JP2008088331A - Heat foaming characteristic of coal gasification slag, method for estimating optimum baking temperature and its program - Google Patents

Heat foaming characteristic of coal gasification slag, method for estimating optimum baking temperature and its program Download PDF

Info

Publication number
JP2008088331A
JP2008088331A JP2006272307A JP2006272307A JP2008088331A JP 2008088331 A JP2008088331 A JP 2008088331A JP 2006272307 A JP2006272307 A JP 2006272307A JP 2006272307 A JP2006272307 A JP 2006272307A JP 2008088331 A JP2008088331 A JP 2008088331A
Authority
JP
Japan
Prior art keywords
coal gasification
coal
slag
gasification slag
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272307A
Other languages
Japanese (ja)
Inventor
Hirotake Oki
裕壮 沖
Saburo Hara
三郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006272307A priority Critical patent/JP2008088331A/en
Publication of JP2008088331A publication Critical patent/JP2008088331A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate heat foaming characteristics and an optimum baking temperature without actually preparing coal gasification slag. <P>SOLUTION: A foaming state after baking the coal gasification slag is estimated from crystal precipitation characteristics by performing thermodynamic equilibrium calculations based on elemental compositions of ash content of coal and baking conditions of the coal gasification slag. The optimum baking temperature for foaming the coal gasification slag is estimated from the crystal precipitation characteristics by performing two or more thermodynamic equilibrium calculations based on the elemental compositions of ash content of coal and the baking conditions of the coal gasification slag and estimating the crystal precipitation characteristics of the coal gasification slag at tow or more baking temperatures. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、石炭ガス化スラグの加熱発泡特性と最適焼成温度の予測方法並びにそのプログラムに関する。さらに詳述すると、本発明は、石炭を石炭ガス化処理して得られる石炭ガス化スラグの加熱発泡特性の良否や発泡に最適な焼成温度を予測する方法並びにそのプログラムに関する。   The present invention relates to a method for predicting the heating and foaming characteristics and optimum firing temperature of coal gasification slag and a program therefor. More specifically, the present invention relates to a method for predicting the quality of heating and foaming characteristics of coal gasification slag obtained by coal gasification treatment of coal and the optimum firing temperature for foaming, and a program therefor.

石炭ガス化複合発電は、高効率且つ環境性に優れた発電システムとして早期実用化が期待されている。この石炭ガス化複合発電の中核設備である石炭ガス化炉からは、燃料石炭中の灰分のほぼ全量がガラス状の石炭ガス化スラグとして排出され、その量は、250MW級の発電所においては約2万トン/年と大量である。   Coal gasification combined power generation is expected to be put to practical use as a highly efficient and environmentally friendly power generation system. From the coal gasification furnace, which is the core facility of this coal gasification combined cycle power generation, almost all of the ash content in the fuel coal is discharged as glassy coal gasification slag, and this amount is about about 250 MW class power plants. Large amount of 20,000 tons / year.

この大量に排出される石炭ガス化スラグを資源として有効利用するための技術が各種提案されている。例えば、石炭ガス化スラグを焼成して発泡させ、人工軽量骨材として用いることが提案されている(非特許文献1、非特許文献2)。   Various techniques for effectively using the coal gasification slag discharged in large quantities as resources have been proposed. For example, it is proposed that coal gasified slag is fired and foamed to be used as an artificial lightweight aggregate (Non-Patent Document 1, Non-Patent Document 2).

ところで、石炭ガス化炉に供される石炭種によっては、排出される石炭ガス化スラグがほとんど加熱発泡特性を示さない場合がある。そこで従来は、各種石炭から石炭ガス化スラグを実際に作製し、この試料を焼成処理した後に絶乾密度を測定して、その測定結果から良好な加熱発泡特性を示す石炭ガス化スラグの元素組成の傾向を決定していた(例えば、特許文献1を参照)。発泡に最適な焼成温度についても、従来は、各種石炭から石炭ガス化スラグを複数準備し、これらの試料を各種温度で焼成処理した後に絶乾密度を測定して、その測定結果に基づいて決定していた。   By the way, depending on the type of coal used in the coal gasification furnace, the discharged coal gasification slag may hardly exhibit the heating and foaming characteristics. Therefore, in the past, coal gasification slag was actually produced from various types of coal, and after this sample was calcined, the absolute dry density was measured. From the measurement results, the elemental composition of coal gasification slag showing good heating foaming characteristics. (See, for example, Patent Document 1). The optimum firing temperature for foaming has also been determined based on the measurement results obtained by preparing multiple coal gasification slags from various coals, firing these samples at various temperatures, and measuring the absolute dry density. Was.

また、石炭ガス化複合発電には、瀝青炭が用いられることが多いため、発泡に最適な石炭ガス化スラグの元素組成の検討は、瀝青炭灰の主成分であるSiOとAlに重点をおいて行われていた(例えば、特許文献1並びに非特許文献2を参照)。
特開2004−269302 電力中央研究所報告 U02059 電力中央研究所報告 W03040
In addition, since bituminous coal is often used for coal gasification combined power generation, the study of the elemental composition of coal gasification slag optimal for foaming focuses on SiO 2 and Al 2 O 3 which are the main components of bituminous coal ash. (For example, see Patent Document 1 and Non-Patent Document 2).
JP 2004-269302 A Report of Central Research Institute of Electric Power Industry U02059 Report of Electric Power Central Research Laboratory W03040

しかしながら、石炭ガス化処理を行って石炭ガス化スラグを実際に作製し、その加熱発泡特性等を検討する場合、石炭ガス化処理を行うための高圧ガス化炉の運転に多大な経費が必要となるだけでなく、石炭ガス化スラグを焼成処理して絶乾密度を測定する為に多くの手間や時間が必要となる。様々な石炭種から実際に石炭ガス化スラグを作製して加熱発泡特性等を検討する場合、必要となる経費や手間、時間はさらに多大なものとなる。したがって、石炭ガス化スラグの作製を実際に行うことなく、加熱発泡特性や最適焼成温度を予測する手法の確立が望まれる。   However, when coal gasification slag is actually produced and the heat foaming characteristics etc. are examined, a large cost is required for operation of the high pressure gasifier for coal gasification treatment. In addition, much labor and time are required to calcine coal gasification slag and measure the absolute dry density. When actually producing coal gasification slag from various types of coal and examining the heat-foaming characteristics and the like, the necessary cost, labor, and time are further increased. Therefore, it is desired to establish a method for predicting the heat foaming characteristics and the optimum firing temperature without actually producing coal gasification slag.

また、高品位炭と呼ばれる瀝青炭だけでなく、低品位炭と呼ばれる石炭種の石炭ガス化複合発電への適用が望まれつつある。かかる状況下においては、瀝青炭灰の主成分であるSiOとAlに関する加熱発泡特性や最適焼成温度の検討だけでなく、SiOとAlの含有率が低い低品位炭の加熱発泡特性や最適焼成温度を簡易に予測するための手法が望まれる。 In addition, not only bituminous coal called high-grade coal, but also application to coal gasification combined power generation of coal type called low-grade coal is being desired. Under such circumstances, not only the heat foaming characteristics and optimum firing temperature for SiO 2 and Al 2 O 3 which are the main components of bituminous coal ash, but also low-grade coal with a low content of SiO 2 and Al 2 O 3 A technique for easily predicting the heat-foaming characteristics and the optimum firing temperature is desired.

そこで、本発明は、石炭ガス化スラグを実際に作製することなく、加熱発泡特性や最適焼成温度を予測する方法並びにプログラムを提供することを目的とする。   Then, an object of this invention is to provide the method and program which estimate a heating foaming characteristic and the optimal calcination temperature, without actually producing coal gasification slag.

かかる課題を解決するため、本願発明者等が鋭意検討を行った結果、焼成後に良好な発泡性を示す石炭ガス化スラグには共通の傾向があることを見出した。即ち、焼成後の石炭ガス化スラグをX線回折(以下、XRDと呼ぶ)分析により結晶構造解析を行った場合、焼成後に良好な発泡性を示す石炭ガス化スラグのXRDスペクトルにおいては、図1に示すブロードな非晶質ピークがベースラインとして維持される傾向があることを見出した。そこで、石炭ガス化スラグの焼成後の結晶析出特性を予測できれば石炭ガス化スラグの加熱発泡特性を予測することが可能であることを知見し、本願発明に至った。   As a result of intensive studies by the inventors of the present invention in order to solve such problems, it has been found that coal gasification slag showing good foamability after firing has a common tendency. That is, when the carbon gasification slag after calcination is subjected to crystal structure analysis by X-ray diffraction (hereinafter referred to as XRD) analysis, in the XRD spectrum of coal gasification slag showing good foamability after calcination, FIG. It was found that the broad amorphous peak shown in FIG. Then, it discovered that if the crystal precipitation characteristic after baking of coal gasification slag could be predicted, it was possible to predict the heating foaming characteristic of coal gasification slag, and it came to this invention.

