JP2008087756A - Electric power steering device - Google Patents
Electric power steering device Download PDFInfo
- Publication number
- JP2008087756A JP2008087756A JP2007172388A JP2007172388A JP2008087756A JP 2008087756 A JP2008087756 A JP 2008087756A JP 2007172388 A JP2007172388 A JP 2007172388A JP 2007172388 A JP2007172388 A JP 2007172388A JP 2008087756 A JP2008087756 A JP 2008087756A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- relative angle
- steering
- relative
- angle information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004364 calculation method Methods 0.000 claims description 191
- 238000001514 detection method Methods 0.000 claims description 179
- 230000002159 abnormal effect Effects 0.000 claims description 24
- 230000000875 corresponding Effects 0.000 claims description 11
- 230000001276 controlling effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 description 157
- 230000001133 acceleration Effects 0.000 description 61
- 230000000295 complement Effects 0.000 description 39
- 238000010586 diagram Methods 0.000 description 18
- 230000005669 field effect Effects 0.000 description 9
- 238000004804 winding Methods 0.000 description 9
- 241001442055 Vipera berus Species 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000000670 limiting Effects 0.000 description 5
- 230000002829 reduced Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 101710031814 ERG25 Proteins 0.000 description 3
- 230000000051 modifying Effects 0.000 description 3
- 230000001264 neutralization Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 2
- 230000003068 static Effects 0.000 description 2
- 238000003079 width control Methods 0.000 description 2
- 101700065472 FET3 Proteins 0.000 description 1
- 108060002884 FET4 Proteins 0.000 description 1
- 108060009362 VPS41 Proteins 0.000 description 1
- 230000001808 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000002441 reversible Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Abstract
Description
また、上記特許文献2に記載の従来例にあっては、電動パワーステアリング装置としては、位置検出センサが異常となったときに、予め決められたパターンでモータを駆動した場合、運転者の意図に反してステアリングホイール回転する可能性があり、運転者の意志に従ったモータ駆動を行うことができないという未解決の課題がある。 However, in the conventional example described in Patent Document 1 described above, for example, when the vehicle is in a turning state and the steering wheel is turned up and the correction rudder in the direction is applied, the steering wheel reaction force is assisted by the electric power steering. There is an unsolved problem that the size is the same as that of the unobtainable state and the driver is uncomfortable.
Further, in the conventional example described in the above-mentioned Patent Document 2, when the motor is driven with a predetermined pattern when the position detection sensor becomes abnormal as the electric power steering device, the driver's intention is On the other hand, there is a possibility that the steering wheel rotates, and there is an unsolved problem that the motor drive according to the will of the driver cannot be performed.
えることを完全に防止することはできない、このため、特許文献3に記載の従来例をモータ回転角検出異常時の代替制御装置として使用することが考えられるが、この場合には、通常の制御回路構成以外にPLL回路等を設けてセンサレス駆動を前提としたアナログ回路構成が必要となるか、それと同等の演算が可能な高性能な演算処理装置を必要とし、部品点数が増加すると共に、コストが嵩むという未解決の課題がある。 Furthermore, in the conventional example described in Patent Document 3, it is assumed that the motor used for the electric power steering is particularly easy to rotate the steering wheel when the power is off, and the vehicle is stopped. Since the position of the steering wheel at the time cannot be specified, the initial angle of the motor cannot be assumed, and it is impossible to completely prevent the driver from feeling uncomfortable. Although it is conceivable to use the conventional example as an alternative control device when the motor rotation angle detection is abnormal, in this case, an analog circuit configuration based on sensorless drive is provided by providing a PLL circuit in addition to the normal control circuit configuration. This requires a high-performance processing unit that can perform the same or equivalent calculations, increasing the number of parts and cost. There is an unsolved problem in that increase.
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、部品点数の増加やコストアップを抑制した簡素な構成のモータ相対角度検出手段を使用して運転者に不快感を与えることを抑制することができる電動式パワーステアリング装置を提供することを目的としている。 For this reason, an electric power steering device that is controlled using an angle detector under normal conditions, such as when the angle detector becomes abnormal, such as when angle information cannot be obtained correctly, the sensorless motor There is an unsolved problem that driving cannot be performed and there is no other way but to activate the fail safe and stop the steering assist control.
Therefore, the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and it is possible for the driver to use a motor relative angle detection means having a simple configuration that suppresses an increase in the number of parts and an increase in cost. An object of the present invention is to provide an electric power steering device that can suppress discomfort.
さらにまた、請求項4に係る電動パワーステアリング装置は、請求項1乃至3の何れか1つに係る発明において、前記モータ相対角度情報補完部は、前記モータ相対角度情報算出部で算出した相対角度情報に、所要時に所定周期毎に符号を変更するオフセット値を加算することにより、相対角度情報を得られない状態となることを防止するように構成されていることを特徴としている。 Further, according to a third aspect of the present invention, there is provided the electric power steering apparatus according to the second aspect of the present invention, wherein the motor control means arbitrarily sets an initial angle when driving the electric motor based on the relative angle information. It is characterized by being configured to drive from the actual angle.
Furthermore, the electric power steering device according to claim 4 is the invention according to any one of claims 1 to 3, wherein the motor relative angle information complementing unit is calculated by the relative angle calculated by the motor relative angle information calculating unit. The information is configured to prevent the relative angle information from being obtained by adding an offset value that changes the sign for each predetermined period when necessary.
さらにまた、請求項8に係る電動パワーステアリング装置は、請求項1乃至7の何れか1つに係る発明において、前記モータ相対角度算出部は、算出したモータ相対角度の実角度に対する誤差が増加する要補正状態であることを検出する要補正状態検出手段と、該要補正状態検出手段で要補正状態を検出したときに前記相対角度情報を補正する相対角度情報補正手段を備えていることを特徴としている。 The electric power steering apparatus according to a seventh aspect is the invention according to any one of the first to sixth aspects, wherein the motor relative angle calculation unit detects the rotation direction of the electric motor by the steering torque detecting means. It is characterized in that it is determined based on the steering torque.
Furthermore, in the electric power steering apparatus according to claim 8, in the invention according to any one of claims 1 to 7, the motor relative angle calculation unit increases an error of the calculated motor relative angle with respect to the actual angle. A correction state detection unit that detects that the correction state is required and a relative angle information correction unit that corrects the relative angle information when the correction state is detected by the correction state detection unit. It is said.
おいて、前記モータ回転角検出手段は、正弦波及び余弦波の2系統の回転角検出信号を出力するように構成され、前記モータ回転角異常検出手段は、正弦波の二乗値及び余弦波の二乗値との和が“1”であるか否かを検出することにより両波のショートを検出し、前記モータ相対角度算出部は、算出したモータ相対角度の実角度に対する誤差が増加する要補正状態であることを検出する要補正状態検出手段と、該要補正状態検出手段で要補正状態を検出したときに前記相対角度情報を補正する相対角度情報補正手段を備え、前記要補正状態検出手段は、ショートした正弦波及び余弦波の振幅が最小値及び最大値に達したときに要補正状態であることを検出し、前記相対角度情報補正手段は、要補正状態であるときに、そのときの実角度で、前記相対角度情報を補正するように構成されていることを特徴としている。 An electric power steering apparatus according to a tenth aspect is the invention according to the second or third aspect, wherein the motor rotation angle detecting means outputs two rotation angle detection signals of a sine wave and a cosine wave. The motor rotation angle abnormality detecting means detects a short of both waves by detecting whether or not the sum of the square value of the sine wave and the square value of the cosine wave is “1”, and the motor relative The angle calculation unit includes a correction required state detection unit that detects that a correction required state in which an error with respect to the actual angle of the calculated motor relative angle is increased, and when the correction required state is detected by the correction required state detection unit, Relative angle information correction means for correcting relative angle information is provided, and the required correction state detection means detects that the correction is required when the amplitudes of the shorted sine wave and cosine wave reach the minimum and maximum values. The relative angle information correcting unit, when a main correction state, in actual angle at that time, is characterized in that it is configured to correct the relative angle information.
図1は、本発明の一実施形態を示す全体構成図であって、図中、1は通常の車両に搭載されているバッテリであって、このバッテリ1から出力されるバッテリ電圧Vbがヒューズ2を介して制御装置3に入力される。この制御装置3は、ヒューズ2を介して入力されるバッテリ電圧Vbが図3中に示すリレー4を介して入力された操舵系に対して操舵補助力を発生する電動モータ5を駆動するモータ駆動手段としてのモータ駆動回路6を有する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention. In the figure, 1 is a battery mounted on a normal vehicle, and a battery voltage Vb output from the battery 1 is a fuse 2. Is input to the control device 3. The control device 3 is a motor drive that drives an electric motor 5 that generates a steering assist force for a steering system in which a battery voltage Vb input via a fuse 2 is input via a relay 4 shown in FIG. A motor drive circuit 6 is provided as means.
ト12がラックピニオン機構14に連結され、このラックピニオン機構14がタイロッド等の連結機構15を介して左右の転舵輪16に連結されている。 Here, the electric motor 5 is composed of, for example, a star (Y) -connected brushless motor driven by three-phase alternating current, and operates as a steering assist force generating motor that generates a steering assist force of the electric power steering apparatus. The electric motor 5 is coupled to a steering shaft 12 to which a steering wheel 11 is connected via a speed reduction mechanism 13, the steering shaft 12 is coupled to a rack and pinion mechanism 14, and the rack and pinion mechanism 14 is coupled to a coupling mechanism such as a tie rod. 15 is connected to the left and right steered wheels 16.
このマイクロコンピュータ30には、電動モータ5の各相電流を検出する電流検出回路7から入力される各相電流検出値Ia〜Icと、電動モータ5の各相の端子電圧を検出する端子電圧検出回路8から入力される各相端子電圧Va〜Vcとが入力されると共に、操舵トルクセンサ17で検出した操舵トルク信号がA/D変換回路31を介して入力され、レゾルバ18の出力信号が入力されたモータ回転角信号を出力するモータ回転角検出回路32からのモータ回転角信号sinθ及びcosθ が入力端子に入力され、さらに車速
Vsを検出する車速センサ33から出力される車速検出値Vsが入力される。 Further, the control device 3 includes a microcomputer 30 that supplies a pulse width modulation signal having a duty ratio for generating a steering assist force by the electric motor 5 to the gate drive circuit 22.
The microcomputer 30 includes phase current detection values Ia to Ic input from the current detection circuit 7 that detects each phase current of the electric motor 5 and terminal voltage detection that detects a terminal voltage of each phase of the electric motor 5. The phase terminal voltages Va to Vc inputted from the circuit 8 are inputted, the steering torque signal detected by the steering torque sensor 17 is inputted via the A / D conversion circuit 31, and the output signal of the resolver 18 is inputted. Motor rotation angle signals sin θ and cos θ from the motor rotation angle detection circuit 32 that outputs the motor rotation angle signal thus output. Is input to the input terminal, and the vehicle speed detection value Vs output from the vehicle speed sensor 33 that detects the vehicle speed Vs is input.
ここで、モータ回転角検出回路32は、所定の周波数を有する搬送波信号sinωtをレゾルバ18に供給して、この搬送波信号sinωtを正弦波sinθで振幅変調した波形を有する正弦波信号(sinωt・sinθ)及び搬送波信号sinωtを余弦波cosθで振幅変調した波形を有する余弦波信号(sinωt・cosθ)を発生させ、これら正弦波信号(sinωt・sinθ)及び余弦波信号(sinωt・cosθ)をA/D変換器35及び36を介してマイクロコンピュータ30に入力すると共に、搬送波sinωtの例えば正のピーク時期を検出してピーク検出パルスPpをマイクロコンピュータ30に入力する。 The microcomputer 30 is supplied with a stabilized power supply as a control power supply that is output from a stabilized power supply circuit 34 that is connected to the fuse 2 and forms, for example, a 5 V microcomputer power supply.
