JP2008087110A - ロボットの関節構造 - Google Patents

ロボットの関節構造 Download PDF

Info

Publication number
JP2008087110A
JP2008087110A JP2006271124A JP2006271124A JP2008087110A JP 2008087110 A JP2008087110 A JP 2008087110A JP 2006271124 A JP2006271124 A JP 2006271124A JP 2006271124 A JP2006271124 A JP 2006271124A JP 2008087110 A JP2008087110 A JP 2008087110A
Authority
JP
Japan
Prior art keywords
artificial muscle
muscle group
shaft
robot
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006271124A
Other languages
English (en)
Inventor
Weizaato Michael
ウェイザート マイケル
Yasuhiro Ota
康裕 太田
Shiro Oda
志朗 小田
Duncheon Charlie
デュンチェオン チャーリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARTIFICIAL MASCLE Inc
Toyota Motor Corp
Artificial Muscle Inc
Original Assignee
ARTIFICIAL MASCLE Inc
Toyota Motor Corp
Artificial Muscle Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARTIFICIAL MASCLE Inc, Toyota Motor Corp, Artificial Muscle Inc filed Critical ARTIFICIAL MASCLE Inc
Priority to JP2006271124A priority Critical patent/JP2008087110A/ja
Publication of JP2008087110A publication Critical patent/JP2008087110A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】 人工筋肉を利用したアクチュエータによって、大きな機械エネルギを必要とする部位を駆動することを可能とする。
【解決手段】 このロボット10の関節構造は、フィルム状のEPAM型人工筋肉を複数枚積層した2個のアクチュエータ18a,18bを備える。各アクチュエータ18a,18bは出力シャフト26a,26bを備えており、アクチュエータ18a,18bが作動するとシャフト26a,26bが進退動する。複数枚の人工筋肉を積層することによって、アクチュエータ18a,18bの個々の人工筋肉から得られる機械エネルギを累積して増大させることができる。人工筋肉を利用したアクチュエータでありながら、脚部等の大きな機械エネルギを必要とする部位を十分に駆動することができる。
【選択図】 図1

