JP2008089041A - Sealing structure of rotating shaft member - Google Patents

Sealing structure of rotating shaft member Download PDF

Info

Publication number
JP2008089041A
JP2008089041A JP2006269296A JP2006269296A JP2008089041A JP 2008089041 A JP2008089041 A JP 2008089041A JP 2006269296 A JP2006269296 A JP 2006269296A JP 2006269296 A JP2006269296 A JP 2006269296A JP 2008089041 A JP2008089041 A JP 2008089041A
Authority
JP
Japan
Prior art keywords
shaft member
coolant
rotating shaft
introduction hole
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006269296A
Other languages
Japanese (ja)
Inventor
Masaki Nishimura
昌樹 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2006269296A priority Critical patent/JP2008089041A/en
Publication of JP2008089041A publication Critical patent/JP2008089041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing With Elastic Sealing Lips (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress heat generation of a sliding part of a sealing member and a rotating shaft member. <P>SOLUTION: The sealing structure 10 of the rotating shaft member is equipped with the rotating shaft member 12 and the sealing member 14 having a lip part 24. In the rotating shaft member 12, a cooling liquid introduction hole 16 is formed along the rotation axis direction. Thus, when the cooling liquid is supplied from a cooling liquid supply part 50 with the cooling liquid supply part 50 communicated with a cooling liquid introduction port 18 of the cooling liquid introduction hole 16, this cooling liquid can be introduced to the cooling liquid introduction hole 16 via the cooling liquid introduction port 18 and the cooling liquid can be introduced to a position overlappnig with the lip part 24 in the cooling liquid introduction hole 16 in the rotation axis direction. Hence, it is possible to cool the sliding part between the outer circumference part of the rotation shaft member 12 and the lip part 24 by the cooling liquid introduced to this cooling liquid introduction hole 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転軸部材のシール構造に係り、特に回転軸部材の外周部と液密状態で摺接されるシール部材を備えた回転軸部材のシール構造に関する。   The present invention relates to a seal structure for a rotary shaft member, and more particularly to a seal structure for a rotary shaft member provided with a seal member that is slidably contacted with an outer periphery of the rotary shaft member in a liquid-tight state.

従来、この種の回転軸部材のシール構造としては、次のものが知られている(例えば、特許文献1参照)。例えば、特許文献1には、ウォータポンプに設けられたモータの出力軸をオイルシールによりシールする例が開示されている。
特開2003−222099号公報 特開平9−88898号公報 特開平5−149294号公報
Conventionally, the following is known as a seal structure of this kind of rotating shaft member (for example, refer to patent documents 1). For example, Patent Document 1 discloses an example in which an output shaft of a motor provided in a water pump is sealed with an oil seal.
JP 2003-222099 A JP-A-9-88898 Japanese Patent Laid-Open No. 5-149294

しかしながら、この種のシール部材を備えた回転軸部材のシール構造においては、回転軸部材の回転に伴って、シール部材の回転軸部材との摺接部が発熱する。   However, in the rotary shaft member seal structure provided with this type of seal member, the sliding contact portion of the seal member with the rotary shaft member generates heat as the rotary shaft member rotates.

本発明は、上記問題に鑑みてなされたものであって、その目的は、回転軸部材が回転している場合でも、シール部材の回転軸部材との摺接部の発熱を抑制することが可能な回転軸部材のシール構造を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to suppress the heat generation of the sliding contact portion of the seal member with the rotating shaft member even when the rotating shaft member is rotating. Another object of the present invention is to provide a seal structure for a rotary shaft member.

上記課題を解決するために、請求項1に記載の回転軸部材のシール構造は、外部からの回転力を受けて回転される回転軸部材と、前記回転軸部材の回転軸方向中間部に配置され、前記回転軸部材の外周部と液密状態で摺接されるリップ部を有して構成されたシール部材と、を備え、前記回転軸部材には、回転軸方向に沿って形成され、一端側が冷却液を供給可能な冷却液供給手段と連通される冷却液導入口として開口されると共に、他端側が前記リップ部よりも前記冷却液導入口と回転軸方向の反対側に位置されて構成された冷却液導入孔が設けられていることを特徴とする。   In order to solve the above-described problem, a seal structure for a rotary shaft member according to claim 1 is disposed at a rotary shaft member that is rotated by receiving a rotational force from the outside, and an intermediate portion in the rotary shaft direction of the rotary shaft member. A seal member configured to have a lip portion that is slidably contacted with an outer peripheral portion of the rotating shaft member in a liquid-tight state, and the rotating shaft member is formed along the rotating shaft direction, One end side is opened as a coolant introduction port communicated with a coolant supply means capable of supplying a coolant, and the other end side is positioned on the opposite side of the lip portion from the coolant introduction port in the rotation axis direction. It is characterized in that a configured coolant introduction hole is provided.

請求項1に記載の回転軸部材のシール構造によれば、回転軸部材は、外部からの回転力を受けて回転される。このとき、回転軸部材の回転軸方向中間部には、シール部材が配置されており、このシール部材は、回転軸部材の外周部と液密状態で摺接されるリップ部を有して構成され、この回転軸部材との間をシールする。   According to the seal structure of the rotating shaft member according to claim 1, the rotating shaft member is rotated by receiving a rotational force from the outside. At this time, a seal member is disposed at the rotation shaft direction intermediate portion of the rotation shaft member, and this seal member has a lip portion that is slidably contacted with the outer peripheral portion of the rotation shaft member in a liquid-tight state. The space between the rotary shaft members is sealed.

ここで、上述の回転軸部材には、回転軸方向に沿って冷却液導入孔が形成されている。冷却液導入孔は、その一端側が冷却液を供給可能な冷却液供給手段と連通される冷却液導入口として開口されると共に、その他端側がリップ部よりも冷却液導入口と回転軸方向の反対側に位置されて構成されている。   Here, a coolant introduction hole is formed in the rotating shaft member described above along the rotating shaft direction. One end side of the coolant introduction hole is opened as a coolant introduction port communicating with a coolant supply means capable of supplying the coolant, and the other end side is opposite to the coolant introduction port and the rotation axis direction from the lip portion. It is configured to be located on the side.