かかる知見に基づく請求項1に記載の石炭ガス化スラグの加熱発泡特性予測方法は、石炭を石炭ガス化処理して得られる石炭ガス化スラグの加熱発泡特性を予測する方法であって、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づいて熱力学平衡計算を行い、石炭ガス化スラグの焼成後の結晶析出特性を予測して、結晶析出特性から石炭ガス化スラグの焼成後の発泡状態を予測するようにしている。   The method for predicting the heating and foaming characteristics of coal gasification slag according to claim 1 based on such knowledge is a method for predicting the heating and foaming characteristics of coal gasification slag obtained by coal gasification treatment of coal, Perform thermodynamic equilibrium calculation based on elemental composition of ash and firing conditions of coal gasification slag, predict the crystal precipitation characteristics after firing of coal gasification slag, and from the precipitation characteristics of coal gasification slag after firing The state of foaming is predicted.

また、かかる知見に基づく請求項3に記載の石炭ガス化スラグの加熱発泡特性予測プログラムは、石炭を石炭ガス化処理して得られる石炭ガス化スラグの加熱発泡特性を予測するプログラムであって、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とを記憶させて石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づく熱力学平衡計算を実行し、石炭ガス化スラグの焼成後の結晶析出特性を予測する処理と、結晶析出特性から石炭ガス化スラグの焼成後の発泡状態を予測する処理とをコンピュータに実行させるものである。   Moreover, the heating foaming characteristic prediction program of coal gasification slag of Claim 3 based on this knowledge is a program which predicts the heating foaming characteristic of coal gasification slag obtained by coal gasification processing of coal, By storing the elemental composition of coal ash and the firing conditions of coal gasification slag, the thermodynamic equilibrium calculation based on the elemental composition of coal ash and the firing conditions of coal gasification slag was performed, and the firing of coal gasification slag The computer executes a process for predicting the subsequent crystal precipitation characteristics and a process for predicting the foaming state after burning the coal gasification slag from the crystal precipitation characteristics.

焼成後に良好な発泡性を示す石炭ガス化スラグ中には、非晶質成分が維持されている。したがって、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件に基づいて熱力学平衡計算を行い、石炭ガス化スラグの焼成後の結晶析出特性を予測することにより、石炭ガス化スラグ中の成分が結晶質に支配されていないと予測される場合には、加熱発泡特性が良好であると予測することができる。   An amorphous component is maintained in the coal gasification slag that exhibits good foamability after firing. Therefore, the components in coal gasification slag are calculated by performing thermodynamic equilibrium calculation based on the elemental composition of coal ash and the firing conditions of coal gasification slag, and predicting the crystal precipitation characteristics after firing of coal gasification slag. Can be predicted to have good heat foaming properties.

ここで、本発明における熱力学平衡計算とは、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づいてギブズ自由エネルギーが最小化される平衡組成を最適化手法により算出する手法である。   Here, the thermodynamic equilibrium calculation in the present invention is a method of calculating an equilibrium composition that minimizes the Gibbs free energy based on the elemental composition of coal ash and the firing conditions of coal gasification slag by an optimization method. is there.

熱力学平衡計算を行うことにより、焼成後の石炭ガス化スラグに含まれる結晶の種類・量を評価することができる。   By performing thermodynamic equilibrium calculation, the kind and amount of crystals contained in the coal gasification slag after calcination can be evaluated.

ここで、本発明における石炭ガス化スラグの焼成条件とは、石炭ガス化スラグの焼成温度と焼成時のガス組成とを意味している。   Here, the firing conditions for coal gasification slag in the present invention mean the firing temperature of coal gasification slag and the gas composition during firing.

次に、請求項2に記載の石炭ガス化スラグの最適焼成温度予測方法は、石炭を石炭ガス化処理して得られる石炭ガス化スラグを発泡させる為の最適焼成温度を予測する方法であって、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づく熱力学平衡計算を複数の焼成温度に対して行い、複数の焼成温度での石炭ガス化スラグの結晶析出特性を予測して、結晶析出特性から石炭ガス化スラグを発泡させる為に最適な焼成温度を予測するようにしている。   Next, the optimum calcination temperature prediction method for coal gasification slag according to claim 2 is a method for predicting the optimum calcination temperature for foaming coal gasification slag obtained by coal gasification treatment of coal. The thermodynamic equilibrium calculation based on the elemental composition of coal ash and the calcination conditions of coal gasification slag was performed for multiple calcination temperatures, and the crystal precipitation characteristics of coal gasification slag at multiple calcination temperatures were predicted. The optimal firing temperature for foaming coal gasification slag is predicted from the crystal precipitation characteristics.

また、請求項4に記載の石炭ガス化スラグの最適焼成温度予測プログラムは、石炭を石炭ガス化処理して得られる石炭ガス化スラグを発泡させる為の最適焼成温度を予測するプログラムであって、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件と記憶させて石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づく熱力学的平衡計算を複数の焼成温度に対して実行し、複数の焼成温度での石炭ガス化スラグの結晶析出特性を予測する処理と、結晶析出特性から石炭ガス化スラグを発泡させる為に最適な焼成温度を予測する処理とをコンピュータに実行させるものである。   Moreover, the optimal calcination temperature prediction program of coal gasification slag of Claim 4 is a program which estimates the optimal calcination temperature for foaming the coal gasification slag obtained by coal gasification processing of coal, The thermodynamic equilibrium calculation based on the elemental composition of coal ash and the calcination conditions of coal gasification slag is performed for multiple calcination temperatures. , Which causes the computer to execute the process of predicting the crystal precipitation characteristics of coal gasification slag at multiple firing temperatures and the process of predicting the optimal firing temperature for foaming coal gasification slag from the crystal precipitation characteristics is there.

焼成後に良好な発泡性を示す石炭ガス化スラグ中には、非晶質成分が維持されている。したがって、石炭ガス化スラグの焼成後の結晶析出特性を石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づく熱力学平衡計算を複数の焼成温度に対して行い、複数の焼成温度における石炭ガス化スラグの結晶析出特性を予測することにより、石炭ガス化スラグ中の成分が結晶質に支配されていないと予測される焼成温度範囲を決定して、その範囲内の最も高い焼成温度を最適焼成温度と予測することができる。   An amorphous component is maintained in the coal gasification slag that exhibits good foamability after firing. Therefore, the crystallization characteristics after calcination of coal gasification slag were calculated for multiple calcination temperatures by performing thermodynamic equilibrium calculation based on the elemental composition of coal ash and the calcination conditions of coal gasification slag. By predicting the crystal precipitation characteristics of coal gasification slag, it is possible to determine the firing temperature range in which the components in the coal gasification slag are predicted not to be controlled by the crystalline, and to set the highest firing temperature within that range. The optimum firing temperature can be predicted.

請求項1に記載の発明によれば、石炭ガス化スラグを実際に作製することなく、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件から石炭ガス化スラグの焼成後の発泡特性を予測することができるので、石炭ガス化処理を行うための高圧ガス化炉の運転経費や、石炭ガス化スラグを焼成処理して絶乾密度を測定する為の手間や時間を省くことができる。また、高品位炭と呼ばれる瀝青炭だけでなく、低品位炭と呼ばれる新しい石炭種の石炭ガス化複合発電への適用に際し、これらの加熱発泡特性を簡易に予測することが可能になる。   According to the first aspect of the present invention, the foaming characteristics after calcination of coal gasification slag can be predicted from the elemental composition of coal ash and the firing conditions of coal gasification slag without actually producing coal gasification slag. Therefore, it is possible to save the operating cost of the high pressure gasification furnace for performing the coal gasification treatment, and the labor and time for measuring the absolute dry density by firing the coal gasification slag. Moreover, when applying not only bituminous coal called high-grade coal but also a new coal type called low-grade coal to coal gasification combined power generation, it becomes possible to easily predict these heating and foaming characteristics.

請求項2に記載の発明によれば、石炭ガス化スラグを実際に作製することなく、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件から発泡に適した焼成温度を予測することができるので、石炭ガス化処理を行うための高圧ガス化炉の運転経費や、石炭ガス化スラグを焼成処理して絶乾密度を測定する為の手間や時間を省くことができる。また、高品位炭と呼ばれる瀝青炭だけでなく、低品位炭と呼ばれる新しい石炭種の石炭ガス化複合発電への適用に際し、これらの発泡に適した焼成温度を簡易に予測することが可能になる。   According to the second aspect of the present invention, it is possible to predict a firing temperature suitable for foaming from the elemental composition of coal ash and the firing conditions of the coal gasification slag without actually producing the coal gasification slag. Therefore, it is possible to save the operating cost of the high-pressure gasification furnace for performing the coal gasification process, and the time and labor for calcining the coal gasification slag and measuring the absolute dry density. In addition, not only bituminous coal called high-grade coal but also a new coal type called low-grade coal can be used for coal gasification combined power generation, and it becomes possible to easily predict the firing temperature suitable for foaming.

請求項3に記載の発明によれば、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件を入力するだけで、石炭ガス化スラグの焼成後の発泡特性を予測することが可能となる。したがって、石炭ガス化処理を行うための高圧ガス化炉の運転経費や、石炭ガス化スラグを焼成処理して絶乾密度を測定する為の手間や時間を省いて、様々な石炭種から得られる石炭ガス化スラグの加熱発泡特性を予測することが可能となる。   According to the third aspect of the present invention, it is possible to predict foaming characteristics after calcination of coal gasification slag only by inputting the elemental composition of ash content of coal and the firing conditions of coal gasification slag. Therefore, it can be obtained from various coal types without the operating cost of the high pressure gasification furnace for performing the coal gasification treatment and the labor and time for measuring the absolute dry density by firing the coal gasification slag. It becomes possible to predict the heating and foaming characteristics of coal gasification slag.

