手段16と、測定チャンバ13に流入する気体中のイオンを除去する気体浄化手段17と、電離性粒子が電離する例えば空気のような気体とともに輸送されるイオンを収集するイオン収集手段21と、このイオン収集手段21の電極22に電源を供給する電源供給手段23と、イオン収集手段21で収集したイオンを電流として測定する電流測定手段24と、測定した電流値のデータ処理を行なうデータ処理手段25と、測定チャンバ13の気体をイオン収集手段21まで輸送する気体輸送手段と、イオン収集手段21を通過後の気体を浄化する気体浄化手段27で構成される。 This radiation measurement apparatus 10C is installed in the measurement chamber 13 having the measurement chamber 13 installed in the vicinity of the outside without including the measurement object 11, and generates thermal neutrons by decelerating neutrons. A neutron moderator 33, a cover 34 made of, for example, stainless steel covering the periphery to prevent the neutron moderator 33 from being charged, and 10 B of ionizable particles generated by thermal neutron and (n, α) reaction. The ionizing particle generating means 15, the supporting means 16 attached with the ionizing particle generating means 15, the gas purification means 17 for removing ions in the gas flowing into the measurement chamber 13, and the ionizing particles are ionized. For example, ion collecting means 21 for collecting ions transported together with a gas such as air, power supply means 23 for supplying power to the electrode 22 of the ion collecting means 21, Current measuring means 24 for measuring the ions collected by the on-collecting means 21 as current, data processing means 25 for processing data of the measured current values, and gas transport means for transporting the gas in the measurement chamber 13 to the ion collecting means 21 And gas purifying means 27 for purifying the gas after passing through the ion collecting means 21.

中性子減速材33は、ポリエチレン等からなり、熱中性子生成手段を構成しており、ステンレス製のカバー34は中性子減速材33への帯電を防止する帯電防止手段を構成している。   The neutron moderator 33 is made of polyethylene or the like and constitutes thermal neutron generation means, and the stainless steel cover 34 constitutes antistatic means for preventing the neutron moderator 33 from being charged.

次に、放射線測定装置10Cの作用を説明する。   Next, the operation of the radiation measuring apparatus 10C will be described.

この放射線測定装置10Cにおいて、測定対象物11の放射線源12から放出された中性子は測定容器14の壁を透過して、測定チャンバ13の内部に入射し、中性子減速材33で減速され熱中性子となる。この熱中性子は、測定チャンバ13内に設置された電離性粒子生成手段15と原子核反応が生じる。電離性粒子生成手段15が10Bの場合には、熱中性子は10Bと(n,α)反応を起こして電離性粒子が放出される。内部の気体を電離し、その結果、イオン対を生成する。生成されたイオンは、第1実施形態の場合と同様、気体輸送手段26により測定チャンバ13内の気体とともに輸送され、イオン収集手段21に案内される。イオン収集手段21では、気体とともに輸送されるイオンを電極22にて収集し、収集されたイオンを電流として電流測定手段24で測定する。測定されたイオンの電流値は、データ処理手段25でデータ処理を行なえば、中性子強度を求めることができる。 In this radiation measurement apparatus 10C, neutrons emitted from the radiation source 12 of the measurement object 11 pass through the wall of the measurement container 14, enter the inside of the measurement chamber 13, are decelerated by the neutron moderator 33, and are converted into thermal neutrons. Become. This thermal neutron undergoes a nuclear reaction with the ionizable particle generating means 15 installed in the measurement chamber 13. When the ionizing particle generating means 15 is 10 B, the thermal neutron causes (n, α) reaction with 10 B, and the ionizing particles are released. The internal gas is ionized, resulting in ion pairs. The generated ions are transported together with the gas in the measurement chamber 13 by the gas transporting means 26 and guided to the ion collecting means 21 as in the case of the first embodiment. In the ion collecting means 21, ions transported together with the gas are collected by the electrode 22, and the collected ions are measured as current by the current measuring means 24. The measured ion current value can be obtained by performing data processing in the data processing means 25 to obtain the neutron intensity.

第4実施形態に示された放射線測定装置10Cにおいては、測定チャンバ13、電離性粒子生成手段15および中性子減速材33は、要求される中性子検出効率に応じて大型化することができる。一方、イオン収集手段21の寸法も測定チャンバ13の寸法と同一とすることなく小型化でき、適切な電場を作るような寸法に設定可能である。したがって、要求される中性子検出効率に応じて、簡便にしかも高効率で中性子を測定できる放射線測定装置10Cを得ることができる。   In the radiation measurement apparatus 10 </ b> C shown in the fourth embodiment, the measurement chamber 13, the ionizable particle generating means 15, and the neutron moderator 33 can be enlarged according to the required neutron detection efficiency. On the other hand, the size of the ion collecting means 21 can be reduced without making it the same as the size of the measurement chamber 13, and can be set to a size that creates an appropriate electric field. Therefore, according to the required neutron detection efficiency, it is possible to obtain a radiation measurement apparatus 10C that can measure neutrons easily and with high efficiency.

[第5の実施形態]
図5は、本発明に係る放射線測定装置の第5実施形態を示す概略構成図である。
[Fifth Embodiment]
FIG. 5 is a schematic configuration diagram showing a fifth embodiment of the radiation measuring apparatus according to the present invention.

この放射線測定装置10Dを説明するに当り、第1実施形態の放射線測定装置10と同じ構成には、同一符号を付して重複説明を省略あるいは簡素化する。   In describing the radiation measurement apparatus 10D, the same components as those in the radiation measurement apparatus 10 of the first embodiment are denoted by the same reference numerals, and redundant description is omitted or simplified.

図5に示された放射線測定装置10Dは、測定容器14内に形成される測定チャンバ13の内部に測定対象物11および電離性粒子生成手段15をそれぞれ収納し、測定容器14の周囲に熱中性子生成手段としての中性子減速材35(35a,35b,35c)を設置した中性子測定装置である。   The radiation measurement apparatus 10 </ b> D shown in FIG. 5 stores the measurement object 11 and the ionizing particle generation means 15 in the measurement chamber 13 formed in the measurement container 14, and thermal neutrons around the measurement container 14. It is a neutron measuring device provided with a neutron moderator 35 (35a, 35b, 35c) as a generating means.

この放射線測定装置10Dは、測定チャンバ13を形成した測定容器14と、測定チャンバ13内の設置台18上に設けられ、放射線源12を備えた測定対象物11と、測定チャンバ13の内部に設置され、熱中性子と反応して例えば(n,α)反応で電離性粒子を生成する10Bのような電離性粒子生成手段5と、電離性粒子生成手段15を付着した支持手段16と、測定チャンバ13の周囲に配置した中性子減速材35と、測定チャンバ13に流入する気体中のイオンを除去する気体浄化手段17と、前記熱中性子と電離性粒子生成手段15で生成した電離性粒子が電離する例えば空気のような気体をベルマウス状あるいはラッパ状に絞り込む気体収束手段20と、中心に電極22を有し気体とともに輸送されるイオンを収集する気体通過断面積の狭いイオン収集手段21と、イオン収集手段21の電極22に電源を供給する電源供給手段23と、イオン収集手段21で収集したイオンを電流として測定する電流測定手段24と、測定した電流値のデータ処理を行なうデータ処理手段25と、測定チャンバ13の気体を気体収束手段20を経てイオン収集手段21まで輸送する気体輸送手段26と、イオン収集手段21を通過後の気体を浄化する気体浄化手段27とから構成される。 The radiation measurement apparatus 10D is provided on a measurement container 14 in which a measurement chamber 13 is formed, an installation table 18 in the measurement chamber 13, a measurement object 11 including a radiation source 12, and an installation inside the measurement chamber 13. The ionizing particle generating means 5 such as 10 B that reacts with thermal neutrons to generate ionizing particles by, for example, (n, α) reaction, the support means 16 attached with the ionizing particle generating means 15, and measurement The neutron moderator 35 disposed around the chamber 13, the gas purifying means 17 for removing ions in the gas flowing into the measurement chamber 13, and the ionizing particles generated by the thermal neutrons and the ionizing particle generating means 15 are ionized. A gas converging means 20 for narrowing a gas such as air into a bell mouth shape or a trumpet shape, and a gas passage for collecting ions transported together with the gas having an electrode 22 in the center. An ion collecting means 21 having a small cross-sectional area, a power supply means 23 for supplying power to the electrode 22 of the ion collecting means 21, a current measuring means 24 for measuring ions collected by the ion collecting means 21 as a current, and a measured current Data processing means 25 for performing data processing of values, gas transport means 26 for transporting the gas in the measurement chamber 13 to the ion collecting means 21 via the gas converging means 20, and a gas for purifying the gas after passing through the ion collecting means 21 And purification means 27.

次に、放射線測定装置10Dの作用を説明する。   Next, the operation of the radiation measuring apparatus 10D will be described.