従って、冷却液供給手段と冷却液導入孔の冷却液導入口が連通された状態で、冷却液供給手段から冷却液が供給された場合には、この冷却液を、冷却液導入口を介して冷却液導入孔に導入でき、さらに、この冷却液を、冷却液導入孔におけるリップ部と回転軸方向にオーバラップする位置にまで導くことができる。これにより、この冷却液導入孔に導入された冷却液によって、回転軸部材の外周部とリップ部との摺接部を冷却することができる。この結果、回転軸部材が回転している場合でも、シール部材の回転軸部材との摺接部であるリップ部の発熱を抑制することが可能となる。   Accordingly, when the coolant is supplied from the coolant supply means in a state where the coolant supply means and the coolant introduction port of the coolant introduction hole are in communication, the coolant is supplied via the coolant introduction port. The coolant can be introduced into the coolant introduction hole, and the coolant can be guided to a position overlapping the lip portion in the coolant introduction hole in the rotation axis direction. Thereby, the sliding contact part of the outer peripheral part of a rotating shaft member and a lip | rip part can be cooled with the cooling fluid introduced into this cooling fluid introduction hole. As a result, even when the rotating shaft member is rotating, it is possible to suppress heat generation at the lip portion that is a sliding contact portion of the seal member with the rotating shaft member.

請求項2に記載の回転軸部材のシール構造は、請求項1に記載の回転軸部材のシール構造において、前記冷却液導入孔は、前記他端側が前記回転軸部材の前記リップ部よりも前記冷却液導入口と回転軸方向の反対側の位置で終端する袋状に構成されていることを特徴とする。   The seal structure of the rotating shaft member according to claim 2 is the seal structure of the rotating shaft member according to claim 1, wherein the coolant introduction hole has the other end side more than the lip portion of the rotating shaft member. The bag is configured to terminate in a position opposite to the coolant introduction port and the direction of the rotation axis.

請求項2に記載の回転軸部材のシール構造によれば、冷却液導入孔は、他端側が回転軸部材のリップ部よりも冷却液導入口と回転軸方向の反対側の位置で終端する袋状に構成されている。従って、冷却液供給手段から冷却液導入孔に冷却液が導入された場合でも、冷却液導入孔の他端側から冷却液が外部に流出されることを防止できる。これにより、回転軸部材の他端側におけるシール性を確保できる。つまり、シール部材よりも回転軸部材の他端側に冷却液が流出することを防止できる。   According to the seal structure of the rotating shaft member according to claim 2, the cooling liquid introduction hole has the other end side terminated at a position opposite to the cooling liquid introducing port and the rotating shaft direction from the lip portion of the rotating shaft member. Configured. Therefore, even when the coolant is introduced from the coolant supply means into the coolant introduction hole, it is possible to prevent the coolant from flowing out from the other end side of the coolant introduction hole. Thereby, the sealing performance in the other end side of a rotating shaft member is securable. That is, it is possible to prevent the coolant from flowing out to the other end side of the rotating shaft member rather than the seal member.

請求項3に記載の回転軸部材のシール構造は、請求項1又は請求項2に記載の回転軸部材のシール構造において、前記冷却液導入孔には、前記冷却液供給手段からの冷却液の供給を誘発させるための冷却液供給誘発手段が設けられていることを特徴とする。   The seal structure for the rotary shaft member according to claim 3 is the seal structure for the rotary shaft member according to claim 1 or 2, wherein the coolant introduction hole is filled with coolant from the coolant supply means. Cooling liquid supply inducing means for inducing supply is provided.

請求項3に記載の回転軸部材のシール構造によれば、冷却液導入孔には、冷却液供給手段からの冷却液の供給を誘発させるための冷却液供給誘発手段が設けられている。従って、この冷却液供給誘発手段によって冷却液供給手段から冷却液導入孔への冷却液の供給を誘発させることができる。これにより、冷却液導入孔への新鮮な冷却液の導入量を増加することができるので、回転軸部材の外周部とリップ部との摺接部の冷却効果を高めることができる。   According to the seal structure of the rotating shaft member according to the third aspect, the coolant supply inducing means for inducing the supply of the coolant from the coolant supply means is provided in the coolant introduction hole. Therefore, the supply of the coolant from the coolant supply means to the coolant introduction hole can be induced by the coolant supply induction means. Thereby, since the amount of fresh coolant introduced into the coolant introduction hole can be increased, the cooling effect of the sliding contact portion between the outer peripheral portion of the rotary shaft member and the lip portion can be enhanced.

請求項4に記載の回転軸部材のシール構造は、請求項3に記載の回転軸部材のシール構造において、前記冷却液供給誘発手段は、前記冷却液導入孔の内周面に回転軸周りに形成された螺旋溝であることを特徴とする。   The seal structure of the rotating shaft member according to claim 4 is the seal structure of the rotating shaft member according to claim 3, wherein the cooling liquid supply inducing means is arranged around the rotating shaft on the inner peripheral surface of the cooling liquid introducing hole. It is a formed spiral groove.

請求項4に記載の回転軸部材のシール構造によれば、上述の冷却液供給誘発手段が、冷却液導入孔の内周面に回転軸周りに形成された螺旋溝で構成されている。従って、回転軸部材が回転したときに螺旋溝も一体に回転することで、この螺旋溝によって冷却液導入孔への冷却液の供給を誘発させることができ、これにより、冷却液導入孔への新鮮な冷却液の導入量を増加することができる。   According to the seal structure of the rotating shaft member according to the fourth aspect, the above-described cooling liquid supply inducing means is constituted by a spiral groove formed around the rotating shaft on the inner peripheral surface of the cooling liquid introducing hole. Therefore, when the rotating shaft member rotates, the spiral groove also rotates integrally, and this spiral groove can induce the supply of the coolant to the coolant introduction hole. The amount of fresh coolant introduced can be increased.

また、請求項4に記載の回転軸部材のシール構造によれば、冷却液導入孔への冷却液の供給を誘発させるために送液装置等の特別な装備を必要とせず、冷却液導入孔の内周面に螺旋溝を設けるという簡単な構成であるので、シール構造全体の構成を簡素化することができる。   Further, according to the seal structure of the rotating shaft member according to claim 4, no special equipment such as a liquid feeding device is required to induce the supply of the coolant to the coolant introduction hole, and the coolant introduction hole Since this is a simple configuration in which a spiral groove is provided on the inner circumferential surface, the configuration of the entire seal structure can be simplified.

[第一実施形態]
以下、図1に基づき本発明の第一実施形態について説明する。
[First embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.