Description

本発明はロボットの関節構造に関する。特に、人工筋肉を利用したロボットの関節構造に関する。
ロボットの関節を駆動するアクチュエータには、低価で大きな機械エネルギ(トルク)が得られるという理由から、電気モータ等を利用することが多い。しかしながら、電気モータ等を利用したロボットは、その剛性が強すぎるため、人と直接接触する可能性のある用途には用い難い。また、電気モータを用いると、騒音等の発生も問題となる。
これらの問題を解消するべく、電気モータ等のアクチュエータに替わって、特許文献1に記載されているような人工筋肉をアクチュエータとして利用したロボットの開発が検討されている。
特表2003−505865号公報
人工筋肉を利用したアクチュエータでは、騒音等を抑えることができ、また、電気モータ等を用いる場合と比較して剛性が弱いため、人と直接接触する可能性のある用途にも好適に用いることができる。しかしながら、それ故に、人工筋肉の変形を機械動作に変換したときに得られる機械エネルギは小さい。従って、移動ロボットの脚部や、重い物体を把持するロボットハンド等のように、大きな機械エネルギを必要とする駆動部位のアクチュエータとして人工筋肉を利用することは困難であった。
本発明は、上記の問題に鑑みて創作されたものであり、人工筋肉を利用したロボットの関節構造において、大きな機械エネルギを発生させることができる技術を提供することを目的とする。
本発明のロボットの関節構造は、複数のフィルム状の人工筋肉が積層された人工筋肉群と、この人工筋肉群の変形に伴って進退動するシャフトと、シャフトの進退動によって駆動される駆動部とを備えている。そして、シャフトが各人工筋肉の変形に応じて進退動するように、各人工筋肉の変形が制御可能に構成されている。
このロボットの関節構造では、変形制御可能なフィルム状の人工筋肉を複数枚積層し、その人工筋肉群の変形に応じてシャフトを進退動させる。このため、個々の人工筋肉から得られる機械エネルギが累積され、その累積された機械エネルギによってシャフトが進退動される。したがって、大きな機械エネルギで駆動部を駆動することができる。
上記のロボットの関節構造においては、人工筋肉群を構成する各人工筋肉はその変形方向が同一となる状態で積層されており、シャフトが進退動する方向は人工筋肉群の変形方向に一致していることが好ましい。
このような構成によると、各人工筋肉から得られる機械エネルギが効率的に累積され、累積された機械エネルギはシャフトを駆動するために効率的に使用される。
また、上記のロボットの関節構造においては、前記人工筋肉群は、複数のフィルム状の人工筋肉が積層された第1人工筋肉群と、複数のフィルム状の人工筋肉が積層された第2人工筋肉群を有することができる。この場合、第1人工筋肉群を構成する各人工筋肉は変形する方向が同一となる状態で積層されており、かつ、第2人工筋肉群を構成する各人工筋肉は変形する方向が同一となる状態で積層されている。そして、シャフトの進退動する方向は第1及び第2人工筋肉群の変形方向と一致しており、第1人工筋肉群に電圧が印加されない状態で第2人工筋肉群に電圧が印加されるとシャフトが進動し、第2人工筋肉群に電圧が印加されない状態で第1人工筋肉群に電圧が印加されるとシャフトが退動することができる。
このような構成によっても、複数の人工筋肉のそれぞれから得られる機械エネルギが増大され、その増大された機械エネルギによってシャフトが進退動(伸縮)される。これによって、大きな機械エネルギで駆動部を駆動することができる。
また、第1人工筋肉群に電圧を印加したときにシャフトが退動(収縮)し、第2人工筋肉群に電圧を印加したときにシャフトが進動(伸張)する。このため、第1及び第2人工筋肉群への電圧の印加をON/OFFによって速やかにシャフトを進退動させることができる。また、第1及び第2人工筋肉群へ印加する電圧を制御することによって、シャフトから駆動部に伝達される駆動力を好適に制御することができる。
上記のロボットの関節構造においては、第1人工筋肉群と第2人工筋肉群は変形方向に並んで配置されており、第1人工筋肉群と第2人工筋肉群の間にはシャフトに連結された仕切り板が配置されており、その仕切り板は第1人工筋肉群と第2人工筋肉群によって挟持されており、第1人工筋肉群に電圧が印加されない状態で第2人工筋肉群に電圧が印加されると、第2人工筋肉群の変形に伴って仕切り板が変位してシャフトが進動し、第2人工筋肉群に電圧が印加されない状態で第1人工筋肉群に電圧が印加されると、第1人工筋肉群の変形に伴って仕切り板が変位してシャフトが退動することが好ましい。
このような構成によると、第1及び第2人工筋肉群の変形が仕切り板を介してシャフトに伝達される。仕切り板を設けることで、人工筋肉群の端部にシャフトを固定する必要はなく、また、人工筋肉群にシャフトを直接固定する必要もない。このため、人工筋肉群の変形を効率的にシャフトの運動に変換することができる。
本発明のロボットの関節構造では、人工筋肉を利用しながら、大きな機械エネルギを発生することができる。これによって、大きな機械エネルギを必要とする部位(駆動部)を駆動することができる。
本発明の好ましい実施形態について列挙する。
(形態1)第1部材と、第1部材に対して移動可能に取付けられている第2部材と、この第2部材を駆動するアクチュエータを備えている。アクチュエータは、複数のフィルム状の人工筋肉が積層された人工筋肉群と、この人工筋肉群の変形に伴って進退動するシャフトを有しており、このシャフトを進退動させることで第2部材を駆動する。
(形態2)形態1において、複数のアクチュエータを備えており、各アクチュエータはシャフトの進退動する方向が同一方向となるように配置されており、各アクチュエータのシャフトの一端同士を連結する連結部材をさらに有し、各アクチュエータのシャフトの動きが連結部材を介して第2部材に伝達される。
(形態3)形態1又は2において、シャフトの進退動に伴って弛緩/引張するワイヤを備えており、アクチュエータはこのワイヤを弛緩/引張することで第2部材を駆動する。
(形態4)形態1〜3のいずれかにおいて、第2部材が脚式ロボット用の脚部である。