請求項4に記載の発明によれば、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件を入力するだけで、石炭ガス化スラグの発泡に適した焼成温度を予測することが可能となる。したがって、石炭ガス化処理を行うための高圧ガス化炉の運転経費や、石炭ガス化スラグを焼成処理して絶乾密度を測定する為の手間や時間を省いて、様々な石炭種から得られる石炭ガス化スラグの発泡に適した焼成温度を予測することが可能となる。   According to the fourth aspect of the present invention, it is possible to predict a firing temperature suitable for foaming of coal gasified slag simply by inputting the elemental composition of coal ash and the firing conditions of coal gasified slag. . Therefore, it can be obtained from various coal types without the operating cost of the high pressure gasification furnace for performing the coal gasification treatment and the labor and time for measuring the absolute dry density by firing the coal gasification slag. It becomes possible to predict a firing temperature suitable for foaming of coal gasification slag.

以下、本発明を実施するための最良の形態について、図面に基づいて詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

本発明の石炭ガス化スラグの加熱発泡特性予測方法は、石炭を石炭ガス化処理して得られる石炭ガス化スラグの加熱発泡特性を予測する方法であって、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づいて熱力学平衡計算を行い、石炭ガス化スラグの焼成後の結晶析出特性を予測して、結晶析出特性から石炭ガス化スラグの焼成後の発泡状態を予測するようにしている。   The method for predicting the heating and foaming characteristics of coal gasification slag according to the present invention is a method for predicting the heating and foaming characteristics of coal gasification slag obtained by coal gasification treatment, wherein the elemental composition of coal ash and coal gas The thermodynamic equilibrium calculation is performed based on the calcination conditions of gasified slag, the crystal precipitation characteristics after calcination of coal gasification slag are predicted, and the foaming state after calcination of coal gasification slag is predicted from the crystal precipitation characteristics I have to.

本願発明者等は、焼成後に良好な発泡性を示す石炭ガス化スラグには共通の傾向があること、即ち、焼成後の石炭ガス化スラグをXRD分析することにより得られるXRDスペクトルにおいて、焼成後に良好な発泡性を示す石炭ガス化スラグは、図1に示すように、20°〜38°付近に観測されるブロードな非晶質ピークがベースラインに維持される傾向があることを知見した。   The inventors of the present application have a common tendency in coal gasification slag showing good foamability after firing, that is, in the XRD spectrum obtained by XRD analysis of the coal gasification slag after firing, As shown in FIG. 1, it was found that the coal gasification slag showing good foamability tends to maintain a broad amorphous peak observed in the vicinity of 20 ° to 38 ° at the baseline.

したがって、焼成後の石炭ガス化スラグをXRD分析して得られたXRDスペクトルにおいて、非晶質ピークがベースラインに維持されている場合には、石炭ガス化スラグの加熱発泡特性が良好であると評価することができる。つまり、焼成後の石炭ガス化スラグの結晶性を評価することでその発泡性の良否を評価することができる。結晶性の評価はXRD分析に限定されず、例えば石炭ガス化スラグの破面や光沢を外観観察することでも簡易に評価ができる。したがって、実際に作製した石炭ガス化スラグの加熱発泡特性を簡易に評価することを目的とした場合には、焼成後の石炭ガス化スラグの結晶性をXRD分析や外観観察して評価することで当該目的を達成することができ、加熱発泡特性の評価方法として非常に有効な手段となる。また、XRDスペクトルにおいて非晶質ピークが維持される焼成温度範囲であれば、焼成後の石炭ガス化スラグは発泡性が良好であると判断できるので、その焼成温度範囲内で最も高温の焼成温度を最適焼成温度と決定することも可能である。   Therefore, in the XRD spectrum obtained by XRD analysis of the coal gasified slag after calcination, when the amorphous peak is maintained at the baseline, the heating and foaming characteristics of the coal gasified slag are good. Can be evaluated. That is, the foamability can be evaluated by evaluating the crystallinity of the coal gasified slag after firing. The evaluation of crystallinity is not limited to the XRD analysis, and for example, it can be easily evaluated by observing the appearance of the fracture surface and gloss of the coal gasification slag. Therefore, when the purpose is to easily evaluate the heating and foaming characteristics of the actually produced coal gasification slag, the crystallinity of the coal gasification slag after firing is evaluated by XRD analysis or appearance observation. This object can be achieved, and it is a very effective means as a method for evaluating the heat foaming characteristics. Moreover, if it is a calcination temperature range in which an amorphous peak is maintained in the XRD spectrum, it can be judged that the coal gasified slag after calcination has good foaming properties, and therefore the highest calcination temperature within the calcination temperature range. Can be determined as the optimum firing temperature.

ここで、焼成後の石炭ガス化スラグの結晶性の評価は、熱力学平衡計算により行うことができる。つまり、実際に石炭ガス化スラグを作製することなく、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づいて熱力学平衡計算を行うことにより、結晶析出特性を予測することで、焼成後の石炭ガス化スラグの結晶性の評価を行うことができる。   Here, the crystallinity of the coal gasified slag after calcination can be evaluated by thermodynamic equilibrium calculation. In other words, without actually producing coal gasification slag, by predicting crystal precipitation characteristics by performing thermodynamic equilibrium calculation based on the elemental composition of coal ash and the firing conditions of coal gasification slag, The crystallinity of the coal gasified slag after firing can be evaluated.

石炭の灰分の元素組成は、石炭購入時のスペックとして容易に入手できるが、不明な場合には、JIS−M8815に準じて分析した灰組成に基づき決定することができる。   The elemental composition of the ash content of coal can be easily obtained as the specifications at the time of purchasing the coal, but if not known, it can be determined based on the ash composition analyzed according to JIS-M8815.

ここで、本発明における熱力学平衡計算とは、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づいてギブズ自由エネルギーが最小化される平衡組成を最適化手法により算出する手法である。   Here, the thermodynamic equilibrium calculation in the present invention is a method of calculating an equilibrium composition that minimizes the Gibbs free energy based on the elemental composition of coal ash and the firing conditions of coal gasification slag by an optimization method. is there.

尚、石炭ガス化スラグの焼成条件とは、石炭ガス化スラグの焼成温度と焼成時のガス組成とを意味している。   The coal gasification slag firing conditions mean the coal gasification slag firing temperature and the gas composition during firing.

熱力学平衡計算を行うことにより、焼成後の石炭ガス化スラグに含まれる結晶の種類・量を評価することができる。   By performing thermodynamic equilibrium calculation, the kind and amount of crystals contained in the coal gasification slag after calcination can be evaluated.

熱力学平衡計算は、FactSage(GTT Technologies GmbH社)、Malt2(科学技術社)、Thermocalc(Thermotech社)、HSC Chemistry(Outokumpu Research社)等の市販のソフトウェアを使用して行うことができる。尚、石炭ガス化スラグの結晶種や結晶含有量(結晶含有率)を計算できるのであればこれらのソフトウェアを用いた計算方法に限定されるものではない。尚、熱力学平衡計算を行うことで、溶融液相の化学組成・量等も評価することも可能である。   The thermodynamic equilibrium calculation can be performed using commercially available software such as FactSage (GTT Technologies GmbH), Malt2 (Science & Technology), Thermocalc (Thermotech), HSC Chemistry (Outokumpu Research). In addition, if the crystal seed | species and crystal content (crystal content rate) of coal gasification slag can be calculated, it will not be limited to the calculation method using these software. In addition, it is also possible to evaluate the chemical composition and amount of the molten liquid phase by performing thermodynamic equilibrium calculation.

熱力学平衡計算により結晶析出特性を予測し、焼成後の石炭ガス化スラグに非晶質成分がほとんど維持されておらず結晶質に支配されていると判断される場合には、加熱発泡特性は不良と予測することができる。逆に、石炭ガス化スラグ中に非晶質成分が維持されていると判断される場合には、加熱発泡特性が良好と予測することができる。   When the crystal precipitation characteristics are predicted by thermodynamic equilibrium calculation, and it is judged that the amorphous component is hardly maintained in the coal gasification slag after calcination, the heating foaming characteristic is Can be predicted as bad. On the contrary, when it is judged that the amorphous component is maintained in the coal gasification slag, it can be predicted that the heat foaming characteristic is good.

また、複数の焼成温度に対して熱力学平衡計算を行って結晶析出特性を予測し、焼成後の石炭ガス化スラグ中に非晶質成分が維持されていると判断される焼成温度範囲を決定し、その範囲内における最高温度を最適焼成温度と予測することもできる。   In addition, perform thermodynamic equilibrium calculations for multiple firing temperatures to predict crystal precipitation characteristics and determine the firing temperature range in which it is determined that amorphous components are maintained in the coal gasified slag after firing. In addition, the maximum temperature within the range can be predicted as the optimum firing temperature.