図1には、本発明の第一実施形態に係る回転軸部材のシール構造10が断面図にて示されている。この図に示されるように、回転軸部材のシール構造10は、回転軸部材12と、シール部材14とを備えて構成されている。   FIG. 1 is a sectional view showing a seal structure 10 for a rotary shaft member according to a first embodiment of the present invention. As shown in this figure, the rotary shaft member sealing structure 10 includes a rotary shaft member 12 and a seal member 14.

回転軸部材12は、例えば、モータの出力軸として好適に用いられるものである。この回転軸部材12には、回転軸方向に沿って冷却液導入孔16が形成されている。   The rotating shaft member 12 is suitably used as an output shaft of a motor, for example. A coolant introduction hole 16 is formed in the rotation shaft member 12 along the rotation axis direction.

冷却液導入孔16は、その一端側の開口部が冷却液を供給可能な冷却液供給部(冷却液供給手段)50と連通される冷却液導入口18として開口されると共に、その他端側19が回転軸部材12の後述するリップ部24よりも冷却液導入口18と回転軸方向の反対側(矢印B側)の位置で終端する袋状に構成されている。   The coolant introduction hole 16 is opened as a coolant introduction port 18 whose one end side is communicated with a coolant supply section (coolant supply means) 50 capable of supplying the coolant, and the other end side 19. Is formed in a bag shape that terminates at a position opposite to the coolant introduction port 18 and the rotation axis direction (arrow B side) from a lip portion 24 described later of the rotation shaft member 12.

シール部材14は、その全体が例えば、ゴムなどの樹脂で構成されている。このシール部材14は、環状の本体部22を備え、回転軸部材12の回転軸方向中間部に配置されている。本体部22の内周部には、径方向内側に延びる上下一対のリップ部24が周方向に沿って環状に形成されている。このリップ部24は、その先端部が回転軸部材12の回転軸方向中間部の外周部と液密状態で接触されている。   The entire seal member 14 is made of, for example, a resin such as rubber. The seal member 14 includes an annular main body portion 22 and is disposed at an intermediate portion in the rotation axis direction of the rotation shaft member 12. A pair of upper and lower lip portions 24 extending radially inward are formed in an annular shape along the circumferential direction on the inner circumferential portion of the main body portion 22. The tip of the lip portion 24 is in liquid-tight contact with the outer peripheral portion of the rotary shaft direction intermediate portion of the rotary shaft member 12.

次に、本発明の第一実施形態の作用について説明する。   Next, the operation of the first embodiment of the present invention will be described.

本発明の第一実施形態に係る回転軸部材のシール構造10によれば、回転軸部材12は、例えば、モータの出力軸として構成され、外部からの回転力を受けて矢印R方向に回転される。このとき、この回転軸部材12の回転軸方向中間部には、シール部材14が配置されており、このシール部材14は、回転軸部材12の外周部と液密状態で摺接されるリップ部24を有して構成され、この回転軸部材12との間をシールする。   According to the seal structure 10 of the rotary shaft member according to the first embodiment of the present invention, the rotary shaft member 12 is configured, for example, as an output shaft of a motor, and is rotated in the direction of the arrow R in response to a rotational force from the outside. The At this time, the seal member 14 is disposed at the intermediate portion in the rotation axis direction of the rotation shaft member 12, and the seal member 14 is slidably contacted with the outer peripheral portion of the rotation shaft member 12 in a liquid-tight state. 24, and seals between the rotary shaft member 12.

ここで、上述の回転軸部材12には、回転軸方向に沿って冷却液導入孔16が形成されている。冷却液導入孔16は、その一端側の冷却液導入口18が冷却液供給部50と連通され、その他端側19が回転軸部材12のリップ部24よりも冷却液導入口18と回転軸方向の反対側(矢印B側)に位置されて構成されている。   Here, the above-described rotating shaft member 12 is formed with a coolant introduction hole 16 along the rotating shaft direction. The coolant introduction hole 16 has a coolant introduction port 18 at one end thereof communicated with the coolant supply unit 50, and the other end side 19 is connected to the coolant introduction port 18 and the rotation axis direction from the lip portion 24 of the rotary shaft member 12. Is located on the opposite side (arrow B side).

従って、冷却液供給部50と冷却液導入孔16の冷却液導入口18が連通された状態で、冷却液供給部50から冷却液Wが供給された場合には、この冷却液Wを、冷却液導入口18を介して冷却液導入孔16に導入でき、さらに、この冷却液Wを、冷却液導入孔16におけるリップ部24と回転軸方向にオーバラップする位置にまで導くことができる。   Therefore, when the coolant W is supplied from the coolant supply unit 50 in a state where the coolant supply unit 50 and the coolant introduction port 18 of the coolant introduction hole 16 are communicated with each other, the coolant W is cooled. The coolant can be introduced into the coolant introduction hole 16 through the liquid introduction port 18, and the coolant W can be guided to a position overlapping the lip portion 24 in the coolant introduction hole 16 in the rotation axis direction.

これにより、この冷却液導入孔16に導入された冷却液Wによって、回転軸部材12の外周部とリップ部24との摺接部を冷却することができる。この結果、回転軸部材12が回転している場合でも、シール部材14の回転軸部材12との摺接部であるリップ部24の発熱を抑制することが可能となる。これにより、例えば、リップ部24の温度上昇に伴う材料劣化等を抑制でき、ひいては、シール部材14のシール性を確保すると共に寿命を向上させることが可能となる。   Accordingly, the sliding contact portion between the outer peripheral portion of the rotating shaft member 12 and the lip portion 24 can be cooled by the cooling liquid W introduced into the cooling liquid introduction hole 16. As a result, even when the rotary shaft member 12 is rotating, it is possible to suppress heat generation of the lip portion 24 that is a sliding contact portion of the seal member 14 with the rotary shaft member 12. Thereby, for example, it is possible to suppress the material deterioration and the like accompanying the temperature rise of the lip portion 24, and as a result, it is possible to ensure the sealing performance of the seal member 14 and improve the life.