(形態5)形態1において、第1部材に対して移動可能に取り付けられた第3部材と、この第3部材を駆動するアクチュエータをさらに有しており、第3部材を駆動するアクチュエータは、複数のフィルム状の人工筋肉が積層された人工筋肉群と、この人工筋肉群の変形に伴って進退動するシャフトを有しており、このシャフトを進退動させることで第3部材を駆動する。
(形態6)形態5において、第2部材と第3部材との間で物体を把持する。
(実施例1)
本発明を具現化した第1実施例を図を参照して説明する。本実施例は、脚式ロボットの脚部として利用可能な脚ロボット10である。なお、以下の説明では図1を脚ロボット10の正面とする。
図1,2に示すように脚ロボット10は、駆動装置12と、リンク機構14と、ベース16を備えている。ベース16は、脚ロボット10の足部であり、脚ロボット10を支持している。リンク機構14は、複数のリンク部材30a〜30fと垂直ガイド部材36によって構成されている。リンク機構14の一端はベース16に接続されている。リンク機構14の他端には駆動装置12が接続されている。駆動装置12は、リンク機構14を駆動し、リンク機構14を図の上下方向に伸縮させる。
図1と図2に示すように、リンク機構14は、6本の細長い板状リンク部材30a,30b,30c,30d,30e,30fと、1本の垂直ガイド部材36を有している。
図3に示すように、板状リンク部材30aの一端は、接続部32aにおいて連結シャフト28の後端と回転可能に接続されている。板状リンク部材30bの一端は、接続部32bにおいて連結シャフト38の後端と回転可能に接続されている。図2に示すように、板状リンク部材30aと板状リンク部材30bはX字状に重ねられており、これらの交差部34aは回転可能に結合されている。板状リンク部材30aの他端は、接続部32cにおいて板状リンク部材30cの一端と回転可能に接続されている。板状リンク部材30bの他端は、接続部32dにおいて板状リンク部材30dの一端と回転可能に接続されている。板状リンク部材30cと板状リンク部材30dもX字状に重ねられており、これらの交差部34bは回転可能に結合されている。板状リンク部材30cの他端は、接続部32eにおいて板状リンク部材30eの一端と回転可能に接続されている。板状リンク部材30dの他端は、接続部32fにおいて板状リンク部材30fの一端と回転可能に接続されている。板状リンク部材30eの他端と板状リンク部材30fの他端は、交差部34cにおいて回転可能に結合されている。
垂直ガイド部材36の下端はベース16に垂直に固定されている。垂直ガイド部材36には上下方向に伸びる案内溝36aが形成されている。案内溝36aには交差部34aと交差部34bが上下方向にスライド可能に取付けられている。垂直ガイド部材36の下部には交差部34cが固定されている。垂直ガイド部材36と駆動装置12は板状リンク部材群30a〜30fを介して間接的に接続されている。
図3〜5によく示されるように駆動装置12は、2つのアクチュエータ18a,18bを備えている。アクチュエータ18a,18bは、進退両方向(押し/引き両方向)に駆動される誘電エラストマー型人工筋肉(Electroactive Polymer Artificial Muscles、以下EPAM)アクチュエータである。
アクチュエータ18aとアクチュエータ18bは、前板20と後板22によって前面と後面を挟まれた状態で固定されている。前板20と後板22は略矩形形状であり、対向する互いの角部が、前後方向に伸びる4本の棒状部材24,24・・・によって接続されて固定されている。前板20は透明の部材であり、内側に配置されているアクチュエータ18aを視認することができる。後板22の左右方向の片端部(正面向かって左側の端部)にはフランジ22aが形成されている。フランジ22aには、連結シャフト38の一端が連結されている。
図3に示すように、アクチュエータ18aの左側の側面(正面向かって右側の側面)から出力シャフト26aの一端が取り出されており、アクチュエータ18bの左側の側面(正面向かって右側の側面)から出力シャフト26bの一端が取り出されている。すなわち、出力シャフト26a,26bは、共に水平方向に平行に配置されている。出力シャフト26a,26bの先端は、連結シャフト28の連結部28a,28bにそれぞれ連結されている。出力シャフト26a,26bと連結シャフト28は、アクチュエータ18a,18bの変形に伴って左右方向にスライドする。
次に、アクチュエータ18a,18bについて詳細に説明する。なお、アクチュエータ18aとアクチュエータ18bは同一構成であるため、ここではアクチュエータ18aについてのみ説明する。
図6〜8に示すように、アクチュエータ18aは、第1人工筋肉群27aと第2人工筋肉群29aとシャフト26aを備えている。第1人工筋肉群27aは、同形同大のフィルム状のEPAM型人工筋肉が複数枚(例えば、80枚)積層されて形成されている。EPAM型人工筋肉には、公知の人工筋肉(例えば、アクリル等)を用いることができる。各EPAM型人工筋肉には図示しない電源が接続され、電圧が印加されるようになっている。各EPAM型人工筋肉は、電圧が印加されると上下方向(図6〜8における上下方向)に伸張するように積層されている。すなわち、各EPAM型人工筋肉は、その変形方向が同一となるように積層されている。第1人工筋肉群27aを構成する各EPAM型人工筋肉は同形同大とされているため、電圧を印加したときの各EPAM型人工筋肉の変形量も略同一となっている。
第2人工筋肉群29aは、第1人工筋肉群27aと同様に構成されている。第2人工筋肉群29aは、第1人工筋肉群27aの伸張方向(変形方向)に並んで配置されている。第2人工筋肉群29aの伸張方向(変形方向)も、第1人工筋肉群27aの伸張方向(変形方向)と同一となっている。第1人工筋肉群27aと第2人工筋肉群29aは、図示しないケース内に収容されている。
第1人工筋肉群27aと第2人工筋肉群29aの間には仕切り板23aが配置されている。仕切り板23aは、第1人工筋肉群27aと第2人工筋肉群29aによって挟持されている。仕切り板23aにはシャフト26aの基端が固定されている。シャフト26aは、仕切り板23aより垂直上方に伸び、その先端は第1及び第2人工筋肉群27a,29aを収容するケースの外側に位置している。シャフト26aは、ケースに対して進退動可能に案内されている。