ここで、加熱発泡特性の良否を、石炭ガス化スラグに含まれる結晶量(結晶含有率)から判断する手法について図2に基づいて具体的に説明する。図2の横軸は焼成温度、縦軸は熱力学平衡計算により各種焼成温度に対して求めた結晶含有率である。また、破線は結晶含有率閾値αを示している。閾値αは実験的に求めることができる。閾値αの求め方を例を挙げて説明すると以下のようになる。即ち、各種石炭について、これらの石炭の灰の元素組成と石炭ガス化スラグの焼成条件とに基づいて各種焼成温度に対して熱力学平衡計算を行って焼成後の石炭ガス化スラグの結晶含有率を求める。次に各種石炭からそれぞれ得られた石炭ガス化スラグを、熱力学平衡計算と同条件の焼成温度で焼成し、焼成後の石炭ガス化スラグの絶乾密度を測定する。そして、それぞれの石炭種について、熱力学平衡計算により得られた結晶含有率と、実測した絶乾密度とを比較し、所望の絶乾密度以下、例えばコンクリート用軽骨材料として用いる場合に好適な絶乾密度である1.6g/m以下となる焼成温度範囲を決定する。この焼成温度範囲内で最も高温の焼成温度における結晶含有率が、その石炭種において非晶質成分が維持されて加熱発泡特性の良好性が維持される結晶含有率の閾値である。この閾値を各種石炭に対して決定し、これらの平均値をとることで、閾値αが決定される。 Here, the method of judging the quality of the heating foaming property from the amount of crystals (crystal content) contained in the coal gasification slag will be specifically described based on FIG. In FIG. 2, the horizontal axis represents the firing temperature, and the vertical axis represents the crystal content obtained for various firing temperatures by thermodynamic equilibrium calculation. Moreover, the broken line has shown the crystal content rate threshold value (alpha). The threshold value α can be obtained experimentally. An example of how to determine the threshold value α is as follows. That is, for various coals, the crystal content of the coal gasification slag after firing by performing a thermodynamic equilibrium calculation for various firing temperatures based on the elemental composition of the ash of these coals and the firing conditions of the coal gasification slag Ask for. Next, the coal gasification slag obtained from each type of coal is fired at the firing temperature under the same conditions as the thermodynamic equilibrium calculation, and the absolutely dry density of the fired coal gasification slag is measured. Then, for each coal type, the crystal content obtained by thermodynamic equilibrium calculation is compared with the measured absolute dry density, which is suitable for use as a desired absolute dry density, for example, as a light bone material for concrete. A firing temperature range in which the absolute dry density is 1.6 g / m 3 or less is determined. The crystal content at the highest calcination temperature within this calcination temperature range is the threshold for the crystal content at which the amorphous component is maintained in the coal type and the good foaming characteristics are maintained. The threshold value α is determined by determining this threshold value for various types of coal and taking the average of these values.

閾値αは、焼成後の石炭ガス化スラグの加熱発泡特性が良否を判断する基準となる。即ち、熱力学平衡計算による焼成後の石炭ガス化スラグの結晶含有率が閾値α以下の場合には加熱発泡特性が良好であると判断できる。さらに、最適焼成温度を決定するための基準とすることもできる。例えば、同一炭種から得られる石炭ガス化スラグについて、各種焼成温度で熱力学平衡計算を行って、各種焼成温度に対して結晶含有率をプロットし、当該プロットデータをフィッティングして得られた直線(曲線)と閾値αとの交点における焼成温度を、加熱発泡特性が良好となる程度に非晶質成分が維持されつつ、発泡が十分に進行する温度であると決定できる。尚、フィッティングには最小二乗法等の公知の手法を用いることができる。   The threshold value α is a criterion for determining whether the heat foaming characteristics of the coal gasified slag after firing are good or bad. That is, when the crystal content of the coal gasification slag after calcination by the thermodynamic equilibrium calculation is equal to or less than the threshold value α, it can be determined that the heating foaming property is good. Furthermore, it can also be a standard for determining the optimum firing temperature. For example, for coal gasification slag obtained from the same coal type, a thermodynamic equilibrium calculation is performed at various firing temperatures, the crystal content is plotted against various firing temperatures, and a straight line obtained by fitting the plotted data The firing temperature at the intersection of the (curve) and the threshold value α can be determined to be a temperature at which foaming proceeds sufficiently while the amorphous component is maintained to such an extent that the heat-foaming characteristics are good. For fitting, a known method such as a least square method can be used.

図2に基づいてさらに具体的に説明する。図2における炭種cと炭種dから得られる石炭ガス化スラグは焼成温度を1100℃とした場合にも結晶含有率は閾値αよりも小さい。したがって、炭種cと炭種dから得られる石炭ガス化スラグは1100℃においても加熱発泡特性が良好であると判断される。炭種bから得られる石炭ガス化スラグについては、焼成温度がT℃を超えると、その結晶含有率が閾値αを超え、良好な加熱発泡特性が得られなくなる。したがって、良好な加熱発泡特性を得るためにはT℃以下、最も好ましくはT℃で焼成するのがよいと判断される。   A more specific description will be given based on FIG. The coal gasification slag obtained from the coal types c and d in FIG. 2 has a crystal content smaller than the threshold value α even when the firing temperature is 1100 ° C. Therefore, it is judged that the coal gasification slag obtained from the coal types c and d has good foaming characteristics even at 1100 ° C. As for the coal gasification slag obtained from the coal type b, when the firing temperature exceeds T ° C., the crystal content exceeds the threshold value α, and good heat foaming characteristics cannot be obtained. Therefore, in order to obtain good heat-foaming characteristics, it is judged that baking should be performed at T ° C. or less, most preferably at T ° C.

石炭ガス化スラグを焼成する際の温度は、良好な加熱発泡特性を維持できるのであれば、できるだけ低温で行うことが好ましい。図2に示す炭種cと炭種dは1100℃程度でも焼成できるが、焼成温度が1000℃を超えると石炭ガス化スラグがロータリーキルン内で融着を起こす虞がある。また、キルンによっては1000℃を超える温度で焼成できない場合があり、燃料費や製造コストを低減する観点からも、1000℃以下で焼成することが好ましい。   The temperature at which the coal gasification slag is fired is preferably as low as possible as long as good heat foaming characteristics can be maintained. The coal types c and d shown in FIG. 2 can be fired even at about 1100 ° C., but if the firing temperature exceeds 1000 ° C., the coal gasification slag may be fused in the rotary kiln. Further, some kilns cannot be fired at a temperature exceeding 1000 ° C., and it is preferable to fire at 1000 ° C. or less from the viewpoint of reducing fuel costs and manufacturing costs.

また、900℃以下の焼成温度でも加熱発泡特性が良好な石炭種も存在するが、一般的な石炭種においては、焼成温度を900℃以下とすると石炭ガス化スラグの加熱発泡特性が良好とならない場合があるので、900℃を超える温度で焼成することが好ましい。例えば、図2における炭種aは900℃未満で閾値αを超える為、石炭ガス化スラグを十分に発泡させる温度で焼成できず、加熱発泡特性は不良と判断される。   In addition, although there are coal types with good heating and foaming characteristics even at a firing temperature of 900 ° C. or less, in general coal types, when the firing temperature is 900 ° C. or less, the heating and foaming properties of coal gasification slag are not good. In some cases, firing at a temperature exceeding 900 ° C. is preferable. For example, since the coal type a in FIG. 2 is less than 900 ° C. and exceeds the threshold value α, it cannot be fired at a temperature at which the coal gasification slag is sufficiently foamed, and the heating and foaming characteristics are determined to be poor.

つまり、熱力学平衡計算は、広範囲な焼成温度に対して実行できるが、石炭ガス化スラグを十分に発泡させる為に必要な焼成温度と、キルンを用いた場合の上記問題点とを考慮すると、900℃超〜1000℃の焼成温度範囲で熱力学平衡計算を実行することが好ましい。   In other words, thermodynamic equilibrium calculation can be performed over a wide range of firing temperatures, but considering the firing temperature necessary to sufficiently foam coal gasification slag and the above problems when using a kiln, It is preferable to perform the thermodynamic equilibrium calculation in the firing temperature range of more than 900 ° C. to 1000 ° C.

以上、本発明の加熱発泡特性予測方法によれば、石炭ガス化スラグを確実に発泡させることのできる焼成温度域の予測や、特殊なロータリーキルンを用いることなく、一般的なロータリーキルンで確実に発泡できる焼成温度域の予測を行うことができる。   As described above, according to the method for predicting the heating and foaming characteristics of the present invention, it is possible to reliably foam with a general rotary kiln without predicting the firing temperature range where coal gasification slag can be reliably foamed or using a special rotary kiln. The firing temperature range can be predicted.

次に、本発明のプログラムについて、図3〜図5に基づいて説明する。   Next, the program of this invention is demonstrated based on FIGS.

本発明の加熱発泡予測プログラムは、例えば、加熱発泡特性予測装置1により実行される。図3に加熱発泡特性予測装置1の構成の一例を示す。加熱発泡特性予測装置1は、ディスプレイ等の出力装置2と、キーボード、マウス等の入力装置3と、演算処理を行う中央処理演算装置(CPU)4と、計算中のデータ、パラメータ等が記憶される主記憶装置(RAM)5と、計算結果等が記録される補助記憶装置としてのハードディスク6と、外部との通信を行う通信インタフェース7等とを備えている。尚、主記憶装置5及び補助記憶装置6を総称して、単に記憶装置ともいう。上記のハードウェア資源は例えばバス8を通じて電気的に接続されている。   The heating and foaming prediction program of the present invention is executed by, for example, the heating and foaming property prediction apparatus 1. FIG. 3 shows an example of the configuration of the heating and foaming characteristic prediction apparatus 1. The heating and foaming characteristic prediction device 1 stores an output device 2 such as a display, an input device 3 such as a keyboard and a mouse, a central processing arithmetic device (CPU) 4 that performs arithmetic processing, and data and parameters being calculated. A main storage device (RAM) 5, a hard disk 6 as an auxiliary storage device in which calculation results and the like are recorded, and a communication interface 7 for communicating with the outside. The main storage device 5 and the auxiliary storage device 6 are collectively referred to simply as a storage device. The above hardware resources are electrically connected through the bus 8, for example.