また、本発明の第一実施形態に係る回転軸部材のシール構造10によれば、冷却液導入孔16は、他端側19が回転軸部材12のリップ部24よりも冷却液導入口18と回転軸方向の反対側(矢印B側)の位置で終端する袋状に構成されている。従って、冷却液供給部50から冷却液導入孔16に冷却液Wが導入された場合でも、冷却液導入孔16の他端側19から冷却液Wが外部に流出されることを防止できる。これにより、回転軸部材12の他端側におけるシール性を確保できる。つまり、シール部材14よりも回転軸部材12の他端側に冷却液Wが流出することを防止できる。   Moreover, according to the seal structure 10 of the rotating shaft member according to the first embodiment of the present invention, the coolant introduction hole 16 has a coolant introduction port 18 on the other end side 19 than the lip portion 24 of the rotation shaft member 12. It is configured in a bag shape that terminates at a position on the opposite side (arrow B side) in the rotation axis direction. Therefore, even when the coolant W is introduced from the coolant supply unit 50 into the coolant introduction hole 16, the coolant W can be prevented from flowing out from the other end side 19 of the coolant introduction hole 16. Thereby, the sealing property in the other end side of the rotating shaft member 12 is securable. That is, it is possible to prevent the coolant W from flowing out to the other end side of the rotary shaft member 12 relative to the seal member 14.

[第二実施形態]
次に、図2に基づき本発明の第二実施形態について説明する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described based on FIG.

図2には、本発明の第二実施形態に係る回転軸部材のシール構造40が断面図にて示されている。この図に示されるように、本発明の第二実施形態に係る回転軸部材のシール構造40では、上述の本発明の第一実施形態の構成に対し、回転軸部材12に設けられた冷却液導入孔16が次の如く変形されている。   FIG. 2 is a sectional view showing a seal structure 40 of a rotating shaft member according to the second embodiment of the present invention. As shown in this figure, in the rotary shaft member seal structure 40 according to the second embodiment of the present invention, the coolant provided on the rotary shaft member 12 is different from the configuration of the first embodiment of the present invention described above. The introduction hole 16 is modified as follows.

つまり、冷却液導入孔16には、その内周面に回転軸周りに螺旋溝(冷却液供給誘発手段)26が形成されている。この螺旋溝26は、回転軸部材12の回転(矢印R方向)に伴って他端側(終端側)19から冷却液導入口18へ向かうように螺旋状に構成されている。   That is, the cooling liquid introduction hole 16 has a spiral groove (cooling liquid supply inducing means) 26 formed around the rotation axis on the inner peripheral surface thereof. The spiral groove 26 is formed in a spiral shape so as to go from the other end side (terminal side) 19 to the coolant introduction port 18 as the rotary shaft member 12 rotates (in the direction of arrow R).

次に、本発明の第二実施形態の作用について説明する。   Next, the operation of the second embodiment of the present invention will be described.

本発明の第二実施形態に係る回転軸部材のシール構造40によれば、冷却液導入孔16には、その内周面に回転軸周りに螺旋溝26が形成されている。この螺旋溝26は、回転軸部材12の回転(矢印R方向)に伴って他端側(終端側)19から冷却液導入口18へ向かうように螺旋状に構成されている。従って、回転軸部材12が回転したときには、この螺旋溝26によって冷却液導入孔16内に溜まっている冷却液を冷却液導入口18側へ排出できる(矢印W1)。また、その結果、冷却液導入孔16内が負圧状態になり、冷却液供給部50から冷却液導入孔16へ新たな冷却液の流入を生じさせることができる(矢印W2)。   According to the seal structure 40 of the rotating shaft member according to the second embodiment of the present invention, the cooling liquid introducing hole 16 has the spiral groove 26 formed around the rotating shaft on the inner peripheral surface thereof. The spiral groove 26 is formed in a spiral shape so as to go from the other end side (terminal side) 19 to the coolant introduction port 18 as the rotary shaft member 12 rotates (in the direction of arrow R). Therefore, when the rotary shaft member 12 rotates, the coolant stored in the coolant introduction hole 16 can be discharged to the coolant introduction port 18 side by the spiral groove 26 (arrow W1). As a result, the inside of the coolant introduction hole 16 is in a negative pressure state, and a new coolant can flow into the coolant introduction hole 16 from the coolant supply part 50 (arrow W2).

なお、このとき、冷却液導入孔16内に溜まっている冷却液は、螺旋溝26が形成された冷却液導入孔16の内周面(孔の中心よりも外周側)に沿って排出され(矢印W1)、冷却液供給部50からの新たな冷却液は、冷却液導入孔16の中心部側から流入される(矢印W2)。   At this time, the coolant accumulated in the coolant introduction hole 16 is discharged along the inner peripheral surface of the coolant introduction hole 16 in which the spiral groove 26 is formed (outer periphery side than the center of the hole) ( Arrow W1), a new coolant from the coolant supply unit 50 flows in from the center side of the coolant introduction hole 16 (arrow W2).

このように、本発明の第二実施形態に係る回転軸部材のシール構造40によれば、冷却液供給部50から冷却液導入孔16への冷却液Wの供給を誘発させることができる。これにより、冷却液導入孔16への新鮮な冷却液の導入量を増加することができるので、回転軸部材12の外周部とリップ部24との摺接部の冷却効果を高めることができる。   Thus, according to the seal structure 40 of the rotating shaft member according to the second embodiment of the present invention, the supply of the coolant W from the coolant supply unit 50 to the coolant introduction hole 16 can be induced. Thereby, since the amount of fresh coolant introduced into the coolant introduction hole 16 can be increased, the cooling effect of the sliding contact portion between the outer peripheral portion of the rotating shaft member 12 and the lip portion 24 can be enhanced.

また、本発明の第二実施形態に係る回転軸部材のシール構造40によれば、冷却液導入孔16への冷却液Wの供給を誘発させるために送液装置等の特別な装備を必要とせず、冷却液導入孔16の内周面に螺旋溝26を設けるという簡単な構成であるので、シール構造全体の構成を簡素化することができる。   Further, according to the seal structure 40 of the rotating shaft member according to the second embodiment of the present invention, special equipment such as a liquid feeding device is required to induce the supply of the cooling liquid W to the cooling liquid introduction hole 16. First, since the spiral groove 26 is provided on the inner peripheral surface of the coolant introduction hole 16, the configuration of the entire seal structure can be simplified.

[ウォータポンプへの適用例]
次に、図3,図4に基づき本発明の回転軸部材のシール構造をウォータポンプ60に適用した例について説明する。
[Example of application to water pump]
Next, an example in which the seal structure of the rotating shaft member of the present invention is applied to the water pump 60 will be described with reference to FIGS.

