JP2008089204A - Deoxygenated water supply system - Google Patents

Deoxygenated water supply system Download PDF

Info

Publication number
JP2008089204A
JP2008089204A JP2006267692A JP2006267692A JP2008089204A JP 2008089204 A JP2008089204 A JP 2008089204A JP 2006267692 A JP2006267692 A JP 2006267692A JP 2006267692 A JP2006267692 A JP 2006267692A JP 2008089204 A JP2008089204 A JP 2008089204A
Authority
JP
Japan
Prior art keywords
water
tank
water supply
deoxygenated
makeup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006267692A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fukuoka
寛之 福岡
Yasushi Tabuchi
靖 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006267692A priority Critical patent/JP2008089204A/en
Publication of JP2008089204A publication Critical patent/JP2008089204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deoxygenated water supply system capable of surely preventing back-flow of water from a makeup tank to a water supply tank even though a check valve is not disposed on a communicating means for communicating a lower part of the makeup tank and a lower part of the water supply tank. <P>SOLUTION: This deoxygenated water supply system comprises the makeup tank 1 to which the makeup water is supplied from a makeup water source at a flow rate of D(m<SP>3</SP>/hr), a deoxygenating device 3 to which the water is supplied from the makeup tank 1 at a flow rate E(m<SP>3</SP>/hr), the water supply tank 5 to which the deoxygenated water is supplied from the deoxygenating device 3 through a water supply pipe 6, a communication pipe 7 for communicating the lower parts of the makeup tank 1 and the water supply tank 5, and a water delivering pipe 8 branched from the water supply pipe 6 for delivering the deoxygenated water to a boiler. A value of A defined by a formula A=(E-B)+[S<SB>2</SB>/(S<SB>1</SB>+S<SB>2</SB>)]×(B-D) is constantly positive when an estimated maximum water delivering amount to the boiler is B(m<SP>3</SP>/hr), an average horizontal cross-sectional area of the makeup tank 1 is S<SB>1</SB>(m<SP>2</SP>), and an average horizontal cross-sectional area of the water supply tank 5 is S<SB>2</SB>(m<SP>2</SP>). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱酸素水(脱気水)をボイラや給水・給湯設備、食品工業のプロセス水、半導体工業の用水等として使用場所に供給する脱酸素水の供給システムに関する。詳しくは、本発明は、補給水を補給水槽に受け入れ、この補給水槽内の水を脱酸素装置で脱酸素水としてから給水槽に導入し、この脱酸素水の一部を需要箇所に給水すると共に、補給水槽及び給水槽の下部同士を連通させた脱酸素水の供給システムに関する。   The present invention relates to a deoxygenated water supply system for supplying deoxygenated water (degassed water) to a place of use as boiler, water supply / hot water supply equipment, process water for food industry, water for semiconductor industry, and the like. Specifically, the present invention receives makeup water in a makeup water tank, introduces the water in the makeup water tank into dewatered water using a deoxidizer, and then supplies a portion of the deoxygenated water to a demand location. In addition, the present invention relates to a deoxygenated water supply system in which the lower part of the makeup water tank and the water tank are communicated with each other.

この種の脱酸素水の供給システムとして、特開平8−141577号公報に記載のものがある。   As this type of deoxygenated water supply system, there is a system described in Japanese Patent Application Laid-Open No. 8-141577.

同号公報の脱酸素水の供給システムは、補給水が補給される補給水室と、補給水室の水が供給される脱酸素装置と、脱酸素装置から脱気水が供給される給水室と、給水室の脱気水を使用場所に供給する給水管とからなり、補給水室と給水室を連通させたものである。なお、同号公報の図1の脱酸素水供給システムでは、この補給水室の下部と給水室の下部とが、逆止弁を有する配管によって接続され、水が給水室から補給水室に向かう方向にのみ流れるよう構成されている。これは、補給水室内の未脱酸素水が給水室に直に流れ込むことを防止するためである。   The deoxygenated water supply system disclosed in the publication includes a make-up water chamber to which make-up water is replenished, a deoxygenation device to which water in the make-up water chamber is supplied, and a water supply chamber to which deaerated water is supplied from the deoxygenation device. And a water supply pipe for supplying the deaerated water in the water supply chamber to the place of use, and the make-up water chamber and the water supply chamber communicate with each other. In the deoxygenated water supply system of FIG. 1 of the same publication, the lower part of the makeup water chamber and the lower part of the water supply chamber are connected by a pipe having a check valve, and water goes from the water supply chamber to the makeup water chamber. It is configured to flow only in the direction. This is to prevent undeoxygenated water in the makeup water chamber from flowing directly into the water supply chamber.

同号公報の第3頁第3欄第13行〜第14行には、「常に循環処理されているので、この逆止弁は省略してもよい。」と記載されている。
特開平8−141577号公報
In the third page, third column, lines 13 to 14 of the publication, it is stated that “the circulation valve is always circulated, so this check valve may be omitted”.
Japanese Patent Laid-Open No. 8-141577

上記特開平8−141577号公報の図1の脱酸素水供給システムのように、補給水室の下部と給水室の下部とを接続する配管に逆止弁を設けた場合、逆止弁の分だけコスト高になったり、逆止弁に故障が生じただけでシステム全体が動作不可能になるという短所がある。この場合、この脱酸素水供給システムから水が供給されるボイラは全て運転停止に追い込まれ、工場の操業を数日にわたって中断しなければならず、相当の損害を受ける。   When the check valve is provided in the pipe connecting the lower part of the makeup water chamber and the lower part of the water supply chamber as in the deoxygenated water supply system of FIG. However, there is a disadvantage that the entire system becomes inoperable only when the cost becomes high or the check valve fails. In this case, all boilers supplied with water from this deoxygenated water supply system are forced to shut down, and the factory operation must be interrupted for several days, resulting in considerable damage.