Here, the motor rotation angle detection circuit 32 supplies a carrier wave signal sin ωt having a predetermined frequency to the resolver 18, and a sine wave signal (sin ωt · sin θ) having a waveform obtained by amplitude-modulating the carrier wave signal sin ωt with a sine wave sin θ. And a cosine wave signal (sin ωt · cos θ) having a waveform obtained by amplitude-modulating the carrier signal sin ωt with a cosine wave cos θ, and A / D conversion of the sine wave signal (sin ωt · sin θ) and the cosine wave signal (sin ωt · cos θ). For example, a positive peak time of the carrier wave sin ωt is detected and a peak detection pulse Pp is input to the microcomputer 30 through the devices 35 and 36.
す操舵補助トルク指令値算出マップを参照して電流指令値でなる操舵補助トルク指令値IM *を算出する。
この操舵補助トルク指令値算出マップは、図6に示すように、横軸に操舵トルクTsをとり、縦軸に操舵補助トルク指令値IM *をとると共に、車速Vsをパラメータとした放物線状の曲線で表される特性線図で構成され、操舵トルクTsが“0”からその近傍の設定値Ts1までの間は操舵補助トルク指令値IM *が“0”を維持し、操舵トルクTが設定値Ts1を超えると最初は操舵補助指令値IM *が操舵トルクTの増加に対して比較的緩やかに増加するが、さらに操舵トルクTが増加すると、その増加に対して操舵補助トルク指令値IM *が急峻に増加するように設定され、この特性曲線が車速の増加に従って傾きが小さくなるように設定されている。 The steering assist torque command value calculation unit 42A calculates a steering assist torque command value I M * that is a current command value with reference to the steering assist torque command value calculation map shown in FIG. 6 based on the steering torque Ts and the vehicle speed Vs. To do.
As shown in FIG. 6, the steering assist torque command value calculation map has a parabolic shape in which the horizontal axis represents the steering torque Ts, the vertical axis represents the steering assist torque command value I M * , and the vehicle speed Vs is a parameter. It is composed of a characteristic diagram represented by a curve, and the steering assist torque command value I M * is maintained at “0” while the steering torque Ts is between “0” and a set value Ts1 in the vicinity thereof, and the steering torque T is When the set value Ts1 is exceeded, initially, the steering assist command value I M * increases relatively gently with respect to the increase in the steering torque T, but when the steering torque T further increases, the steering assist torque command value with respect to the increase. I M * is set so as to increase steeply, and this characteristic curve is set so that the inclination becomes smaller as the vehicle speed increases.
また、その際、電動モータ5の慣性J及び摩擦(静摩擦)Frによってステアリングホイール1の操舵の抵抗となるトルクが生じる。これらの力の釣り合いを考えると、下記(1)式のような運動方程式が得られる。 That is, when the driver steers the steering wheel 1, a steering torque T is generated, and the electric motor 5 generates an assist torque Tm according to the steering torque T. As a result, the wheel W is steered and a self-aligning torque SAT is generated as a reaction force.
Further, at that time, torque serving as a steering resistance of the steering wheel 1 is generated by the inertia J and friction (static friction) Fr of the electric motor 5. Considering the balance of these forces, the following equation of motion can be obtained:
ここで、上記(1)式を初期値ゼロとしてラプラス変換し、セルフアライニングトルクSATについて解くと下記(2)式が得られる。
SAT(s) = Tm(s) + T(s) − J・α(s) + Fr・sign(ω(s)) …(2)
上記(2)式から分かるように、電動モータ5の慣性J及び静摩擦Frを定数として予め求めておくことで、モータ角速度ω、回転角加速度α、アシストトルクTm及び操舵トルクTよりセルフアライニングトルクSATを推定することができる。ここで、アシストトルクTmは操舵補助電流指令値IM *に比例するので、アシストトルクTmに代えて操舵補助電流指令値IM *を適用する。 J ・ α + Fr ・ sign (ω) + SAT = Tm + T (1)
Here, when the above equation (1) is Laplace transformed with the initial value zero and the self-aligning torque SAT is solved, the following equation (2) is obtained.
SAT (s) = Tm (s) + T (s) − J · α (s) + Fr · sign (ω (s)) (2)
As can be seen from the above equation (2), the inertia J and static friction Fr of the electric motor 5 are obtained in advance as constants, so that the self-aligning torque is obtained from the motor angular velocity ω, rotational angular acceleration α, assist torque Tm, and steering torque T. The SAT can be estimated. Here, the assist torque Tm is proportional to the steering assist current command value I M *, to apply a steering assist current command value I M * in place of the assist torque Tm.
されて指令補償値Icomが算出され、この指令補償値Icomが操舵補助トルク指令値演算部42Aから出力される操舵補助トルク指令値IM *に加算器56で加算されて補償後トルク指令値IM *′が算出され、この補償後トルク指令値IM *′がd−q軸電流指令値演算部42Cに出力される。 Then, the inertia compensation value Ii calculated by the inertia compensation unit 52 and the self-aligning torque SAT calculated by the SAT estimation feedback unit 53 are added by the adder 54, and the addition output of the adder 54 and the convergence compensation unit 51 are added. Is added by the adder 55 to calculate a command compensation value Icom, and this command compensation value Icom is output from the steering assist torque command value calculator 42A. The compensated torque command value I M * ′ is calculated by adding to M * by the adder 56, and this compensated torque command value I M * ′ is output to the dq-axis current command value calculation unit 42C.
Vab=Va−Vb ……(3)
Vbc=Vb−Vc ……(4)
Vca=Vc−Va ……(5)
次いで、算出した線間電圧Vab、Vbc、Vcaと、電流検出回路7から入力される各相電流検出値Ia〜Icとに基づいて下記(6)式〜(8)式の演算を行って各線間逆起電圧EMFab、EMFbc、EMFcaを算出する。 The counter electromotive voltage calculation unit 46 first calculates the following expressions (3) to (5) based on the phase terminal voltages Va to Vc input from the terminal voltage detection circuit 8 to perform the line voltage Vab. , Vbc, Vca are calculated.
Vab = Va−Vb (3)
Vbc = Vb−Vc (4)
Vca = Vc−Va (5)
Next, based on the calculated line voltages Vab, Vbc, Vca and the respective phase current detection values Ia to Ic inputted from the current detection circuit 7, the following expressions (6) to (8) are calculated, and each line is calculated. The back electromotive force voltages EMFab, EMFbc, and EMFCa are calculated.
EMFbc=Vbc−{(Rb+s・Lb)・Ib−(Rc+s・Lc)・Ic}…(7)
EMFca=Vca−{(Rc+s・Lc)・Ic−(Ra+s・La)・Ia}…(8)ここで、Ra、Rb、Rcはモータの巻線抵抗、La、Lb、Lcはモータのインダクタンス、sはラプラス演算子で、ここでは微分演算(d/dt)を表している。 EMFab = Vab − {(Ra + s · La) · Ia− (Rb + s · Lb) · Ib} (6)
EMFbc = Vbc − {(Rb + s · Lb) · Ib− (Rc + s · Lc) · Ic} (7)
EMFCa = Vca − {(Rc + s · Lc) · Ic− (Ra + s · La) · Ia} (8) where Ra, Rb, Rc are winding resistances of the motor, La, Lb, Lc are inductances of the motor, s is a Laplace operator, and here represents a differential operation (d / dt).
さらにまた、角速度・角加速度演算部48は、図8に示すように、逆起電圧演算部46から入力される逆起電圧EMFに基づいて相対角速度ωeeを演算する相対角速度演算部48aと、操舵トルクセンサ17から入力される操舵トルクTsに基づいて回転方向を表す符号を取得する符号取得部48bと、角速度演算部48aで演算した相対角速度ωeeに符号取得部48bで取得した符号を乗算する乗算部48cと、この乗算部48cから出力される相対角速度ωeeの急激な変化を抑制するレイトリミッタ部48dと、このレイトリミッタ部48dで急激な変化が抑制された相対角速度ωeeが零近傍の角速度領域即ちωe=0を含むその近傍値±Δωの不感帯内であるか否かを判定し、ωee<−Δω又はωee>+Δωであって不感帯外であるときには相対角速度ωeeをそのまま出力し、ω−Δω≦ωee≦+Δωであって不感帯内であると判定されたときに相対角速度ωeeを予め設定した正負の相対角度情報オフセット値±Δωdに所定間隔で交互に設定して相対角速度ωeeが“0”以外の値となるように設定する相対角度情報補完部としての相対角度情報オフセット処理部48eと、相対角度情報オフセット処理部48eから出力される相対角速度ωeeを前回のモータ回転角θe(n-1)に加算して相対回転角θeeを算出する加算部48fと、この加算部48fから出力される相対回転角θeeとモータ回転角演算部47から入力される実回転角θerとをフェールセーフ信号SFに基づいて選択する選択手段としての回転角選択部48gと、モータ回転角演算部47から入力される実回転角θerを微分して実角速度ωerを算出する角速度演算部48hと、この角速度演算部48hから入力される実角速度ωerと相対角度情報オフセット処理部48eから出力される相対角速度ωeeとをフェールセーフ信号SFに基づいて選択する角速度選択部48iと、角速度選択部48iで選択された角速度ωeを微分して角加速度αを算出する角加速度演算部48jとで構成されている。ここで、逆起電圧演算部46、角速度演算部48a、符号取得部48b及び乗算部48cで相対角度情報演算部が構成されている。 Further, the motor rotation angle calculation unit 47 executes a motor rotation angle calculation process (not shown) every time the peak detection pulse Pp is input from the motor rotation angle detection circuit 32, calculates sin θ and cos θ, and calculates the calculated sin θ and A motor rotation angle θe, which is an electrical angle, is calculated from cos θ.
Furthermore, as shown in FIG. 8, the angular velocity / angular acceleration calculation unit 48 includes a relative angular velocity calculation unit 48a that calculates the relative angular velocity ωee based on the counter electromotive voltage EMF input from the counter electromotive voltage calculation unit 46, and a steering wheel. A sign acquisition unit 48b that acquires a sign representing the rotation direction based on the steering torque Ts input from the torque sensor 17, and a multiplication that multiplies the relative angular velocity ωee calculated by the angular velocity calculation unit 48a by the code acquired by the code acquisition unit 48b. 48c, a rate limiter unit 48d for suppressing a rapid change in the relative angular velocity ωee output from the multiplication unit 48c, and an angular velocity region in which the relative angular velocity ωee for which the rapid change is suppressed by the rate limiter unit 48d is near zero. That is, it is determined whether or not it is within the dead zone of the neighborhood value ± Δω including ωe = 0, and ωee <−Δω or ωee> + Δω and is out of the dead zone. Sometimes the relative angular velocity ωee is output as it is, and when it is determined that ω−Δω ≦ ωee ≦ + Δω is in the dead zone, the relative angular velocity ωee is alternately set at predetermined intervals to a predetermined positive / negative relative angle information offset value ± Δωd. Is set so that the relative angular velocity ωee is a value other than “0”, and the relative angle information offset processing unit 48e as a relative angle information complementing unit, and the relative angular velocity ωee output from the relative angle information offset processing unit 48e. Is added to the previous motor rotation angle θe (n−1) to calculate the relative rotation angle θee, and the relative rotation angle θee output from the addition unit 48f and the motor rotation angle calculation unit 47 are input. An actual rotation angle θer to be selected based on the fail-safe signal SF, and a rotation angle selection unit 48g as a selection means for selecting the actual rotation angle θer and a motor rotation angle calculation unit 47. The angular velocity calculation unit 48h that differentiates the rotation angle θer to calculate the actual angular velocity ωer, the actual angular velocity ωer input from the angular velocity calculation unit 48h, and the relative angular velocity ωee output from the relative angle information offset processing unit 48e are fail-safe. An angular velocity selection unit 48i that is selected based on the signal SF and an angular acceleration calculation unit 48j that calculates the angular acceleration α by differentiating the angular velocity ωe selected by the angular velocity selection unit 48i. Here, the back electromotive force calculation unit 46, the angular velocity calculation unit 48a, the code acquisition unit 48b, and the multiplication unit 48c constitute a relative angle information calculation unit.