図3には、本発明の回転軸部材のシール構造が適用されたウォータポンプ60の全体構成が断面図にて示されており、図4には、図3のウォータポンプ60の要部拡大断面図が示されている。なお、この例では、本発明の第二実施形態に係る回転軸部材のシール構造40がウォータポンプ60に適用されている。   FIG. 3 is a sectional view showing the overall configuration of the water pump 60 to which the seal structure of the rotary shaft member of the present invention is applied. FIG. 4 is an enlarged sectional view of the main part of the water pump 60 of FIG. The figure is shown. In this example, the rotary shaft member seal structure 40 according to the second embodiment of the present invention is applied to the water pump 60.

この図に示されるウォータポンプ60は、自動車のエンジン冷却システムに使用されるものである。ウォータポンプ60は、モータ部62とポンプ部64とによって構成されている。   The water pump 60 shown in this figure is used in an automobile engine cooling system. The water pump 60 includes a motor unit 62 and a pump unit 64.

モータ部62は、側面視で略L字形に屈曲されたモータハウジング66を備えている。モータハウジング66は、有底略円筒形状を成すモータ室68と、このモータ室68に隣接して形成されかつ略L字形状を成す流路70と、を備えている。   The motor unit 62 includes a motor housing 66 bent in a substantially L shape in a side view. The motor housing 66 includes a motor chamber 68 having a substantially cylindrical shape with a bottom, and a flow path 70 formed adjacent to the motor chamber 68 and having a substantially L shape.

モータ室68内には、駆動源となるモータ72が収容されている。また、モータ室68を構成するモータハウジング66の底壁部66Aの軸心部には、モータ72の出力軸として設けられた回転軸部材12を挿通させるための挿通孔76が形成されている。さらに、モータ室68の開放側の端部には、モータ72を固定的に保持するためのエンドプレート78が装着されている。   A motor 72 serving as a drive source is accommodated in the motor chamber 68. Further, an insertion hole 76 through which the rotary shaft member 12 provided as an output shaft of the motor 72 is inserted is formed in the shaft center portion of the bottom wall portion 66 </ b> A of the motor housing 66 constituting the motor chamber 68. Furthermore, an end plate 78 for holding the motor 72 in a fixed manner is attached to the open end of the motor chamber 68.

モータハウジング66の底壁部66Aには、円筒状のシール保持部86が一体に形成されている。このシール保持部86には、上述のシール部材14の本体部22が嵌着されている。このシール部材14の本体部22の外周部は、シール保持部86の内周面に圧接されている。また、このシール部材14は、回転軸部材12の回転軸方向中間部に位置し、そのリップ部24は、先端部が回転軸部材12の回転軸方向中間部の外周部と液密状態で接触されている。   A cylindrical seal holding portion 86 is integrally formed on the bottom wall portion 66 </ b> A of the motor housing 66. The main body portion 22 of the above-described seal member 14 is fitted to the seal holding portion 86. The outer peripheral portion of the main body portion 22 of the seal member 14 is in pressure contact with the inner peripheral surface of the seal holding portion 86. Further, the seal member 14 is located at the intermediate portion in the rotational axis direction of the rotary shaft member 12, and the lip portion 24 of the seal member 14 is in liquid-tight contact with the outer peripheral portion of the rotary shaft direction intermediate portion of the rotary shaft member 12. Has been.

ポンプ部64は、モータハウジング66の底壁部66A側の開放端部66B(回転軸部材12の先端側の端部)に嵌合可能なポンプハウジング90を備えている。ポンプハウジング90は、概ね円筒形状を成している。このポンプハウジング90は、エンジン冷却液(LLC)が流入する小径円筒状の流入部90Aと、この流入部90Aから拡径されて扁平な有底円筒形状を成す大径の本体部90Bと、この本体部90Bから更に拡径されてモータハウジング66の開放端部66Bに嵌合される円筒状の組付部90Cと、によって構成されている。   The pump portion 64 includes a pump housing 90 that can be fitted to an open end portion 66B (end portion on the distal end side of the rotating shaft member 12) on the bottom wall portion 66A side of the motor housing 66. The pump housing 90 has a generally cylindrical shape. The pump housing 90 includes a small-diameter cylindrical inflow portion 90A into which engine coolant (LLC) flows, a large-diameter main body portion 90B that is expanded from the inflow portion 90A to form a flat bottomed cylindrical shape, The cylindrical assembly 90C is further expanded from the main body 90B and fitted into the open end 66B of the motor housing 66.

そして、このウォータポンプ60では、ポンプハウジング90の組付部90Cがモータハウジング66の開放端部66Bに組付けられた状態では、モータハウジング66の開放端部66Bの外周面に嵌着されたOリング92によって、当該開放端部66Bの外周面とポンプハウジング90の組付部90Cの内周面との間がシールされている。   In the water pump 60, when the assembly portion 90C of the pump housing 90 is assembled to the open end portion 66B of the motor housing 66, the O fitted to the outer peripheral surface of the open end portion 66B of the motor housing 66. A ring 92 seals between the outer peripheral surface of the open end portion 66 </ b> B and the inner peripheral surface of the assembly portion 90 </ b> C of the pump housing 90.

また、ポンプハウジング90の本体部90Bの底壁部には、モータ室68を構成するモータハウジング66の周壁部66Cと連接する隔壁94が形成されている。本体部90Bの内部空間は、この隔壁94によって、流入部90Aの内部空間と連通されたポンプ室96と、当該ポンプ室96と前述した流路70の入口側とを相互に連通する接続路98と、に隔成されている。   In addition, a partition wall 94 that is connected to the peripheral wall portion 66 </ b> C of the motor housing 66 that forms the motor chamber 68 is formed on the bottom wall portion of the main body portion 90 </ b> B of the pump housing 90. The internal space of the main body portion 90B is connected to the pump chamber 96 communicated with the internal space of the inflow portion 90A by the partition wall 94, and the connection path 98 communicating the pump chamber 96 with the inlet side of the flow path 70 described above. It is divided into and.