上述したアクチュエータ18aでは、第1人工筋肉群27aに電圧を印加しない状態で第2人工筋肉群29aに電圧を印加すると、第2人工筋肉群29aが図の上下方向に伸張する(図7に示す状態)。第1及び第2人工筋肉群27a,29aはケース内に収容されているため、第2人工筋肉群29aが図7の上下方向に伸張すると、その分だけ第1人工筋肉群27aが圧縮される。第2人工筋肉群29aが上下方向に伸張し、第1人工筋肉群27aが上下方向に圧縮されるため、第1及び第2人工筋肉群27a,29a間の仕切り板23aは上方向に移動する。これによって、シャフト26aがケースより押し出される(すなわち、シャフト26aが伸張する)。
一方、第2人工筋肉群29aに電圧を印加しない状態で第1人工筋肉群27aに電圧を印加すると、第1人工筋肉群27aが図の上下方向に伸張する(図8に示す状態)。第1人工筋肉群27aが図の上下方向に伸張すると、先程と同様に、その分だけ第2人工筋肉群29aが圧縮される。第1人工筋肉群27aが上下方向に伸張し、第2人工筋肉群29aが上下方向に圧縮されると、仕切り板23aは下方向に移動する。これによって、シャフト26aがケース内に引き込まれる(すなわち、シャフト26aが収縮する)。
上記したことから明らかなように、アクチュエータ18aは、第1人工筋肉群27aと第2人工筋肉群29aに選択的に電圧を印加することで、シャフト26aを進退動することができる。また、第1人工筋肉群27aに電圧を印加することによってシャフト26aを収縮し、第2人工筋肉群29aに電圧を印加することによってシャフト26aを伸張するため、シャフト26aの伸縮動作を素早く行うことができる。また、各人工筋肉群27a,29aに印加する電圧を制御することによって、シャフト26aの駆動力を好適に制御することができる。さらに、第1及び第2人工筋肉群27a,29aの変形を仕切り板23aを介してシャフト26aに伝達するため、人工筋肉群27a,29aにシャフト26aを直接固定する必要はなく、これによって、人工筋肉群27a,29aの変形が拘束されることもない。このため、人工筋肉群27a,29aの変形を効率的にシャフト26aの運動に変換することができる。
次に、アクチュエータ18a,18bに電圧を印加したときの脚ロボット10の動作について説明する。図9に示すように、アクチュエータ18a,18b(詳しくは、アクチュエータ18a,18bの反シャフト側の人工筋肉群)に電圧が印加されると、シャフト26a,26bはそれぞれ図中右方向に伸張する。シャフト26a,26bが右方向に伸張すると、連結シャフト28が右方向に移動し、接続部32aが駆動装置12から遠ざかる。この動作に伴って、交差部34aが案内溝36aに案内されて上昇する。交差部34aが上昇すると、接続部32cと接続部32dが上昇するとともに、接続部32d,32cが垂直ガイド部材36からそれぞれ遠ざかる方向に移動する(すなわち、接続部32dは図中右方向に移動し、接続部32cは図中左方向に移動する)。この動作に伴って、交差部34bが案内溝36aに案内されて上昇する。交差部34bが上昇すると、接続部32eと接続部32fが上昇するとともに、接続部32e、32fが垂直ガイド部材36からそれぞれ遠ざかる方向に移動する。この動作に伴って、交差部34cを上昇させようとする力が発生する。ただし、交差部34cは垂直ガイド部材36に固定されているため、交差部34cと垂直ガイド部材36とベース16が一体となって上昇する。以上のように、アクチュエータ18a,18bに電圧が印加されると、アクチュエータ18a,18bのシャフト26a、26bが伸張し、リンク機構14が上下方向に収縮し、ベース16が駆動装置12に近づく(図10に示す状態)。
一方、上記の状態のときにアクチュエータ18a,18bの他方の人工筋肉群(シャフト側の人工筋肉群)に電圧が印加されると、シャフト26a,26bは収縮する。シャフト26a,26bが収縮すると、連結シャフト28は図中左方向に移動し、接続部32aが駆動装置12に近づく。この動作に伴って、交差部34aが案内溝36aに案内されて下降する。交差部34aが下降すると、接続部32cと接続部32dが下降するとともに、接続部32c,32dが垂直ガイド部材36に近づく方向に移動する。この動作に伴って、交差部34bが案内溝36aに案内されて下降する。交差部34bが下降すると、接続部32eと接続部32fが下降するとともに、接続部32e,32fが垂直ガイド部材36に近づく方向に移動する。交差部34cは垂直ガイド部材36に固定されているため、交差部34dが下降すると、垂直ガイド部材36とベース16が一体となって下降する。以上のように、アクチュエータ18a,18bの他方の人工筋肉群へ電圧が印加されると、シャフト26a,26bが収縮し、リンク機構14が上下方向に伸長する(図9に示す状態)。
このようにアクチュエータ18a,18bのシャフト26a,26bの横方向の変位が、リンク機構14によって縦方向の機械動作に変換される。
本実施例の脚ロボット10では、駆動装置12としてフィルム状のEPAM型人工筋肉を複数枚積層した2個のアクチュエータ18a,18bを用い、これらアクチュエータ18a,18bのシャフト26a,26bの出力をリンク機構14に伝達する。複数枚の人工筋肉を積層することによって、個々の人工筋肉から得られる機械エネルギを累積して増大させるため、各アクチュエータ18a,18bから出力される機械エネルギを大きくすることができる。また、各アクチュエータ18a,18bのシャフト26a,26bを連結シャフト28に固定するため、各アクチュエータ18a,18bから出力される機械エネルギを加算することもできる。これによって、駆動装置12から大きな機械エネルギを取り出すことができ、リンク機構14(すなわち、脚ロボット10の脚部)を駆動することが可能となる。
また、本実施例の脚ロボット10では、上下方向に伸縮するリンク機構14の下端にベース16が固定されており、リンク機構14の上端に、アクチュエータ18a,18bの出力を伝達するシャフト26a,26bが取り付けられている。アクチュエータ18a,18bがシャフト26a,26bを進退動させ、この進退動をリンク機構14に伝達させることによってリンク機構14を伸縮させて、駆動装置12に対してベース16を上下させることができる(すなわち、ベース16が床面に接地した状態では、駆動装置12側を床面に対して上下に移動させることができる)。すなわち、アクチュエータ18a,18bの小さな運動を、リンク機構14によって大きな機械動作に増幅することができる。