上記特開平8−141577号公報の第3頁第3欄第13行〜第14行のように逆止弁を省略したのでは、補給水室から給水室へ、脱酸素処理が不十分な水が逆流し、ボイラ等への給水の酸素濃度が高くなるおそれがある。   If the check valve is omitted as described in JP-A-8-141577, page 3, column 3, lines 13 to 14, water having insufficient oxygen removal from the makeup water chamber to the water supply chamber. May flow backward and the oxygen concentration of the feed water to the boiler or the like may increase.

また、ボイラは蒸気発生量が現場の要求によって刻々と変わるものであり、特に通常よりも大量に蒸気を発生する必要があるときには、前記特開平8−141577号公報の図1のシステムでは脱気水の供給が間に合わず、やはりボイラの運転を中断せざるを得なくなる。このため、通常より大きな蒸気発生量のボイラと大容量の水槽とを設置する傾向にある。   In the boiler, the amount of steam generated is constantly changing according to the requirements of the site. Especially when it is necessary to generate a larger amount of steam than usual, the system of FIG. The supply of water is not in time, and the boiler operation must be interrupted. For this reason, it exists in the tendency to install the boiler of the steam generation amount larger than usual, and a large capacity | capacitance water tank.

本発明は、このような問題点を解決し、補給水槽の下部と給水槽の下部を連通する連通手段に逆止弁が無くても、補給水槽から給水槽への水の逆流が確実に防止され、且つボイラの蒸気発生量が通常よりも大幅に増大した場合でも、問題なく脱気水を連続的に供給することができる脱酸素水の供給システムを提供することを目的とする。   The present invention solves such problems and reliably prevents backflow of water from the replenishing water tank to the water supplying tank even if there is no check valve in the communication means that connects the lower part of the replenishing water tank and the lower part of the water supplying tank. Further, an object of the present invention is to provide a deoxygenated water supply system capable of continuously supplying degassed water without any problems even when the amount of steam generated in the boiler is significantly increased than usual.

本発明の脱酸素水の供給システムは、補給水源から流量D(m/hr)にて補給水が供給される補給水槽と、該補給水槽から水が流量E(m/hr)にて供給される脱酸素装置と、該脱酸素装置から脱酸素水が給水管を介して供給される給水槽と、該補給水槽及び給水槽の下部同士を連通する連通手段と、該給水管又は給水槽から脱酸素水を脱酸素水需要箇所へ向けて送水する送水管とを有する脱酸素水の供給システムにおいて、該脱酸素水需要箇所への予想最大送水量をB(m/hr)とし、補給水槽の平均水平断面積をS(m)とし、給水槽の平均水平断面積をS(m)としたときに、次式で定義されるAの値が常に正となるように構成されていることを特徴とするものである。
A=(E−B)+[S/(S+S)]・(B−D)
The deoxygenated water supply system of the present invention includes a make-up water tank supplied with make-up water at a flow rate D (m 3 / hr) from a make-up water source, and water from the make-up water tank at a flow rate E (m 3 / hr). A deoxygenation device to be supplied; a water supply tank to which deoxygenated water is supplied from the deoxygenation device via a water supply pipe; communication means for communicating the lower portions of the makeup water tank and the water supply tank; and the water supply pipe or the water supply In a deoxygenated water supply system having a water supply pipe for supplying deoxygenated water from a water tank to a deoxygenated water demand point, the expected maximum water supply amount to the deoxygenated water demand point is B (m 3 / hr) When the average horizontal sectional area of the makeup tank is S 1 (m 2 ) and the average horizontal sectional area of the water tank is S 2 (m 2 ), the value of A defined by the following equation is always positive. It is comprised so that it may be comprised.
A = (EB) + [S 2 / (S 1 + S 2 )] · (BD)

かかる本発明の脱酸素水の供給システムによると、脱酸素水需要箇所への脱酸素水の送水量が最大となったときでも、補給水槽の下部と給水槽の下部とを連通する連通手段では必ず給水槽から補給水槽へ向って水が流れる。そのため、給水槽内の水に補給水槽内の未脱酸素水が該連通手段を介して逆流することがなく、給水槽内の酸素濃度が十分に低い値に保たれる。その結果、最大の定格蒸気発生量のボイラを据え付けて、通常はその能力の1/3程度の所で運転するような無駄がなくなり、しかも本発明の供給システムにより、最大蒸気発生量となったときでも脱気水をスムーズに供給することができる。   According to the deoxygenated water supply system of the present invention, even when the deoxygenated water supply amount to the deoxygenated water demand point is maximized, the communication means that communicates the lower part of the make-up water tank and the lower part of the water supply tank. Water always flows from the water tank to the makeup tank. For this reason, the non-deoxygenated water in the makeup water tank does not flow back to the water in the water tank via the communicating means, and the oxygen concentration in the water tank is kept at a sufficiently low value. As a result, there is no waste of installing a boiler with the maximum rated steam generation amount and usually operating at about 1/3 of its capacity, and the supply system of the present invention has achieved the maximum steam generation amount. Even when deaerated water can be supplied smoothly.