図5に示された放射線測定装置10Dにおいて、測定チャンバ13の内部に設置された測定対象物11の放射線源12から中性子が放出され、放射線源12から放出された中性子は、測定容器14の壁を通過する一方、周囲の中性子減速材35により減速され、熱中性子となる。   In the radiation measurement apparatus 10 </ b> D shown in FIG. 5, neutrons are emitted from the radiation source 12 of the measurement object 11 installed inside the measurement chamber 13, and the neutrons emitted from the radiation source 12 are emitted from the wall of the measurement container 14. , While being decelerated by the surrounding neutron moderator 35 to become thermal neutrons.

この熱中性子は測定容器14の壁を透過し、測定チャンバ13の内部の電離性粒子生成手段15に到達する。電離性粒子生成手段15が例えば10B(B−10)である場合、10Bは熱中性子と(n,α)反応が生じ、電離性粒子を生成する。 The thermal neutrons pass through the wall of the measurement container 14 and reach the ionizing particle generating means 15 inside the measurement chamber 13. When the ionizable particle generating means 15 is, for example, 10 B (B-10), 10 B undergoes a (n, α) reaction with thermal neutrons to generate ionizable particles.

この電離性粒子は、測定チャンバ13内の気体をイオン化エネルギで電離し、イオン対を生成させる。生成されたイオンは、測定チャンバ13内の気体とともに吸引手段である気体輸送手段26で吸引され、気体収束手段20で絞り込まれてイオン収集手段21に輸送される。イオン収集手段21に輸送されたイオン対のうちイオン(陰イオン)は、イオン収集手段20の電極(陽極)22に積極的に収集され、収集されたイオンによる電流は、電流測定手段24で測定され、グロス電流値が算出される。   The ionizing particles ionize the gas in the measurement chamber 13 with ionization energy to generate ion pairs. The generated ions are sucked together with the gas in the measurement chamber 13 by the gas transport means 26 that is a suction means, narrowed down by the gas converging means 20, and transported to the ion collection means 21. Of the ion pairs transported to the ion collecting means 21, ions (anions) are positively collected by the electrode (anode) 22 of the ion collecting means 20, and the current due to the collected ions is measured by the current measuring means 24. The gross current value is calculated.

このグロス電流値は、測定チャンバ13内に測定対象物がない場合のバックグラウンド電流値と比較され、データ処理手段25にてグロス電流値からバックグラウンド電流値が減算されてネット電流値が算出される。このネット電流値から中性子の換算定数を用いるデータ処理を行なって中性子強度を求めることができる。   This gross current value is compared with the background current value when there is no measurement object in the measurement chamber 13, and the data processing means 25 subtracts the background current value from the gross current value to calculate the net current value. The From this net current value, data processing using a neutron conversion constant can be performed to determine the neutron intensity.

図5に示された放射線測定装置10Dによれば、測定チャンバ13、電離性粒子生成手段15および中性子減速材35は、要求される中性子検出効率に応じて大型化することができる。一方、イオン収集手段21の寸法は、測定チャンバ13の寸法と同一とすることなく小型化でき、イオン収集手段21が適切な電場を作るような寸法に設定可能である。   According to the radiation measurement apparatus 10 </ b> D shown in FIG. 5, the measurement chamber 13, the ionizable particle generating means 15, and the neutron moderator 35 can be enlarged according to the required neutron detection efficiency. On the other hand, the size of the ion collecting means 21 can be reduced without making it the same as the dimension of the measurement chamber 13, and can be set to such a size that the ion collecting means 21 creates an appropriate electric field.

したがって、測定対象物11の3D寸法に応じて測定容器14等の大きさ、形状を適宜設定して大型化することで、大型でも簡素な構造の放射線測定装置10Dを提供することができる。要求される中性子検出効率に応じて、多数の中性子検出器を組み合せて使用することを必要とせず、簡便にしかも高効率で中性子を測定できる放射線測定装置10Dが得られる。   Therefore, by appropriately setting the size and shape of the measurement container 14 and the like according to the 3D dimensions of the measurement object 11, the radiation measurement apparatus 10D having a simple structure can be provided even if it is large. According to the required neutron detection efficiency, it is not necessary to use a combination of a large number of neutron detectors, and a radiation measurement apparatus 10D that can measure neutrons easily and with high efficiency is obtained.

[第6の実施形態]
図6は、本発明に係る放射線測定装置の第6実施形態を示す概略構成図である。
[Sixth Embodiment]
FIG. 6 is a schematic configuration diagram showing a sixth embodiment of the radiation measuring apparatus according to the present invention.

この放射線測定装置10Eを説明するに当り、第1実施形態に示した放射線測定装置10と同じ構成には同一符号を付して重複説明を省略あるいは簡便化する。   In describing the radiation measuring apparatus 10E, the same components as those in the radiation measuring apparatus 10 shown in the first embodiment are denoted by the same reference numerals, and redundant description is omitted or simplified.

第6実施形態で示された放射線測定装置10Eは、放射線源12を含む測定対象物11を測定容器14の外部に設置するとともに、測定容器14の周囲に中性子減速材35を配置し、測定チャンバ13の内部に電離性粒子生成手段15を収納した中性子測定装置である。   The radiation measuring apparatus 10E shown in the sixth embodiment installs the measurement object 11 including the radiation source 12 outside the measurement container 14, arranges a neutron moderator 35 around the measurement container 14, and measures the measurement chamber. 13 is a neutron measuring apparatus in which ionizing particle generating means 15 is housed inside 13.

この放射線測定装置10Eは、測定チャンバ13を形成した測定容器14と、測定容器14の周囲に設置された中性子減速材35と、測定容器14の外部近傍に設置された放射線源12を有する測定対象物11と、測定チャンバ13の内部に設置され、熱中性子と(n,α)反応で電離性粒子を生成する10Bのような電離性粒子生成手段15と、この電離性粒子生成手段15を付着した支持手段16と、測定チャンバ13に流入する気体中のイオンを除去する気体浄化手段17と、電離性粒子が電離する例えば空気のような測定チャンバ13内の気体が、気体輸送経路30を介して輸送されるイオン収集手段21と、このイオン収集手段21の電極22に電源を供給する電源供給手段23と、イオン収集手段で21収集したイオンを電流として測定する電流測定手段24と、測定した電流値のデータ処理を行なうデータ処理手段25と、測定チャンバ13の気体をイオン収集手段21まで輸送する気体輸送手段26と、イオン収集手段21を通過後の気体を浄化する気体浄化手段27とから構成される。 This radiation measurement apparatus 10E includes a measurement container 14 in which a measurement chamber 13 is formed, a neutron moderator 35 installed around the measurement container 14, and a measurement target having a radiation source 12 installed near the outside of the measurement container 14. An ionizing particle generating means 15 such as 10 B which is installed inside the object 11 and the measurement chamber 13 and generates ionizing particles by thermal neutron and (n, α) reaction; and the ionizing particle generating means 15 The adhering support means 16, the gas purification means 17 for removing ions in the gas flowing into the measurement chamber 13, and the gas in the measurement chamber 13 such as air in which the ionizing particles are ionized pass through the gas transport path 30. The ion collection means 21 transported through the power supply, the power supply means 23 for supplying power to the electrode 22 of the ion collection means 21, and the ions collected by the ion collection means 21 as current. Current measuring means 24 for measuring the current, data processing means 25 for processing the data of the measured current value, gas transport means 26 for transporting the gas in the measurement chamber 13 to the ion collecting means 21, and after passing through the ion collecting means 21 And gas purifying means 27 for purifying the gas.

イオン収集手段21は陰極を構成する金属製円筒の中心に同心状に配設された芯線からなる電極(陽極)22が設けられ、イオン収集手段21の電極間に、電源供給手段23により所定の電圧が印加される。   The ion collecting means 21 is provided with an electrode (anode) 22 made of a core wire arranged concentrically at the center of a metal cylinder constituting the cathode, and a predetermined amount of power is supplied between the electrodes of the ion collecting means 21 by a power supply means 23. A voltage is applied.

第6実施形態に示された放射線測定装置10Eにおいて、測定対象物11の放射線源12から放出された中性子は、測定容器14周囲の中性子減速材35(35a,35b,35c)で減速されて熱中性子(低速中性子)となる。この熱中性子は測定容器14の壁を透過して測定チャンバ13内に入射される。入射された熱中性子は電離性粒子生成手段15と衝突して原子核反応を生じさせる。電離性粒子生成手段15が、10Bの場合、熱中性子は10Bと(n,α)反応を起こし、電離性粒子が放出される。 In the radiation measurement apparatus 10E shown in the sixth embodiment, neutrons emitted from the radiation source 12 of the measurement object 11 are decelerated by the neutron moderator 35 (35a, 35b, 35c) around the measurement container 14 and heated. It becomes a neutron (slow neutron). This thermal neutron passes through the wall of the measurement container 14 and enters the measurement chamber 13. The incident thermal neutron collides with the ionizing particle generating means 15 to cause a nuclear reaction. When the ionizable particle generating means 15 is 10 B, the thermal neutron causes (n, α) reaction with 10 B, and the ionizable particles are released.