また、本発明の加熱発泡特性予測プログラムは、補助記憶装置6に記録されており、当該プログラムがCPU4に読み込まれ実行されることによって、コンピュータが加熱発泡特性予測装置1として機能する。その実行の際に必要なデータは、RAM5にロードされる。尚、上述のハードウェア構成は一例であってこれに限られるものではない。   Moreover, the heating foaming characteristic prediction program of the present invention is recorded in the auxiliary storage device 6, and the computer functions as the heating foaming characteristic prediction apparatus 1 by being read and executed by the CPU 4. Data necessary for the execution is loaded into the RAM 5. The above-described hardware configuration is an example, and the present invention is not limited to this.

図4に示す本発明の石炭ガス化スラグの加熱発泡特性予測プログラムは、石炭を石炭ガス化処理して得られる石炭ガス化スラグの加熱発泡特性を予測するプログラムであって、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とを記憶させて石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づく熱力学平衡計算を実行し、石炭ガス化スラグの焼成後の結晶析出特性を予測する処理と、結晶析出特性から石炭ガス化スラグの焼成後の発泡状態を予測する処理とをコンピュータに実行させるものである。具体的には、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とを入力するステップ(S1)と、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づいて熱力学的平衡計算を実行して石炭ガス化スラグの焼成後の結晶析出特性を予測するステップ(S2)と、結晶析出特性から石炭ガス化スラグの焼成後の発泡状態を予測するステップ(S3)とを少なくとも含んでいる。   The coal gasification slag heat foaming characteristic prediction program of the present invention shown in FIG. 4 is a program for predicting the heat foaming characteristic of coal gasification slag obtained by coal gasification treatment of coal, and is an element of coal ash content. Thermodynamic equilibrium calculation based on the elemental composition of coal ash and calcining conditions of coal gasification slag was performed by memorizing the composition and calcining conditions of coal gasification slag, and crystal precipitation characteristics after calcination of coal gasification slag And a process for predicting the foamed state after firing of the coal gasification slag from the crystal precipitation characteristics. Specifically, the thermodynamics based on the step (S1) of inputting the elemental composition of coal ash and the firing conditions of coal gasification slag, and the elemental composition of coal ash and the firing conditions of coal gasification slag. At least a step (S2) of performing equilibrium calculation to predict the crystal precipitation characteristics after firing of coal gasification slag and a step (S3) of predicting a foaming state after firing of coal gasification slag from the crystal precipitation characteristics Contains.

プログラムの実行にあたっては、石炭ガス化炉に供される石炭の灰分の元素組成と石炭ガス化スラグを焼成する際の焼成条件とを取得し、これを初期データとして入力する(S1)。この初期データは補助記憶装置6等に記憶される。   In executing the program, the elemental composition of the ash content of coal supplied to the coal gasification furnace and the firing conditions for firing the coal gasification slag are acquired and input as initial data (S1). This initial data is stored in the auxiliary storage device 6 or the like.

石炭ガス化スラグを焼成する際の焼成条件とは、石炭ガス化スラグの焼成温度と焼成時のガス組成である。   The firing conditions for firing the coal gasification slag are the firing temperature of the coal gasification slag and the gas composition during firing.

次に、初期データに基づいて熱力学平衡計算を実行して、石炭ガス化スラグの焼成後の結晶析出特性を予測する処理(S2)をコンピュータに実行させる。熱力学平衡計算は、上述した方法と同様の方法で行う。   Next, thermodynamic equilibrium calculation is executed based on the initial data, and the computer is caused to execute a process (S2) for predicting the crystal precipitation characteristics after calcination of the coal gasification slag. The thermodynamic equilibrium calculation is performed by the same method as described above.

次に、結晶析出特性から石炭ガス化スラグの焼成後の発泡状態を予測する処理(S3)をコンピュータに実行させる。石炭ガス化スラグ中の成分が結晶質に支配されていないと予測される場合には、加熱発泡特性が良好であると予測することができる。加熱発泡特性が良好か否かの判断は上述した閾値αを記憶装置に予め記憶させておき、この閾値αを基準として行う。つまり、S2で熱力学平衡計算から得られた結晶析出特性である結晶含有率が、閾値αを超える場合(S3;Yes)には加熱発泡特性が不良と判断され(S5)、閾値α以下の場合(S3;No)には加熱発泡特性が良好と判断され(S4)、この判断結果が出力装置2に出力される。   Next, the computer is caused to execute a process (S3) for predicting the foaming state after firing the coal gasification slag from the crystal precipitation characteristics. When it is predicted that the components in the coal gasification slag are not controlled by the crystallinity, it can be predicted that the heat foaming characteristics are good. The determination as to whether the heating and foaming characteristics are good or not is made by previously storing the above-described threshold value α in a storage device and using this threshold value α as a reference. That is, when the crystal content, which is the crystal precipitation characteristic obtained from the thermodynamic equilibrium calculation in S2, exceeds the threshold value α (S3; Yes), it is determined that the heating foaming characteristic is poor (S5), and the threshold value α or less. In the case (S3; No), it is determined that the heating and foaming characteristics are good (S4), and the determination result is output to the output device 2.

ここで、図3に示す加熱発泡特性予測装置1は石炭ガス化スラグを発泡させるための最適焼成温度予測装置として用いることもできる。   Here, the heating foaming characteristic prediction apparatus 1 shown in FIG. 3 can also be used as an optimum firing temperature prediction apparatus for foaming coal gasification slag.

最適焼成温度予測プログラムは、例えば最適焼成温度予測装置により実行される。尚、最適焼成温度予測装置の構成は、上述の加熱発泡特性予測装置1と同様であり説明を省略する。   The optimum firing temperature prediction program is executed by, for example, an optimum firing temperature prediction device. The configuration of the optimum firing temperature predicting device is the same as that of the above-described heating foaming property predicting device 1, and the description thereof is omitted.

また、本発明の最適焼成温度予測プログラムは、補助記憶装置6に記録されており、当該プログラムがCPU4に読み込まれ実行されることによって、コンピュータが最高焼成温度予測装置1として機能する。その実行の際に必要なデータは、RAM5にロードされる。尚、上述のハードウェア構成は一例であってこれに限られるものではない。   The optimum firing temperature prediction program of the present invention is recorded in the auxiliary storage device 6, and the computer functions as the maximum firing temperature prediction device 1 when the program is read and executed by the CPU 4. Data necessary for the execution is loaded into the RAM 5. The above-described hardware configuration is an example, and the present invention is not limited to this.

図5に示す最適焼成温度予測プログラムは、石炭を石炭ガス化処理して得られる石炭ガス化スラグを発泡させる為の最適焼成温度を予測するプログラムであって、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件と記憶させて石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づく熱力学的平衡計算を複数の焼成温度に対して実行し、複数の焼成温度での石炭ガス化スラグの結晶析出特性を予測する処理と、結晶析出特性から石炭ガス化スラグを発泡させる為に最適な焼成温度を予測する処理とをコンピュータに実行させるものである。具体的には、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とを入力するステップ(S11)と、石炭の灰分の元素組成と石炭ガス化スラグの焼成条件とに基づいて熱力学的平衡計算を複数の焼成温度に対して実行して石炭ガス化スラグの焼成後の結晶析出特性を予測するステップ(S12)と、焼成温度に対する結晶含有率を表す関数Fを決定するステップ(S13)と、関数Fから閾値αにおける焼成温度を計算処理するステップ(S14)と、計算処理結果を最適焼成温度として出力するステップ(S15)とを少なくとも含んでいる。S13〜S15が結晶析出特性から石炭ガス化スラグを発泡させる為に最適な焼成温度を予測する処理である。   The optimum firing temperature prediction program shown in FIG. 5 is a program for predicting the optimum firing temperature for foaming coal gasification slag obtained by coal gasification treatment of coal. The thermodynamic equilibrium calculation based on the ash slag element composition and the coal gasification slag calcination condition is performed for multiple calcination temperatures, and the coal gas at multiple calcination temperatures is stored. The computer executes a process for predicting the crystallization slag crystal precipitation characteristics and a process for predicting the optimum firing temperature for foaming the coal gasification slag from the crystal precipitation characteristics. Specifically, the step (S11) of inputting the elemental composition of coal ash and the firing conditions of coal gasification slag, and the thermodynamics based on the elemental composition of coal ash and the firing conditions of coal gasification slag. A step of performing equilibrium calculation for a plurality of calcination temperatures to predict crystal precipitation characteristics after calcination of coal gasification slag (S12), and a step of determining a function F representing a crystal content with respect to the calcination temperature (S13) And a step (S14) of calculating the firing temperature at the threshold value α from the function F and a step (S15) of outputting the calculation processing result as the optimum firing temperature. S13 to S15 are processes for predicting the optimum firing temperature for foaming the coal gasification slag from the crystal precipitation characteristics.