以下に、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

第1図は、実施の形態に係る脱酸素水の供給システムを示す系統図である。   FIG. 1 is a system diagram showing a deoxygenated water supply system according to an embodiment.

この脱酸素水の供給システムは、補給水源(図示略)から補給管2を介して補給水が供給される補給水槽1と、該補給水槽1内から取水管4を介して水が供給される脱酸素装置3と、該脱酸素装置3から給水管6を介して脱酸素水が供給される給水槽5と、該補給水槽1及び給水槽5の下部同士を連通する連通管7と、該給水管6の途中から枝分れしてボイラ(図示略)へ脱酸素水を送水する送水管8等を備えている。この実施の形態では、脱酸素装置3として、窒素式脱酸素装置が用いられている。   In this deoxygenated water supply system, a makeup water tank 1 to which makeup water is supplied from a makeup water source (not shown) via a supplementary pipe 2, and water is supplied from the makeup water tank 1 through a water intake pipe 4. A deoxidizer 3, a water supply tank 5 to which deoxygenated water is supplied from the deoxygenator 3 through a water supply pipe 6, a communication pipe 7 that communicates the lower portions of the make-up water tank 1 and the water tank 5, A water supply pipe 8 that branches from the middle of the water supply pipe 6 and supplies deoxygenated water to a boiler (not shown) is provided. In this embodiment, a nitrogen-type deoxygenation device is used as the deoxygenation device 3.

符号2aは補給管2の開閉バルブを示している。符号4aは取水管4の開閉バルブを示し、符号4bは、この取水管4を介して補給水槽1から脱酸素装置3に水を送り込むためのポンプを示している。符号6aは脱酸素装置3から給水管6を介して給水槽5及び送水管8へ脱酸素水を送り出すためのポンプを示し、符号6bは、この給水管6の給水槽5側の開閉バルブを示している。符号7aは、連通管7の開閉バルブを示している。符号8aは、送水管8を介してボイラへ脱酸素水を送水するためのポンプを示している。   Reference numeral 2 a indicates an open / close valve of the supply pipe 2. Reference numeral 4 a indicates an open / close valve of the intake pipe 4, and reference numeral 4 b indicates a pump for feeding water from the make-up water tank 1 to the deoxidizer 3 through the intake pipe 4. Reference numeral 6a denotes a pump for sending deoxygenated water from the deoxygenator 3 through the water supply pipe 6 to the water supply tank 5 and the water supply pipe 8, and reference numeral 6b denotes an open / close valve on the water supply tank 5 side of the water supply pipe 6. Show. Reference numeral 7 a indicates an open / close valve of the communication pipe 7. The code | symbol 8a has shown the pump for supplying deoxygenated water to a boiler via the water supply pipe 8. FIG.

補給水槽1には、該補給水槽1内の水位を検出する水位検出装置(図示略)が設けられている。補給管2の開閉バルブ2aには、この水位検出装置の検出信号に基づいて該開閉バルブ2aを開閉させるバルブ開閉装置9が取り付けられている。   The makeup water tank 1 is provided with a water level detection device (not shown) for detecting the water level in the makeup water tank 1. A valve opening / closing device 9 for opening / closing the opening / closing valve 2a based on a detection signal of the water level detection device is attached to the opening / closing valve 2a of the supply pipe 2.

このバルブ開閉装置9は、補給水槽1内の水位が所定の下限水位以下になったことを水位検出装置が検出するとバルブ2aを開いて該補給水槽1内に水を補給すると共に、補給水槽1内の水位が所定の上限水位以上になったことを水位検出装置が検出すると、バルブ2aを閉じて該補給水槽1内への水の補給を停止する。これにより、補給水槽1内の水位がほぼ一定に保たれている。   The valve opening / closing device 9 opens the valve 2a when the water level detecting device detects that the water level in the makeup water tank 1 is equal to or lower than a predetermined lower limit water level, and replenishes the makeup water tank 1 with water. When the water level detecting device detects that the water level in the inside has reached or exceeded the predetermined upper limit water level, the valve 2a is closed to stop the replenishment of water into the replenishing water tank 1. Thereby, the water level in the replenishing water tank 1 is kept substantially constant.

なお、この実施の形態では、補給水槽1に、補給水として軟水が供給される。   In this embodiment, soft water is supplied to the makeup water tank 1 as makeup water.

この実施の形態では、補給水槽1内に蒸気供給管10を介して加温用の蒸気が導入されるようになっている。補給水槽1には、該補給水槽1内の水温を検出する水温検出装置11が設けられており、蒸気供給管10の蒸気制御バルブ10aは、この水温検出装置の検出水温が所定範囲となるようにバルブ開閉装置12によって制御される。   In this embodiment, heating steam is introduced into the makeup water tank 1 through the steam supply pipe 10. The make-up water tank 1 is provided with a water temperature detecting device 11 for detecting the water temperature in the make-up water tank 1, and the steam control valve 10a of the steam supply pipe 10 is set so that the detected water temperature of the water temperature detecting device falls within a predetermined range. It is controlled by the valve opening / closing device 12.

この実施の形態では、補給水槽1及び給水槽5は、それぞれ、内部の水平断面積が各々の下端から上端まで略一定となっている。   In this embodiment, each of the replenishing water tank 1 and the water tank 5 has a substantially constant horizontal cross-sectional area from the lower end to the upper end of each.