放出される電離性粒子は、測定チャンバ13内部の気体を電離し、その結果、イオン対(正イオンと負イオン)を生成する。測定チャンバ13内に生成されたイオン対は、気体輸送手段26の吸引作用により、測定チャンバ13内の気体とともに気体輸送経路30を介してイオン収集手段21に輸送される。イオン収集手段21に輸送されたイオン対のうち陽イオンは、イオン収集手段21の電極(負極)22に収集される。収集されたイオンによる電流は、電流測定手段24により測定され、グロス電流値が計測される。   The discharged ionizing particles ionize the gas inside the measurement chamber 13, and as a result, ion pairs (positive ions and negative ions) are generated. The ion pair generated in the measurement chamber 13 is transported to the ion collecting means 21 through the gas transport path 30 together with the gas in the measurement chamber 13 by the suction action of the gas transport means 26. Among the ion pairs transported to the ion collector 21, cations are collected on the electrode (negative electrode) 22 of the ion collector 21. The current due to the collected ions is measured by the current measuring means 24, and the gross current value is measured.

このグロス電流値は、第1実施形態に示された放射線測定装置10と同様なデータ処理がデータ処理手段25で行なわれ、予め算出されたバックグラウンド電流値とからネット電流値を算出する。このネット電流値と中性子強度への換算定数を用いて測定対象物の中性子強度を求めることができる。   The gross current value is subjected to data processing similar to that of the radiation measuring apparatus 10 shown in the first embodiment by the data processing means 25, and the net current value is calculated from the background current value calculated in advance. Using this net current value and a conversion constant to neutron intensity, the neutron intensity of the measurement object can be obtained.

この放射線測定装置10Eによれば、測定チャンバ13を形成した測定容器14、電離性粒子生成手段15および中性子減速材35は、要求される中性子検出効率に応じて大きな測定対象物11を効率的に測定できるように、大型化することができる。   According to this radiation measurement apparatus 10E, the measurement container 14, the ionizing particle generation means 15, and the neutron moderator 35 in which the measurement chamber 13 is formed efficiently transfer the large measurement object 11 according to the required neutron detection efficiency. It can be enlarged so that it can be measured.

一方、イオン収集手段21の寸法は測定チャンバ13の寸法と同一とすることなく小型化でき、適切な電場を作るような寸法に設定可能である。したがって、測定チャンバ13に測定対象物11や中性子減速材35を収納しない場合についても、簡便にしかも高効率で中性子を測定できる放射線測定装置10Eを得ることができる。   On the other hand, the size of the ion collecting means 21 can be reduced without being the same as the size of the measurement chamber 13, and can be set to a size that creates an appropriate electric field. Therefore, even when the measurement object 11 and the neutron moderator 35 are not accommodated in the measurement chamber 13, the radiation measurement apparatus 10E that can measure neutrons easily and with high efficiency can be obtained.

[第7の実施形態]
図7は、本発明に係る放射線測定装置の第7実施形態を示す概略構成図である。
[Seventh Embodiment]
FIG. 7 is a schematic configuration diagram showing a seventh embodiment of the radiation measuring apparatus according to the present invention.

この実施形態の放射線測定装置10Fを説明するに当り、第1実施形態の放射線測定装置10と同じ構成には同一符号を付して重複説明を省略あるいは簡素化する。   In describing the radiation measurement apparatus 10F of this embodiment, the same components as those of the radiation measurement apparatus 10 of the first embodiment are denoted by the same reference numerals, and redundant description is omitted or simplified.

第7実施形態の放射線測定装置10Fは、測定チャンバ13の内部に放射線源12を備えた測定対象物11を収納し、この測定対象物11から放出される中性子を測定する中性子測定装置である。この中性子測定装置は、測定対象物11が中性子の他に、例えばα線を検出している場合にも、精度よく中性子を測定することができる。   The radiation measurement apparatus 10 </ b> F according to the seventh embodiment is a neutron measurement apparatus that houses a measurement object 11 including a radiation source 12 inside a measurement chamber 13 and measures neutrons emitted from the measurement object 11. This neutron measurement apparatus can accurately measure neutrons even when the measurement object 11 detects, for example, α rays in addition to neutrons.

この放射線測定装置10Fは、測定チャンバ13を形成した測定容器14と、測定チャンバ13内に設置された放射線源12を有する測定対象物11と、測定チャンバ13の内部に設置され、熱中性子と反応して例えば(n,α)反応で電離性粒子を生成する10Bのような電離性粒子生成手段15と、電離性粒子生成手段15を付着した支持手段16と、電離性粒子生成手段15と気体との間に設置して電離性粒子生成手段15で生成した電離性粒子を遮蔽して気体を電離しないようにする電離性粒子遮蔽手段36と、この電離性粒子遮蔽手段36を駆動する遮蔽手段駆動手段37と、測定チャンバ13に流入する気体中のイオンを除去する気体浄化手段17と、電離性粒子が電離する例えば空気のような気体を絞り込むように案内する気体収束手段20と、測定チャンバ13内の気体ともに輸送されるイオンを収集するイオン収集手段21と、イオン収集手段21の電極22に電源を供給する電源供給手段23と、イオン収集手段21で収集したイオンを電流として測定する電流測定手段24と、測定した電流値のデータ処理を行なうデータ処理手段25と、測定チャンバ13の気体を気体収束手段20を経てイオン収集手段21まで輸送する気体輸送手段26と、イオン収集手段21を通過後の気体を浄化する気体浄化手段27とから構成される。 This radiation measurement apparatus 10F is installed in a measurement container 14 in which a measurement chamber 13 is formed, a measurement object 11 having a radiation source 12 installed in the measurement chamber 13, and a measurement neutron that reacts with thermal neutrons. Then, for example, an ionizable particle generating means 15 such as 10 B that generates ionizable particles by (n, α) reaction, a support means 16 attached with the ionizable particle generating means 15, an ionizing particle generating means 15, An ionizing particle shielding unit 36 that shields the ionizing particles generated by the ionizing particle generation unit 15 by being installed between the gas and prevents the gas from being ionized, and a shield that drives the ionizing particle shielding unit 36 Means driving means 37, gas purifying means 17 for removing ions in the gas flowing into the measurement chamber 13, and gas for guiding the ionizing particles to narrow down a gas such as air that is ionized. Collected by the focusing means 20, the ion collecting means 21 for collecting ions transported together with the gas in the measurement chamber 13, the power supply means 23 for supplying power to the electrode 22 of the ion collecting means 21, and the ion collecting means 21. Current measuring means 24 for measuring ions as current, data processing means 25 for processing data of the measured current value, and gas transport means 26 for transporting the gas in the measurement chamber 13 to the ion collecting means 21 through the gas converging means 20. And gas purifying means 27 for purifying the gas after passing through the ion collecting means 21.

次に、放射線測定装置10Fの作用(測定方法)を説明する。   Next, the operation (measurement method) of the radiation measurement apparatus 10F will be described.

この放射線測定装置10Fにおいて、測定対象物11の放射線源12から放出された中性子は、測定対象物11や周囲の物体で減速させて熱中性子となり、この熱中性子は電離性粒子生成手段15と原子核反応が生じる。電離性粒子生成手段15が10Bの場合、この10B(B−10)は熱中性子と(n,α)反応が生じて7Liとα粒子が生成され、電離性粒子が放出される。 In this radiation measurement apparatus 10F, neutrons emitted from the radiation source 12 of the measurement object 11 are decelerated by the measurement object 11 and surrounding objects to become thermal neutrons, and these thermal neutrons are ionized particle generating means 15 and atomic nuclei. A reaction occurs. When the ionizable particle generating means 15 is 10 B, 10 B (B-10) undergoes a (n, α) reaction with thermal neutrons to generate 7Li and α particles, and the ionizable particles are released.

生成された電離性粒子は、測定チャンバ13内の気体を電離させ、イオン対を生成する。このとき、電離性粒子遮断手段37は遮蔽手段駆動手段38により駆動され、電離性粒子生成手段15の前面に移動し、電離性粒子を遮蔽した状態にセットする。電離性粒子が遮蔽した状態で測定チャンバ13内部の気体は気体輸送手段26により輸送され、気体収束手段20を介してイオン収集手段21に導かれる。   The generated ionizing particles ionize the gas in the measurement chamber 13 to generate ion pairs. At this time, the ionizing particle blocking means 37 is driven by the shielding means driving means 38, moves to the front surface of the ionizing particle generating means 15, and sets the ionizing particles in a shielded state. The gas inside the measurement chamber 13 is transported by the gas transporting means 26 in a state where the ionizing particles are shielded, and is guided to the ion collecting means 21 through the gas converging means 20.