ωee=EMF/Ke …………(9)
ここに、Keはモータの逆起電圧定数[V/rpm]である。
また、逆起電圧演算部46内の図示しない不感帯設定部では、前述した各線間逆起電圧EMFab、EMFbc及びEMFcaを算出する(6)式〜(8)式のモータの巻線抵抗Ra〜Rcとして、実際の抵抗値の代わりに抵抗のモデル値を採用するため、相対角速度ωeeには誤差が生じ、その誤差はモータ電流に比例したオフセット誤差となることに基づいて電流に比例した不感帯設定を行って推定誤差を取り除くためのものである。すなわち、相対角速度ωeeは電流(逆起電圧量)に比例し、誤差も電流(逆起電圧量)に比例するためである。このため、不感帯の設定値は電流指令値IM *に応じた値に設定する。 Here, the relative angular velocity calculation unit 48a calculates the relative angular velocity ωee by performing the calculation of the following equation (9) based on the counter electromotive voltage EMF input from the counter electromotive voltage calculation unit 46.
ωee = EMF / Ke (9)
Here, Ke is a back electromotive force constant [V / rpm] of the motor.
In addition, in the dead band setting unit (not shown) in the back electromotive voltage calculation unit 46, the winding resistances Ra to Rc of the motors of the equations (6) to (8) for calculating the line back electromotive voltages EMFab, EMFbc, and EMFCa described above. Since the model value of the resistance is adopted instead of the actual resistance value, an error occurs in the relative angular velocity ωee, and the dead band setting proportional to the current is set based on the fact that the error becomes an offset error proportional to the motor current. To eliminate the estimation error. That is, the relative angular velocity ωee is proportional to the current (counterelectromotive voltage), and the error is also proportional to the current (counterelectromotive voltage). For this reason, the set value of the dead zone is set to a value corresponding to the current command value I M * .
さらにまた、相対角度オフセット処理部48eの不感帯幅±Δωは、相対角度が0若しくはその近傍の領域を規定する設定値である。モータを相対角度で駆動するため、モータ相対角速度が±Δωで示される領域内で、モータのステータとロータ間の磁界拘束力が大きい場合、次に運転者がステアリングホイールを操舵して相対角度情報(この場合逆起電圧)が得られなくなり、所謂ステアリング(ハンドル)ロックとなってしまう。 Furthermore, since it is also affected by the inductance due to the motor rotation speed change, it is preferable to remove the influence of the inductance fluctuation by feeding back the inductance fluctuation amount to the counter electromotive voltage calculation unit 46 according to the motor rotation speed.
Furthermore, the dead zone width ± Δω of the relative angle offset processing unit 48e is a set value that defines a region where the relative angle is 0 or in the vicinity thereof. Since the motor is driven at a relative angle, if the magnetic field restraint force between the stator and rotor of the motor is large within the range where the motor relative angular velocity is indicated by ± Δω, the driver next steers the steering wheel to obtain the relative angle information. (In this case, the back electromotive voltage) cannot be obtained, and so-called steering (handle) lock is obtained.
そして、マイクロコンピュータ30は、各入力信号に基づいて指令値算出部42に相当する図11に示す操舵補助制御処理を実行する。
操舵補助制御処理は、図11に示すように、先ず、ステップS1で、操舵トルクセンサ17、車速センサ33等の各種センサの検出値及び角速度・角加速度演算部48で算出した回転角θe、角速度ωe及び角加速度αを読込み、次いでステップS2に移行して、操舵トルクTをもとに前述した図6に示す操舵補助トルク指令値算出マップを参照して操舵補助トルク指令値IM *を算出してからステップS3に移行する。 The process of FIG. 9 corresponds to the motor rotation angle abnormality detection means.
Then, the microcomputer 30 executes a steering assist control process shown in FIG. 11 corresponding to the command value calculation unit 42 based on each input signal.
As shown in FIG. 11, in the steering assist control process, first, in step S1, detection values of various sensors such as the steering torque sensor 17 and the vehicle speed sensor 33, the rotation angle θe calculated by the angular velocity / angular acceleration calculation unit 48, and the angular velocity are calculated. Then, ωe and angular acceleration α are read, and then the process proceeds to step S2, and the steering assist torque command value I M * is calculated based on the steering torque T with reference to the steering assist torque command value calculation map shown in FIG. Then, the process proceeds to step S3.
このステップS4では、慣性補償部52と同様に、モータ角加速度αに基づいて慣性補償値Iiを算出し、次いでステップS5に移行してSAT推定フィードバック部53と同様にモータ角速度ωe及びモータ角加速度αをもとに前述した(2)式の演算を行ってセルフアライニングトルクSATを算出する。 In this step S3, similarly to the convergence compensation unit 51, the motor angular velocity ωe is multiplied by the compensation coefficient Kv set in accordance with the vehicle speed V to calculate the convergence compensation value Ic, and then the process proceeds to step S4.
In step S4, as in the inertia compensation unit 52, the inertia compensation value Ii is calculated based on the motor angular acceleration α. Then, the process proceeds to step S5 and the motor angular velocity ωe and the motor angular acceleration are processed in the same manner as in the SAT estimation feedback unit 53. The self-aligning torque SAT is calculated by performing the above-described calculation of equation (2) based on α.
この相対角速度演算処理は、所定時間(例えば1msec)毎のタイマ割込処理として実行され、先ず、ステップS31で、逆起電圧演算部46で演算した逆起電圧EMFを読込み、次いでステップS32に移行して、逆起電圧EMFに基づいて前述した(9)式の演算を行って相対角速度ωeeを算出し、次いでステップS33に移行して、操舵トルクTsの符号を取得して相対角速度ωeeに付加してからステップS34に移行する。 The microcomputer 30 corresponds to the relative angular velocity calculation unit 48a, the sign acquisition unit 48b, the multiplication unit 48c, the rate limiter unit 48d, and the relative angle information offset processing unit 48e of the angular velocity / angular acceleration calculation unit 48 shown in FIG. Execute angular velocity calculation processing.
This relative angular velocity calculation process is executed as a timer interrupt process at predetermined time intervals (for example, 1 msec). First, in step S31, the counter electromotive voltage EMF calculated by the counter electromotive voltage calculation unit 46 is read, and then the process proceeds to step S32. Then, based on the back electromotive force EMF, the calculation of the above-described equation (9) is performed to calculate the relative angular velocity ωee, and then the process proceeds to step S33 where the sign of the steering torque Ts is acquired and added to the relative angular velocity ωee. Then, the process proceeds to step S34.
このステップS40では、モータ相対回転角θeeに対する角度変化が1加算周期当り例えば±2degとなる値に設定された相対角度情報オフセット値Δωdを現在の相対角速度ωeeとして設定し、次いでステップS41に移行して、現在の時間係数値tに“1”を加算して新たな時間係数値tを算出し、次いでステップS42に移行して、時間係数値tが所定値ts(例えば20msec相当)を超えたか否かを判定し、t>tsであるときには、ステップS43に移行して、現在の相対角度情報オフセット値Δωdに−を乗算して符号反転を行ってからステップS44に移行する。 In step S39, it is determined whether or not the relative angular velocity ωee calculated in step S33 and the current relative angular velocity ωee (n) calculated in step S37 or S38 are within the dead zone defined by ± Δω. When −Δω ≦ ωee ≦ + Δω and within the dead zone, the process proceeds to step S40.
In this step S40, the relative angle information offset value Δωd set to a value at which the angle change with respect to the motor relative rotation angle θee becomes, for example, ± 2 deg per addition cycle is set as the current relative angular velocity ωee, and then the process proceeds to step S41. Then, "1" is added to the current time coefficient value t to calculate a new time coefficient value t, and then the process proceeds to step S42, where the time coefficient value t exceeds a predetermined value ts (e.g., equivalent to 20 msec) If t> ts, the process proceeds to step S43, the current relative angle information offset value Δωd is multiplied by − to invert the sign, and then the process proceeds to step S44.
また、前記ステップS39の判定結果が、ωee<−Δω又はωee>+Δωであるときには不感帯外であるものと判断してそのままタイマ割込を終了し、前記ステップS42の判定結果がt≦tsであるときにもそのままタイマ割込処理を終了して所定のメインプログラムに復帰する。 In step S44, the time coefficient value t is cleared to "0", the timer interrupt process is terminated, and the process returns to the predetermined main program.
Further, when the determination result of step S39 is ωee <−Δω or ωee> + Δω, it is determined that it is outside the dead zone, and the timer interruption is ended as it is, and the determination result of step S42 is t ≦ ts. Sometimes, the timer interrupt process is terminated as it is, and the process returns to a predetermined main program.
次に、上記第1の実施形態の動作を説明する。
今、図3に示すイグニッションスイッチ37をオン状態とすることにより、制御装置3にバッテリ1からの電源が投入されて、制御装置3内のマイクロコンピュータ30で、図9に示すモータ回転角異常検出処理、図11に示す操舵補助制御処理及び図12に示す相対角速度算出処理等が実行開始される。 In the processing of FIG. 12, the processing of steps S31 to S38 corresponds to the motor relative angle information calculation unit, and the processing of steps S39 to S44 corresponds to the relative angle information complementing unit.
Next, the operation of the first embodiment will be described.
Now, by turning on the ignition switch 37 shown in FIG. 3, the power from the battery 1 is turned on to the control device 3, and the microcomputer 30 in the control device 3 detects the motor rotation angle abnormality shown in FIG. The process, the steering assist control process shown in FIG. 11, the relative angular velocity calculation process shown in FIG.
この車両の停車状態から車両を発進させて走行状態とし、この状態でステアリングホイール11を操舵する通常操舵状態では、車速の増加に応じて必要とする操舵補助トルクが小さくなることから、ステアリングホイール11に伝達される操舵トルクも小さい値となり、これが操舵トルクセンサ17で検出されてマイクロコンピュータ30に入力される。このため、操舵補助指令値IM *も小さい値となり、電動モータ5で発生される操舵補助トルクは据切り時の操舵補助トルクに比較して小さくなる。 At this time, in a so-called stationary state in which the steering wheel 11 is steered while the vehicle is stopped, the vehicle speed Vs is zero, and the gradient of the characteristic line of the steering assist command value calculation map shown in FIG. 6 is large. Since a large steering assist command value I M * is calculated with a small steering torque Ts, a light steering can be performed by generating a large steering assist force with the electric motor 5.
In the normal steering state in which the vehicle is started from the stopped state to the traveling state and the steering wheel 11 is steered in this state, the steering assist torque that is required decreases as the vehicle speed increases. The steering torque transmitted to is also a small value, which is detected by the steering torque sensor 17 and input to the microcomputer 30. For this reason, the steering assist command value I M * is also a small value, and the steering assist torque generated by the electric motor 5 is smaller than the steering assist torque at the time of stationary.