上記の開閉弁7aは、通常は全開状態とされており、これらの補給水槽1と供給槽5とは連通管7を介して常時連通しているため、各々の内部の水位は常に同じとなっている。   The on-off valve 7a is normally fully open, and the replenishing water tank 1 and the supply tank 5 are always in communication with each other via the communication pipe 7, so that the water levels inside each are always the same. ing.

この脱酸素水の供給システムにおいては、補給水槽1内の水が取水管4を介してポンプ4bにより脱酸素装置3に供給され、この脱酸素装置3で脱酸素処理される。この脱酸素装置で生成された脱酸素水は、給水管6を介してポンプ6aにより給水槽5と送水管8とに供給される。送水管8に供給された脱酸素水は、この送水管8及びポンプ8aによりボイラに送水される。   In this deoxygenated water supply system, the water in the make-up water tank 1 is supplied to the deoxygenator 3 by the pump 4 b through the intake pipe 4, and deoxygenated by the deoxygenator 3. The deoxygenated water generated by this deoxygenation device is supplied to the water supply tank 5 and the water supply pipe 8 by the pump 6 a through the water supply pipe 6. The deoxygenated water supplied to the water supply pipe 8 is supplied to the boiler through the water supply pipe 8 and the pump 8a.

この脱酸素水の供給システムは、補給水源から補給管2を介して補給水槽1へ供給される補給水の流量をD(m/hr)とし、該補給水槽1から取水管4を介して脱酸素装置3へ供給される水の流量(脱酸素装置3の処理量)をE(m/hr)とし、送水管8を介してボイラへ送水される脱酸素水の予想最大送水量をB(m/hr)とし、補給水槽1の平均水平断面積をS(m)とし、給水槽5の平均水平断面積をS(m)としたときに、次式で定義されるAの値が、常に正となるように構成されている。
A=(E−B)+[S/(S+S)]・(B−D) ……(1)
In this deoxygenated water supply system, the flow rate of make-up water supplied from the make-up water source to the make-up water tank 1 through the make-up pipe 2 is D (m 3 / hr), and from the make-up water tank 1 through the intake pipe 4 The flow rate of water supplied to the deoxygenation device 3 (the processing amount of the deoxygenation device 3) is set to E (m 3 / hr), and the expected maximum water supply amount of deoxygenated water supplied to the boiler via the water supply pipe 8 is When B (m 3 / hr) is set, the average horizontal cross-sectional area of the replenishing water tank 1 is S 1 (m 2 ), and the average horizontal cross-sectional area of the water tank 5 is S 2 (m 2 ), it is defined by the following equation: The value of A to be set is always positive.
A = (E−B) + [S 2 / (S 1 + S 2 )] · (BD) (1)

このAは、連通管7を介して給水槽5から補給水槽1へ供給される脱酸素水の流量(m/hr)である。従って、このAが常に正であるとは、ボイラへの脱酸素水の送水量Bが最大となったときでも、該連通管7内においては必ず給水槽5から補給水槽1へ向って水が流れることを意味している。 This A is the flow rate (m 3 / hr) of deoxygenated water supplied from the water supply tank 5 to the makeup water tank 1 via the communication pipe 7. Therefore, the fact that A is always positive means that water always flows from the water supply tank 5 to the makeup water tank 1 in the communication pipe 7 even when the amount B of deoxygenated water to the boiler becomes maximum. Means flowing.

なお、この脱酸素水供給システムにおいては、脱酸素装置3から給水管6を介して給水槽5へ供給される脱酸素水の流量は、補給水槽1から取水管4を介して該脱酸素装置3へ供給される水の流量と同じ(E(m/hr))である。 In this deoxygenated water supply system, the flow rate of deoxygenated water supplied from the deoxygenator 3 through the water supply pipe 6 to the water supply tank 5 is changed from the make-up water tank 1 through the intake pipe 4 to the deoxygenation apparatus. 3 is the same as the flow rate of water supplied to E (m 3 / hr).

かかる脱酸素水の供給システムにあっては、ボイラへの脱酸素水の送水量Bが最大(通常ボイラの定格蒸発量の3倍程度とする。)となったときでも、補給水槽1の下部と給水槽5の下部とを連通する連通管7では必ず給水槽5から補給水槽1へ向って水が流れるため、給水槽5内の水に補給水槽1内の未脱酸素水が流入することがなく、給水槽5内の酸素濃度が十分に低い値に保たれる。なお、送水量Bが最大になる時間は、通常は長時間続くものではなく間欠的に発生するものである。   In such a deoxygenated water supply system, even when the deoxygenated water supply amount B to the boiler reaches a maximum (usually about three times the rated evaporation of the boiler), the lower part of the make-up water tank 1 In the communication pipe 7 that communicates with the lower part of the water tank 5, water always flows from the water tank 5 toward the makeup water tank 1, so that the non-deoxygenated water in the makeup water tank 1 flows into the water in the water tank 5. The oxygen concentration in the water tank 5 is kept at a sufficiently low value. In addition, the time when the amount B of water supply becomes maximum usually does not continue for a long time but occurs intermittently.