イオン収集手段20は、測定チャンバ13内の気体とともに移送されるイオンを収集し、収集されたイオンによる電流値を電流測定手段24でグロス電流値として測定する。グロス電流値は、データ処理手段25により、予め測定されたバックグラウンド電流値を減算してネット電流値を算出し、このネット電流値から中性子強度への換算定数を用いて測定対象物11の中性子強度を求めることができる。   The ion collecting means 20 collects ions transferred together with the gas in the measurement chamber 13, and measures the current value of the collected ions as a gross current value by the current measuring means 24. The gross current value is calculated by subtracting the background current value measured in advance by the data processing means 25, and the neutron of the measurement object 11 is calculated using a conversion constant from the net current value to the neutron intensity. The strength can be determined.

第7実施形態に示された放射線測定装置10Fによれば、測定チャンバ13を形成した測定容器14および電離性粒子生成手段15は、要求される中性子検出効率に応じて大型化することができる。一方、イオン収集手段21の寸法も測定チャンバ13の寸法と同一とすることなく小型化でき、適切な電場を作るような寸法に設定可能である。したがって、中性子以外の放射線を放出する測定対象物11についても、簡便にしかも高効率で中性子を測定できる放射線測定装置10Fを得ることができる。   According to the radiation measurement apparatus 10F shown in the seventh embodiment, the measurement container 14 and the ionizing particle generation means 15 in which the measurement chamber 13 is formed can be enlarged according to the required neutron detection efficiency. On the other hand, the size of the ion collecting means 21 can be reduced without making it the same as the size of the measurement chamber 13, and can be set to a size that creates an appropriate electric field. Therefore, it is possible to obtain the radiation measurement apparatus 10F that can measure neutrons easily and efficiently with respect to the measurement object 11 that emits radiation other than neutrons.

なお、本発明に係る放射線測定装置の第2実施形態から第7実施形態の説明では、電離性粒子生成手段15は10B(B−10)で構成し、この10Bが中性子と(n,α)反応して電離性粒子を生成する例を示したが、電離性粒子生成手段15は中性子と(n,t)反応を起こすLiであっても、中性子と(n,α)反応を起こすLiであっても、中性子と(n,p)反応を起こすLHeを収納した物体であっても、さらに、中性子と(n,f)反応を起こす235U,U同位体,Pu同位体、およびTh同位体であってもよく、また、これらの元素およびその同位体の少なくとも1種類を含むものであってもよい。 In the description of the second to seventh embodiments of the radiation measuring apparatus according to the present invention, the ionizable particle generating means 15 is composed of 10 B (B-10), and 10 B is composed of neutrons (n, α) An example in which ionizing particles are generated by reaction is shown. Even if the ionizing particle generating means 15 is 6 Li which causes (n, t) reaction with neutrons, it reacts with (n, α) reactions with neutrons. Even if it is 6 Li that occurs, or an object that contains 3 LHe that causes (n, p) reaction with neutrons, 235 U, U isotopes, Pu isotopes that cause (n, f) reactions with neutrons. And at least one of these elements and their isotopes may be used.

また、第3実施形態ないし第6実施形態に示された放射線測定装置10B〜10Eにおいて、中性子減速材の周囲を囲む熱中性子吸収手段(図示せず)と、測定した電流値から熱外中性子の強度を算出するデータ処理手段25を備え、このデータ処理手段25により熱外中性子を測定してもよい。   Further, in the radiation measuring apparatuses 10B to 10E shown in the third to sixth embodiments, thermal neutron absorption means (not shown) surrounding the neutron moderator and the measured current value of the epithermal neutrons. Data processing means 25 for calculating the intensity may be provided, and epithermal neutrons may be measured by the data processing means 25.

[第8の実施形態]
本発明に係る放射線測定装置の第8実施形態について説明する。
[Eighth Embodiment]
An eighth embodiment of the radiation measuring apparatus according to the present invention will be described.

第8実施形態に示された放射線測定装置10Gは、図7に示された放射線測定装置10Fに、中性子強度測定手段と放射線源分離手段(共に図示せず)とを備えた放射線測定装置である。   The radiation measuring apparatus 10G shown in the eighth embodiment is a radiation measuring apparatus provided with a neutron intensity measuring means and a radiation source separating means (both not shown) in the radiation measuring apparatus 10F shown in FIG. .

中性子強度測定手段は、電離性粒子を遮蔽した状態で測定したバックグラウンド電流値を、電離性粒子の遮蔽がない状態で測定したグロス電流値から減算してネット電流値を算出し、中性子強度への換算定数が測定対象物11のチャンバ強度を求める手段である。また、放射線源分離手段は、測定対象物11の中性子強度と中性子以外の強度とから、測定対象物11の放射線源をウラン(U)、プルトニウム(Pu)、TRUに分類する手段である。   The neutron intensity measuring means calculates the net current value by subtracting the background current value measured in the state where the ionizing particles are shielded from the gross current value measured in the state where the ionizing particles are not shielded, to obtain the neutron intensity. Is a means for obtaining the chamber strength of the measuring object 11. The radiation source separation means is means for classifying the radiation source of the measurement object 11 into uranium (U), plutonium (Pu), and TRU based on the neutron intensity of the measurement object 11 and the intensity other than neutrons.

ここで、U,Pu,TRUの代表として、244Cmの1g当りの自発核分裂中性子の放出率や、U,Pu,TRUの酸化物を仮定した場合に、軽元素の酸素とα線の(α,n)反応で生成した中性子の放出率、およびα線放出率の一例を計算すると以下の放出率表面で表わされる。

Figure 2008089310
Here, as a representative of U, Pu, TRU, when assuming the release rate of spontaneous fission neutrons per gram of 244 Cm, and oxides of U, Pu, TRU, (α , N) An example of the emission rate of neutrons generated by the reaction and an example of the α-ray emission rate are expressed by the following emission rate surface.
Figure 2008089310

放出率表で対象とする放射線源において、Uは天然ウラン、Puは239Puが約75wt%、240Puが約18wt%の存在比として計算した。また、放出率表では、α線に対する中性子の放出率比をUを基準として表した。放出率比はUが1.0、Puが0.138、244Cmが7.95であり、U,Pu,244Cmの対象によって大きく異なる。 In the emission rate table, the abundance ratio of U is natural uranium, Pu is about 75 wt% for 239 Pu, and about 18 wt% for 240 Pu. In the emission rate table, the ratio of the emission rate of neutrons to α rays is expressed with U as a reference. The release rate ratio is 1.0 for U, 0.138 for Pu, and 7.95 for 244 Cm, and varies greatly depending on the target of U, Pu, and 244 Cm.

したがって、中性子強度とα線強度から中性子/α線の強度比を計算し、この強度比を予め求めたU,Pu,244Cmの中性子/α線の強度比と比較することにより、放射線源の対象の書類を容易に求めることができる。 Therefore, by calculating the intensity ratio of neutron / α-ray from the neutron intensity and α-ray intensity, and comparing this intensity ratio with the neutron / α-ray intensity ratio of U, Pu, 244 Cm determined in advance, The target document can be easily obtained.

第8実施形態に示される放射線測定装置10Gは、測定容器14の測定チャンバ13内に、電離性粒子生成手段15で生成した電離性粒子を遮蔽して測定チャンバ13の気体の電離化を部分的に防止する電離性粒子遮蔽手段37と、電離性粒子遮蔽手段37を駆動する遮蔽手段駆動手段38と、電離性粒子を遮蔽した状態でバックグラウンド電流値を、電離性粒子の遮蔽がない状態で測定したグロス電流値から減算してネット電流値を算出する手段と、このネット電流値から中性子強度への換算定数を用いて中性子強度を算出する手段とを構成され、このネット電流値算出手段と中性子強度算出手段とからデータ処理装置25が構成される。   The radiation measurement apparatus 10G shown in the eighth embodiment partially ionizes the gas in the measurement chamber 13 by shielding the ionizable particles generated by the ionizable particle generating means 15 in the measurement chamber 13 of the measurement container 14. The ionizing particle shielding means 37 for preventing the ionizing particles, the shielding means driving means 38 for driving the ionizing particle shielding means 37, and the background current value in the state where the ionizing particles are shielded, in the state where the ionizing particles are not shielded. A means for calculating a net current value by subtracting from the measured gross current value and a means for calculating a neutron intensity using a conversion constant from the net current value to a neutron intensity are configured, and the net current value calculating means A data processor 25 is composed of the neutron intensity calculating means.

また、この放射線測定装置10Gは、電離性粒子を遮蔽した状態で測定したバックグラウンド電流値を電離性粒子の遮蔽がない状態で測定したグロス電流値から減算してネット電流値を算出し中性子強度を求める手段と、測定対象物がない状態で電離性粒子を遮蔽した状態で測定した測定対象物の電流値を前記バックグラウンド電流値から減算して中性子以外の強度を求める手段と、前記中性子強度と中性子以外の強度から測定対象物の放射線源をウラン,プルトニウム,TRUに分類する手段とを有するものである。   Further, the radiation measuring apparatus 10G calculates a net current value by subtracting a background current value measured in a state where the ionizing particles are shielded from a gross current value measured in a state where the ionizing particles are not shielded, and calculates a neutron intensity. Means for subtracting the current value of the measurement object measured in a state where the ionizing particles are shielded in the absence of the measurement object from the background current value, and obtaining the intensity other than neutrons, and the neutron intensity And means for classifying the radiation source of the measurement object into uranium, plutonium, and TRU based on the intensity other than neutrons.