(実施例2)
本発明を具現化した第2実施例を図を参照して説明する。本実施例のロボットは、物体を把持するロボットハンド50である。図11から図13に示すロボットハンド50は、駆動装置52と、把持部54と、ベース56を備えている。なお、以下では図11の図中下側をロボットハンド50の前側とし、図中上側をロボットハンド50の後側とする。
図11から図13に示すように、駆動装置52は、2つのアクチュエータ58a,58bを備えている。アクチュエータ58a,58bは、第1実施例と同様にEPAM型アクチュエータである。アクチュエータ58a,58bは、フィルム状のEPAM型人工筋肉を上下方向に複数枚積層されて形成されており、第1実施例のアクチュエータ18a,18bと同一構成を有している。図12と図13に示すように、2つのアクチュエータ58a,58bは上下方向に重ねられて配置されている。上側に配置されたアクチュエータ58aのシャフト66aは左側(図11の左側)に配置されており、下側に配置されたアクチュエータ58bのシャフト66bは右側(図11の右側)に配置されている。
図11に示すように、アクチュエータ58a,58bは、支持部材60a,60bによってそれぞれ前端と後端を支持されている。支持部材60bには、駆動装置52と把持部54を支持するベース56が固定されている。図12と図13に示すように、ベース56は、板部材56aと、これを補強する板部材56bから構成されている。板部材56aは、駆動装置52の後側から下方に垂直に伸びる垂直部と、その垂直部から前方に伸びる水平部とを有している。
支持部材60aの左右両側には、それぞれ支持シャフト62a,62bがスライド可能に挿入されており、支持部材60bの左右両側には、それぞれ支持シャフト62c,62dがスライド可能に挿入されている。
図11に示すように、アクチュエータ58aの正面向かって左側(図11中左側)の側面の中央からはシャフト66aの一端が取り出されており、アクチュエータ58bの正面向かって右側(図8中右側)の側面からはシャフト66bの一端が取り出されている。シャフト66a,66bの他端は、把持部材68a,68bにそれぞれ固定されている。把持部材68aは、アクチュエータ58a,58bの左側面から前面の中央近傍までに沿うように伸びており、アクチュエータ58a,58bの中央近傍からさらに前方に伸びている。把持部材68bは、把持部材68aと鏡対称の形状であり、アクチュエータ58a,58bの右側面から前面の中央近傍までに沿うように伸びており、アクチュエータ58の中央近傍からさらに前方に伸びている。把持部材68a,68bの前端部には樹脂製のクッション材70が取り付けられており、これらの水平位置は等しい。
把持部材68aには、2つの支持シャフト62a,62cの一端がそれぞれ固定されており、把持部材68bには、2つの支持シャフト62b,62dの一端がそれぞれ固定されている。アクチュエータ58aのシャフト66aが進退動すると、把持部材68aは左右方向にスライドする。また、アクチュエータ58bのシャフト66bが進退動すると、把持部材68bは右左方向にスライドする。このとき、支持シャフト62a,62cは把持部材68aが水平にスライドするように案内し、支持シャフト62b,62dは把持部材68bが水平にスライドするように案内する。
アクチュエータ58a,58bに電圧を印加したときの動作について説明する。アクチュエータ58a,58b(詳細には、アクチュエータ58a,58bの反シャフト側の人工筋肉群)に電圧が印加されると、シャフト66aは正面向かって左方向(図11中左方向)に伸張し、シャフト66bは正面向かって右方向(図11中右方向)に伸張する。これによって、把持部材68aは正面向かって左方向に移動し、把持部材68bは正面向かって右方向に移動する。この動作によって、把持部材68aの前端部と把持部材68bの前端部とが左右方向に遠ざかる。
上記の状態となった後に、アクチュエータ58a,58bの他方の人工筋肉群に電圧を印加すると、アクチュエータ58aのシャフト66aは正面向かって右方向(図11中右方向)に収縮し、アクチュエータ58bのシャフト66bは正面向かって左方向(図11中左方向)に収縮する。シャフト66a,66bが収縮すると、把持部材68aは正面向かって右方向に移動し、把持部材68bは正面向かって左方向に移動する。この動作によって、把持部材68aの前端部と把持部材68bの前端部が左右方向に近づく。
以上のように、アクチュエータ58a,58bに電圧を印加することで、把持部材68a,68bの前端部間の距離を変化させることができる。これによって、把持部材68aの前端部と把持部材68bの前端部との間で物体を掴んだり、掴んでいる物体を開放したりすることができる。
本実施例のロボットハンド50では、フィルム状のEPAM型人工筋肉を複数枚積層したアクチュエータ58a,58bによって把持部材68a,68bを駆動するため、把持部材68a,68bとの間に充分な押圧力や把持力を発生させることができる。これによって、比較的重量のある物体であっても、その物体を2つの把持部材68a,68b間に把持することができる。
(実施例3)
上述した第1実施例及び第2実施例では、EPAM型アクチュエータのシャフトをリンク部材や把持部材に直接連結し、アクチュエータの出力をリンク部材や把持部材に直接伝達する構成を採用していた。しかしながら、本発明はこのような形態に限られず、EPAM型アクチュエータの出力をワイヤを介してロボットの駆動部に伝達するようにしてもよい。
図14にはEPAM型アクチュエータの出力をワイヤを介して関節に伝達するようにした跳躍ロボット71の概略構成が模式的に示されている。図14に示すように、跳躍ロボット71は、胴体72と、胴体72に股関節86を介して回動可能に連結された大腿部80と、大腿部80の下端に膝関節88を介して回動可能に連結された下腿部82と、下腿部82の下端に足首関節90を介して連結された足平部84を有している。胴体70には、3つのアクチュエータ74a,74b,74cが配設されている。アクチュエータ74a,74b,74cは、上述した実施例と同様に、フィルム状のEPAM型人工筋肉を複数枚積層して形成されている。アクチュエータ74a,74b,74cの出力シャフトには、リンク機構76a,76b,76cがそれぞれ連結されている。リンク機構76aの上端にはワイヤ78aの一端が連結され、ワイヤ78aの他端は膝関節88に連結されている。リンク機構76bの上端にはワイヤ78bの一端が連結され、ワイヤ78bの他端は足首関節90に連結されている。リンク機構76cの上端にはワイヤ78cの一端が連結され、ワイヤ78cの他端は股関節86に連結されている。
上述した跳躍ロボット71において、アクチュエータ74aに電圧を印加すると、アクチュエータ74aのシャフトが進退動する。アクチュエータ74aのシャフトが進退動すると、それによってリンク機構76aの上端の位置が上下に移動する。リンク機構76aの上端が上下に移動すると、ワイヤ78aの一端が上下に移動し、それにより膝関節88が回転する。これによって、大腿部80と下腿部82の角度が変化する。同様に、アクチュエータ74bに電圧を印加すると、アクチュエータ74bのシャフトが進退動し、これによって足首関節90が回転する。また、アクチュエータ74cに電圧を印加すると、アクチュエータ74cのシャフトが進退動し、これによって股関節90が回転する。
したがって、上述した跳躍ロボット71では、アクチュエータ74a,74b,74cを駆動することで、膝関節88、足首関節90、股関節86の関節角を変更することができる。すなわち、胴体72に対して大腿部80を回動させることができ、大腿部80に対して下腿部82を回動させることができ、下腿部82に対して足平部84を回動させることができる。これによって、跳躍ロボット71に跳躍動作を行わせることができる。本実施例では、EPAM型アクチュエータの出力をワイヤを介して関節に伝達することで、複雑な動作を行うことができるロボットを実現することができる。
(実施例4)
上述した第3実施例はワイヤ駆動型の跳躍ロボットの例であったが、本発明のEPAM型アクチュエータはワイヤ駆動型の人型ロボットの脚部に適用することもできる。図15,16は、ワイヤ駆動型の人型ロボットの脚部(片方の下肢)を示している。
図15,16に示すように、下肢ロボット111は、大腿部114、下腿部116、足平部118を備えている。大腿部114は、股関節126を介して胴体部112と接続される。大腿部114と下腿部116は、膝関節140によって接続されている。下腿部116と足平部118は、足首関節153によって接続されている。
大腿部114は、アクチュエータ122,123,124,125を有している。アクチュエータ122、123,124,125は、上述した各実施例と同様、フィルム状のEPAM型人工筋肉を複数枚積層して形成されている。アクチュエータ122,123,124,125の出力シャフトには、それぞれワイヤ130,131,132,133の一端が接続されている。ワイヤ130,131,132の他端はプーリ部119を介して足首関節153に接続されている。また、ワイヤ133の他端は、プーリー部119を介して膝関節140に接続されている。
アクチュエータ122,123,124,125を作動させると、アクチュエータ122,123,124,125の出力がワイヤ130,131,132,133を介して膝関節140及び足首関節153に伝達される。これによって、膝関節140及び足首関節153が駆動され、下肢ロボット111は人間の足の動きと同様の動作を行うことができる。なお、図15,16に示す下肢ロボット111の詳細な機械的構造についての説明は、特開2006−26797号公報に開示されているので、ここではこれ以上の説明を省略する。
このようにワイヤ駆動型の人型ロボットのアクチュエータにEPAM型アクチュエータを用いることで、人型ロボットの各関節をEPAM型アクチュエータで駆動することができる。なお、上述した例では、EPAM型アクチュエータを用いて下肢ロボットを駆動する例であったが、本発明はこのような例に限られず、EPAM型アクチュエータを用いてワイヤ駆動による5本指型のロボットハンドを駆動することもできる。なお、5本指型のロボットハンドの機械的構成は、従来公知のものを用いることができる。
なお、上述したアクチュエータ18a,18bでは、第1人工筋肉群27aと第2人工筋肉群29aによってシャフト26aを進退動(押し/引き)させていたが、本発明のアクチュエータはこのような形態に限られない。例えば、1つの人工筋肉群を用いてシャフトを進退動することもできる。すなわち、人工筋肉群にシャフトを直接固定し、人工筋肉群に電圧を印加することでシャフトを一方に移動させ、人工筋肉群への電圧の印加を停止することでシャフトを他方に移動させるようにしてもよい。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
第1実施例のロボットの正面図。 同ロボットの背面図。 同ロボットの上面図。 同ロボットの右側面図。 同ロボットの左側面図。 アクチュエータの構造を説明するための図。 アクチュエータの動作を説明するための図。 同上 同ロボットの動作を説明するための図(1)。 同ロボットの動作を説明するための図(2)。 第2実施例のロボットの上面図。 同ロボットの左側面図。 同ロボットの右側面図。 第3実施例のロボットの概略構成を示す図。 第4実施例のロボットの側面図。 図15のXVI−XVI矢視図。
符号の説明
10:脚ロボット
12:駆動装置
14:リンク機構
16:ベース
18a,18b:アクチュエータ
20:前板
22:後板
24:棒状部材
26a,26b:シャフト
28:連結シャフト、28a:連結部、28b:連結部
30a,30b,30c,30e,30f:板状リンク部材
32a,32b,32c,32d,32e,32f:接続部
34a:交差部、34b:交差部、34c:交差部
36:垂直ガイド部材、36a:案内溝
38:連結シャフト
50:ロボットハンド
52:駆動装置
54:把持部
56:ベース
58a,58b:アクチュエータ
60a,60b:支持部材
62a,62b,62c,62d:支持シャフト
66a,66b:シャフト
68a,68b:把持部材
70:クッション材

Claims (4)

  1. 複数のフィルム状の人工筋肉が積層された人工筋肉群と、この人工筋肉群の変形に伴って進退動するシャフトと、シャフトの進退動によって駆動される駆動部とを備えたロボットの関節構造であって、
    シャフトが各人工筋肉の変形に応じて進退動するように、各人工筋肉の変形が制御可能に構成されていることを特徴とするロボットの関節構造。
  2. 人工筋肉群を構成する各人工筋肉はその変形方向が同一となる状態で積層されており、シャフトが進退動する方向は人工筋肉群の変形方向に一致していることを特徴とする請求項1に記載のロボットの関節構造。
  3. 前記人工筋肉群は、複数のフィルム状の人工筋肉が積層された第1人工筋肉群と、複数のフィルム状の人工筋肉が積層された第2人工筋肉群を有しており、第1人工筋肉群を構成する各人工筋肉は変形する方向が同一となる状態で積層されており、かつ、第2人工筋肉群を構成する各人工筋肉は変形する方向が同一となる状態で積層されており、
    シャフトの進退動する方向は第1及び第2人工筋肉群の変形方向と一致しており、
    第1人工筋肉群に電圧が印加されない状態で第2人工筋肉群に電圧が印加されるとシャフトが進動し、第2人工筋肉群に電圧が印加されない状態で第1人工筋肉群に電圧が印加されるとシャフトが退動することを特徴とする請求項2に記載のロボットの関節構造。
  4. 第1人工筋肉群と第2人工筋肉群は変形方向に並んで配置されており、
    第1人工筋肉群と第2人工筋肉群の間にはシャフトに連結された仕切り板が配置されており、その仕切り板は第1人工筋肉群と第2人工筋肉群によって挟持されており、
    第1人工筋肉群に電圧が印加されない状態で第2人工筋肉群に電圧が印加されると、第2人工筋肉群の変形に伴って仕切り板が変位してシャフトが進動し、
    第2人工筋肉群に電圧が印加されない状態で第1人工筋肉群に電圧が印加されると、第1人工筋肉群の変形に伴って仕切り板が変位してシャフトが退動することを特徴とする請求項3に記載のロボットの関節構造。
JP2006271124A 2006-10-02 2006-10-02 ロボットの関節構造 Pending JP2008087110A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271124A JP2008087110A (ja) 2006-10-02 2006-10-02 ロボットの関節構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271124A JP2008087110A (ja) 2006-10-02 2006-10-02 ロボットの関節構造