また、このように構成したことにより、補給水槽1の下部と給水槽5の下部とを連通する連通管7に、該連通管7内を水が補給水槽1から給水槽5へ向って流れることを阻止する逆止弁を設けることが不要であり、脱酸素水供給システムの構成を簡易なものとすることができる。   Moreover, by having comprised in this way, the water flows into the communicating pipe 7 which connects the lower part of the replenishing water tank 1 and the lower part of the water supply tank 5 in this communicating pipe 7 from the replenishing water tank 1 toward the water supplying tank 5. It is not necessary to provide a check valve for preventing the deoxygenated water, and the configuration of the deoxygenated water supply system can be simplified.

なお、上記の式(1)は、以下のようにして求められる。   In addition, said Formula (1) is calculated | required as follows.

ある時点から微小時間Δt後の補給水槽1内の水位の変動ΔHq(m)は次式で定義される。
ΔHq=(A+D−E)・(H/Q)・Δt ……(2)
Q:ある時点における補給水槽1内の貯水量(m
H:ある時点における補給水槽1内(=給水槽5内)の水位(m)
The fluctuation ΔHq (m) of the water level in the make-up water tank 1 after a minute time Δt from a certain time is defined by the following equation.
ΔHq = (A + DE) · (H / Q) · Δt (2)
Q: Amount of water stored in the makeup tank 1 at a certain time (m 3 )
H: Water level in the replenishing water tank 1 (= in the water tank 5) at a certain time (m)

また、ある時点から微小時間Δt後の給水槽5内の水位の変動ΔHp(m)は次式で定義される。
ΔHp=(−A−B+E)・(H/P)・Δt ……(3)
P:ある時点における給水槽5内の貯水量(m
H:ある時点における給水槽5内(=補給水槽1内)の水位(m)
Further, the fluctuation ΔHp (m) of the water level in the water supply tank 5 after a minute time Δt from a certain time is defined by the following equation.
ΔHp = (− A−B + E) · (H / P) · Δt (3)
P: Amount of water stored in the water tank 5 at a certain time (m 3 )
H: Water level in the water supply tank 5 (= in the replenishment water tank 1) at a certain time (m)

上記の通り、この脱酸素水の供給システムにおいては、補給水槽1内の水位と給水槽5内の水位は常に一定であることから、次式が成り立つ。
ΔHq=ΔHp
(A+D−E)・(H/Q)・Δt=(−A−B+E)・(H/P)・Δt
As described above, in this deoxygenated water supply system, the water level in the make-up water tank 1 and the water level in the water supply tank 5 are always constant.
ΔHq = ΔHp
(A + DE). (H / Q) .DELTA.t = (-AB + E). (H / P) .DELTA.t

これをAについて解くと、
A=E−(DP+BQ)/(P+Q) ……(4)
となる。
Solving this for A,
A = E− (DP + BQ) / (P + Q) (4)
It becomes.

槽1,5の総保有水量をK=Q+P(m)とすると、上記の式(4)は、
A=(E−B)+(P/K)・(B−D) ……(5)
で表すことができる。
When the total amount of water held in tanks 1 and 5 is K = Q + P (m 3 ), the above equation (4) is
A = (EB) + (P / K). (BD) (5)
Can be expressed as

また、P及びQは、それぞれ、補給水槽1の水平断面積S及び補給水槽5の水平断面積Sを用いて、
Q=S・H ……(6)
P=S・H ……(7)
H:ある時点における各槽1,5内の水位(m
で表されるので、これらの式(6),(7)を上記の式(4)又は(5)に代入し、整理することにより、
A=(E−B)+[S/(S+S)]・(B−D) ……(1)
が導かれる。
Also, P and Q are each, using a horizontal cross-sectional area S 2 of the horizontal cross-sectional area S 1 and replenishing water tank 5 of the supply water tank 1,
Q = S 1 · H (6)
P = S 2 · H (7)
H: Water level in each tank 1 and 5 at a certain time (m 3 )
By substituting these formulas (6) and (7) into the above formula (4) or (5) and rearranging,
A = (E−B) + [S 2 / (S 1 + S 2 )] · (BD) (1)
Is guided.

この式のうち、(E−B)は、脱酸素装置3の余力を示している。この値が負になると、ボイラへの送水量が脱酸素装置3の処理能力を超えていることを表す。   Among these formulas, (EB) indicates the remaining capacity of the deoxygenation device 3. When this value becomes negative, it indicates that the amount of water supplied to the boiler exceeds the treatment capacity of the deoxygenation device 3.

また、(B−D)は、システム内の総水量の増減を示している。補給水槽1への水の補給量が多くなると、補給水槽1内の溶存酸素濃度が上昇する。   Moreover, (BD) has shown increase / decrease in the total amount of water in a system. When the amount of water supplied to the make-up water tank 1 increases, the dissolved oxygen concentration in the make-up water tank 1 increases.

システム内への給水及びシステム外への送水がない場合(即ちD=0且つB=0の場合)、連通管7を通過する流量Aは、脱酸素装置3における水の処理量Eに等しい。   When there is no water supply into the system and water supply to the outside of the system (that is, when D = 0 and B = 0), the flow rate A passing through the communication pipe 7 is equal to the water treatment amount E in the deoxygenation device 3.

D=0であり、且つB<Eである場合には、ボイラへ送水される水はすべて脱酸素装置3からの脱酸素水となる。   When D = 0 and B <E, all water sent to the boiler is deoxygenated water from the deoxygenation device 3.

B=0であり、且つD<Eである場合には、脱酸素装置3からの脱酸素水の全量が給水槽5に送られる。補給水槽1内の水が連通管7を介して給水槽5に流入することはない。   When B = 0 and D <E, the entire amount of deoxygenated water from the deoxygenation device 3 is sent to the water supply tank 5. Water in the replenishing water tank 1 does not flow into the water supply tank 5 through the communication pipe 7.