そして、このポンプ室96内には、インペラ100が回転可能に収容されている。インペラ100は、放射状に配置された複数枚の翼部100Aを備えている。インペラ100の軸心部には挿入孔102が回転軸方向に貫通されて形成されており、この挿入孔102内にモータ72の回転軸部材12が圧入されている。従って、モータ72が作動して回転軸部材12がその軸線回りに回転すると、インペラ100も同軸的に一体に回転する構成である。   And in this pump chamber 96, the impeller 100 is accommodated rotatably. The impeller 100 includes a plurality of wing parts 100A arranged radially. An insertion hole 102 is formed in the shaft center portion of the impeller 100 so as to penetrate in the rotation axis direction, and the rotation shaft member 12 of the motor 72 is press-fitted into the insertion hole 102. Therefore, when the motor 72 is actuated to rotate the rotary shaft member 12 around its axis, the impeller 100 is also coaxially and integrally rotated.

以上が本実施形態に係るウォータポンプ60の要部であるが、周辺構成について補足すると、上述したポンプハウジング90の流入部90A並びに流路70の出口側は、エンジン冷却液(LLC)を循環させるための循環経路と接続されている。   The above is the main part of the water pump 60 according to the present embodiment. Supplementing the peripheral configuration, the inflow part 90A of the pump housing 90 and the outlet side of the flow path 70 circulate engine coolant (LLC). Connected with a circulation path for.

次に、本適用例の作用について説明する。   Next, the operation of this application example will be described.

ウォータポンプ60のモータ72が作動すると、回転軸部材12がその軸線回り(矢印R方向)に回転し、これに伴ってインペラ100も同一方向へ一体に回転する。これにより、流入部90Aからエンジン冷却液Wが流入され、ポンプ室96及び接続路98を通って、流路70の出口側から吐出される。その結果、エンジン冷却システムの循環経路内をエンジン冷却液Wが循環し、エンジンを冷却する。   When the motor 72 of the water pump 60 is actuated, the rotary shaft member 12 rotates about its axis (in the direction of arrow R), and the impeller 100 also rotates integrally in the same direction. As a result, the engine coolant W flows from the inflow portion 90 </ b> A and is discharged from the outlet side of the flow path 70 through the pump chamber 96 and the connection path 98. As a result, the engine coolant W circulates in the circulation path of the engine cooling system to cool the engine.

また、このとき、この回転軸部材12の回転軸方向中間部には、シール部材14が配置されており、このシール部材14は、回転軸部材12の外周部と液密状態で摺接されるリップ部24を有して構成され、この回転軸部材12との間をシールする。従って、モータ室68とポンプ室96とのシール性が確保される。   Further, at this time, a seal member 14 is disposed at the intermediate portion of the rotary shaft member 12 in the rotary shaft direction, and the seal member 14 is slidably contacted with the outer peripheral portion of the rotary shaft member 12 in a liquid-tight state. The lip portion 24 is configured to seal between the rotary shaft member 12. Therefore, the sealing property between the motor chamber 68 and the pump chamber 96 is ensured.

ここで、上述の回転軸部材12には、回転軸方向に沿って冷却液導入孔16が形成されている。冷却液導入孔16は、その一端側の冷却液導入口18が冷却液供給手段として機能するポンプ室96と連通されている。また、冷却液導入孔16は、他端側19が回転軸部材12のリップ部24よりも冷却液導入口18と回転軸方向の反対側(矢印B側)に位置されて構成されている。   Here, the above-described rotating shaft member 12 is formed with a coolant introduction hole 16 along the rotating shaft direction. The coolant introduction hole 16 communicates with a pump chamber 96 in which the coolant introduction port 18 on one end side functions as a coolant supply means. Further, the coolant introduction hole 16 is configured such that the other end side 19 is positioned on the opposite side (arrow B side) to the coolant introduction port 18 and the rotation axis direction with respect to the lip portion 24 of the rotation shaft member 12.

従って、上述の如く、インペラ100が回転軸部材12と共に回転し、流入部90Aからエンジン冷却液Wが流入されると、このエンジン冷却液Wは、冷却液導入口18を介して冷却液導入孔16に導入され、さらに、このエンジン冷却液Wが、冷却液導入孔16におけるリップ部24と回転軸方向にオーバラップする位置にまで導かれる。   Therefore, as described above, when the impeller 100 rotates together with the rotating shaft member 12 and the engine coolant W flows from the inflow portion 90A, the engine coolant W flows through the coolant inlet 18 through the coolant inlet 18. In addition, the engine coolant W is introduced to a position where it overlaps with the lip portion 24 in the coolant introduction hole 16 in the rotation axis direction.

これにより、この冷却液導入孔16に導入されたエンジン冷却液Wによって、回転軸部材12の外周部とリップ部24との摺接部を冷却することができる。この結果、回転軸部材12が回転している場合でも、シール部材14の回転軸部材12との摺接部であるリップ部24の発熱を抑制することが可能となる。これにより、例えば、リップ部24の温度上昇に伴う材料劣化等を抑制でき、ひいては、シール部材14のシール性、さらにはモータ室68とポンプ室96とのシール性を確保することが可能となる。また、シール部材14の寿命、ひいては、ウォータポンプ60の寿命も向上させることが可能となる。   Accordingly, the sliding contact portion between the outer peripheral portion of the rotating shaft member 12 and the lip portion 24 can be cooled by the engine coolant W introduced into the coolant introduction hole 16. As a result, even when the rotary shaft member 12 is rotating, it is possible to suppress heat generation of the lip portion 24 that is a sliding contact portion of the seal member 14 with the rotary shaft member 12. Thereby, for example, it is possible to suppress material deterioration and the like accompanying the temperature rise of the lip portion 24, and as a result, it is possible to ensure the sealing performance of the sealing member 14 and further the sealing performance of the motor chamber 68 and the pump chamber 96. . In addition, it is possible to improve the life of the seal member 14 and thus the life of the water pump 60.

また、冷却液導入孔16は、他端側19が回転軸部材12のリップ部24よりも冷却液導入口18と回転軸方向の反対側(矢印B側)の位置で終端する袋状に構成されている。従って、ポンプ室96から冷却液導入孔16にエンジン冷却液Wが導入された場合でも、冷却液導入孔16の他端側19からエンジン冷却液Wが挿通孔76を介してモータ室68に流入されることを防止できる。これにより、回転軸部材12の他端側におけるシール性、ひいてはモータ室68のシール性を確保できる。   Further, the coolant introduction hole 16 is configured in a bag shape in which the other end side 19 terminates at a position opposite to the coolant introduction port 18 and the rotation axis direction (arrow B side) with respect to the lip portion 24 of the rotation shaft member 12. Has been. Therefore, even when the engine coolant W is introduced from the pump chamber 96 into the coolant introduction hole 16, the engine coolant W flows into the motor chamber 68 from the other end side 19 of the coolant introduction hole 16 through the insertion hole 76. Can be prevented. Thereby, the sealing performance at the other end side of the rotating shaft member 12 and the sealing performance of the motor chamber 68 can be secured.