このとき、逆起電圧演算部46で、前述した(3)式〜(5)式の演算を行って各線間電圧Vab、Vbc及びVcaを算出し、次いで前記(6)〜(8)式の演算を行うことにより、線間逆起電圧EMFab、EMFbc及びEMFcaを算出し、これらを加算して逆起電圧EMFを算出する。 In this way, when the rotation angle selection unit 48g and the angular velocity selection unit 48i are switched, the relative (rotation) angle calculation process based on the back electromotive force EMF is performed by the relative rotation angle calculation process of FIG. A rotation angle θe, an angular velocity ωe, and an angular acceleration α are determined.
At this time, the back electromotive force calculation unit 46 calculates the line voltages Vab, Vbc, and Vca by performing the calculations of the above-described formulas (3) to (5), and then the formulas (6) to (8). By performing the calculation, the line back electromotive voltages EMFab, EMFbc, and EMFCa are calculated, and these are added to calculate the back electromotive voltage EMF.
次いで、算出した相対角速度ωeeに操舵トルクセンサ17で検出した操舵トルクTsの符号を付加することにより、電動モータ5の回転方向に応じた符号を有する現在の相対角速度ωee(n)が算出される。 Then, in the relative rotation angle calculation process, the calculated back electromotive voltage EMF is read (step S31), and then the calculation of the equation (9) is performed based on the back electromotive voltage EMF to calculate the relative angular velocity ωee (step). S32).
Next, the current relative angular velocity ωee (n) having a sign corresponding to the rotation direction of the electric motor 5 is calculated by adding the sign of the steering torque Ts detected by the steering torque sensor 17 to the calculated relative angular speed ωee. .
このため、加算部48fで、相対角速度ωeeを前回の回転角θer(n-1)に加算することにより、相対回転角θeeを算出する。
この算出された相対回転角θeeが回転角選択部48gで選択されて回転角θeとして電流指令値算出部42に出力されると共に、相対角速度ωee(n)が角速度選択部48iで選択されて角速度ωeとして電流指令値算出部42に出力され、さらに角速度ωeを角加速度演算部48jで微分して角加速度αを算出し、この角加速度αも電流指令値算出部42に出力される。 When the calculated relative angular velocity ωee (n) is outside the dead zone, the relative angular velocity ωee (n) is determined and supplied to the adding unit 48f and the angular velocity selecting unit 48i.
For this reason, the adding unit 48f calculates the relative rotation angle θee by adding the relative angular velocity ωee to the previous rotation angle θer (n−1).
The calculated relative rotation angle θee is selected by the rotation angle selection unit 48g and output to the current command value calculation unit 42 as the rotation angle θe, and the relative angular velocity ωee (n) is selected by the angular velocity selection unit 48i and the angular velocity. The angular velocity α is calculated by differentiating the angular velocity ωe by the angular acceleration calculating unit 48j, and the angular acceleration α is also output to the current command value calculating unit 42.
すなわち、不感帯内となると、所定時間(例えば20msec)に達する毎に、相対角速度ωeeとしてモータ相対回転角θeeに対する角度変化が1加算周期当り±2degとなる値に設定された相対角度情報オフセット値±Δωdを設定することを繰り返すことにより、相対角速度ωeeを“0”以外の値に設定することを繰り返す。 As described above, when the relative rotation angle θee and the relative angular velocity ωee are selected by the angular velocity / angular acceleration calculation unit 48, the relative angular velocity ωee calculated by the angular velocity calculation unit 48a is in the vicinity of zero −Δω ≦ ωee ≦ + Δω. Thus, when the dead zone is reached, the process proceeds from step S39 to step S40 in FIG. 12, and the relative angular velocity ωee is subjected to the relative angle offset process.
That is, within the dead zone, every time a predetermined time (for example, 20 msec) is reached, the relative angular information offset value ± is set such that the angular change with respect to the motor relative rotational angle θee becomes ± 2 deg per addition cycle as the relative angular velocity ωee. By repeatedly setting Δωd, the relative angular velocity ωee is repeatedly set to a value other than “0”.
すなわち、ブラシレスモータのロータとステータとの磁界ベクトル相対角誤差とロータに発生するエネルギーの絶対値との関係は図13に示すようになる。
ここで、ロータ位置を考慮せずにステータに固定の電流を流すと、図13の「状態1」に示すように、ロータとステータの磁界ベクトルが一致する所までモータはトルクを発生して回転する。 The principle that the electric motor 5 can be rotationally driven based on the relative rotation angle θee is as follows.
That is, the relationship between the magnetic field vector relative angle error between the rotor and stator of the brushless motor and the absolute value of the energy generated in the rotor is as shown in FIG.
Here, if a fixed current is passed through the stator without considering the rotor position, the motor rotates by generating torque until the magnetic field vectors of the rotor and the stator coincide as shown in “State 1” in FIG. To do.
ωee=2×{max(|ea|,|eb|,|ec|)}/Ke ……(11)
この場合、中点電圧を検出する場合に代えて、中点電圧はモータ駆動回路印加電圧の1/2となることから、モータ駆動回路印加電圧1/2の値を中点電圧Vnとして相電圧Vah〜Vchを算出するようにしてもよい。 ei = Vih− (Ri + s · Li) · Ii (10)
ωee = 2 × {max (| ea |, | eb |, | ec |)} / Ke (11)
In this case, instead of detecting the midpoint voltage, the midpoint voltage is ½ of the motor drive circuit applied voltage. Therefore, the value of the motor drive circuit applied voltage ½ is the midpoint voltage Vn and the phase voltage. Vah to Vch may be calculated.
Vn=(Va+Vb+Vc+……+Vx)÷モータ相数) ……(12)
また、逆起電圧eiを算出する場合に、上記(10)式に代えて、下記(13)式に示すように、電流制御部45から出力される電圧指令値Vi*(i=a〜c)に基づいてFETゲート駆動回路22で算出されるデューティ比Diとバッテリ電圧Vbatとモータ電流Iiとに基づいて逆起電圧eiを算出するようにしてもよい。 Further, the sum of the motor terminal voltages of the electric motor 5 is obtained as in the following equation (12), and each phase voltage is calculated with the value obtained by dividing the sum by the number of phases of the motor as the motor midpoint voltage Vn. May be.
Vn = (Va + Vb + Vc +... + Vx) / number of motor phases) (12)
When calculating the back electromotive force ei, instead of the above equation (10), as shown in the following equation (13), the voltage command value Vi * (i = a to c) output from the current control unit 45. ) Based on the duty ratio Di, the battery voltage Vbat, and the motor current Ii calculated by the FET gate drive circuit 22, the counter electromotive voltage ei may be calculated.
この場合には、モータ端子電圧Va〜Vcを使用することなく逆起電圧eiを算出することができるので、上記(13)式に基づいて逆起電圧eiを算出する逆起電圧演算部を前述した逆起電圧演算部46に代えて設けることにより、モータ端子電圧検出部8を省略することができ、この分制御装置3の構成を簡略化することができる。 ei = Di · Vbat− (Ri + s · Li) · Ii (13)
In this case, since the counter electromotive voltage ei can be calculated without using the motor terminal voltages Va to Vc, the counter electromotive voltage calculation unit that calculates the counter electromotive voltage ei based on the above equation (13) is described above. By providing in place of the counter electromotive voltage calculation unit 46, the motor terminal voltage detection unit 8 can be omitted, and the configuration of the control device 3 can be simplified accordingly.
また、上記第1の実施形態においては、相対角速度演算部48aで演算した相対角速度ωeeが不感帯内であるときに相対角度情報オフセット処理を行う場合について説明したが、これに限定されるものではなく、相対角速度ωeeが不感帯内であるか否かにかかわらず常時相対角度情報オフセット処理を行うようにしてもよい。また、この場合には、不感帯外であるときに相対角度情報オフセット値を小さくし、不感帯内であるときに相対角度情報オフセット値を大きくするようにしてもよい。 Further, by providing a counter electromotive voltage calculation unit for calculating the counter electromotive voltage ei based on the above equation (13) in parallel with the counter electromotive voltage calculation unit 46, the counter electromotive voltage calculation unit 46 calculates the counter electromotive voltage ei. When an abnormal state that cannot be performed occurs, it is possible to perform an alternative calculation of the back electromotive voltage ei.
In the first embodiment, the case where the relative angle information offset processing is performed when the relative angular velocity ωee calculated by the relative angular velocity calculating unit 48a is within the dead zone has been described. However, the present invention is not limited to this. The relative angle information offset process may always be performed regardless of whether or not the relative angular velocity ωee is within the dead zone. Further, in this case, the relative angle information offset value may be reduced when outside the dead zone, and the relative angle information offset value may be increased when inside the dead zone.
さらに、上記第1の実施形態においては、0速度領域からの不感帯にある状態で、相対角速度ωeeを相対角度情報オフセット値±Δωdに設定する場合について説明したが、これに限定されるものではなく、例えば逆起電圧演算部46内の図示しない不感帯設定部で設定される巻線抵抗Ra〜Rcとして実際の抵抗値の変わりに抵抗のモデル値を採用することにより、相対角速度ωeeの誤差を除去する不感帯幅を意図的に小さなものとし、本来角度情報として無視する情報を、あえて制御で使用することにより、相対角度情報オフセット値±Δωd相当の値を設定することもできる。 In the first embodiment, the case where the relative angle information offset value ± Δωd is set to the relative angular velocity ωee has been described. However, the present invention is not limited to this, and the motor is calculated based on the relative angular velocity ωee. A relative angle information offset value corresponding to the relative angle information offset value ± Δωd may be added to or subtracted from the rotation angle θee.
Furthermore, in the first embodiment, the case where the relative angular velocity ωee is set to the relative angle information offset value ± Δωd in the dead zone from the zero velocity region has been described, but the present invention is not limited to this. For example, by adopting resistance model values instead of actual resistance values as winding resistances Ra to Rc set by a dead zone setting unit (not shown) in the back electromotive force calculation unit 46, errors in the relative angular velocity ωee are eliminated. It is also possible to set a value corresponding to the relative angle information offset value ± Δωd by intentionally making the dead band width to be small intentionally and intentionally using information that is ignored as angle information in the control.
によりモータ回転角θeeを算出する場合について説明したが、線間逆起電圧EMFab、EMFbc及びEMFcaは正弦波となるので、この線間逆起電圧EMFab、EMFbc及びEMFcaの0クロス点を検出し、0クロス点を検出した時点で一意に決まるモータ回転角(電気角)でモータ回転角θeeを下記表1に示すように補正することにより、より正確なモータ回転角θeeを算出することができる。 Still further, in the first embodiment, the relative angular velocity ωee is calculated based on the back electromotive force EMF, and this relative angular velocity ωee is added to the previous motor rotational angle θee (n−1) to thereby calculate the motor rotational angle. Although the case where θee is calculated has been described, the line back electromotive voltages EMFab, EMFbc, and EMFCa are sinusoidal waves. Therefore, the zero cross point of the line back electromotive voltages EMFab, EMFbc, and EMFCa is detected, and the zero cross point is determined. By correcting the motor rotation angle θee with the motor rotation angle (electrical angle) uniquely determined at the time of detection as shown in Table 1 below, a more accurate motor rotation angle θee can be calculated.
この第2の実施形態では、相対角速度ωeeが“0”角速度領域にあるときに、相対角度情報オフセット処理を行って相対角度の補完を行う場合に代えて、操舵トルクTsに基づいて補完用相対角速度ωee′を算出する補完用相対角度情報演算部を設けるようにしたものである。 Next, a second embodiment of the present invention will be described with reference to FIGS.
In this second embodiment, when the relative angular velocity ωee is in the “0” angular velocity region, the relative angle information offset process is performed, and the relative angle is complemented based on the steering torque Ts. A complementary relative angle information calculation unit for calculating the angular velocity ωee ′ is provided.