B=0でD>Eの場合には、補給水槽1に補給された水の全量が脱酸素装置3へ送られず、一部が補給水槽1内に溜まって該補給水槽1内の水位が上昇する。この際、補給水槽1内の水位と給水槽5内の水位とが等しくなるように、該補給水槽1内の水が連通管7を介して給水槽5内に流入するおそれがある。   When B = 0 and D> E, the entire amount of water replenished to the replenishing water tank 1 is not sent to the deoxygenation device 3, and a part of the water is accumulated in the replenishing water tank 1, and the water level in the replenishing water tank 1 is To rise. At this time, the water in the replenishing water tank 1 may flow into the water supplying tank 5 through the communication pipe 7 so that the water level in the replenishing water tank 1 and the water level in the water supplying tank 5 become equal.

ただし、このとき、脱酸素装置3から給水管6を介して給水槽5に脱酸素水が供給されることに伴う該給水槽5内の水位の上昇速度が、補給水槽1への水の補給に伴う該補給水槽1内の水位の上昇速度を上回っていれば、補給水槽1内の水が給水槽5内に流入することを防止することができる。そこで、(D−E)/S<E/Sの条件が満たされるように、給水槽5の水平断面積Sと補給水槽1の水平断面積Sを設定すればよい。この条件は、前記式(1)でB=0とおいてA>0((1)式の右辺が正)を解いた特殊解に相当する。 However, at this time, the rising speed of the water level in the water tank 5 due to the supply of deoxygenated water from the oxygen absorber 3 to the water tank 5 through the water pipe 6 is the replenishment of water to the makeup water tank 1. If the rising speed of the water level in the replenishing water tank 1 is exceeded, the water in the replenishing water tank 1 can be prevented from flowing into the water supply tank 5. Therefore, it is sufficient to set the (D-E) / S 1 < as E / S 2 conditions are met, the horizontal cross-sectional area S 1 of the horizontal cross-sectional area S 2 and replenishing water tank 1 of water tank 5. This condition corresponds to a special solution obtained by solving A> 0 (the right side of equation (1) is positive) with B = 0 in the equation (1).

[脱酸素装置の能力の決定手順]
本発明の脱酸素水の供給システムを設計するに際しては、単位時間当りの脱酸素装置3での必要最大処理量を、単位時間当りのボイラへの最大送水量及びシステムの総保有水量Kに基づいて求めることが必要である。ここで、一般に、給水槽5の容量は、ボイラが要求する給水を1時間程度供給することが可能な容量とされるため、この説明においては、単位時間を1時間とする。
[Procedure for determining the capacity of deoxidizer]
In designing the deoxygenated water supply system of the present invention, the required maximum treatment amount in the deoxygenation device 3 per unit time is based on the maximum water supply amount to the boiler per unit time and the total retained water amount K of the system. It is necessary to ask. Here, since the capacity of the water supply tank 5 is generally a capacity capable of supplying the water required by the boiler for about 1 hour, in this description, the unit time is assumed to be 1 hour.

本発明の脱酸素水供給システムにおける脱酸素装置3の最大処理能力の望ましい決定手順は以下の(i)〜(vi)の通りである。
(i)補給水量D=1時間当りの必要最大処理量(m/hr)とする。
(ii)ボイラへの送水量B=最大送水量(m/hr)とする。
(iii)脱酸素装置3の処理水量E≧補給水量Dとする。Eの最小値を設定する場合には、E=Dとすればよい。
(iv)総保有水量K=単位時間当りの必要最大処理量=単位時間当りの補給水量Dとする。
(v)上記の式(5)においてA=0とし、この式をPについて解いて、給水槽5内の貯水量P<Kであることを確認する。
(vi)仮に、P≧Kである場合には、脱酸素装置3の処理能力を1割程度上げて(i)〜(v)の手順を再度実行する。P<Kとなるまで脱酸素装置3の処理能力を繰り返し1割程度上げる。最終的にP<Kとなったならば、そのときの脱酸素装置3の処理能力をE値として設定する。
Desirable determination procedures of the maximum processing capacity of the deoxidizer 3 in the deoxygenated water supply system of the present invention are as follows (i) to (vi).
(I) Make-up water amount D = the required maximum processing amount per hour (m 3 / hr).
(Ii) Water supply amount to the boiler B = maximum water supply amount (m 3 / hr).
(Iii) The treated water amount E ≧ depleted water amount D of the deoxidizer 3 is set. When setting the minimum value of E, E = D may be set.
(Iv) Total retained water amount K = required maximum processing amount per unit time = replenishment water amount D per unit time.
(V) In the above equation (5), A = 0, and this equation is solved for P to confirm that the water storage amount P <K in the water tank 5 is satisfied.
(Vi) If P ≧ K, the processing capacity of the deoxygenation device 3 is increased by about 10% and the procedures (i) to (v) are executed again. The processing capacity of the deoxidizer 3 is repeatedly increased by about 10% until P <K. If finally P <K, the processing capability of the deoxygenation device 3 at that time is set as an E value.

[脱酸素水の供給システムの具体的な設計例]
ボイラへの最大送水量が30m/hrである場合に、上記のシーケンスに従って脱酸素装置3の必要能力を決定する例について次に説明する。
[Specific design example of deoxygenated water supply system]
Next, an example in which the necessary capacity of the deoxygenation device 3 is determined according to the above sequence when the maximum water supply amount to the boiler is 30 m 3 / hr will be described.