また、冷却液導入孔16には、その内周面に回転軸周りに螺旋溝26が形成されている。この螺旋溝26は、回転軸部材12の回転(矢印R方向)に伴って他端側(終端側)19から冷却液導入口18へ向かうように螺旋状に構成されている。従って、回転軸部材12が回転したときには、この螺旋溝26によって冷却液導入孔16内に溜まっている冷却液を冷却液導入口18側へ移動させて冷却液導入口18からポンプ室96に排出できる(矢印W1)。また、その結果、冷却液導入孔16内が負圧状態になり、ポンプ室96から冷却液導入孔16へ新たな冷却液の流入を生じさせることができる(矢印W2)。   In addition, a spiral groove 26 is formed around the rotation axis of the coolant introduction hole 16 on the inner peripheral surface thereof. The spiral groove 26 is formed in a spiral shape so as to go from the other end side (terminal side) 19 to the coolant introduction port 18 as the rotary shaft member 12 rotates (in the direction of arrow R). Accordingly, when the rotary shaft member 12 rotates, the coolant stored in the coolant introduction hole 16 is moved to the coolant introduction port 18 side by the spiral groove 26 and discharged from the coolant introduction port 18 to the pump chamber 96. Yes (arrow W1). As a result, the inside of the coolant introduction hole 16 is in a negative pressure state, and a new coolant can flow from the pump chamber 96 into the coolant introduction hole 16 (arrow W2).

このように、本例によれば、ポンプ室96から冷却液導入孔16への冷却液Wの供給を誘発させることができる。これにより、冷却液導入孔16への新鮮な冷却液の導入量を増加することができるので、回転軸部材12の外周部とリップ部24との摺接部の冷却効果を高めることができる。   Thus, according to this example, supply of the coolant W from the pump chamber 96 to the coolant introduction hole 16 can be induced. Thereby, since the amount of fresh coolant introduced into the coolant introduction hole 16 can be increased, the cooling effect of the sliding contact portion between the outer peripheral portion of the rotating shaft member 12 and the lip portion 24 can be enhanced.

また、冷却液導入孔16へのエンジン冷却液Wの供給を誘発させるために送液装置等の特別な装備を必要とせず、冷却液導入孔16の内周面に螺旋溝26を設けるという簡単な構成であるので、シール構造全体の構成、ひいては、ウォータポンプ60の構成を簡素化することができる。   Further, no special equipment such as a liquid feeding device is required to induce the supply of the engine coolant W to the coolant introduction hole 16, and the spiral groove 26 is simply provided on the inner peripheral surface of the coolant introduction hole 16. Therefore, the configuration of the entire seal structure, and thus the configuration of the water pump 60 can be simplified.

次に、本発明の実施形態の変形例について説明する。   Next, a modification of the embodiment of the present invention will be described.

本適用例では、本発明の回転軸部材のシール構造のウォータポンプ60への適用例について説明したが、本発明の回転軸部材のシール構造は、ウォータポンプ60以外に適用することができることは勿論である。   In this application example, the application example of the seal structure of the rotating shaft member of the present invention to the water pump 60 has been described. However, the seal structure of the rotating shaft member of the present invention can be applied to other than the water pump 60. It is.

本発明の第一実施形態に係る回転軸部材のシール構造の断面図である。It is sectional drawing of the sealing structure of the rotating shaft member which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る回転軸部材のシール構造の断面図である。It is sectional drawing of the sealing structure of the rotating shaft member which concerns on 2nd embodiment of this invention. 本発明の回転軸部材のシール構造が適用されたウォータポンプの全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the water pump to which the sealing structure of the rotating shaft member of this invention was applied. 図3のウォータポンプの要部拡大断面図である。It is a principal part expanded sectional view of the water pump of FIG.

符号の説明Explanation of symbols

10,40…シール構造、12…回転軸部材、14…シール部材、16…冷却液導入孔、18…冷却液導入口、20…冷却液排出口、22…本体部、24…リップ部、26…螺旋溝(冷却液供給誘発手段)、50…冷却液供給部(冷却液供給手段)、60…ウォータポンプ、62…モータ部、64…ポンプ部、66…モータハウジング、68…モータ室、70…流路、72…モータ、76…挿通孔、78…エンドプレート、86…シール保持部、90…ポンプハウジング、92…Oリング、94…隔壁、96…ポンプ室(冷却液供給手段)、98…接続路、100…インペラ、102…挿入孔 DESCRIPTION OF SYMBOLS 10,40 ... Seal structure, 12 ... Rotating shaft member, 14 ... Seal member, 16 ... Coolant introduction hole, 18 ... Coolant introduction port, 20 ... Coolant discharge port, 22 ... Main part, 24 ... Lip part, 26 DESCRIPTION OF SYMBOLS ... Spiral groove | channel (coolant supply supply means), 50 ... Coolant supply part (coolant supply means), 60 ... Water pump, 62 ... Motor part, 64 ... Pump part, 66 ... Motor housing, 68 ... Motor chamber, 70 ... Flow path, 72 ... Motor, 76 ... Insertion hole, 78 ... End plate, 86 ... Seal holder, 90 ... Pump housing, 92 ... O-ring, 94 ... Septum, 96 ... Pump chamber (coolant supply means), 98 ... connection path, 100 ... impeller, 102 ... insertion hole

Claims (4)

外部からの回転力を受けて回転される回転軸部材と、
前記回転軸部材の回転軸方向中間部に配置され、前記回転軸部材の外周部と液密状態で摺接されるリップ部を有して構成されたシール部材と、
を備え、
前記回転軸部材には、回転軸方向に沿って形成され、一端側が冷却液を供給可能な冷却液供給手段と連通される冷却液導入口として開口されると共に、他端側が前記リップ部よりも前記冷却液導入口と回転軸方向の反対側に位置されて構成された冷却液導入孔が設けられていることを特徴とする回転軸部材のシール構造。
A rotating shaft member that is rotated by receiving a rotational force from the outside;
A seal member that is disposed at a rotation axis direction intermediate portion of the rotation shaft member and includes a lip portion that is slidably contacted with an outer peripheral portion of the rotation shaft member in a liquid-tight state;
With
The rotation shaft member is formed along the rotation axis direction, and one end side is opened as a coolant introduction port communicating with a coolant supply means capable of supplying the coolant, and the other end side is more than the lip portion. A seal structure for a rotary shaft member, characterized in that a coolant introduction hole configured to be located on the opposite side of the coolant introduction port from the rotation axis direction is provided.
前記冷却液導入孔は、前記他端側が前記回転軸部材の前記リップ部よりも前記冷却液導入口と回転軸方向の反対側の位置で終端する袋状に構成されていることを特徴とする請求項1に記載の回転軸部材のシール構造。   The coolant introduction hole is configured in a bag shape in which the other end side terminates at a position opposite to the coolant introduction port and the rotation axis direction from the lip portion of the rotation shaft member. The seal structure of the rotating shaft member according to claim 1. 前記冷却液導入孔には、前記冷却液供給手段からの冷却液の供給を誘発させるための冷却液供給誘発手段が設けられていることを特徴とする請求項1又は請求項2に記載の回転軸部材のシール構造。   The rotation according to claim 1 or 2, wherein the coolant introduction hole is provided with a coolant supply inducing means for inducing the supply of the coolant from the coolant supply means. Seal structure of shaft member. 前記冷却液供給誘発手段は、前記冷却液導入孔の内周面に回転軸周りに形成された螺旋溝であることを特徴とする請求項3に記載の回転軸部材のシール構造。   4. The seal structure for a rotary shaft member according to claim 3, wherein the coolant supply inducing means is a spiral groove formed around an axis of rotation on the inner peripheral surface of the coolant introduction hole.
JP2006269296A 2006-09-29 2006-09-29 Sealing structure of rotating shaft member Pending JP2008089041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006269296A JP2008089041A (en) 2006-09-29 2006-09-29 Sealing structure of rotating shaft member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006269296A JP2008089041A (en) 2006-09-29 2006-09-29 Sealing structure of rotating shaft member

Publications (1)

Publication Number Publication Date
JP2008089041A true JP2008089041A (en) 2008-04-17

Family

ID=39373414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006269296A Pending JP2008089041A (en) 2006-09-29 2006-09-29 Sealing structure of rotating shaft member

Country Status (1)

Country Link
JP (1) JP2008089041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900123A (en) * 2009-05-29 2010-12-01 日本电产三协株式会社 Fluidic device and pump device
CN104879315A (en) * 2015-05-08 2015-09-02 江苏大学 Hot water circulating pump shaft cooled by heat pipe
KR20210096836A (en) * 2020-01-29 2021-08-06 정재민 sealing structure of the engine preheating water circulation pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4617860Y1 (en) * 1967-08-23 1971-06-22
JPS54128297U (en) * 1977-10-25 1979-09-06
JPS6415822A (en) * 1987-07-10 1989-01-19 Hitachi Ltd Input/output operating method for information
JPH05149294A (en) * 1991-10-28 1993-06-15 Osamu Osada Cooling water feeding and circulating device for rotary shaft sealing part of pump
JPH0942462A (en) * 1995-07-28 1997-02-14 Nok Corp Ring for cooling of seal
JPH0988898A (en) * 1995-09-26 1997-03-31 Aisin Seiki Co Ltd Water pump having foreign matter removing device
JP2003222099A (en) * 2002-01-29 2003-08-08 Asmo Co Ltd Fluid pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4617860Y1 (en) * 1967-08-23 1971-06-22
JPS54128297U (en) * 1977-10-25 1979-09-06
JPS6415822A (en) * 1987-07-10 1989-01-19 Hitachi Ltd Input/output operating method for information
JPH05149294A (en) * 1991-10-28 1993-06-15 Osamu Osada Cooling water feeding and circulating device for rotary shaft sealing part of pump
JPH0942462A (en) * 1995-07-28 1997-02-14 Nok Corp Ring for cooling of seal
JPH0988898A (en) * 1995-09-26 1997-03-31 Aisin Seiki Co Ltd Water pump having foreign matter removing device
JP2003222099A (en) * 2002-01-29 2003-08-08 Asmo Co Ltd Fluid pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900123A (en) * 2009-05-29 2010-12-01 日本电产三协株式会社 Fluidic device and pump device
JP2010275948A (en) * 2009-05-29 2010-12-09 Nidec Sankyo Corp Fluid device and pump device
CN101900123B (en) * 2009-05-29 2014-04-02 日本电产三协株式会社 Fluidic device and pump device
CN104879315A (en) * 2015-05-08 2015-09-02 江苏大学 Hot water circulating pump shaft cooled by heat pipe
KR20210096836A (en) * 2020-01-29 2021-08-06 정재민 sealing structure of the engine preheating water circulation pump
KR102330179B1 (en) * 2020-01-29 2021-11-23 정재민 sealing structure of the engine preheating water circulation pump

Similar Documents

Publication Publication Date Title
CN110953376B (en) Valve device
CN108798863B (en) Flow control valve
CN109690155B (en) Flow control valve and cooling system
JP6313801B2 (en) Flow control valve
CN111120695B (en) Flow control valve
WO2016092935A1 (en) Refrigerant control valve device
JP4411201B2 (en) Drive motor, especially drive motor for pump
CN109139222B (en) Control valve
JP4004572B2 (en) Centrifugal pump
US20140271279A1 (en) Electric fluid pump
JP7114890B2 (en) Cooling water control valve device
US11105430B2 (en) Control valve
CN104040235A (en) Valve device
CN111750137B (en) Control valve
JP7114889B2 (en) Coolant control valve device and engine cooling system using the same
JP2019007614A (en) Control valve
JP2015218763A (en) Flow regulating valve
JP2005520974A (en) Electric control valve for fluid circulation circuit
JP2008089041A (en) Sealing structure of rotating shaft member
KR101896376B1 (en) Multi flow rate control valve
CN100489281C (en) Installing structure of thermostat
JP7434814B2 (en) valve device
JP2019157905A (en) Control valve
JP2008267168A (en) Gear pump
CN113795654A (en) Control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712