このステップS52では、読込んだ操舵トルクTsを含むそれ以前の所定数(例えば32個)分の操舵トルクTsの平均値TsMを算出する平均化処理を行ってからステップS53に移行する。 Here, the complementary relative angle information calculation unit 70 executes the complementary relative angle calculation process shown in FIG. This complementary relative angle calculation process is executed as a timer interrupt process at predetermined time intervals (for example, 1 msec). First, in step S51, the steering torque Ts calculated in the steering assist control process is read, and then the process proceeds to step S52. To do.
In step S52, the transition from performing an averaging process to calculate an average value Ts M of the steering torque Ts of I read including a steering torque Ts previous predetermined number (e.g. 32) minutes to step S53.
ステップS57では、下記(13)式の演算を行ってモータ相対角度変化量ΔθMを算出してからステップS58に移行する。 The processes in steps S55 and S56 are limiter processes that limit the change amount ΔT. In this case, the upper limit value ΔTu may be a predetermined value or an optimum value according to the vehicle speed Vs.
In step S57, the calculation of the following equation (13) is performed to calculate the motor relative angle change amount Δθ M , and then the process proceeds to step S58.
ここで、Kmは相対角度情報算出用ゲインである。
ステップS58では、ステップS57で算出したモータ相対角度変化量ΔθMと前回のサンプリング時に算出したモータ相対角度θMP(n-1)とを加算して、今回のモータ相対角度θMP(n)を算出してからステップS59に移行する。 Δθ M = Ts M (n) · Km / 2 12 (13)
Here, Km is a relative angle information calculation gain.
In step S58, the motor relative angle change amount Δθ M calculated in step S57 and the motor relative angle θ MP (n−1) calculated in the previous sampling are added to obtain the current motor relative angle θ MP (n). After the calculation, the process proceeds to step S59.
この図15の処理と角速度・角加速度演算部48の選択部48nとが相対角度情報補完部に対応している。 In this step S59, the motor relative angle θ MP (n) is converted into, for example, a 12-bit electrical angle 0 to 4096, stored in a predetermined storage area of the RAM built in the microcomputer 30, and the timer interrupt process is terminated. .
The processing of FIG. 15 and the selection unit 48n of the angular velocity / angular acceleration calculation unit 48 correspond to a relative angle information complementing unit.
なお、モータ相対角度情報算出用ゲインKmは一定値でもよいが、車速Vsに応じて変更するようにしてもよく、このために車速Vsに基づいてモータ相対角度情報演算のゲイン等のモータ進角を調整可能なパラメータを変化させるパラメータ設定手段を設けるようにしてもよい。 Then, the complementary relative angle calculation process of FIG. 15 is configured as shown in FIG. 16 in a functional block diagram.
The motor relative angle information calculation gain Km may be a constant value, but may be changed according to the vehicle speed Vs. For this purpose, a motor advance angle such as a gain for calculating the motor relative angle information based on the vehicle speed Vs. It is also possible to provide parameter setting means for changing a parameter that can be adjusted.
先ず、補完用相対角度情報演算部70では、図15の補完用相対角度算出処理を実行し、タイマ割込処理によって、所定時間毎に操舵トルクTsを読込み、次いで、今回読込んだ操舵トルクTsを含む過去の所定数の操舵トルクTs(n)〜Ts(n-31)を平均化処理して操舵トルク平均値TsM(n)を算出する(ステップS52)。この平均化処理を行うことにより、操舵トルクセンサ17から出力される操舵トルクTをA/D変換器31でデジタル信号に変換した際に生じる数LSBのバタつきがノイズ成分として使用されることを確実に防止することができる。 Next, the operation of the second embodiment will be described.
First, the complementary relative angle information calculation unit 70 executes the complementary relative angle calculation process of FIG. 15, reads the steering torque Ts every predetermined time by the timer interrupt process, and then reads the steering torque Ts read this time. The steering torque average value Ts M (n) is calculated by averaging the past predetermined number of steering torques Ts (n) to Ts (n-31) including (step S52). By performing this averaging process, the number LSB flutter generated when the steering torque T output from the steering torque sensor 17 is converted into a digital signal by the A / D converter 31 is used as a noise component. It can be surely prevented.
一方、操舵トルク平均値TsM(n)が不感帯外であるときには、そのままステップS55に移行する。 Then, it is determined whether or not the calculated steering torque average value Ts M (n) is within the dead zone (step S53). If it is within the dead zone, the steering torque average value Ts M (n) is set to “0”. (Step S54), it is possible to reliably prevent the electric motor 5 from being inadvertently driven to rotate when the driver does not intend.
On the other hand, when the steering torque average value Ts M (n) is outside the dead zone, the process directly proceeds to step S55.
このため、図17の角速度・角加速度演算部48で、モータ回転角検出系統が正常である場合には、前述した第1の実施形態と同様に、回転角選択部48gでモータ回転角演算部47によって演算された実回転角θerが選択されると共に、角速度選択部48iで角速度演算部48hで算出される実角速度ωerを選択し、選択した実角速度ωerを角加速度演算部48jで微分して角加速度αを算出し、実回転角θer、実角速度ωer及び角加速度αを電流指令値算出部42に供給することにより、これらに基づいて正確な相目標電流Ia*〜Ic*を算出し、この相目標電流Ia*〜Ic*と電流検出値Ia〜Icとの偏差ΔIa〜ΔIcを算出し、この偏差ΔIa〜ΔIcをPI制御処理して電圧指令値Va*〜Vc*を算出し、これら電圧指令値Va*〜Vc*をモータ駆動回路6のFETゲート駆動回路22に出力することにより、電動モータ5に三相駆動電流を供給して操舵補助力を発生させる。 Then, by adding the set relative rotational angle change amount Δθ M to the complementary relative rotational angle θ MP (n−1) at the previous sampling, the current complementary relative rotational angle θ MP is calculated, and this is calculated. Is converted into a 12-bit electrical angle (0 to 4096) and updated and stored in a predetermined storage area of a RAM built in the microcomputer 30.
For this reason, when the motor rotation angle detection system is normal in the angular velocity / acceleration calculation unit 48 of FIG. 17, the motor rotation angle calculation unit 48g uses the rotation angle selection unit 48g as in the first embodiment described above. 47, the actual rotational angle θer calculated by 47 is selected, the angular velocity selecting unit 48i selects the actual angular velocity ωer calculated by the angular velocity calculating unit 48h, and the selected actual angular velocity ωer is differentiated by the angular acceleration calculating unit 48j. By calculating the angular acceleration α, and supplying the actual rotation angle θer, the actual angular velocity ωer, and the angular acceleration α to the current command value calculation unit 42, accurate phase target currents Ia * to Ic * are calculated based on these, Deviations ΔIa to ΔIc between the phase target currents Ia * to Ic * and the detected current values Ia to Ic are calculated, and these deviations ΔIa to ΔIc are subjected to PI control processing to calculate voltage command values Va * to Vc *. Voltage finger By outputting the command values Va * to Vc * to the FET gate drive circuit 22 of the motor drive circuit 6, a three-phase drive current is supplied to the electric motor 5 to generate a steering assist force.
そして、算出した相対角速度ωeeが不感帯外であるときには、不感帯検出部48mで論理値“0”の不感帯検出信号SDが第2の回転角選択部48m及び第2の角速度選択部48pに出力され、この第2の回転角選択部48nで加算部48fによって算出された相対回転角θeeが選択されると共に、第2の角速度選択部48pでレイトリミッタ部48dから出力される相対角速度ωeeが選択されて、逆起電圧EMFに基づいて算出される相対回転角θee、相対角速度ωee及び相対角加速度αに基づいて電流指令算出部42で3相電流指令値Ia*〜Ic*が算出され、電動モータ5が駆動制御されて電動モータ5から操舵補助力が発生されることにより、操舵補助制御処理が継続される。 When the fail safe processor 49 detects that an abnormality has occurred in the rotation angle detection system including the resolver 18, the fail safe signal SF having a logical value “1” is output from the fail safe processor 49 to the rotation angle selector 48g and It is output to the angular velocity selection unit 48i. As a result, the relative angular velocity ωee based on the back electromotive force EMF is selected as in the first embodiment described above.
When the calculated relative angular velocity ωee is outside the dead zone, the dead zone detector 48m outputs a dead zone detection signal SD having a logical value of “0” to the second rotation angle selector 48m and the second angular velocity selector 48p. The second rotation angle selection unit 48n selects the relative rotation angle θee calculated by the addition unit 48f, and the second angular velocity selection unit 48p selects the relative angular velocity ωee output from the rate limiter unit 48d. The current command calculation unit 42 calculates the three-phase current command values Ia * to Ic * based on the relative rotation angle θee, the relative angular velocity ωee, and the relative angular acceleration α calculated based on the back electromotive voltage EMF, and the electric motor 5 Is controlled and the steering assist force is generated from the electric motor 5, whereby the steering assist control process is continued.
なおさらに、上記第2の実施形態においては、操舵トルクTsを平均化した操舵トルク平均値TsMを使用して相対回転角変化量ΔθMを算出する場合について説明したが、これに限定されるものではなく、操舵トルクTsそのものを入力値として相対回転変化量ΔθMを算出するようにしてもよく、要は操舵トルクTsに基づく値であれば任意の演算値を適用することができる。 Furthermore, in the second embodiment, the case where Δθ M is set to “0” as the correction value has been described. However, the present invention is not limited to this, and the increase amount of the relative rotation angle θ MP (n). May be set to such a value that can be suppressed to an extremely small value.
Furthermore, in the second embodiment, the case where the relative rotation angle change amount Δθ M is calculated using the steering torque average value Ts M obtained by averaging the steering torque Ts has been described, but the present invention is not limited to this. Instead, the relative rotation change amount Δθ M may be calculated using the steering torque Ts itself as an input value. In short, any calculation value can be applied as long as the value is based on the steering torque Ts.
この第3の実施形態では、前述した第1及び第2の実施形態では、運転者の操舵量に応じたブラシレスモータの相対角度情報を算出する場合に、ブラシレスモータの逆起電圧に基づいて相対角度情報を構成する相対角速度を算出するようにしているので、ブラシレスモータの逆起電圧を正常に検出することができない状態となったときには相対角度情報を得ることができない状態となり、操舵補助制御を中止せざるを得ない。このため、第3の実施形態では、ブラシレスモータの逆起電圧を正常に検出することができない状態となったときでも操舵補助制御を継続することができるようにしたものである。 Next, a third embodiment of the present invention will be described with reference to FIG.
In the third embodiment, in the first and second embodiments described above, when calculating the relative angle information of the brushless motor according to the steering amount of the driver, the relative angle is calculated based on the back electromotive voltage of the brushless motor. Since the relative angular velocity constituting the angle information is calculated, when the back electromotive force voltage of the brushless motor cannot be normally detected, the relative angle information cannot be obtained, and the steering assist control is performed. I have to cancel. Therefore, in the third embodiment, the steering assist control can be continued even when the back electromotive voltage of the brushless motor cannot be normally detected.
この相対角度演算処理は、所定時間(例えば10msec)毎のタイマ割込処理として実行され、先ず、ステップS81で、レゾルバ18及びモータ回転角演算部47で検出されるモータ回転角θerが正常であるか否かを判定する。この判定は、前述した図9のモータ回転角異常検出処理で出力されるフェールセーフ信号SFを読込み、これが論理値“0”であるか否かを判断することにより行う。 That is, in the third embodiment, the microcomputer 30 executes the relative angle calculation process shown in FIG.