なお、脱酸素装置3は給水温度80℃のとき、0.1ppmの脱酸素水を生産する能力を持つものとする。
まず、脱酸素装置3の必要最大処理量を10(m/hr)として計算を開始する。
In addition, the deoxygenation apparatus 3 shall have the capability to produce 0.1 ppm deoxygenated water when the feed water temperature is 80 ° C.
First, the calculation is started with the required maximum throughput of the deoxygenation device 3 being 10 (m 3 / hr).

この条件を上記(i)〜(v)に当てはめると、次の(i)’〜(v)’の通りとなる。
(i)’補給水量D=脱酸素装置3の必要最大処理量 10(m/hr)
(ii)’ボイラへの送水量B 30(m/hr)
(iii)’脱酸素装置3の処理水量E 10(m/hr)
(iv)’総保有水量K 10(m
(v)’給水槽5内の貯水量P 10(m
When this condition is applied to the above (i) to (v), the following (i) ′ to (v) ′ are obtained.
(I) 'Supplying water amount D = required maximum processing amount of deoxygenation device 3 10 (m 3 / hr)
(Ii) 'Water supply amount to boiler B 30 (m 3 / hr)
(Iii) 'Amount of treated water E 10 (m 3 / hr) of the deoxidizer 3
(Iv) 'Total retained water volume K 10 (m 3 )
(V) 'Water storage amount P 10 (m 3 ) in the water tank 5

この場合、(iv)’及び(v)’の通り、貯水量P及び総保有水量Kはいずれも10(m)であり、P=Kとなるため、本発明の脱酸素水供給システムとしては不適である。そこで、上記(vi)の通り、Eの値を上記の1.1倍、即ちE=11として再度上記の手順(i)’〜(v)’を実行すると、P=9.5(m)となり、P<Kであるので、本発明の脱酸素水供給システムとして好適な設計であることが認められた。 In this case, as shown in (iv) ′ and (v) ′, the stored water amount P and the total retained water amount K are both 10 (m 3 ) and P = K. Therefore, as the deoxygenated water supply system of the present invention, Is unsuitable. Therefore, as described in (vi) above, when the above procedure (i) ′ to (v) ′ is executed again with the value of E being 1.1 times the above, that is, E = 11, P = 9.5 (m 3 Since P <K, it was confirmed that the design is suitable for the deoxygenated water supply system of the present invention.

この場合、処理量11(m/hr)以上の脱酸素装置3を用い、補給水槽1の容量Q=0.5(m)、給水槽5の容量P=9.5(m)とすれば、ボイラへの送水量が30m/hr以下である限り、ボイラ給水の溶存酸素濃度を0.1ppm以下に維持することができる。 In this case, the deoxidation device 3 having a throughput of 11 (m 3 / hr) or more is used, the capacity Q of the makeup water tank 1 is 0.5 (m 3 ), and the capacity P of the water supply tank 5 is 9.5 (m 3 ). If so, as long as the amount of water supplied to the boiler is 30 m 3 / hr or less, the dissolved oxygen concentration in the boiler feed water can be maintained at 0.1 ppm or less.

なお、従来の技術においては、この事例では、ボイラへの最大送水量30(m/hr)に合わせて処理能力30(m/hr)の脱酸素装置を選定しなければならなかったが、本発明では、約1/3の処理能力の脱酸素装置で同等以上の能力を得ることができる。 In the prior art, in this case, had to be the maximum water supply amount 30 (m 3 / hr) in accordance with selected deoxidation device processing power 30 (m 3 / hr) of the boiler In the present invention, an equivalent or higher capacity can be obtained with a deoxygenation apparatus having a processing capacity of about 1/3.

[別形態の説明]
上記の実施の形態は本発明の一例であり、本発明は上記の実施の形態に限定されるものではない。
[Description of another form]
The above embodiment is an example of the present invention, and the present invention is not limited to the above embodiment.

上記の実施の形態では、補給水槽1と給水槽5とを互いに独立したものとし、これらの下部同士を連通管7により連通させているが、例えば、1個の水槽を仕切りで区画することにより補給水槽1と給水槽5とを構成し、この仕切りの下部に開口を設けるなどして補給水槽1と給水槽5とを連通させるようにしてもよい。   In the above embodiment, the replenishing water tank 1 and the water tank 5 are independent from each other, and the lower parts thereof are communicated with each other through the communication pipe 7. For example, by dividing one water tank with a partition, The replenishing water tank 1 and the water tank 5 may be configured, and the replenishing water tank 1 and the water tank 5 may be communicated with each other by providing an opening in the lower part of the partition.

水槽1,5の水平断面積が水槽1,5の高さ方向において若干変化する場合には、平均値を水平断面積S,Sとして扱えばよい。 When the horizontal cross-sectional areas of the water tanks 1 and 5 slightly change in the height direction of the water tanks 1 and 5, the average value may be handled as the horizontal cross-sectional areas S 1 and S 2 .

本発明は、ボイラ以外の脱酸素水需要箇所へ向けて脱酸素水を給水するための脱酸素水供給システムにも適用可能である。   The present invention is also applicable to a deoxygenated water supply system for supplying deoxygenated water to a deoxygenated water demand location other than a boiler.