プログラムの実行にあたっては、石炭ガス化炉に供される石炭の灰分の元素組成と石炭ガス化スラグを焼成する際の焼成条件とを取得し、これを初期データとして入力する(S11)。この初期データは補助記憶装置6等に記憶される。   In executing the program, the element composition of the ash content of coal supplied to the coal gasification furnace and the firing conditions for firing the coal gasification slag are acquired and input as initial data (S11). This initial data is stored in the auxiliary storage device 6 or the like.

石炭ガス化スラグを焼成する際の焼成条件とは、石炭ガス化スラグの焼成温度と焼成時のガス組成とである。尚、最適焼成温度予測プログラムを実行させる場合には、初期データとして焼成温度を複数入力しておく。   The firing conditions for firing the coal gasification slag are the firing temperature of the coal gasification slag and the gas composition during firing. When the optimum firing temperature prediction program is executed, a plurality of firing temperatures are input as initial data.

ここで、最適焼成温度予測プログラムにおいて、熱力学平衡計算は、広範囲な焼成温度に対して実行できるが、上述したように、一般的な石炭種においては、焼成温度を900℃以下とすると石炭ガス化スラグの加熱発泡特性が不良となる虞があり、また、実際に石炭ガス化スラグをロータリーキルンにより焼成する場合を考えると焼成温度を1000℃以下とすることが好ましいので、初期データとして入力する焼成温度は、900℃超〜1000℃の範囲で選択するのが好ましい。   Here, in the optimum calcining temperature prediction program, the thermodynamic equilibrium calculation can be executed over a wide range of calcining temperatures. However, as described above, in general coal types, when the calcining temperature is 900 ° C. or less, coal gas There is a risk that the heat-foaming characteristics of the slag will be poor, and considering the case where the coal gasification slag is actually fired by a rotary kiln, it is preferable to set the firing temperature to 1000 ° C. or lower. The temperature is preferably selected in the range of more than 900 ° C to 1000 ° C.

次に、初期データに基づいて熱力学平衡計算を実行し、複数の焼成温度に対する石炭ガス化スラグの結晶析出特性を予測する処理(S12)をコンピュータに実行させる。熱力学平衡計算は、上述した方法と同様の方法で行う。   Next, thermodynamic equilibrium calculation is executed based on the initial data, and the computer is caused to execute processing (S12) for predicting the crystal precipitation characteristics of coal gasification slag for a plurality of firing temperatures. The thermodynamic equilibrium calculation is performed by the same method as described above.

次に、結晶析出特性から石炭ガス化スラグを発泡させるための最適焼成温度を予測する処理(S13〜S15)をコンピュータに実行させる。具体的には、焼成後の石炭ガス化スラグ中に非晶質成分が十分に維持されていて加熱発泡特性が良好であると判断される焼成温度範囲を決定し、その範囲内における最高温度を最適焼成温度と予測する。加熱発泡特性が良好か否かの判断は上述した閾値αを記憶装置に予め記憶させておき、この閾値αを基準として行う。つまり、複数の焼成温度に対する結晶含有率データから焼成温度に対する結晶含有率を表す関数Fが決定され(S13)、当該関数Fから閾値αにおける焼成温度が計算されて(S14)、その温度が最適焼成温度として出力装置2に出力される(S15)。尚、関数Fは、複数の焼成温度に対する結晶含有率データから最小二乗法などの公知の手法によりフィッティングして得ることが可能である。   Next, the computer is caused to execute processing (S13 to S15) for predicting the optimum firing temperature for foaming the coal gasification slag from the crystal precipitation characteristics. Specifically, the firing temperature range in which the amorphous component is sufficiently maintained in the fired coal gasification slag and the heating foaming property is judged to be good is determined, and the maximum temperature within that range is determined. Predict the optimum firing temperature. The determination as to whether the heating and foaming characteristics are good or not is made by previously storing the above-described threshold value α in a storage device and using this threshold value α as a reference. That is, a function F representing the crystal content with respect to the firing temperature is determined from the crystal content data for a plurality of firing temperatures (S13), and the firing temperature at the threshold α is calculated from the function F (S14), and the temperature is optimal. The firing temperature is output to the output device 2 (S15). The function F can be obtained by fitting from a crystal content data for a plurality of firing temperatures by a known method such as a least square method.

以上、本発明により、石炭ガス化スラグの加熱発泡特性と最適焼成温度とを、実際に石炭ガス化スラグを作製することなく予測することができる。そして、この予測結果から、石炭ガス化スラグの発泡性が良好となる石炭種を選択して石炭ガス化複合発電に供することができるのは勿論のこと、発泡性が良くない石炭種であっても、発泡性が良好となる石炭灰の元素組成に近づくように添加剤等を添加して石炭ガス化炉に供することで、最終生成物である石炭ガス化スラグの加熱発泡特性を良好なものとすることができる。したがって、本発明は、あらゆる種類の石炭の石炭ガス化複合発電への適用適用可能性を高めて、その早期実用化に大きく貢献するものである。   As described above, according to the present invention, it is possible to predict the heating and foaming characteristics and optimum firing temperature of coal gasification slag without actually producing coal gasification slag. And from this prediction result, it is possible to select a coal type that provides good coal gasification slag foaming ability and use it for coal gasification combined power generation. However, by adding additives to the coal gasification furnace so as to approach the elemental composition of coal ash with good foaming properties, it is possible to improve the heat foaming characteristics of the final product, coal gasification slag. It can be. Therefore, the present invention increases applicability of all types of coal to combined coal gasification combined power generation, and greatly contributes to its early practical application.

尚、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

以下実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
(1)試料作製
国内火力発電所で一般的に使用されている瀝青炭であるA炭、B炭、C炭及びD炭を、石炭ガス化炉(電力中央研究所)で処理し、A炭スラグ、B炭スラグ、C炭スラグ及びD炭スラグを得た。これらの石炭灰分の組成を表1に示す。
(Example 1)
(1) Sample preparation Coal A, B, C and D, which are bituminous coals commonly used in domestic thermal power plants, are processed in a coal gasifier (Electric Power Research Laboratory), and A coal slag B charcoal slag, C charcoal slag and D charcoal slag were obtained. Table 1 shows the composition of these coal ash contents.

A炭スラグ、B炭スラグ、C炭スラグ及びD炭スラグの焼成には、正確な温度設定が可能なマッフル炉を用い、大気雰囲気下において、700℃〜1100℃で加熱した。   For firing A coal slag, B coal slag, C coal slag, and D coal slag, a muffle furnace capable of accurate temperature setting was used and heated at 700 ° C. to 1100 ° C. in an air atmosphere.

以上、A炭スラグ、B炭スラグ、C炭スラグ及びD炭スラグから、以下に示す試料A−1から試料D−7を得た。
試料A−1:未焼成A炭スラグ
試料A−2:1000℃焼成A炭スラグ
試料B−1:700℃焼成B炭スラグ
試料B−2:800℃焼成B炭スラグ
試料B−3:900℃焼成B炭スラグ
試料B−4:1000℃焼成B炭スラグ
試料B−5:1100℃焼成B炭スラグ
試料C−1:700℃焼成C炭スラグ
試料C−2:800℃焼成C炭スラグ
試料C−3:900℃焼成C炭スラグ
試料C−4:1000℃焼成C炭スラグ
試料C−5:1100℃焼成C炭スラグ
試料D−1:未焼成D炭スラグ
試料D−2:800℃焼成D炭スラグ
試料D−3:900℃焼成D炭スラグ
試料D−4:950℃焼成D炭スラグ
試料D−5:1000℃焼成D炭スラグ
試料D−6:1050℃焼成D炭スラグ
試料D−7:1100℃焼成D炭スラグ
As mentioned above, sample A-7 was obtained from sample A-1 shown below from A coal slag, B coal slag, C coal slag, and D coal slag.
Sample A-1: Unfired A charcoal slag sample A-2: 1000 ° C calcined A charcoal slag sample B-1: 700 ° C calcined B charcoal slag sample B-2: 800 ° C calcined B charcoal slag sample B-3: 900 ° C Calcined B charcoal slag sample B-4: 1000 ° C calcined B charcoal slag sample B-5: 1100 ° C calcined B charcoal slag sample C-1: 700 ° C calcined C charcoal slag sample C-2: 800 ° C calcined C charcoal slag sample C -3: 900 ° C calcined C charcoal slag sample C-4: 1000 ° C calcined C charcoal slag sample C-5: 1100 ° C calcined C charcoal slag sample D-1: Unfired D charcoal slag sample D-2: 800 ° C calcined D Charcoal slag sample D-3: 900 ° C calcined D charcoal slag sample D-4: 950 ° C calcined D charcoal slag sample D-5: 1000 ° C calcined D charcoal slag sample D-6: 1050 ° C calcined D charcoal slag sample D-7 : 1100 ℃ calcined D charcoal slag

(2)加熱発泡性評価
試料A−1から試料D−7の絶乾密度を測定し、加熱発泡特性の良否を判断した。加熱発泡特性の良否は、コンクリート用軽骨材料として用いる場合に好適と判断される絶乾密度(1.6g/cm以下)を基準とした。即ち、スラグの絶乾密度が1.6g/cm以下の場合には、加熱発泡特性を「良」と判断し、1.6g/cmを超えた場合には、加熱発泡特性を「不良」と判断した。
(2) Heat-foaming property evaluation The absolute dry density of sample A-1 to sample D-7 was measured, and the quality of the heat-foaming property was judged. The quality of the heat-foaming property was based on the absolute dry density (1.6 g / cm 3 or less) judged to be suitable when used as a light bone material for concrete. That is, when the absolute dry density of the slag is 1.6 g / cm 3 or less, the heating foaming characteristic is judged as “good”, and when it exceeds 1.6 g / cm 3 , the heating foaming characteristic is judged as “bad”. I decided.

(3)XRD測定
試料A−1から試料D−7のXRD測定には、日本電子製JDX−8030を用いた。測定条件は、管電圧を40kV、管電流を30A、ステップ角度を0.04°、計数時間を10秒、測定角度を5〜70°、発散スリットを2°、受光スリットを0.04mm、散乱スリットを2°とした。尚、XRD測定装置や測定条件は本実施例で示されたものには限定されず、一般的に用いられているXRD測定装置や測定条件により、適宜実施可能である。
(3) XRD measurement JDX-8030 made from JEOL was used for the XRD measurement of the sample A-1 to the sample D-7. Measurement conditions are: tube voltage 40 kV, tube current 30 A, step angle 0.04 °, counting time 10 seconds, measurement angle 5 to 70 °, diverging slit 2 °, light receiving slit 0.04 mm, scattering The slit was 2 °. Note that the XRD measurement apparatus and measurement conditions are not limited to those shown in the present embodiment, and can be appropriately implemented according to commonly used XRD measurement apparatuses and measurement conditions.

(4)XRD測定結果と加熱発泡性評価結果
(4−1)A炭スラグ
試料A−1と試料A−2をXRD測定した結果を図6に示す。試料A−1では、20°〜38°にブロードな非晶質ピークが観測された。この非晶質ピークは、試料A−2においても維持されていた。また、試料A−2の加熱発泡性は「良」と判断された。
(4) XRD measurement result and heating foamability evaluation result (4-1) A charcoal slag The result of XRD measurement of sample A-1 and sample A-2 is shown in FIG. In sample A-1, a broad amorphous peak was observed at 20 ° to 38 °. This amorphous peak was maintained also in sample A-2. Moreover, the heat foamability of sample A-2 was determined to be “good”.

(4−2)B炭スラグ
試料B−1から試料B−5をXRD測定した結果を図7に示す。試料B−4及び試料B−5では、シャープな結晶質ピークが観測されたものの、全試料において、20°〜38°に観測されるブロードな非晶質ピークは維持されていた。また、試料B−4及び試料B−5の加熱発泡性は「良」と判断された。尚、試料B−1、試料B−2及び試料B−3については、焼成温度が低かったため、加熱発泡性は「不良」と判断された。
(4-2) B charcoal slag The results of XRD measurement of Sample B-1 to Sample B-5 are shown in FIG. In Sample B-4 and Sample B-5, a sharp crystalline peak was observed, but a broad amorphous peak observed at 20 ° to 38 ° was maintained in all samples. Moreover, the heat foamability of sample B-4 and sample B-5 was determined to be “good”. In addition, about sample B-1, sample B-2, and sample B-3, since the calcination temperature was low, the heat foaming property was judged to be "poor".

(4−3)C炭スラグ
試料C−1から試料C−5をXRD測定した結果を図8に示す。試料C−4及び試料C−5では、シャープな結晶質ピークが観測されたものの、全試料において、20°〜38°に観測されるブロードな非晶質ピークは維持されていた。また、試料C−4及び試料C−5の加熱発泡性は「良」と判断された。尚、試料C−1、試料C−2及び試料C−3については、焼成温度が低かったため、加熱発泡性は「不良」と判断された。
(4-3) C charcoal slag FIG. 8 shows the results of XRD measurement of samples C-1 to C-5. In Sample C-4 and Sample C-5, a sharp crystalline peak was observed, but a broad amorphous peak observed at 20 ° to 38 ° was maintained in all samples. Moreover, the heat foamability of sample C-4 and sample C-5 was determined to be “good”. In addition, about sample C-1, sample C-2, and sample C-3, since the calcination temperature was low, the heat foaming property was judged to be "poor".

(4−4)D炭スラグ
試料D−1から試料D−7をXRD測定した結果を図9に示す。試料D−1、試料D−2及び試料D−3では、20°〜38°にブロードな非晶質ピークが観測されたが、試料D−4、試料D−5、試料D−6及び試料D−7では、このブロードな非晶質ピークが観測されず、シャープな結晶質ピークのみが観測され、加熱発泡性は「不良」と判断された。尚、試料D−2及び試料D−3については、焼成温度が低かったため、加熱発泡性は「不良」と判断された。
(4-4) D charcoal slag The results of XRD measurement of Sample D-1 to Sample D-7 are shown in FIG. In Sample D-1, Sample D-2, and Sample D-3, a broad amorphous peak was observed at 20 ° to 38 °, but Sample D-4, Sample D-5, Sample D-6, and Sample D In D-7, this broad amorphous peak was not observed, but only a sharp crystalline peak was observed, and the heat foamability was judged to be “poor”. In addition, about the sample D-2 and the sample D-3, since the calcination temperature was low, the heat foamability was judged to be "poor".

以上の結果から、XRDにより測定されるスラグの非晶質ピークと加熱発泡特性には相関があることが示された。即ち、900℃を超える温度で加熱をした際にもスラグの非晶質ピークが維持されていれば、加熱発泡特性は良好、即ち、コンクリート用軽骨材料として用いる場合に好適と判断される絶乾密度である1.6g/cm以下となることが明らかとなった。 From the above results, it was shown that there is a correlation between the amorphous peak of slag measured by XRD and the heat foaming characteristics. That is, if the amorphous peak of slag is maintained even when heated at a temperature exceeding 900 ° C., the heat foaming characteristics are good, that is, it is judged to be suitable for use as a light bone material for concrete. It was revealed that the dry density was 1.6 g / cm 3 or less.

したがって、焼成後の石炭ガス化スラグ成分にXRD測定で検出可能な量の非晶質成分が存在していれば、加熱発泡特性は良好であると判断できることから、焼成後の石炭ガス化スラグ中に非晶質成分が存在しているか否かを評価することで、加熱発泡特性を簡易に判断することが可能である。例えば、スラグの破面や光沢を外観観察することで、非晶質成分の存在を確認し、加熱発泡特性を見極めることも可能である。また、焼成後の石炭ガス化スラグの結晶析出特性は既知の熱力学平衡計算により、石炭灰の元素組成と石炭ガス化スラグの焼成条件に基づいて求めることができ、この計算結果から加熱発泡特性を予測することができる。   Accordingly, if there is an amorphous component in an amount detectable by XRD measurement in the coal gasified slag component after calcination, it can be determined that the heat-foaming characteristics are good. It is possible to easily determine the heat-foaming characteristics by evaluating whether or not an amorphous component is present. For example, by visually observing the fracture surface and gloss of the slag, it is possible to confirm the presence of the amorphous component and determine the heat foaming characteristics. Moreover, the crystal precipitation characteristics of coal gasified slag after firing can be determined based on the elemental composition of coal ash and the firing conditions of coal gasified slag by known thermodynamic equilibrium calculations. Can be predicted.

また、各種焼成温度で焼成した石炭ガス化スラグをXRD測定して、XRD測定で検出可能な量の非晶質成分が存在しうる焼成温度の範囲を決定し、その範囲内における最高温度を最適焼成温度と決定することができる。したがって、複数の焼成温度に対して熱力学平衡計算を行って結晶析出特性を予測し、焼成後の石炭ガス化スラグ中に非晶質成分が十分に維持されていると判断される焼成温度範囲を決定し、その範囲内における最高温度を最適焼成温度と予測することもできる。   Also, the coal gasification slag fired at various firing temperatures is subjected to XRD measurement to determine the firing temperature range in which an amount of amorphous component detectable by XRD measurement can be present, and the maximum temperature within that range is optimized. The firing temperature can be determined. Therefore, a thermodynamic equilibrium calculation is performed for a plurality of firing temperatures to predict crystal precipitation characteristics, and a firing temperature range in which it is determined that the amorphous component is sufficiently maintained in the coal gasification slag after firing. And the maximum temperature within the range can be predicted as the optimum firing temperature.

石炭ガス化スラグの非晶質ピークを示す図である。It is a figure which shows the amorphous peak of coal gasification slag. 閾値αを基準として加熱発泡特性予測と最適焼成温度予測を行う方法を示す模式図である。It is a schematic diagram which shows the method of performing heating foaming characteristic prediction and optimal baking temperature prediction on the basis of threshold value (alpha). 加熱発泡特性予測装置のハードウェア構成図の一例である。It is an example of the hardware block diagram of a heating foaming characteristic prediction apparatus. 本発明の加熱発泡予測プログラムのフローチャートを示す図である。It is a figure which shows the flowchart of the heating foam prediction program of this invention. 本発明の最適焼成温度予測プログラムのフローチャートを示す図である。It is a figure which shows the flowchart of the optimal baking temperature prediction program of this invention. A炭から作製したスラグのXRD分析結果を示す図である。It is a figure which shows the XRD analysis result of the slag produced from A charcoal. B炭から作製したスラグのXRD分析結果を示す図である。It is a figure which shows the XRD analysis result of the slag produced from B charcoal. C炭から作製したスラグのXRD分析結果を示す図である。It is a figure which shows the XRD analysis result of the slag produced from C charcoal. D炭から作製したスラグのXRD分析結果を示す図である。It is a figure which shows the XRD analysis result of the slag produced from D charcoal.