This relative angle calculation process is executed as a timer interrupt process at predetermined time intervals (for example, 10 msec). First, in step S81, the motor rotation angle θer detected by the resolver 18 and the motor rotation angle calculation unit 47 is normal. It is determined whether or not. This determination is performed by reading the fail-safe signal SF output in the motor rotation angle abnormality detection process of FIG. 9 and determining whether or not this is a logical value “0”.
このステップS83では、運転者の操舵量に応じた相対角度情報を正常に算出することができるか否かを判定する。この相対角度情報の算出が正常であるか否かの判定は、例えばモータ端子電圧検出部8で検出したモータ端子電圧が正常であるか否かを判断することにより行い、相対角度情報の算出が正常である場合には、ステップS84に移行して、前述した第1の実施形態と同様の相対角度情報検出処理を実行してからタイマ割込処理を終了して所定のメインプログラムに復帰し、相対角度情報の算出が異常であるときには、ステップS85に移行して、前述した第2の実施形態における補完用相対角度情報演算部70で実行する図15の補完用相対角度情報演算処理と同様の処理を行う相対角度情報検出処理を実行してからタイマ割込処理を終了して所定のメインプログラムに復帰する。 If the determination result in step S81 is that the motor rotation angle θer is normal, the process proceeds to step S82, and the motor rotation angle θer is used to calculate the motor angular velocity ωe and the angular acceleration α before timer interruption processing. To return to a predetermined main program, and when the motor rotation angle θer is not normal, the process proceeds to step S83.
In this step S83, it is determined whether or not the relative angle information according to the driver's steering amount can be normally calculated. The determination of whether or not the calculation of the relative angle information is normal is performed, for example, by determining whether or not the motor terminal voltage detected by the motor terminal voltage detection unit 8 is normal. If normal, the process proceeds to step S84, the same relative angle information detection process as in the first embodiment described above is executed, and then the timer interrupt process is terminated to return to the predetermined main program, When the calculation of the relative angle information is abnormal, the process proceeds to step S85 and is the same as the complementary relative angle information calculation process of FIG. 15 executed by the complementary relative angle information calculation unit 70 in the second embodiment described above. After executing the relative angle information detection process for performing the process, the timer interrupt process is terminated and the process returns to the predetermined main program.
また、上記第3の実施形態においては、逆起電圧に基づく相対角度演算処理が行えない場合に、操舵トルクに基づく相対角度演算処理を行う場合について説明したが、これに限定されるものではなく、逆起電圧に基づく相対角度演算処理が行えない場合に、他の処理に使用する操舵角センサを使用して、操舵角センサから得た操舵角の角度変化量に基づいて相対角度を算出するようにしてもよく、さらに操舵角に基づく相対角度演算処理が行えない場合に操舵トルクに基づく相対角度演算処理を行うようにしてもよく、これら3つの操舵角演算処理の組合せは故障率等で決定するようにしてもよい。 In the third embodiment, the case where the relative angle information detection process similar to that of the first embodiment described above is executed when the detection of the motor terminal voltage is normal has been described. The present invention is not limited, and the relative angle information detection process similar to that of the second embodiment described above may be executed.
In the third embodiment, the case where the relative angle calculation process based on the steering torque is performed when the relative angle calculation process based on the back electromotive voltage cannot be performed has been described. However, the present invention is not limited to this. When the relative angle calculation processing based on the back electromotive force cannot be performed, the relative angle is calculated based on the amount of change in the steering angle obtained from the steering angle sensor using the steering angle sensor used for other processing. Further, when the relative angle calculation process based on the steering angle cannot be performed, the relative angle calculation process based on the steering torque may be performed. The combination of these three steering angle calculation processes is based on a failure rate or the like. It may be determined.
また、モータの回転位置検出手段として、図19に示すように、通常の三相ブラシレスモータに設けられるa相、b相及びc相の極位置を検出するホールセンサ等の3つの極位置センサ101a、101b及び101cを適用する場合には、これら極位置センサ101a、101b及び101cから出力される相検出信号Sa、Sb及びScが図20に示すように120度の位相差を有することから、これら相検出信号Sa、Sb及びScに基づいて異常となった1つの極位置センサ101i(i=a、b、c)を検出することができる。 As described above, when one of sin θ and cos θ becomes abnormal, the peak value of the normal signal is monitored, and the angle at the time when the peak value is reached is adopted as a correction value for the relative rotation angle θee. You can also
Further, as shown in FIG. 19, three pole position sensors 101a such as a hall sensor that detects pole positions of a phase, b phase, and c phase provided in a normal three-phase brushless motor are used as the rotational position detection means of the motor. , 101b and 101c, the phase detection signals Sa, Sb and Sc output from these pole position sensors 101a, 101b and 101c have a phase difference of 120 degrees as shown in FIG. One pole position sensor 101i (i = a, b, c) that becomes abnormal can be detected based on the phase detection signals Sa, Sb, and Sc.
この状態で、例えばa相の極位置センサ101aがハイレベルで固着した場合には、図21に示すように、オンオフ状態で表される通電状態が“4”、“5”及び“6”と新たなa相検出信号Saがハイレベル、b相検出信号Sbがハイレベル、c相検出信号Scがハイレベルとなる通電状態“7”とが所定の順序で繰り返されることになり、通電状態“7”となったところで、異常を検出することができるが、本来a相検出信号Saがハイレベルとなる0度〜180度の範囲では、正常時とパターンが変わらない。ここで、通電状態“4”は0度〜360度の範囲で、1度だけ現れる一意な通電状態であり、この通電状態“4”は通電状態“5”又は“6”となるエッジ部では正しく角度を読み取ることができる。同様に、b相検出信号Sb及びc相検出信号Scがハイレベルで固着した場合には、夫々通電状態“2”及び“1”が一意に角度を検出できる領域として存在し、同様に角度を正しく認識できる点が存在する。 That is, the energization state represented by the on / off states of the phase detection signals Sa, Sb, and Sc repeats the energization states 1 to 6 as shown in the lowermost stage of FIG.
In this state, for example, when the a-phase pole position sensor 101a is fixed at a high level, as shown in FIG. 21, the energization states represented by the on / off states are “4”, “5”, and “6”. The energization state “7” in which the new a-phase detection signal Sa is at the high level, the b-phase detection signal Sb is at the high level, and the c-phase detection signal Sc is at the high level is repeated in a predetermined order. Although the abnormality can be detected at 7 ″, the pattern does not change from that in the normal state in the range of 0 to 180 degrees where the a-phase detection signal Sa originally becomes a high level. Here, the energization state “4” is a unique energization state that appears only once in the range of 0 ° to 360 °. This energization state “4” is the edge portion where the energization state is “5” or “6”. The angle can be read correctly. Similarly, when the b-phase detection signal Sb and the c-phase detection signal Sc are fixed at a high level, the energized states “2” and “1” exist as regions where the angle can be uniquely detected, respectively. There are points that can be recognized correctly.
さらに、上記第1〜第3の実施形態においては、マイクロコンピュータ30で操舵補助制御処理を実行し、FETゲート駆動回路22でパルス幅制御処理を実行する場合について説明したが、これに限定されるものではなく、マイクロコンピュータ30で操舵補助制御処理及びパルス幅制御処理の双方を実行するようにし、このマイクロコンピュータ30でインバータ回路21を直接駆動制御するようにしてもよい。 In the first to third embodiments, the case where the steering assist control is performed using the microcomputer 30 has been described. However, the present invention is not limited to this, and other arithmetic processing devices may be applied. In addition, it can be configured by hardware using an arithmetic circuit, an adder circuit, a comparison circuit, and the like.
Further, in the first to third embodiments, the case where the steering assist control process is executed by the microcomputer 30 and the pulse width control process is executed by the FET gate drive circuit 22 has been described, but the present invention is not limited to this. Instead, the microcomputer 30 may execute both the steering assist control process and the pulse width control process, and the microcomputer 30 may directly drive and control the inverter circuit 21.
Claims (11)
- 操舵系に対して操舵補助力を発生する電動モータと、前記操舵系に伝達される操舵トルクを検出する操舵トルク検出手段と、該操舵トルク検出手段で検出した操舵トルクに基づいて操舵補助指令値を算出し、算出した操舵補助指令値に基づいて前記電動モータを駆動制御するモータ制御手段とを備えた電動パワーステアリング装置であって、
運転者の前記操舵系に対する操舵量に応じた前記電動モータの相対角度情報を算出するモータ相対角度情報算出部と、該モータ相対角度情報算出部が相対角度情報を得られない状態となることを防止して常時相対角度情報の生成を可能とする相対角度情報補完部とを有するモータ相対角度検出手段を備え、前記モータ制御手段は、前記モータ相対角度検出手段で検出した相対角度情報に基づいて駆動開始時に初期角度を設定することなく任意の実角度から前記電動モータを駆動制御するように構成されていることを特徴とする電動パワーステアリング装置。 An electric motor for generating a steering assist force for the steering system, a steering torque detecting means for detecting a steering torque transmitted to the steering system, and a steering assist command value based on the steering torque detected by the steering torque detecting means And an electric power steering device comprising motor control means for driving and controlling the electric motor based on the calculated steering assist command value,
A motor relative angle information calculation unit that calculates relative angle information of the electric motor in accordance with a steering amount of the driver with respect to the steering system, and the motor relative angle information calculation unit cannot obtain relative angle information. And a motor relative angle detection unit having a relative angle information complementing unit that prevents generation of relative angle information at all times, and the motor control unit is based on the relative angle information detected by the motor relative angle detection unit. An electric power steering apparatus configured to drive and control the electric motor from an arbitrary actual angle without setting an initial angle at the start of driving. - 操舵系に対して操舵補助力を発生する電動モータと、該電動モータの回転角を検出するモータ回転角検出手段と、操舵系に伝達される操舵トルクを検出する操舵トルク検出手段と、該操舵トルク検出手段で検出した操舵トルクに基づいて操舵補助指令値を算出し、算出した操舵補助指令値及び前記モータ回転角検出手段で検出したモータ回転角とに基づいて前記電動モータを駆動制御するモータ制御手段とを備えた電動パワーステアリング装置であって、
前記モータ回転角検出手段の異常を検出するモータ回転角異常検出手段と、運転者の前記操舵系に対する操舵量に応じた前記電動モータの相対角度情報を算出するモータ相対角度情報算出部と、該モータ相対角度情報算出部が相対角度情報を得られない状態となることを防止して常時相対角度情報の生成を可能とする相対角度情報補完部とを有するモータ相対角度検出手段とを備え、前記モータ制御手段は、前記モータ回転角異常検出手段で前記モータ回転角異常検出手段の異常を検出していないときに、当該回転角検出手段で検出したモータ回転角情報を選択し、前記モータ回転角異常検出手段で、前記モータ回転角検出手段の異常を検出したときに、前記モータ相対角度検出手段で検出した相対角度情報を選択し、選択した前記モータ回転角情報又は相対角度情報に基づいて前記電動モータを駆動制御するように構成されていることを特徴とする電動パワーステアリング装置。 An electric motor that generates a steering assist force for the steering system, a motor rotation angle detection unit that detects a rotation angle of the electric motor, a steering torque detection unit that detects a steering torque transmitted to the steering system, and the steering A motor that calculates a steering assist command value based on the steering torque detected by the torque detection means, and drives and controls the electric motor based on the calculated steering assist command value and the motor rotation angle detected by the motor rotation angle detection means. An electric power steering device comprising a control means,
Motor rotation angle abnormality detection means for detecting an abnormality of the motor rotation angle detection means, a motor relative angle information calculation unit for calculating relative angle information of the electric motor according to a steering amount of a driver with respect to the steering system, A motor relative angle detecting means having a relative angle information complementing unit that prevents the motor relative angle information calculating unit from being in a state in which the relative angle information cannot be obtained and always generates relative angle information; The motor control means selects the motor rotation angle information detected by the rotation angle detection means when the motor rotation angle abnormality detection means has not detected an abnormality of the motor rotation angle abnormality detection means, and the motor rotation angle When the abnormality detecting means detects an abnormality of the motor rotation angle detecting means, the relative angle information detected by the motor relative angle detecting means is selected, and the selected motor rotation is selected. An electric power steering apparatus characterized by being configured to drive control the electric motor based on the angular information or the relative angle information. - 前記モータ制御手段は、前記相対角度情報に基づいて前記電動モータを駆動制御する時に、初期角度を設定することなく任意の実角度から駆動するように構成されていることを特徴とする請求項2に記載の電動パワーステアリング装置。 The said motor control means is comprised so that it may drive from arbitrary real angles, without setting an initial angle, when driving-controlling the said electric motor based on the said relative angle information. The electric power steering device described in 1.