実施の形態に係る脱酸素水の供給システムを示す系統図である。1 is a system diagram showing a deoxygenated water supply system according to an embodiment.

符号の説明Explanation of symbols

1 補給水槽
2 補給管
3 脱酸素装置
4 取水管
5 給水槽
6 給水管
7 連通管
8 送水管
DESCRIPTION OF SYMBOLS 1 Supply water tank 2 Supply pipe 3 Deoxygenation apparatus 4 Water intake pipe 5 Water supply tank 6 Water supply pipe 7 Communication pipe 8 Water supply pipe

Claims (1)

補給水源から流量D(m/hr)にて補給水が供給される補給水槽と、
該補給水槽から水が流量E(m/hr)にて供給される脱酸素装置と、
該脱酸素装置から脱酸素水が給水管を介して供給される給水槽と、
該補給水槽及び給水槽の下部同士を連通する連通手段と、
該給水管又は給水槽から脱酸素水を脱酸素水需要箇所へ向けて送水する送水管と
を有する脱酸素水の供給システムにおいて、
該脱酸素水需要箇所への予想最大送水量をB(m/hr)とし、
補給水槽の平均水平断面積をS(m)とし、
給水槽の平均水平断面積をS(m)としたときに、次式で定義されるAの値が常に正となるように構成されていることを特徴とする脱酸素水の供給システム。
A=(E−B)+[S/(S+S)]・(B−D)
A makeup water tank to which makeup water is supplied at a flow rate D (m 3 / hr) from a makeup water source;
A deoxygenation device in which water is supplied at a flow rate E (m 3 / hr) from the makeup water tank;
A water supply tank to which deoxygenated water is supplied from the deoxygenation device via a water supply pipe;
Communicating means for communicating the lower portions of the makeup tank and the water tank;
In a deoxygenated water supply system having a water supply pipe for supplying deoxygenated water from the water supply pipe or the water tank toward a deoxygenated water demand point,
B (m 3 / hr) is the expected maximum water supply to the deoxygenated water demand point,
Let the average horizontal cross-sectional area of the makeup tank be S 1 (m 2 ),
A deoxygenated water supply system characterized in that when the average horizontal cross-sectional area of the water tank is S 2 (m 2 ), the value of A defined by the following equation is always positive: .
A = (EB) + [S 2 / (S 1 + S 2 )] · (BD)
JP2006267692A 2006-09-29 2006-09-29 Deoxygenated water supply system Pending JP2008089204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267692A JP2008089204A (en) 2006-09-29 2006-09-29 Deoxygenated water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267692A JP2008089204A (en) 2006-09-29 2006-09-29 Deoxygenated water supply system

Publications (1)

Publication Number Publication Date
JP2008089204A true JP2008089204A (en) 2008-04-17

Family

ID=39373542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267692A Pending JP2008089204A (en) 2006-09-29 2006-09-29 Deoxygenated water supply system

Country Status (1)

Country Link
JP (1) JP2008089204A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279466A (en) * 2008-05-19 2009-12-03 Toyobo Engineering Kk Deoxygenation apparatus using nitrogen
DE102010032736A1 (en) * 2010-07-30 2012-02-02 Sartorius Stedim Biotech Gmbh Apparatus and method for degassing aqueous media
JP2013539024A (en) * 2010-09-08 2013-10-17 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Removal of dissolved gas from reactor make-up water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279466A (en) * 2008-05-19 2009-12-03 Toyobo Engineering Kk Deoxygenation apparatus using nitrogen
DE102010032736A1 (en) * 2010-07-30 2012-02-02 Sartorius Stedim Biotech Gmbh Apparatus and method for degassing aqueous media
DE102010032736B4 (en) * 2010-07-30 2012-07-26 Sartorius Stedim Biotech Gmbh Apparatus and method for degassing aqueous media
US8979977B2 (en) 2010-07-30 2015-03-17 Sartorius Stedim Biotech Gmbh Device and method for degassing aqueous media
JP2013539024A (en) * 2010-09-08 2013-10-17 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Removal of dissolved gas from reactor make-up water

Similar Documents

Publication Publication Date Title
JP4674540B2 (en) Water heater
JP4923599B2 (en) Chemical injection device
JP2008089204A (en) Deoxygenated water supply system
JP5732812B2 (en) Nitrogen replacement deoxygenation apparatus and nitrogen replacement deoxygenation method
JP5190674B2 (en) Operation method of boiler system
CA2516843C (en) Steam generator feedwater control system for power plant
JP2006220393A (en) Water hammering prevention method for deaerator, and boiler feed water device
JP2016102624A (en) Boiler system
JP2007263385A (en) Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP2008136974A (en) Water treatment system
JP2015190742A (en) boiler system
JP7041466B2 (en) Ozone water supply system
JP4965514B2 (en) Drain neutralizer
JP2010201325A (en) Method of controlling pure water supply system, and pure water supply system
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JP6265002B2 (en) Boiler system
JP2007271133A (en) Steam generator provided with once-through boiler and accumulator
JP2008232496A (en) Heating system
JP2010159963A (en) Heating system
JP3581165B2 (en) Hot water production equipment
JP5019168B2 (en) Drug injection method
KR101831092B1 (en) Injection device and steam turbine equipment
JP2006224055A (en) Chemical injection controlling apparatus, chemical injection controlling method and plant utilizing the chemical injection controlling apparatus
JP2010216731A (en) Power generation unit
JP2023149764A (en) Device for detecting boiler water level