Claims (4)

石炭を石炭ガス化処理して得られる石炭ガス化スラグの加熱発泡特性を予測する方法であって、前記石炭の灰分の元素組成と前記石炭ガス化スラグの焼成条件とに基づいて熱力学平衡計算を行い、前記石炭ガス化スラグの焼成後の結晶析出特性を予測して、前記結晶析出特性から前記石炭ガス化スラグの焼成後の発泡状態を予測することを特徴とする石炭ガス化スラグの加熱発泡特性予測方法。   A method for predicting the heating and foaming characteristics of coal gasification slag obtained by coal gasification treatment, wherein thermodynamic equilibrium calculation is performed based on the elemental composition of ash in the coal and the firing conditions of the coal gasification slag. Predicting the crystal precipitation characteristics after firing of the coal gasification slag, and predicting the foaming state after firing of the coal gasification slag from the crystal precipitation characteristics, heating the coal gasification slag Foaming property prediction method. 石炭を石炭ガス化処理して得られる石炭ガス化スラグを発泡させる為の最適焼成温度を予測する方法であって、前記石炭の灰分の元素組成と前記石炭ガス化スラグの焼成条件とに基づく熱力学平衡計算を複数の焼成温度に対して行い、前記複数の焼成温度での前記石炭ガス化スラグの結晶析出特性を予測して、前記結晶析出特性から前記石炭ガス化スラグを発泡させる為に最適な焼成温度を予測することを特徴とする石炭ガス化スラグの最適焼成温度予測方法。   A method for predicting an optimum firing temperature for foaming coal gasification slag obtained by coal gasification treatment of coal, wherein the heat is based on the elemental composition of the coal ash and the firing conditions of the coal gasification slag. Optimal for foaming the coal gasification slag from the crystal precipitation characteristics by performing dynamic equilibrium calculation for a plurality of firing temperatures and predicting the crystal precipitation characteristics of the coal gasification slag at the plurality of firing temperatures. A method for predicting the optimum firing temperature of coal gasification slag characterized by predicting a suitable firing temperature. 石炭を石炭ガス化処理して得られる石炭ガス化スラグの加熱発泡特性を予測するプログラムであって、前記石炭の灰分の元素組成と前記石炭ガス化スラグの焼成条件とを記憶させて前記石炭の灰分の元素組成と前記石炭ガス化スラグの焼成条件とに基づく熱力学平衡計算を実行し、前記石炭ガス化スラグの焼成後の結晶析出特性を予測する処理と、前記結晶析出特性から前記石炭ガス化スラグの焼成後の発泡状態を予測する処理とをコンピュータに実行させることを特徴とする石炭ガス化スラグの加熱発泡特性予測プログラム。   A program for predicting the heating and foaming characteristics of coal gasification slag obtained by coal gasification treatment, comprising storing the elemental composition of ash in the coal and the firing conditions of the coal gasification slag and storing the coal A thermodynamic equilibrium calculation based on the elemental composition of ash and the firing conditions of the coal gasification slag is performed, and a process for predicting the crystal precipitation characteristics after firing the coal gasification slag, and the coal gas from the crystal precipitation characteristics A program for predicting the heating and foaming characteristics of coal gasification slag, which causes a computer to execute a process for predicting the foaming state after calcination of slag. 石炭を石炭ガス化処理して得られる石炭ガス化スラグを発泡させる為の最適焼成温度を予測するプログラムであって、前記石炭の灰分の元素組成と前記石炭ガス化スラグの焼成条件と記憶させて前記石炭の灰分の元素組成と前記石炭ガス化スラグの焼成条件とに基づく熱力学的平衡計算を複数の焼成温度に対して実行し、前記複数の焼成温度での前記石炭ガス化スラグの結晶析出特性を予測する処理と、前記結晶析出特性から前記石炭ガス化スラグを発泡させる為に最適な焼成温度を予測する処理とをコンピュータに実行させることを特徴とする石炭ガス化スラグの最適焼成温度予測プログラム。   A program for predicting the optimum firing temperature for foaming coal gasification slag obtained by coal gasification treatment, and storing the elemental composition of the ash content of coal and the firing conditions of the coal gasification slag A thermodynamic equilibrium calculation based on the elemental composition of the coal ash and the firing conditions of the coal gasification slag is performed for a plurality of firing temperatures, and the coal gasification slag is crystallized at the firing temperatures. A process for predicting characteristics, and a process for predicting an optimum firing temperature for foaming the coal gasification slag from the crystal precipitation characteristics. program.
JP2006272307A 2006-10-03 2006-10-03 Heat foaming characteristic of coal gasification slag, method for estimating optimum baking temperature and its program Pending JP2008088331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272307A JP2008088331A (en) 2006-10-03 2006-10-03 Heat foaming characteristic of coal gasification slag, method for estimating optimum baking temperature and its program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272307A JP2008088331A (en) 2006-10-03 2006-10-03 Heat foaming characteristic of coal gasification slag, method for estimating optimum baking temperature and its program

Publications (1)

Publication Number Publication Date
JP2008088331A true JP2008088331A (en) 2008-04-17

Family

ID=39372808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272307A Pending JP2008088331A (en) 2006-10-03 2006-10-03 Heat foaming characteristic of coal gasification slag, method for estimating optimum baking temperature and its program

Country Status (1)

Country Link
JP (1) JP2008088331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269760A (en) * 2008-04-30 2009-11-19 Central Res Inst Of Electric Power Ind Manufacturing method and manufacturing system of coal gasified slag foam
JP2012180272A (en) * 2012-04-23 2012-09-20 Central Research Institute Of Electric Power Industry Manufacturing method and manufacturing system of coal gasification slag foam
KR20190034900A (en) * 2017-09-25 2019-04-03 한국서부발전 주식회사 Selective Partitioning Based Slag Composition Prediction Method for Entrained Flow Coal Gasifiers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269760A (en) * 2008-04-30 2009-11-19 Central Res Inst Of Electric Power Ind Manufacturing method and manufacturing system of coal gasified slag foam
JP2012180272A (en) * 2012-04-23 2012-09-20 Central Research Institute Of Electric Power Industry Manufacturing method and manufacturing system of coal gasification slag foam
KR20190034900A (en) * 2017-09-25 2019-04-03 한국서부발전 주식회사 Selective Partitioning Based Slag Composition Prediction Method for Entrained Flow Coal Gasifiers
KR101966544B1 (en) * 2017-09-25 2019-04-05 한국서부발전 주식회사 Selective Partitioning Based Slag Composition Prediction Method for Entrained Flow Coal Gasifiers

Similar Documents

Publication Publication Date Title
Ren et al. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia
Wan et al. Microstructure-sensitive fatigue crack nucleation in a polycrystalline Ni superalloy
Kang et al. Thermal cracking and corresponding permeability of Fushun oil shale
Park et al. Determining thermal properties of gypsum board at elevated temperatures
Jess et al. Influence of mass transfer on thermogravimetric analysis of combustion and gasification reactivity of coke
Chen et al. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis
Skybakmoen et al. Quality evaluation of nitride bonded silicon carbide sidelining materials
Xing et al. Changes in pore structure of metallurgical cokes under blast furnace conditions
Kosowska-Golachowska et al. Determination of the effective thermal conductivity of solid fuels by the laser flash method
Daley et al. The impact of ash pellet characteristics and pellet processing parameters on ash fusion behaviour
Cernuschi et al. Thermo-physical properties of as deposited and aged thermal barrier coatings (TBC) for gas turbines: state-of-the art and advanced TBCs
JP2008088331A (en) Heat foaming characteristic of coal gasification slag, method for estimating optimum baking temperature and its program
Garg et al. Segregation competition and complexion coexistence within a polycrystalline grain boundary network
Ashraf et al. Nanoindentation assisted investigation on the viscoelastic behavior of carbonated cementitious matrix: Influence of loading function
Etzion et al. Factors affecting corrosion resistance of silicon nitride bonded silicon carbide refractory blocks
Manzello et al. Measurement of thermal properties of gypsum board at elevated temperatures
Cai et al. Recent developments in the thermomechanical fatigue life prediction of superalloys
Ghosh et al. Coke structure evaluation for BF coke making
Rushdi et al. Investigation of coals and blends deposit structure: measuring the deposit bulk porosity using thermomechanical analysis technique
Myrvågnes Analyses and characterization of fossil carbonaceous materials for silicon production
Tang et al. The estimation of char reactivity from coal reflectogram
CN111948246B (en) Method for calculating sandstone heat conductivity by using mineral components
Duchesne et al. Fate of inorganic matter in entrained-flow slagging gasifiers: Fuel characterization
Nag et al. Characterization and utilization of organo-refined extract in metallurgical coke making
JP7485199B2 (en) Method for creating model for estimating post-reaction strength of coke, method for estimating post-reaction strength of coke, and method for manufacturing coke