- 前記モータ相対角度情報補完部は、前記モータ相対角度情報算出部で算出した相対角度情報に、所要時に所定周期毎に符号を変更するオフセット値を加算することにより、相対角度情報を得られない状態となることを防止するように構成されていることを特徴とする請求項1乃至3の何れか1項に記載の電動パワーステアリング装置。 The motor relative angle information complementing unit is a state in which relative angle information cannot be obtained by adding an offset value for changing the sign every predetermined cycle when necessary to the relative angle information calculated by the motor relative angle information calculating unit. The electric power steering device according to any one of claims 1 to 3, wherein the electric power steering device is configured to prevent the occurrence of the electric power steering.
- 前記モータ相対角度情報補完部は、相対角速度を検出し、検出した相対角速度が少なくとも零近傍となったときに、前記モータ相対角度算出部により相対角度情報が得られるまでの不感帯を確実に超えるようにオフセット量と周期とを決定するように構成されていることを特徴とする請求項4に記載の電動パワーステアリング装置。 The motor relative angle information complementing unit detects a relative angular velocity, and when the detected relative angular velocity is at least near zero, the motor relative angle calculating unit reliably exceeds the dead zone until the relative angle information is obtained. The electric power steering apparatus according to claim 4, wherein the offset amount and the period are determined.
- 前記モータ相対角度算出部は、算出した相対角度情報及び当該相対角度情報を算出するための入力値の少なくとも一方の異常を検出する相対角度算出異常状態を検出する相対角度算出異常検出手段を有し、該相対角度算出異常検出手段により相対角度算出異常状態が検出された場合、異常が検出されていない他の入力値に基づいて相対角度情報を算出するように構成されていることを特徴とする請求項1乃至5の何れか1項に記載の電動パワーステアリング装置。 The motor relative angle calculation unit includes a relative angle calculation abnormality detection unit that detects a relative angle calculation abnormality state that detects an abnormality of at least one of the calculated relative angle information and an input value for calculating the relative angle information. When the relative angle calculation abnormality detecting unit detects the relative angle calculation abnormality state, the relative angle information is calculated based on another input value in which no abnormality is detected. The electric power steering device according to any one of claims 1 to 5.
- 前記モータ相対角度算出部は、前記電動モータの回転方向を前記操舵トルク検出手段で検出した操舵トルクに基づいて決定するように構成されていることを特徴とする請求項1乃至6の何れか1項に記載の電動パワーステアリング装置。 The said motor relative angle calculation part is comprised so that the rotation direction of the said electric motor may be determined based on the steering torque detected by the said steering torque detection means, The any one of Claim 1 thru | or 6 characterized by the above-mentioned. The electric power steering device according to the item.
- 前記モータ相対角度算出部は、算出したモータ相対角度の実角度に対する誤差が増加する要補正状態であることを検出する要補正状態検出手段と、該要補正状態検出手段で要補正状態を検出したときに前記相対角度情報を補正する相対角度情報補正手段を備えていることを特徴とする請求項1乃至7の何れか1項に記載の電動パワーステアリング装置。 The motor relative angle calculation unit detects a necessary correction state detecting unit that detects a correction necessary state in which an error with respect to the actual angle of the calculated motor relative angle increases, and the correction state detection unit detects the necessary correction state. 8. The electric power steering apparatus according to claim 1, further comprising a relative angle information correction unit that corrects the relative angle information.
- 前記モータ回転角検出手段は、正弦波及び余弦波の2系統又は他の異なる2系統以上の回転角検出信号を出力するように構成され、前記モータ回転角異常検出手段は、正弦波及び余弦波の何れか一方の振幅が所定範囲外となったときにモータ回転角異常を検出し、前記モータ相対角度算出部は、算出したモータ相対角度の実角度に対する誤差が増加する要補正状態であることを検出する要補正状態検出手段と、該要補正状態検出手段で要補正状態を検出したときに前記相対角度情報を補正する相対角度情報補正手段を備え、前記要補正状態検出手段は、正常な正弦波及び余弦波の何れか他方の振幅が最大値及び最小値に達したときに要補正状態であることを検出し、前記相対角度補正手段は、要補正状態であるときに、そのときの実角度で、前記相対角度情報を補正するように構成されていることを特徴とする請求項2又は3に記載の電動パワーステアリング装置。 The motor rotation angle detection means is configured to output two or more different rotation angle detection signals of a sine wave and a cosine wave, or the motor rotation angle abnormality detection means is configured to output a sine wave and a cosine wave. The motor relative angle calculation unit detects a motor rotation angle abnormality when the amplitude of any one of the motors is out of a predetermined range, and the motor relative angle calculation unit is in a correction state in which an error with respect to the actual angle of the calculated motor relative angle increases. And a relative angle information correction unit that corrects the relative angle information when the required correction state is detected by the required correction state detection unit. When the amplitude of the other one of the sine wave and cosine wave reaches the maximum value and the minimum value, it is detected that the correction is necessary, and the relative angle correction means At a real angle, Serial electric power steering apparatus according to claim 2 or 3, characterized in that it is configured to correct the relative angle information.
- 前記モータ回転角検出手段は、正弦波及び余弦波の2系統の回転角検出信号を出力するように構成され、前記モータ回転角異常検出手段は、正弦波の二乗値及び余弦波の二乗値との和が“1”であるか否かを検出することにより両波のショートを検出し、前記モータ相対角度算出部は、算出したモータ相対角度の実角度に対する誤差が増加する要補正状態であることを検出する要補正状態検出手段と、該要補正状態検出手段で要補正状態を検出したときに前記相対角度情報を補正する相対角度情報補正手段を備え、前記要補正状態検出手段は、ショートした正弦波及び余弦波の振幅が最小値及び最大値に達したときに要補正状態であることを検出し、前記相対角度情報補正手段は、要補正状態であるときに、そのときの実角度で、前記相対角度情報を補正するように構成されていることを特徴とする請求項2又は3に記載の電動パワーステアリング装置。 The motor rotation angle detection means is configured to output two types of rotation angle detection signals of a sine wave and a cosine wave, and the motor rotation angle abnormality detection means includes a square value of the sine wave and a square value of the cosine wave. By detecting whether or not the sum of the two is “1”, a short circuit between the two waves is detected, and the motor relative angle calculation unit is in a correction state requiring an increase in the error of the calculated motor relative angle with respect to the actual angle. A correction-necessity detection unit for detecting this, and a relative angle information correction unit that corrects the relative angle information when the correction-necessity detection state is detected by the correction-necessity detection unit. When the amplitude of the sine wave and cosine wave reaches the minimum value and the maximum value, it is detected that the correction is necessary, and the relative angle information correction means is the actual angle at that time when the correction is required. And the relative angle The electric power steering apparatus according to claim 2 or 3, characterized in that it is configured to correct the information.
- 前記モータ回転角検出手段は、多相の極位置信号を出力する極位置センサで構成され、前記モータ回転角異常検出手段は、前記極位置センサから出力される極位置信号に基づいて1つの極位置センサの異常を検出し、前記モータ相対角度算出部は、算出したモータ相対角度の実角度に対する誤差が増加する要補正状態であることを検出する要補正状態検出手段と、該要補正状態検出手段で要補正状態を検出したときに前記相対角度情報を補正する相対角度情報補正手段を備え、前記要補正状態検出手段は、極位置センサの異常状態に応じて360度のうち一意に決まる極位置信号配列となったときに、要補正状態であることを検出し、前記相対角度情報補正手段は、要補正状態であるときに、該当する極位置信号配列の実角度で、前記相対角度情報を補正するように構成されていることを特徴とする請求項2又は3に記載の電動パワーステアリング装置。 The motor rotation angle detection means includes a pole position sensor that outputs a multi-phase pole position signal, and the motor rotation angle abnormality detection means has one pole based on the pole position signal output from the pole position sensor. An abnormality of the position sensor is detected, and the motor relative angle calculation unit detects a correction state that is required to detect that the error with respect to the actual angle of the calculated motor relative angle is increased, and the correction state detection is required. Relative angle information correction means for correcting the relative angle information when the required correction state is detected by the means, and the required correction state detection means is a pole that is uniquely determined from among 360 degrees according to the abnormal state of the pole position sensor. When the position signal arrangement is reached, it is detected that the correction is required, and the relative angle information correction unit is configured to detect the relative angle at the actual angle of the corresponding polar position signal arrangement when the correction is required. The electric power steering apparatus according to claim 2 or 3, characterized in that it is configured to correct the information.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006243470 | 2006-09-07 | ||
JP2006243470 | 2006-09-07 | ||
JP2007172388A JP5012258B2 (en) | 2006-09-07 | 2007-06-29 | Electric power steering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007172388A JP5012258B2 (en) | 2006-09-07 | 2007-06-29 | Electric power steering device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008087756A true JP2008087756A (en) | 2008-04-17 |
JP5012258B2 JP5012258B2 (en) | 2012-08-29 |
Family
ID=39372317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007172388A Active JP5012258B2 (en) | 2006-09-07 | 2007-06-29 | Electric power steering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5012258B2 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010076714A (en) * | 2008-09-29 | 2010-04-08 | Nsk Ltd | Electric power steering device |
JP2010098808A (en) * | 2008-10-15 | 2010-04-30 | Jtekt Corp | Motor control device |
JP2010098811A (en) * | 2008-10-15 | 2010-04-30 | Jtekt Corp | Motor control device |
JP2010098812A (en) * | 2008-10-15 | 2010-04-30 | Jtekt Corp | Motor control apparatus |
JP2010137774A (en) * | 2008-12-12 | 2010-06-24 | Nsk Ltd | Electric power-steering device |
JP2010178546A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor control device |
JP2010178548A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor controller |
JP2010178545A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor control device |
JP2010178549A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor controller |
JP2010178547A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor control device |
JP2010208593A (en) * | 2009-03-12 | 2010-09-24 | Jtekt Corp | Vehicular steering device |
JP2010213548A (en) * | 2009-03-12 | 2010-09-24 | Jtekt Corp | Motor controller |
JP2010213549A (en) * | 2009-03-12 | 2010-09-24 | Jtekt Corp | Motor controller |
JP2010239854A (en) * | 2009-03-12 | 2010-10-21 | Jtekt Corp | Motor control device |
JP2011015593A (en) * | 2009-07-06 | 2011-01-20 | Jtekt Corp | Motor control device, and steering device for vehicle |
JP2011015595A (en) * | 2009-07-06 | 2011-01-20 | Jtekt Corp | Motor control device and steering device for vehicle |
JP2011015594A (en) * | 2009-07-06 | 2011-01-20 | Jtekt Corp | Motor controller |
JP2011036119A (en) * | 2009-07-06 | 2011-02-17 | Jtekt Corp | Motor control device and vehicle steering apparatus |
JP2011046251A (en) * | 2009-08-26 | 2011-03-10 | Toyota Motor Corp | Electric power steering device |
JP2011051537A (en) * | 2009-09-04 | 2011-03-17 | Toyota Motor Corp | Electric power steering system |