Publications (1)

Publication Number Publication Date
JP2008087110A true JP2008087110A (ja) 2008-04-17

Family

ID=39371794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271124A Pending JP2008087110A (ja) 2006-10-02 2006-10-02 ロボットの関節構造

Country Status (1)

Country Link
JP (1) JP2008087110A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108237524A (zh) * 2016-12-26 2018-07-03 中国科学院沈阳自动化研究所 一种线驱动连续型机器人
US10517182B2 (en) 2014-10-28 2019-12-24 Samsung Electronics Co., Ltd. Wearable electronics device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505865A (ja) * 1999-07-20 2003-02-12 エスアールアイ インターナショナル 改良電気活性ポリマ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505865A (ja) * 1999-07-20 2003-02-12 エスアールアイ インターナショナル 改良電気活性ポリマ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10517182B2 (en) 2014-10-28 2019-12-24 Samsung Electronics Co., Ltd. Wearable electronics device
US11622455B2 (en) 2014-10-28 2023-04-04 Samsung Electronics Co., Ltd. Wearable electronic device
CN108237524A (zh) * 2016-12-26 2018-07-03 中国科学院沈阳自动化研究所 一种线驱动连续型机器人

Similar Documents

Publication Publication Date Title
Zhang et al. Modular soft robotics: Modular units, connection mechanisms, and applications
Zhang et al. Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications
JP2019018346A (ja) 前方または後方指向の外骨格
Zhakypov et al. The design and control of the multi-modal locomotion origami robot, Tribot
Cui et al. Design and fabrication of a three dimensional printable non-assembly articulated hand exoskeleton for rehabilitation
KR101628397B1 (ko) 착용식 로봇의 어깨관절 구조체
Kokkoni et al. Development of a soft robotic wearable device to assist infant reaching
Peirs et al. A miniature manipulator for integration in a self-propelling endoscope
Sahai et al. Towards a 3g crawling robot through the integration of microrobot technologies
Liu et al. S 2 worm: A fast-moving untethered insect-scale robot with 2-DoF transmission mechanism
Yamaura et al. Development of hand rehabilitation system using wire-driven link mechanism for paralysis patients
Bar-Cohen EAP as artificial muscles: progress and challenges
Niola et al. An underactuated mechanical hand: a first prototype
Fathi et al. A deployable soft robotic arm with stiffness modulation for assistive living applications
Pourghodrat et al. Disposable fluidic actuators for miniature in-vivo surgical robotics
Becker et al. Pop-up tissue retraction mechanism for endoscopic surgery
JP2008087110A (ja) ロボットの関節構造
Zhang et al. Bioinspired rigid-soft hybrid origami actuator with controllable versatile motion and variable stiffness
Nakanishi et al. Design of powerful and flexible musculoskeletal arm by using nonlinear spring unit and electromagnetic clutch opening mechanism
Gong et al. Untethered cable-driven soft actuators for quadruped robots
Guo et al. Kirigami-inspired 3D printable soft pneumatic actuators with multiple deformation modes for soft robotic applications
KR101565512B1 (ko) 신체의 움직임을 재현하는 동력형 외골격 장치
Abbasi Moshaii et al. A review of robotic mechanisms for ultrasound examinations
Yang et al. A novel wrist rehabilitation exoskeleton using 3D-printed multi-segment mechanism
Rosati et al. Design and control of two planar cable-driven robots for upper-limb neurorehabilitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090414

A977 Report on retrieval

Effective date: 20110111

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705