また、放射線源の対象が2種類で既知ならば、混在率と中性子/α線放出率比の関係を前もって求めておけば、測定された前記放出率比から混在率も求めることができる。   If two types of radiation source targets are known, the mixing rate can also be obtained from the measured emission rate ratio if the relationship between the mixing rate and the neutron / α-ray emission rate ratio is obtained in advance.

第8実施形態に示された放射線測定装置10Gによれば、中性子のみでなく、その中性子を放出する発生源(放射線源12)の対象をU、Pu、244Cmと区別することができ、さらに混在が2種類の場合には混在率まで求めることができる。簡便にしかも中性子を高効率に測定できる放射線測定装置を得ることができる。 According to the radiation measuring apparatus 10G shown in the eighth embodiment, not only neutrons but also the source of the generation source (radiation source 12) that emits the neutrons can be distinguished from U, Pu, and 244 Cm. When there are two types of mixing, the mixing ratio can be obtained. It is possible to obtain a radiation measuring apparatus that can easily and efficiently measure neutrons.

[第9の実施形態]
図8は、本発明に係る放射線測定装置の第9実施形態を示す概略構成図である。
[Ninth Embodiment]
FIG. 8 is a schematic configuration diagram showing a ninth embodiment of the radiation measuring apparatus according to the present invention.

この放射線測定装置10Hは、放射線源12から中性子だけでなく、α線、β線およびγ線をも放出している測定対象物11から、放射線強度を精度よく効率的に測定する放射線測定装置である。   This radiation measuring apparatus 10H is a radiation measuring apparatus that accurately and efficiently measures radiation intensity from a measurement object 11 that emits not only neutrons but also α rays, β rays, and γ rays from a radiation source 12. is there.

図8に示された放射線測定装置10Hを説明するに当り、図1に示された放射線測定装置10と同じ構成には、同一符号を付して重複説明を省略あるいは簡素化する。   In the description of the radiation measurement apparatus 10H shown in FIG. 8, the same components as those of the radiation measurement apparatus 10 shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted or simplified.

この放射線測定装置10Hは、測定容器14内に形成される測定チャンバ13を第1ないし第4の測定室13a,13b,13c,13dに区画し、測定対象物11を収納する第1の測定室13aでα線による電離イオンを生成させ、第1の測定室13aを囲む第2の測定室13bでβ線による電離イオンを生成させ、第2の測定室13bを囲む第3の測定室13cで中性子線に起因する電離イオンを生成させ、第3の測定室13cを囲む第4の測定室13dでγ線による電離イオンを生成させている。放射線源12から放出される放射線(α線,β線,中性子線,γ線)の特性を利用して第1〜第4の測定室13a〜13dを略同心形状の多層構造に構成したものである。   This radiation measuring apparatus 10H divides a measurement chamber 13 formed in a measurement container 14 into first to fourth measurement chambers 13a, 13b, 13c, and 13d, and stores a measurement object 11 in a first measurement chamber. 13a generates ionized ions by α rays, generates ionized ions by β rays in the second measurement chamber 13b surrounding the first measurement chamber 13a, and in the third measurement chamber 13c surrounding the second measurement chamber 13b. Ionized ions caused by neutron beams are generated, and ionized ions by γ rays are generated in the fourth measurement chamber 13d surrounding the third measurement chamber 13c. The first to fourth measurement chambers 13a to 13d are configured in a substantially concentric multilayer structure using the characteristics of radiation (α rays, β rays, neutron rays, γ rays) emitted from the radiation source 12. is there.

測定容器14内の測定チャンバ13を同心状に仕切る第1〜第4の測定室13a〜13dには、流入する気体のイオンを浄化する気体浄化手段17が設けられる。気体浄化手段17(17a〜17d)は、第1〜第4の測定室13a〜13dに流入する気体のイオンを除去するために、各測定室毎にそれぞれ設けられる。   The first to fourth measurement chambers 13a to 13d that partition the measurement chamber 13 in the measurement container 14 concentrically are provided with gas purification means 17 for purifying ions of the flowing gas. The gas purification means 17 (17a to 17d) is provided for each measurement chamber in order to remove gas ions flowing into the first to fourth measurement chambers 13a to 13d.

測定チャンバ13の各測定室13a〜13dに流入する気体のイオンは第1〜第4の気体浄化手段17a〜17dにより除去され、浄化される一方、各測定室13a〜13dの気体を流出する通路として同心状の第1〜第4の気体輸送経路40a〜40dと、各気体輸送経路40a〜40dを切り替える輸送経路切替手段41とが設けられ、この輸送経路切替手段41とが設けられ、この輸送経路切替手段41を介してイオン収集手段21に接続される。   The gas ions flowing into the measurement chambers 13a to 13d of the measurement chamber 13 are removed and purified by the first to fourth gas purification means 17a to 17d, while the gas flows out of the measurement chambers 13a to 13d. As a concentric first to fourth gas transport path 40a to 40d, and a transport path switching means 41 for switching each gas transport path 40a to 40d, and this transport path switching means 41 is provided. The ion collecting means 21 is connected via the path switching means 41.

この放射線測定装置10Hは、測定容器14の測定チャンバ13、例えば第1測定室13a内に、放射線源12を備えた測定対象物11が設置される一方、第3測定室13cに仕切る壁に、電離性粒子生成手段15が設置される。   The radiation measurement apparatus 10H includes a measurement object 11 having a radiation source 12 installed in a measurement chamber 13 of a measurement container 14, for example, a first measurement chamber 13a, and a wall that partitions the third measurement chamber 13c. An ionizing particle generating means 15 is installed.

第4実施形態に示された放射線測定装置10Hは、同心状に多層の測定チャンバ13を形成した測定容器14と、測定チャンバ13内の第1測定室13aに設置された放射線源12を有する測定対象物11と、測定チャンバ13の第3測定室13cを仕切る壁に設置された電離性粒子生成手段15と、測定チャンバ13の第1〜第4測定室13a〜13dにそれぞれ流入する気体のイオンを除去する第1〜第4の気体浄化手段17(17a〜17d)と、測定チャンバ13内の第1〜第4測定室13a〜13dの気体を第1〜第4の気体輸送経路40a〜40dを介して案内する輸送経路切替手段41と、輸送経路切替手段41で選択的に切り替えられた第1〜第4の気体輸送経路40a〜40dからの気体を絞り込んで案内されるイオン収集手段21と、イオン収集手段21に気体とともに導かれるイオンを収集する電極22に電源を供給する電源供給手段23と、イオン収集手段21で収集したイオンを電流として測定する電流測定手段24と、測定した電流値のデータ処理を行なうデータ処理手段25と、測定チャンバ13の気体をイオン収集手段21まで輸送する気体輸送手段26と、イオン収集手段21を通過後の気体を浄化する気体浄化手段27とから構成される。   A radiation measurement apparatus 10H shown in the fourth embodiment includes a measurement container 14 in which a multi-layer measurement chamber 13 is formed concentrically and a radiation source 12 installed in a first measurement chamber 13a in the measurement chamber 13. Ions of gas flowing into the object 11 and the ionizing particle generating means 15 installed on the wall partitioning the third measurement chamber 13c of the measurement chamber 13 and the first to fourth measurement chambers 13a to 13d of the measurement chamber 13, respectively. The first to fourth gas purification means 17 (17a to 17d) for removing the gas and the first to fourth gas transport paths 40a to 40d from the first to fourth measurement chambers 13a to 13d in the measurement chamber 13 Route switching means 41 that guides through the gas, and ion collection that is guided by narrowing down the gas from the first to fourth gas transport routes 40a to 40d selectively switched by the transport route switching means 41. Means 21; power supply means 23 for supplying power to an electrode 22 for collecting ions guided to the ion collecting means 21 together with gas; current measuring means 24 for measuring ions collected by the ion collecting means 21 as current; Data processing means 25 for processing the data of the current value, gas transport means 26 for transporting the gas in the measurement chamber 13 to the ion collection means 21, and gas purification means 27 for purifying the gas after passing through the ion collection means 21 Consists of

なお、気体輸送手段26の下流側に気体浄化手段27を設けた例を示したが、気体浄化手段26通過後の気体を測定チャンバ13や測定チャンバ13の各測定室13a〜13dに循環される気体輸送経路(図示せず)を設け、この気体輸送経路の途中あるいは測定チャンバ13に流入する前に気体中のイオンを除去する。気体輸送手段を設けて気体循環系を構成してもよい。   In addition, although the example which provided the gas purification means 27 in the downstream of the gas transport means 26 was shown, the gas after passing the gas purification means 26 is circulated to each measurement chamber 13a-13d of the measurement chamber 13 or the measurement chamber 13. A gas transport path (not shown) is provided, and ions in the gas are removed during the gas transport path or before flowing into the measurement chamber 13. A gas circulation means may be configured by providing a gas transport means.

ところで、図8に示された放射線測定装置10Hは、測定対象物11の放射線源12からα線、β線、γ線および中性子線が放出されている。測定チャンバ13の第1の測定室13aではα線、第2の測定室13bではβ線、第3の測定室13cでは中性子線の(n,α)反応に起因する電離性粒子、第4の測定室13dではγ線の影響で電離したイオン数からそれぞれの放射能を求める。ここで、第2の測定室13bの壁はβ線を遮蔽しγ線を透過するような材質および厚さが選定される。   Incidentally, the radiation measuring apparatus 10H shown in FIG. 8 emits α rays, β rays, γ rays, and neutron rays from the radiation source 12 of the measurement object 11. In the first measurement chamber 13a of the measurement chamber 13, α-rays, in the second measurement chamber 13b β-rays, in the third measurement chamber 13c ionized particles resulting from the (n, α) reaction of neutrons, the fourth In the measurement chamber 13d, each radioactivity is obtained from the number of ions ionized by the influence of γ rays. Here, the material and thickness of the wall of the second measurement chamber 13b are selected so as to shield β rays and transmit γ rays.

測定容器14の測定チャンバ13内の各測定室13a〜13dを上述のように設定すれば、第4の測定室13dはγ線のみ、第3の測定室13cは中性子およびγ線、第2の測定室13bはβ線およびγ線、第1の測定室13aはα線、β線およびγ線である。   If the measurement chambers 13a to 13d in the measurement chamber 13 of the measurement container 14 are set as described above, the fourth measurement chamber 13d has only γ-rays, the third measurement chamber 13c has neutrons and γ-rays, and the second The measurement chamber 13b is β rays and γ rays, and the first measurement chamber 13a is α rays, β rays, and γ rays.

第9実施形態に示された放射線測定装置10Hにおいて、第1に、輸送経路切替手段41により第4の気体輸送経路40dを選択する。第4の測定室13d内の気体を気体輸送経路40dおよび輸送経路切替手段41を介してイオン収集手段21に輸送し、このイオン収集手段21にて第1実施形態に示されたものと同様に、第4の測定室13d内の気体中に含まれるイオンを収集し、このイオンの収集で得られる電流をグロス電流値として電流測定手段24にて測定する。   In the radiation measuring apparatus 10H shown in the ninth embodiment, first, the fourth gas transport path 40d is selected by the transport path switching means 41. The gas in the fourth measurement chamber 13d is transported to the ion collecting means 21 via the gas transport path 40d and the transport path switching means 41, and the ion collecting means 21 is similar to that shown in the first embodiment. The ions contained in the gas in the fourth measurement chamber 13d are collected, and the current obtained by collecting the ions is measured by the current measuring means 24 as the gross current value.

以後、順次輸送経路切替手段41により第3〜第1の気体41c〜41aを順次選択し、第3〜第1の測定室13c〜13aの気体をイオン収集手段21に輸送し、第1実施形態のものと同様に、各測定室13c〜13aの気体中のイオンをイオン収集手段21にて収集し、第3〜第1の測定室13c〜13a内の気体中のイオンをイオン収集手段21にて収集し、第3〜第1の測定室13c〜13aの気体中に含まれるイオンによるグロス電流値を測定する。   Thereafter, the third to first gases 41c to 41a are sequentially selected by the transport path switching means 41, and the gases in the third to first measurement chambers 13c to 13a are transported to the ion collecting means 21 to be used in the first embodiment. In the same manner as in the above, ions in the gases in the measurement chambers 13c to 13a are collected by the ion collecting means 21, and ions in the gases in the third to first measurement chambers 13c to 13a are collected in the ion collecting means 21. And the gross current value due to ions contained in the gas in the third to first measurement chambers 13c to 13a is measured.

次に、測定チャンバ13内の第1の測定室13aに測定対象物11がない場合の各測定室13a〜13dのバックグラウンド電流値をイオン収集手段21を介して電流測定手段24で測定し、続いてデータ処理手段25によりグロス電流値からバックグラウンド電流値を減算してネット電流値を求めるデータ処理を行なう。このデータ処理から第1〜第4の測定室13a〜13dのネット電流値をそれぞれ得ることができる。   Next, the background current values of the measurement chambers 13a to 13d when the measurement object 11 is not present in the first measurement chamber 13a in the measurement chamber 13 are measured by the current measurement unit 24 via the ion collection unit 21, Subsequently, the data processing means 25 performs data processing for subtracting the background current value from the gross current value to obtain the net current value. The net current values of the first to fourth measurement chambers 13a to 13d can be obtained from this data processing, respectively.

第4の気体輸送経路13dの電流値は主にγ線に起因し、第3の測定室13cは中性子、第2の測定室13bはβ線、第1の測定室13aは主にα線にそれぞれ起因したものであり、測定により求めたこれらのネット電流値と前もって求めたそれぞれの換算定数を使用して、測定対象物11のα線、β線、中性子線、γ線の強度を求めることができる。   The current value of the fourth gas transport path 13d is mainly caused by γ rays, the third measurement chamber 13c is neutron, the second measurement chamber 13b is β rays, and the first measurement chamber 13a is mainly α rays. Using these net current values obtained by measurement and the respective conversion constants obtained in advance, the intensity of α-rays, β-rays, neutron rays, and γ-rays of the measurement object 11 is obtained. Can do.

この場合、第3と第2の測定室13c,13bの電流にはγ線も混入し、第1の測定室13aの電流にはβ線とγ線も混入する。そこで、第3と第2測定室13c,13bの電流は第4の測定室13dのネット電流値を基に混入したγ線を補正し、第1の測定室13aのネット電流値は第4の測定室13dのネット電流値とγ線を補正した第2の測定室1bのネット電流値で補正すれば、さらに精度よく放射線の強度を求めることができる。   In this case, γ rays are also mixed into the currents of the third and second measurement chambers 13c and 13b, and β rays and γ rays are also mixed into the current of the first measurement chamber 13a. Therefore, the currents in the third and second measurement chambers 13c and 13b correct γ-rays mixed based on the net current value in the fourth measurement chamber 13d, and the net current value in the first measurement chamber 13a is the fourth value. If the net current value in the measurement chamber 13d and the net current value in the second measurement chamber 1b in which the γ-rays are corrected are corrected, the intensity of radiation can be obtained with higher accuracy.

この放射線測定装置10Hにおいては、測定チャンバ13内の第1の測定室13aは、要求される放射線検出効率に応じて大型化することができ、一方、イオン収集手段21の寸法も測定チャンバ13の寸法と同一とすることなく小型化でき、適切な電場を作るような寸法に設定可能である。さらに、γ線の影響を補正して中性子を求めたり、同一の放射線計測系(イオン収集手段21、電流測定手段24およびデータ処理手段25)を使用してα線、β線およびγ線も簡便に求めることができる。   In this radiation measurement apparatus 10H, the first measurement chamber 13a in the measurement chamber 13 can be enlarged according to the required radiation detection efficiency. On the other hand, the dimensions of the ion collecting means 21 are also the same as those of the measurement chamber 13. The size can be reduced without making it the same as the size, and the size can be set so as to create an appropriate electric field. Further, neutrons can be obtained by correcting the influence of γ rays, and α rays, β rays and γ rays can be easily obtained by using the same radiation measurement system (ion collection means 21, current measurement means 24 and data processing means 25). Can be requested.

したがって、簡便にしかも高効率で放射線(α線、β線、γ線および中性子線)を測定できる放射線測定装置を得ることができる。   Therefore, it is possible to obtain a radiation measuring apparatus that can measure radiation (α rays, β rays, γ rays, and neutron rays) easily and with high efficiency.

本発明に係る放射線測定装置の第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第2実施形態を示す構成図。The block diagram which shows 2nd Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第3実施形態を示す構成図。The block diagram which shows 3rd Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第4実施形態を示す構成図。The block diagram which shows 4th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第5実施形態を示す構成図。The block diagram which shows 5th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第6実施形態を示す構成図。The block diagram which shows 6th Embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第7および第8実施形態を示す構成図。The block diagram which shows 7th and 8th embodiment of the radiation measuring device which concerns on this invention. 本発明に係る放射線測定装置の第9実施形態を示す構成図。The block diagram which shows 9th Embodiment of the radiation measuring device which concerns on this invention. 従来の中性子検出器の一例を説明する図。The figure explaining an example of the conventional neutron detector. 従来の放射線測定装置を示す構成図。The block diagram which shows the conventional radiation measuring device.

符号の説明Explanation of symbols

10,10A,10B,10C,10D,10E,10F,10G,10H 放射線測定装置
11 測定対象物
12 放射線源
13 測定チャンバ(測定室)
14 測定容器(本体ケーシング)
15 電離性粒子生成手段
16 支持手段
17 気体浄化手段
18 設置台(架台)
20 気体収束手段
21 イオン収集手段
22 電極
23 電源供給手段
24 電流測定手段
25 データ処理手段
26 気体輸送手段
27 気体浄化手段
28 円筒
29 芯線(電極)
30 気体輸送経路
33 中性子減速材(熱中性子生成手段)
34 カバー(帯電防止手段)
35 中性子吸収材
36 電離性粒子遮蔽手段
37 遮蔽手段駆動手段
40a,40b,40c,40d 気体輸送経路
41 輸送経路切替手段
10, 10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H Radiation measurement apparatus 11 Measurement object 12 Radiation source 13 Measurement chamber (measurement room)
14 Measuring container (main casing)
15 ionizing particle generating means 16 support means 17 gas purifying means 18 installation stand (stand)
20 gas converging means 21 ion collecting means 22 electrode 23 power supply means 24 current measuring means 25 data processing means 26 gas transport means 27 gas purifying means 28 cylinder 29 core wire (electrode)
30 Gas transport path 33 Neutron moderator (thermal neutron generation means)
34 Cover (Antistatic means)
35 Neutron absorber 36 Ionizing particle shielding means 37 Shielding means driving means 40a, 40b, 40c, 40d Gas transport path 41 Transport path switching means

Claims (13)

測定対象物を設置する測定チャンバを形成した測定容器と、
前記測定チャンバ内に設置され、中性子と反応して電離性粒子を生成する電離性粒子生成手段と、
上記電離性粒子生成手段が付着した支持手段と、
前記測定チャンバ内に流入する気体中のイオンを除去する気体浄化手段と、
生成された電離性粒子が電離して生成されるイオンが、前記測定チャンバ内の気体とともに案内されるイオン収集手段と、
上記イオン収集手段の電極に電源を供給する電源供給手段と、
前記イオン収集手段で収集されたイオンを電流として測定する電流測定手段と、
測定された電流値をデータ処理し、中性子強度の換算定数から中性子を測定するデータ処理手段と、
前記測定チャンバ内の気体を前記イオン収集手段に輸送する気体輸送手段とを有することを特徴とする放射線測定装置。
A measurement container having a measurement chamber in which a measurement object is placed;
An ionizable particle generating means installed in the measurement chamber and generating ionizable particles by reacting with neutrons;
A support means to which the ionizing particle generating means is attached;
Gas purification means for removing ions in the gas flowing into the measurement chamber;
Ion collecting means for guiding ions generated by ionizing the generated ionizing particles together with the gas in the measurement chamber;
Power supply means for supplying power to the electrodes of the ion collection means;
Current measuring means for measuring ions collected by the ion collecting means as current;
Data processing means for processing the measured current value and measuring neutrons from a conversion constant of neutron intensity;
A radiation measuring apparatus comprising gas transporting means for transporting the gas in the measurement chamber to the ion collecting means.
前記測定容器の測定チャンバ内あるいは測定チャンバの外側近傍に、放射線源を備えた測定対象物を設置する一方、前記イオン収集手段通過後の気体を浄化する気体浄化手段を備えた請求項1記載の放射線測定装置。 The measurement object according to claim 1, further comprising a gas purification means for purifying a gas after passing through the ion collection means, while a measurement object having a radiation source is installed in the measurement chamber of the measurement container or in the vicinity of the outside of the measurement chamber. Radiation measurement device. 前記測定対象物から放出された中性子を減速させる中性子減速手段と、この中性子減速手段への帯電を防止するために、周囲を覆ったカバー等の帯電防止手段とを、前記測定容器の測定チャンバ内に設けた請求項1または2記載の放射線測定装置。 A neutron moderator that decelerates neutrons emitted from the object to be measured, and an antistatic unit such as a cover that covers the periphery in order to prevent the neutron moderator from being charged, are provided in the measurement chamber of the measurement container. The radiation measuring apparatus according to claim 1 or 2 provided in. 前記測定対象物を測定容器の外側近傍に設置するとともに、前記測定容器の測定チャンバに、中性子と反応して電離性粒子を生成する電離性粒子生成手段および前記測定対象物が放出される中性子を減速させる中性子減速手段を設けた請求項1記載の放射線測定装置。 The measurement object is installed near the outside of the measurement container, and ionization particle generating means for generating ionizable particles by reacting with neutrons in the measurement chamber of the measurement container and neutrons emitted from the measurement object The radiation measuring apparatus according to claim 1, further comprising a neutron moderator for decelerating. 前記測定容器の周囲に配置され、前記測定対象物から放出された中性子を減速する中性子減速手段を備えた請求項1記載の放射線測定装置。 The radiation measurement apparatus according to claim 1, further comprising a neutron moderating unit that is disposed around the measurement container and decelerates neutrons emitted from the measurement object. 前記中性子減速手段の周囲を囲む熱中性子回収手段と、前記電流測定手段で測定した電流値から熱外中性子の強度を算出するデータ処理手段とをさらに設けた請求項3ないし6のいずれか記載の放射線測定装置。 7. The thermal neutron recovery means surrounding the neutron moderating means and a data processing means for calculating the intensity of epithermal neutrons from the current value measured by the current measurement means. Radiation measurement device. 前記測定容器の周囲に配置され、前記測定対象物から放出された中性子を減速する中性子減速手段を備えるとともに、上記中性子減速手段の外側に放射線源を備えた測定対象物を設置した請求項1記載の放射線測定装置。 The neutron moderation means that is disposed around the measurement container and decelerates neutrons emitted from the measurement object, and a measurement object having a radiation source is installed outside the neutron moderation means. Radiation measurement equipment. 前記電離性粒子生成手段は、中性子と(n,t)反応を起こすLi、前記中性子と(n,α)反応を起こすLiあるいは10B、前記中性子と(n,p)反応を起こすHeを収納した物体、ならびに、前記中性子と(n,f)反応を起こす235U,U同位体、Pu同位体およびTh同位体の少なくとも一種類が選択されたものである請求項1記載の放射線測定装置。 The ionizing particle generating means includes 6 Li causing (n, t) reaction with neutron, 6 Li or 10 B causing (n, α) reaction with neutron, and (n, p) reaction with 3 neutron. The radiation according to claim 1, wherein an object containing He and at least one of 235 U, U isotopes, Pu isotopes and Th isotopes that cause (n, f) reaction with the neutrons are selected. measuring device. 前記測定容器の測定チャンバ内に、前記電離性粒子生成手段で生成された電離性粒子を遮蔽して気体の電離を防止する電離性粒子遮蔽手段と、
この電離性粒子遮蔽手段を駆動する遮蔽駆動手段とを備えた請求項1記載の放射線測定装置。
Ionizing particle shielding means for preventing ionization of gas by shielding the ionizing particles generated by the ionizing particle generating means in the measurement chamber of the measurement container;
The radiation measuring apparatus according to claim 1, further comprising shielding driving means for driving the ionizing particle shielding means.
前記電離性粒子遮蔽手段で遮蔽した状態で電離性粒子を測定したバックグラウンド電流値を、電離性粒子の遮蔽がない状態で測定したグロス電流値から減算してネット電流値を算出し、中性子強度の換算定数から中性子強度を求める手段と、
前記測定対象物がなく、電離性粒子を遮蔽した状態で測定した電流値を前記バックグラウンド電流値から減算して中性子以外の強度を求める手段と、
前記中性子強度と中性子以外の強度から測定対象物の放射線域をU,Pu,TRUに分類する手段を有する請求項9記載の放射線測定装置。
The net current value is calculated by subtracting the background current value measured for ionizing particles in the state shielded by the ionizing particle shielding means from the gross current value measured in the absence of ionizing particle shielding, and the neutron intensity Means for obtaining the neutron intensity from the conversion constant of
Means for subtracting the current value measured in a state where there is no measurement object and ionizing particles are shielded from the background current value to obtain intensity other than neutrons;
The radiation measuring apparatus according to claim 9, further comprising means for classifying a radiation area of the measurement object into U, Pu, and TRU based on the neutron intensity and the intensity other than the neutron.
測定容器の測定チャンバ内に、測定対象物を囲みα線による電離イオンを生成する第1の測定室と、この測定量を囲みβ線による電離イオンを生成する第2の測定室と、第2の測定室を囲み中性子線に起因する電離イオンを生成する第3の測定室と、第3の測定室を囲みγ線による電離イオンを生成する第4の測定室とを設け、
前記第3の測定室に設置した電離性粒子生成手段と、
前記測定チャンバの第1〜第4の測定室の気体を輸送する第1〜第4の気体輸送経路と、
上記各気体輸送経路を経て輸送される気体中のイオンを収集するイオン収集手段と、
このイオン収集手段の電極に電源を供給する電源供給手段と、
前記イオン収集手段で収集したイオンを電流として測定する電流測定手段と、
測定した電流値のデータ処理を行なうデータ処理手段と、
前記測定チャンバの各測定室内の気体をイオン収集手段に輸送する気体輸送手段とをさらに備え、
前記データ処理手段は、前記気体チャンバの各測定室の気体中に含まれるイオンの電流値から、α線、β線、γ線および中性子線の強度を測定することを特徴とする放射線測定装置。
In the measurement chamber of the measurement container, a first measurement chamber that encloses the measurement object and generates ionized ions by α rays, a second measurement chamber that encloses this measurement amount and generates ionized ions by β rays, A third measurement chamber that surrounds the measurement chamber and generates ionized ions caused by neutron rays, and a fourth measurement chamber that surrounds the third measurement chamber and generates ionized ions by γ rays,
Ionizing particle generating means installed in the third measurement chamber;
First to fourth gas transport paths for transporting gases in the first to fourth measurement chambers of the measurement chamber;
Ion collection means for collecting ions in the gas transported through each gas transport path;
Power supply means for supplying power to the electrodes of the ion collection means;
Current measuring means for measuring ions collected by the ion collecting means as current; and
Data processing means for performing data processing of the measured current value;
Gas transport means for transporting the gas in each measurement chamber of the measurement chamber to the ion collection means,
The radiation measurement apparatus characterized in that the data processing means measures the intensity of α rays, β rays, γ rays and neutron rays from the current value of ions contained in the gas in each measurement chamber of the gas chamber.
前記気体輸送手段通過後の気体を測定容器内の測定チャンバに循環させる気体輸送経路と、
循環した気体が前記測定チャンバに流入する前に気体中のイオンを除去する気体浄化手段を備えた請求項1または11記載の放射線測定装置。
A gas transport path for circulating the gas after passing through the gas transport means to a measurement chamber in a measurement container;
The radiation measurement apparatus according to claim 1, further comprising a gas purification unit that removes ions in the gas before the circulated gas flows into the measurement chamber.
測定対象物から放出される中性子と電離性粒子生成手段との間の(n,α)反応、(n,p)反応および(n,f)反応の少なくとも1種類の反応で電離性粒子を生成し、
生成された電離性粒子が測定チャンバ内の気体を電離させてイオン対を生成し、
生成されたイオン対をイオン収集手段に輸送して収集されるイオンを電流または電気量として測定し、
この電流値から換算定数を用いて放射線の強度を測定することを特徴とする放射線測定方法。
Ionizable particles are generated by at least one of the (n, α) reaction, (n, p) reaction, and (n, f) reaction between the neutrons emitted from the measurement object and the ionizing particle generating means. And
The generated ionizing particles ionize the gas in the measurement chamber to generate ion pairs,
The generated ion pair is transported to the ion collecting means, and the collected ions are measured as current or electric quantity,
A radiation measurement method comprising measuring the intensity of radiation from the current value using a conversion constant.
JP2006267011A 2006-09-29 2006-09-29 Radiation measuring apparatus and its measuring method Pending JP2008089310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267011A JP2008089310A (en) 2006-09-29 2006-09-29 Radiation measuring apparatus and its measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267011A JP2008089310A (en) 2006-09-29 2006-09-29 Radiation measuring apparatus and its measuring method

Publications (1)

Publication Number Publication Date
JP2008089310A true JP2008089310A (en) 2008-04-17

Family

ID=39373637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267011A Pending JP2008089310A (en) 2006-09-29 2006-09-29 Radiation measuring apparatus and its measuring method

Country Status (1)

Country Link
JP (1) JP2008089310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025895A (en) * 2012-07-30 2014-02-06 Japan Atomic Energy Agency Simple method for measuring radioactive cesium, and portable and simple device for measuring radioactive cesium
JP2014115176A (en) * 2012-12-10 2014-06-26 Rpg Technics Kk γ-RAY MEASURING DEVICE
WO2018146820A1 (en) * 2017-02-09 2018-08-16 株式会社Cics Measurement device and measurement probe

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485296A (en) * 1977-11-25 1979-07-06 Bayer Ag Fixing parts for molded tooth
JPS57178172A (en) * 1981-04-27 1982-11-02 Toshiba Corp Neutron detector
JPH02222857A (en) * 1989-02-23 1990-09-05 Toshiba Corp Method and apparatus for measuring radioactivity
JPH0434828A (en) * 1990-05-30 1992-02-05 Aloka Co Ltd Gamma-ray compensated neutron detector
JPH0921881A (en) * 1995-07-06 1997-01-21 Aloka Co Ltd Neutron detecting device
JP2000193749A (en) * 1998-12-28 2000-07-14 Toshiba Corp alphabeta DETECTOR AND alphabeta DETECTING DEVICE USING IT
JP2000284052A (en) * 1999-03-31 2000-10-13 Japan Atom Energy Res Inst GAS-FILLED LAYER TYPE DETECTOR FOR DISCRIMINATING BETWEEN beta-RAY AND gamma-RAY
JP2005156462A (en) * 2003-11-27 2005-06-16 Mitsubishi Heavy Ind Ltd Alpha-radioactivity measuring apparatus and method
JP2006105872A (en) * 2004-10-07 2006-04-20 Toshiba Corp Radiation measuring device and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485296A (en) * 1977-11-25 1979-07-06 Bayer Ag Fixing parts for molded tooth
JPS57178172A (en) * 1981-04-27 1982-11-02 Toshiba Corp Neutron detector
JPH02222857A (en) * 1989-02-23 1990-09-05 Toshiba Corp Method and apparatus for measuring radioactivity
JPH0434828A (en) * 1990-05-30 1992-02-05 Aloka Co Ltd Gamma-ray compensated neutron detector
JPH0921881A (en) * 1995-07-06 1997-01-21 Aloka Co Ltd Neutron detecting device
JP2000193749A (en) * 1998-12-28 2000-07-14 Toshiba Corp alphabeta DETECTOR AND alphabeta DETECTING DEVICE USING IT
JP2000284052A (en) * 1999-03-31 2000-10-13 Japan Atom Energy Res Inst GAS-FILLED LAYER TYPE DETECTOR FOR DISCRIMINATING BETWEEN beta-RAY AND gamma-RAY
JP2005156462A (en) * 2003-11-27 2005-06-16 Mitsubishi Heavy Ind Ltd Alpha-radioactivity measuring apparatus and method
JP2006105872A (en) * 2004-10-07 2006-04-20 Toshiba Corp Radiation measuring device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025895A (en) * 2012-07-30 2014-02-06 Japan Atomic Energy Agency Simple method for measuring radioactive cesium, and portable and simple device for measuring radioactive cesium
JP2014115176A (en) * 2012-12-10 2014-06-26 Rpg Technics Kk γ-RAY MEASURING DEVICE
WO2018146820A1 (en) * 2017-02-09 2018-08-16 株式会社Cics Measurement device and measurement probe
CN110462444A (en) * 2017-02-09 2019-11-15 康适智能护理系统株式会社 Measuring device and measurement probe
US11007383B2 (en) 2017-02-09 2021-05-18 Cancer Intelligence Care Systems, Inc. Measurement device and measurement probe

Similar Documents

Publication Publication Date Title
Akerib et al. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment
Ahmad et al. Search for muon-electron and muon-positron conversion
Hilscher et al. Neutron production by hadron-induced spallation reactions in thin and thick Pb and U targets from 1 to 5 GeV
Martone et al. The 14 MeV frascati neutron generator
Filliatre et al. In vessel neutron instrumentation for sodium-cooled fast reactors: Type, lifetime and location
Murtas Applications of triple GEM detectors beyond particle and nuclear physics
JP2013104873A (en) Neutron detector and method for detecting neutrons
Ouseph Introduction to nuclear radiation detectors
Cavanna et al. Direct measurement of nuclear cross-section of astrophysical interest: results and perspectives
JP2008089310A (en) Radiation measuring apparatus and its measuring method
Nygren et al. Neutrinoless double beta decay with 82sef6 and direct ion imaging
JP6358751B2 (en) Method and apparatus for generating radioactive technetium 99m-containing material
Martin-Albo et al. Status and physics potential of NEXT-100
Wester Characterisation of Coincidence Data of the Gerda Experiment to Search for Double Beta Decays to Excited States
Gilliss Statistical Modeling and Markov Chain Monte Carlo Inference of the MAJORANA DEMONSTRATOR Background Data
Davide Direct WIMP searches with XENON100 and XENON1T
Rupp On the detection of 222Rn with miniaturized proportional counters: background, sensitivity studies and results for XENON1T
Schiffer et al. Ion beam techniques for nuclear waste management
JP2008032510A (en) Radioactivity measuring instrument and method
Dafni et al. Pattern Recognition in a High Pressure Time Projection Chamber prototype with a Micromegas readout for the 136Xe double beta decay
Franco R&D for high pressure gas TPC readout with segmented Micromegas
Curtiss Measurements of radioactivity
Murari et al. New developments in JET neutron, γ-ray and particle diagnostics with relevance to ITER
Bergsma Prompt lepton production in a proton beamdump experiment
Félix Neutron Imaging Detector with Ultra-Thin 10B Layers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A977 Report on retrieval

Effective date: 20110309

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531