JP2011097810A (en) * | 2009-11-02 | 2011-05-12 | Jtekt Corp | Motor control device and vehicle steering apparatus |
JP2011097763A (en) * | 2009-10-30 | 2011-05-12 | Jtekt Corp | Motor control device and steering apparatus for vehicle |
JP2011109874A (en) * | 2009-11-20 | 2011-06-02 | Jtekt Corp | Motor controller and vehicle steering apparatus |
JP2011109733A (en) * | 2009-11-12 | 2011-06-02 | Jtekt Corp | Motor control apparatus and vehicular steering device |
JP2011109769A (en) * | 2009-11-16 | 2011-06-02 | Jtekt Corp | Motor control unit and vehicular steering device |
JP2011131725A (en) * | 2009-12-24 | 2011-07-07 | Toyota Motor Corp | Electric power steering device |
JP2011157004A (en) * | 2010-02-02 | 2011-08-18 | Toyota Motor Corp | Electric power steering device |
JP2011244678A (en) * | 2009-11-17 | 2011-12-01 | Jtekt Corp | Motor controller and steering device for vehicle |
JP2012183991A (en) * | 2011-02-14 | 2012-09-27 | Jtekt Corp | Electric power steering device |
JP2014060922A (en) * | 2014-01-06 | 2014-04-03 | Jtekt Corp | Motor control device |
EP2757023A2 (en) | 2013-01-18 | 2014-07-23 | Jtekt Corporation | Electric power steering system |
US8862323B2 (en) | 2008-06-30 | 2014-10-14 | Jtekt Corporation | Motor control device and vehicle-steering device comprising same |
US8874316B2 (en) | 2010-08-23 | 2014-10-28 | Jtekt Corporation | Vehicle steering system |
KR101551038B1 (en) * | 2013-12-31 | 2015-09-18 | 현대자동차주식회사 | Method and apparatus for controlling of motor driving power steering system |
JP2018088810A (en) * | 2015-09-18 | 2018-06-07 | 日本精工株式会社 | Electric power steering device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003160054A (en) * | 2001-11-22 | 2003-06-03 | Toyoda Mach Works Ltd | Electric power steering device |
JP2004058769A (en) * | 2002-07-26 | 2004-02-26 | Toyoda Mach Works Ltd | Steering control system for vehicle |
JP2004112941A (en) * | 2002-09-19 | 2004-04-08 | Aisin Aw Co Ltd | Electrically driven machine controller, electrically driven machine control method, and program therefor |
JP2005168242A (en) * | 2003-12-04 | 2005-06-23 | Nsk Ltd | Controller for electric power steering device |
JP2005308634A (en) * | 2004-04-23 | 2005-11-04 | Hitachi Ltd | Resolver/digital converter |
JP2006123775A (en) * | 2004-10-29 | 2006-05-18 | Nsk Ltd | Control device of electric power steering device |
-
2007
- 2007-06-29 JP JP2007172388A patent/JP5012258B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003160054A (en) * | 2001-11-22 | 2003-06-03 | Toyoda Mach Works Ltd | Electric power steering device |
JP2004058769A (en) * | 2002-07-26 | 2004-02-26 | Toyoda Mach Works Ltd | Steering control system for vehicle |
JP2004112941A (en) * | 2002-09-19 | 2004-04-08 | Aisin Aw Co Ltd | Electrically driven machine controller, electrically driven machine control method, and program therefor |
JP2005168242A (en) * | 2003-12-04 | 2005-06-23 | Nsk Ltd | Controller for electric power steering device |
JP2005308634A (en) * | 2004-04-23 | 2005-11-04 | Hitachi Ltd | Resolver/digital converter |
JP2006123775A (en) * | 2004-10-29 | 2006-05-18 | Nsk Ltd | Control device of electric power steering device |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8862323B2 (en) | 2008-06-30 | 2014-10-14 | Jtekt Corporation | Motor control device and vehicle-steering device comprising same |
JP2010076714A (en) * | 2008-09-29 | 2010-04-08 | Nsk Ltd | Electric power steering device |
JP2010098808A (en) * | 2008-10-15 | 2010-04-30 | Jtekt Corp | Motor control device |
JP2010098811A (en) * | 2008-10-15 | 2010-04-30 | Jtekt Corp | Motor control device |
JP2010098812A (en) * | 2008-10-15 | 2010-04-30 | Jtekt Corp | Motor control apparatus |
JP2010137774A (en) * | 2008-12-12 | 2010-06-24 | Nsk Ltd | Electric power-steering device |
JP2010178546A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor control device |
US8855857B2 (en) | 2009-01-30 | 2014-10-07 | Jtekt Corporation | Electric motor controller and electric motor controller for vehicle steering apparatus |
JP2010178545A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor control device |
JP2010178549A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor controller |
JP2010178547A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor control device |
JP2010178548A (en) * | 2009-01-30 | 2010-08-12 | Jtekt Corp | Motor controller |
JP2010213549A (en) * | 2009-03-12 | 2010-09-24 | Jtekt Corp | Motor controller |
JP2010239854A (en) * | 2009-03-12 | 2010-10-21 | Jtekt Corp | Motor control device |
JP2010213548A (en) * | 2009-03-12 | 2010-09-24 | Jtekt Corp | Motor controller |
US8874318B2 (en) | 2009-03-12 | 2014-10-28 | Jtekt Corporation | Motor control unit and motor control unit for vehicle steering apparatus |
JP2010208593A (en) * | 2009-03-12 | 2010-09-24 | Jtekt Corp | Vehicular steering device |
JP2011015595A (en) * | 2009-07-06 | 2011-01-20 | Jtekt Corp | Motor control device and steering device for vehicle |
JP2011015594A (en) * | 2009-07-06 | 2011-01-20 | Jtekt Corp | Motor controller |
JP2011036119A (en) * | 2009-07-06 | 2011-02-17 | Jtekt Corp | Motor control device and vehicle steering apparatus |
US8862322B2 (en) | 2009-07-06 | 2014-10-14 | Jtekt Corporation | Motor control unit and vehicle steering apparatus |
JP2011015593A (en) * | 2009-07-06 | 2011-01-20 | Jtekt Corp | Motor control device, and steering device for vehicle |
JP2011046251A (en) * | 2009-08-26 | 2011-03-10 | Toyota Motor Corp | Electric power steering device |
JP2011051537A (en) * | 2009-09-04 | 2011-03-17 | Toyota Motor Corp | Electric power steering system |
JP2011097763A (en) * | 2009-10-30 | 2011-05-12 | Jtekt Corp | Motor control device and steering apparatus for vehicle |
JP2011097810A (en) * | 2009-11-02 | 2011-05-12 | Jtekt Corp | Motor control device and vehicle steering apparatus |
JP2011109733A (en) * | 2009-11-12 | 2011-06-02 | Jtekt Corp | Motor control apparatus and vehicular steering device |
US8855858B2 (en) | 2009-11-12 | 2014-10-07 | Jtekt Corporation | Motor control unit and vehicle steering system |
US8874315B2 (en) | 2009-11-16 | 2014-10-28 | Jtekt Corporation | Motor control unit and vehicle steering system |
JP2011109769A (en) * | 2009-11-16 | 2011-06-02 | Jtekt Corp | Motor control unit and vehicular steering device |
US8892306B2 (en) | 2009-11-17 | 2014-11-18 | Jtekt Corporation | Motor control unit and vehicle steering system |
JP2011244678A (en) * | 2009-11-17 | 2011-12-01 | Jtekt Corp | Motor controller and steering device for vehicle |
JP2011109874A (en) * | 2009-11-20 | 2011-06-02 | Jtekt Corp | Motor controller and vehicle steering apparatus |
JP2011131725A (en) * | 2009-12-24 | 2011-07-07 | Toyota Motor Corp | Electric power steering device |
JP2011157004A (en) * | 2010-02-02 | 2011-08-18 | Toyota Motor Corp | Electric power steering device |
US8874316B2 (en) | 2010-08-23 | 2014-10-28 | Jtekt Corporation | Vehicle steering system |
JP2012183991A (en) * | 2011-02-14 | 2012-09-27 | Jtekt Corp | Electric power steering device |
US20140207335A1 (en) * | 2013-01-18 | 2014-07-24 | Jtekt Corporation | Electric power steering system |
JP2014138530A (en) * | 2013-01-18 | 2014-07-28 | Toyota Motor Corp | Electric power steering device |
US9248852B2 (en) | 2013-01-18 | 2016-02-02 | Jtekt Corporation | Electric power steering system |
EP2757023A2 (en) | 2013-01-18 | 2014-07-23 | Jtekt Corporation | Electric power steering system |
KR101551038B1 (en) * | 2013-12-31 | 2015-09-18 | 현대자동차주식회사 | Method and apparatus for controlling of motor driving power steering system |
JP2014060922A (en) * | 2014-01-06 | 2014-04-03 | Jtekt Corp | Motor control device |
JP2018088810A (en) * | 2015-09-18 | 2018-06-07 | 日本精工株式会社 | Electric power steering device |
JP2018088809A (en) * | 2015-09-18 | 2018-06-07 | 日本精工株式会社 | Electric power steering device |
JP2018088808A (en) * | 2015-09-18 | 2018-06-07 | 日本精工株式会社 | Electric power steering device |
JP2018088807A (en) * | 2015-09-18 | 2018-06-07 | 日本精工株式会社 | Electric power steering device |
US10286949B2 (en) | 2015-09-18 | 2019-05-14 | Nsk Ltd. | Electric power steering apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5012258B2 (en) | 2012-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9663140B2 (en) | Electric power steering system for vehicle | |
EP2749477B1 (en) | Electric power steering system | |
JP5679136B2 (en) | Rotation angle detection device and electric power steering device provided with rotation angle detection device | |
US7474067B2 (en) | Electric power steering system | |
EP2819295B1 (en) | Control device and method for ac rotary electrical machine, and electrical power steering device | |
JP4539218B2 (en) | Electric power steering device | |
EP2559608B1 (en) | Apparatus for controlling electric power steering apparatus | |
JP5310815B2 (en) | Motor drive control device and electric power steering device using the same | |
US7845459B2 (en) | Electric power steering apparatus and method for controlling the electric power steering apparatus | |
US7406375B2 (en) | Electric power steering apparatus and method for controlling the electric power steering apparatus | |
US5670854A (en) | Control system for an induction motor | |
US7102314B2 (en) | Brushless motor control apparatus having overheat protecting function | |
US6906492B2 (en) | Motor abnormality detection apparatus and electric power steering control system | |
EP1470988B2 (en) | Electric power steering apparatus | |
WO2015022718A1 (en) | Motor control device, electric power steering device using same, and vehicle | |
US6427104B1 (en) | Steering control apparatus | |
JP3701207B2 (en) | Motor control device and electric vehicle using the same | |
US9692342B2 (en) | Brushless motor and motor control device | |
JP6040963B2 (en) | Rotating machine control device | |
US9248852B2 (en) | Electric power steering system | |
EP1587210B1 (en) | Motor and drive control device therefor | |
JP5282376B2 (en) | Electric power steering device | |
EP1728705B1 (en) | Electric power steering apparatus, and method for detecting abnormality of angle detector thereof | |
EP1583217B1 (en) | Motor drive-controlling device and electric power-steering device | |
JP5286357B2 (en) | Electric steering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100623 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101022 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20101022 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120521 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5012258 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |