JP2008086175A - Charge/discharge device for battery or electric double-layer capacitor - Google Patents

Charge/discharge device for battery or electric double-layer capacitor Download PDF

Info

Publication number
JP2008086175A
JP2008086175A JP2006266196A JP2006266196A JP2008086175A JP 2008086175 A JP2008086175 A JP 2008086175A JP 2006266196 A JP2006266196 A JP 2006266196A JP 2006266196 A JP2006266196 A JP 2006266196A JP 2008086175 A JP2008086175 A JP 2008086175A
Authority
JP
Japan
Prior art keywords
battery
discharge
charge
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266196A
Other languages
Japanese (ja)
Inventor
Junichi Watanabe
渡辺  純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006266196A priority Critical patent/JP2008086175A/en
Publication of JP2008086175A publication Critical patent/JP2008086175A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the number of required circuit components in a charge/discharge device for executing a charge/discharge test of a battery or an electric double-layer capacitor, and also, to simplify control of the charge/discharge device while facilitating protection of the device from an excessive discharge current. <P>SOLUTION: A PWM converter 11 has a bi-directional power conversion function. An inversion-type step-up/step-down chopper circuit 14 charges a battery 13 from the PWM converter 11 side by turning off a switch S1 after turning it on. The circuit discharges from the battery 13 to the PWM converter 11 side by turning off a switch S2 after turning it on. A charge/discharge voltage and a charge/discharge current are adjusted with each conduction ratio of the switches S1, S2. The charge/discharge device includes a configuration in which a commutator is used instead of the PWM converter and a resistance-type discharge circuit is provided in parallel with the commutator. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電池または電気二重層キャパシタの充放電特性や寿命評価などの試験を行うための充放電装置に係り、特に半導体スイッチのチョッパ動作によって充放電電流を制御する装置に関する。   The present invention relates to a charge / discharge device for performing tests such as charge / discharge characteristics and life evaluation of a battery or an electric double layer capacitor, and more particularly to a device for controlling a charge / discharge current by a chopper operation of a semiconductor switch.

図3は回生式充放電装置の主回路構成を示す(例えば、特許文献1参照)。PWMコンバータ1は、交流電源ACから電圧制御した直流電力を得る順変換機能と、直流電力を交流電源ACに回生する逆変換機能を有する双方向電力変換器である。平滑コンデンサ2は、PWMコンバータ1の順変換動作には直流出力を平滑し、逆変換動作には直流電源になる。なお、PWMコンバータ1は順変換器と逆変換器(インバータ)を並列接続した2台構成にされる場合もある。4象限チョッパ回路(ブリッジ型可逆チョッパ回路)3は、基本アーム3Aと制御アーム3Bで4組のアームをブリッジ接続した構成にされ、各アームのうち、互いに対角位置のアーム同士が相補アームになる。両アーム3A、3Bの各アームは、半導体スイッチS1〜S4と、これらにそれぞれ逆並列にダイオードD1〜D4を接続した構成にされる。アーム3A、3Bの上下アームの両接続点の間に、直流リアクトル4と被試験対象となる電池(電気二重層キャパシタ、キャパシタなど)5が接続される。   FIG. 3 shows a main circuit configuration of the regenerative charge / discharge device (see, for example, Patent Document 1). The PWM converter 1 is a bidirectional power converter having a forward conversion function for obtaining voltage-controlled DC power from the AC power supply AC and an inverse conversion function for regenerating DC power to the AC power supply AC. The smoothing capacitor 2 smoothes the DC output for the forward conversion operation of the PWM converter 1 and becomes a DC power source for the reverse conversion operation. Note that the PWM converter 1 may be configured in two units in which a forward converter and an inverse converter (inverter) are connected in parallel. The four-quadrant chopper circuit (bridge-type reversible chopper circuit) 3 has a configuration in which four arms are bridge-connected by a basic arm 3A and a control arm 3B, and among the arms, the arms at diagonal positions are complementary arms. Become. Each of the arms 3A and 3B has a configuration in which semiconductor switches S1 to S4 and diodes D1 to D4 are connected in antiparallel to the semiconductor switches S1 to S4, respectively. A DC reactor 4 and a battery (electric double layer capacitor, capacitor, etc.) 5 to be tested are connected between the connection points of the upper and lower arms of the arms 3A and 3B.

この構成において、電池5の放電時には、スイッチS2,S3をオンさせることにより、電池5には直流リアクトル4を通して直流電源側に放電電流を流し、その後にスイッチS3をオフさせることでスイッチS2とダイオードD4の経路で循環電流による放電電流を流し、その後にスイッチS2をオフさせることで循環電流をダイオードD1、D4の経路で直流電源への放電電流として流す。   In this configuration, when the battery 5 is discharged, the switches S2 and S3 are turned on so that a discharge current flows to the battery 5 through the DC reactor 4 and then the switch S3 is turned off to turn off the switch S2 and the diode. A discharge current due to the circulating current is caused to flow through the path D4, and then the switch S2 is turned off to cause the circulating current to flow as a discharge current to the DC power source via the paths of the diodes D1 and D4.

また、電池5の充電時には、スイッチS1、S4をオンさせることにより、直流電源から電池5に充電電流を流し、その後にスイッチS1をオフさせることによりスイッチS4とダイオードD2の経路で循環電流を流し、その後にスイッチS4をオフさせることで循環電流をダイオードD2、D3を通して直流電源への放電電流として流す。
特開2001−16798号公報
Further, when charging the battery 5, by turning on the switches S1 and S4, a charging current is caused to flow from the DC power source to the battery 5, and thereafter, by turning off the switch S1, a circulating current is caused to flow through the path of the switch S4 and the diode D2. Thereafter, the switch S4 is turned off to allow the circulating current to flow as a discharge current to the DC power source through the diodes D2 and D3.
JP 2001-16798 A

従来の充放電装置は、四象限チョッパ回路を適用しているため、スイッチS1〜S4の4個の半導体スイッチを必要とし、さらに直流電源にはPWMコンバータ1を用いるため、制御装置及び主回路構成が複雑となるし、高価な装置になる。   Since the conventional charging / discharging device employs a four-quadrant chopper circuit, it requires four semiconductor switches S1 to S4, and further uses the PWM converter 1 for the DC power supply. Becomes complicated and expensive.

また、PWMコンバータ1に代えて整流器を使用し、電池5の放電試験には直流電源に放電用抵抗と半導体スイッチの直列接続構成の放電回路を設けることが考えられるが、電池5の充電エネルギーが大きい場合に放電回路に過大な電流が流れる回路状態が予想され、この過大電流から放電回路および半導体スイッチS1〜S4、ダイオードD1〜D4を保護する回路も必要となる。また、過大電流の発生に、放電を中断する機能をもたせる場合には直流遮断容量の大きい遮断器も必要となる。   In addition, a rectifier may be used in place of the PWM converter 1 and the discharge test of the battery 5 may be provided with a discharge circuit of a series connection configuration of a discharge resistor and a semiconductor switch in the DC power supply. A circuit state in which an excessive current flows in the discharge circuit when the discharge current is large is expected, and a circuit for protecting the discharge circuit and the semiconductor switches S1 to S4 and the diodes D1 to D4 from the excessive current is also required. In addition, a circuit breaker having a large DC breaking capacity is also required when the function of interrupting the discharge is provided for the generation of an excessive current.

本発明の目的は、必要とする回路部品点数を削減およびその制御も簡略化でき、過大な放電電流からの保護も容易にした、電池または電気二重層キャパシタの充放電装置を提供することにある。   An object of the present invention is to provide a charging / discharging device for a battery or an electric double layer capacitor that can reduce the number of necessary circuit components and simplify the control thereof, and can easily protect against excessive discharge current. .

前記の課題を解決するための本発明は、以下の構成を特徴とする。   The present invention for solving the above-described problems is characterized by the following configuration.

(1)電池または電気二重層キャパシタの充放電試験を行うための充放電装置であって、
交流電源から直流電力を得る順変換と、直流電源から交流電源に電力を回生する逆変換ができる双方向電力変換器と、
半導体スイッチとこれに逆並列接続したダイオードからなる1対のアームと、直流リアクトルにより構成し、前記双方向電力変換器と前記電池または電気二重層キャパシタとの間に設けられ、前記半導体スイッチのチョッパ動作によって前記電力変換器を通した前記交流電源と前記電池または電気二重層キャパシタとの間の充電制御と放電制御を行う反転式昇降圧チョッパ回路と、
を備えたことを特徴とする。
(1) A charge / discharge device for performing a charge / discharge test of a battery or an electric double layer capacitor,
Bidirectional power converter capable of forward conversion to obtain DC power from an AC power supply and reverse conversion to regenerate power from the DC power supply to the AC power supply,
A semiconductor switch and a pair of arms composed of diodes connected in reverse parallel to the semiconductor switch, and a direct current reactor, provided between the bidirectional power converter and the battery or electric double layer capacitor, and a chopper of the semiconductor switch An inverting buck-boost chopper circuit that performs charge control and discharge control between the AC power source and the battery or the electric double layer capacitor through the power converter by operation;
It is provided with.

(2)電池または電気二重層キャパシタの充放電試験を行うための充放電装置であって、
交流電源から直流電力を得る整流器と、
半導体スイッチと放電抵抗の直列接続で前記整流器の出力側に設けた放電回路と、
半導体スイッチとこれに逆並列接続したダイオードからなる1対のアームと、直流リアクトルにより構成し、前記双方向電力変換器と前記電池または電気二重層キャパシタとの間に設けられ、前記半導体スイッチのチョッパ動作によって前記整流器を通した前記交流電源と前記電池または電気二重層キャパシタとの間の充電制御と、前記放電回路と前記電池または電気二重層キャパシタとの間の放電制御を行う反転式昇降圧チョッパ回路と、
を備えたことを特徴とする。
(2) A charge / discharge device for performing a charge / discharge test of a battery or an electric double layer capacitor,
A rectifier that obtains DC power from an AC power supply;
A discharge circuit provided on the output side of the rectifier in a series connection of a semiconductor switch and a discharge resistor;
A semiconductor switch and a pair of arms composed of diodes connected in reverse parallel to the semiconductor switch, and a direct current reactor, provided between the bidirectional power converter and the battery or electric double layer capacitor, and a chopper of the semiconductor switch Inverting step-up / step-down chopper that performs charging control between the AC power source and the battery or the electric double layer capacitor through the rectifier by operation and discharging control between the discharge circuit and the battery or the electric double layer capacitor. Circuit,
It is provided with.

以上のとおり、本発明によれば、反転式昇降圧チョッパ回路によって、交流電源から電池または電気二重層キャパシタへの充電制御と、電池または電気二重層キャパシタから交流電源または放電回路への放電制御を行うため、必要とする回路部品点数を削減およびその制御も簡略化でき、過大な放電電流からの保護も容易になる。   As described above, according to the present invention, charge control from an AC power supply to a battery or an electric double layer capacitor and discharge control from a battery or electric double layer capacitor to an AC power supply or discharge circuit are performed by an inverting buck-boost chopper circuit. As a result, the required number of circuit components can be reduced and control thereof can be simplified, and protection from excessive discharge current can be facilitated.

(実施形態1)
図1は、本実施形態を示す充放電装置の主回路構成図である。PWMコンバータ11は、図3と同様に、順変換機能と逆変換機能を有し、平滑コンデンサ12との組み合わせで直流電源を構成する。被試験装置になる電池(または電気二重層キャパシタ)13とPWMコンバータ11の直流電源との間に、反転式昇降圧チョッパ回路14を設ける。
(Embodiment 1)
FIG. 1 is a main circuit configuration diagram of a charging / discharging device showing the present embodiment. As in FIG. 3, the PWM converter 11 has a forward conversion function and an inverse conversion function, and constitutes a DC power source in combination with the smoothing capacitor 12. An inverting step-up / step-down chopper circuit 14 is provided between a battery (or electric double layer capacitor) 13 serving as a device under test and a DC power source of the PWM converter 11.

この反転式昇降圧チョッパ回路14は、半導体スイッチS1,S2と、これらにダイオードD1,D2を逆並列接続した一対のアームの直列接続回路と、この両アームの接続点と基準電位との間に直流リアクトルLを接続した構成とする。   The inverting step-up / down chopper circuit 14 includes semiconductor switches S1 and S2, a series connection circuit of a pair of arms in which diodes D1 and D2 are connected in antiparallel, and a connection point between both arms and a reference potential. The DC reactor L is connected.

半導体スイッチS1、S2の接続極性は、直流電源のP極から電池13に順方向電流が流れる向きとする。電池13はチョッパ回路14のアーム出力端子側に負極(−)端子を接続し、基準電位側に正極(+)端子を接続する。   The connection polarity of the semiconductor switches S1 and S2 is the direction in which forward current flows from the P pole of the DC power source to the battery 13. The battery 13 has a negative electrode (−) terminal connected to the arm output terminal side of the chopper circuit 14 and a positive electrode (+) terminal connected to the reference potential side.

この構成において、電池13の充電時には、半導体スイッチS2をオフにした状態で、半導体スイッチS1をオンさせることで、PWMコンバータ11の直流電源のP極から半導体スイッチS1→直流リアクトルL→N極の経路で短絡電流を流す。この後、直流リアクトルLが飽和しない時間内で、半導体スイッチS1をオフすることで、直流リアクトルLから電池13→ダイオードD2の経路で電池13への循環電流を流し、直流リアクトルLに蓄えられた電気エネルギーにより電池13の充電を行う。   In this configuration, when the battery 13 is charged, the semiconductor switch S1 is turned on while the semiconductor switch S2 is turned off, so that the semiconductor switch S1 → DC reactor L → N pole is changed from the P pole of the DC power supply of the PWM converter 11. A short circuit current is passed through the path. After that, by turning off the semiconductor switch S1 within a time when the DC reactor L is not saturated, a circulating current is passed from the DC reactor L to the battery 13 through the path of the battery 13 to the diode D2, and stored in the DC reactor L. The battery 13 is charged with electric energy.

このような充電動作は、半導体スイッチS1のスイッチング動作(オン/オフの繰り返し)によって電池13に充電電流を流し、この充電時の充電電圧および電流は半導体スイッチS1のオン/オフ比率(導通率)によって調整し、さらにPWMコンバータ11の出力電圧制御によって調整できる。   In such a charging operation, a charging current is passed through the battery 13 by the switching operation (on / off repetition) of the semiconductor switch S1, and the charging voltage and current at the time of charging are the ON / OFF ratio (conductivity) of the semiconductor switch S1. And can be adjusted by controlling the output voltage of the PWM converter 11.

次に、電池13の放電時には、半導体スイッチS1をオフした状態で、半導体スイッチS2をオンさせることで、電池13から直流リアクトルL→半導体スイッチS2の経路で短絡電流を流す。この後、直流リアクトルLが飽和しない時間内で、半導体スイッチS2をオフすることで、直流リアクトルLからダイオードD1→PWMコンバータ11の経路で循環電流を流し、直流リアクトルLに蓄えられた電気エネルギーを交流電源AC側に回生する。   Next, when the battery 13 is discharged, the semiconductor switch S2 is turned on while the semiconductor switch S1 is turned off, so that a short-circuit current flows from the battery 13 through the path of the DC reactor L → the semiconductor switch S2. Thereafter, by turning off the semiconductor switch S2 within a time period when the DC reactor L is not saturated, a circulating current is caused to flow from the DC reactor L through the diode D1 → PWM converter 11 and the electric energy stored in the DC reactor L is reduced. Regenerate to AC power supply AC side.

このような放電動作は、半導体スイッチS2のスイッチング動作(オン/オフの繰り返し)によって電池13から放電電流を流し、この放電時の放電電圧および電流は半導体スイッチS2のオン/オフ比率(導通率)によって調整し、さらにPWMコンバータ11の出力電圧制御によって調整できる。   In such a discharge operation, a discharge current is caused to flow from the battery 13 by the switching operation (on / off repetition) of the semiconductor switch S2, and the discharge voltage and current at the time of discharge are the on / off ratio (conductivity) of the semiconductor switch S2. And can be adjusted by controlling the output voltage of the PWM converter 11.

本実施形態によれば、図3の構成に比べて、半導体スイッチおよび逆並列ダイオードで構成するアームの必要個数を1/2に削減できる。また、半導体スイッチの制御回路も簡略化できる。さらに、半導体スイッチS1.S2の導通率で充放電電流を調整できるため、PWMコンバータによる充放電制御を不要にしてその制御装置が簡単になる。   According to the present embodiment, the required number of arms formed of semiconductor switches and antiparallel diodes can be reduced by half compared to the configuration of FIG. In addition, the control circuit of the semiconductor switch can be simplified. Furthermore, the semiconductor switches S1. Since the charge / discharge current can be adjusted by the continuity of S2, charge / discharge control by the PWM converter is unnecessary, and the control device is simplified.

なお、本実施形態において、PWMコンバータは、順変換器と逆変換器の並列接続構成にした双方向電力変換器として同等の作用効果を得ることができる。   In this embodiment, the PWM converter can obtain the same operation and effect as a bidirectional power converter having a parallel connection configuration of a forward converter and an inverse converter.

(実施形態2)
図2は、本実施形態を示す充放電装置の主回路構成図である。同図が図1と異なる部分は、PWMコンバータ11に代えて、整流器15と抵抗式放電回路16を設けた点にある。
(Embodiment 2)
FIG. 2 is a main circuit configuration diagram of the charging / discharging device showing the present embodiment. 1 is different from FIG. 1 in that a rectifier 15 and a resistive discharge circuit 16 are provided in place of the PWM converter 11.

整流器15は交流電源ACの交流電力を直流電力に変換する整流機能のみをもち、平滑コンデンサ12との組み合わせで直流電源を構成する。なお、整流器15と交流電源ACとの間に、半導体スイッチSW1を設け、この間の回路遮断を可能にしておく。抵抗式放電回路16は、放電抵抗Rと半導体スイッチSW2の直列接続構成とし、直流電源に並列接続で設ける。   The rectifier 15 has only a rectifying function for converting AC power of the AC power source AC into DC power, and constitutes a DC power source in combination with the smoothing capacitor 12. A semiconductor switch SW1 is provided between the rectifier 15 and the AC power supply AC, and the circuit between them can be interrupted. The resistance type discharge circuit 16 has a discharge resistor R and a semiconductor switch SW2 connected in series, and is provided in parallel with a DC power source.

この構成において、電池13の充電時の動作は半導体スイッチSW1をオン、SW2をオフさせた状態で、半導体スイッチS2をオフ、半導体スイッチS1のスイッチングにより、図1の場合と同様の充電動作を得る。   In this configuration, the battery 13 is charged when the semiconductor switch SW1 is turned on and the SW2 is turned off, the semiconductor switch S2 is turned off, and the semiconductor switch S1 is switched to obtain the same charging operation as in FIG. .

電池13の放電時の動作は、半導体スイッチSW1をオフ、SW2をオン、半導体スイッチS1をオフした状態で、半導体スイッチS2をオンさせることで、電池13から直流リアクトルL→半導体スイッチS2の経路で短絡電流を流す。この後、直流リアクトルLが飽和しない時間内で、半導体スイッチS2をオフすることで、直流リアクトルLからダイオードD1→スイッチSW2→放電抵抗Rの経路で循環電流を流し、直流リアクトルLに蓄えられた電気エネルギーを放電抵抗Rで熱として放電させる。   When the battery 13 is discharged, the semiconductor switch SW1 is turned off, the switch SW2 is turned on, the semiconductor switch S1 is turned off, and the semiconductor switch S2 is turned on, so that the battery 13 is connected to the DC reactor L → the semiconductor switch S2. Apply short circuit current. Thereafter, by turning off the semiconductor switch S2 within a time period when the DC reactor L is not saturated, a circulating current flows from the DC reactor L through the path of the diode D1, the switch SW2, and the discharge resistance R, and the DC reactor L is stored. Electric energy is discharged as heat by the discharge resistor R.

この放電動作において、放電電圧および放電電流は半導体スイッチS2によって調整することができ、電池13の充電エネルギーが大きい場合にも過大な電流が放電回路に流れることはなく、半導体スイッチSW2、S1およびダイオードD1を過電流から保護することができる。   In this discharge operation, the discharge voltage and the discharge current can be adjusted by the semiconductor switch S2, and even when the charging energy of the battery 13 is large, an excessive current does not flow to the discharge circuit, and the semiconductor switches SW2, S1 and the diode D1 can be protected from overcurrent.

本実施形態によれば、実施形態1の効果に加えて、高価なPWMコンバータが不要になる。   According to the present embodiment, in addition to the effects of the first embodiment, an expensive PWM converter becomes unnecessary.

本発明の実施形態1を示す主回路構成図。The main circuit block diagram which shows Embodiment 1 of this invention. 本発明の実施形態2を示す主回路構成図。The main circuit block diagram which shows Embodiment 2 of this invention. 従来の回生式充放電装置の主回路構成図。The main circuit block diagram of the conventional regenerative charging / discharging apparatus.

符号の説明Explanation of symbols

1、11 PWMコンバータ
2、12 平滑コンデンサ
5、13 電池(または電気二重層キャパシタ)
14 反転式昇降圧チョッパ
15 整流器
16 抵抗式放電回路
1,11 PWM converter 2,12 Smoothing capacitor 5,13 Battery (or electric double layer capacitor)
14 Inverting Buck-Boost Chopper 15 Rectifier 16 Resistive Discharge Circuit

Claims (2)

電池または電気二重層キャパシタの充放電試験を行うための充放電装置であって、
交流電源から直流電力を得る順変換と、直流電源から交流電源に電力を回生する逆変換ができる双方向電力変換器と、
半導体スイッチとこれに逆並列接続したダイオードからなる1対のアームと、直流リアクトルにより構成し、前記双方向電力変換器と前記電池または電気二重層キャパシタとの間に設けられ、前記半導体スイッチのチョッパ動作によって前記電力変換器を通した前記交流電源と前記電池または電気二重層キャパシタとの間の充電制御と放電制御を行う反転式昇降圧チョッパ回路と、
を備えたことを特徴とする電池または電気二重層キャパシタの充放電装置。
A charge / discharge device for performing a charge / discharge test of a battery or an electric double layer capacitor,
Bidirectional power converter capable of forward conversion to obtain DC power from an AC power supply and reverse conversion to regenerate power from the DC power supply to the AC power supply,
A semiconductor switch and a pair of arms composed of diodes connected in reverse parallel to the semiconductor switch, and a direct current reactor, provided between the bidirectional power converter and the battery or electric double layer capacitor, and a chopper of the semiconductor switch An inverting buck-boost chopper circuit that performs charge control and discharge control between the AC power source and the battery or the electric double layer capacitor through the power converter by operation;
A battery or an electric double layer capacitor charging / discharging device comprising:
電池または電気二重層キャパシタの充放電試験を行うための充放電装置であって、
交流電源から直流電力を得る整流器と、
半導体スイッチと放電抵抗の直列接続で前記整流器の出力側に設けた放電回路と、
半導体スイッチとこれに逆並列接続したダイオードからなる1対のアームと、直流リアクトルにより構成し、前記双方向電力変換器と前記電池または電気二重層キャパシタとの間に設けられ、前記半導体スイッチのチョッパ動作によって前記整流器を通した前記交流電源と前記電池または電気二重層キャパシタとの間の充電制御と、前記放電回路と前記電池または電気二重層キャパシタとの間の放電制御を行う反転式昇降圧チョッパ回路と、
を備えたことを特徴とする電池または電気二重層キャパシタの充放電装置。
A charge / discharge device for performing a charge / discharge test of a battery or an electric double layer capacitor,
A rectifier that obtains DC power from an AC power supply;
A discharge circuit provided on the output side of the rectifier in a series connection of a semiconductor switch and a discharge resistor;
A semiconductor switch and a pair of arms composed of diodes connected in reverse parallel to the semiconductor switch, and a direct current reactor, provided between the bidirectional power converter and the battery or electric double layer capacitor, and a chopper of the semiconductor switch Inverting step-up / step-down chopper that performs charging control between the AC power source and the battery or the electric double layer capacitor through the rectifier by operation and discharging control between the discharge circuit and the battery or the electric double layer capacitor. Circuit,
A battery or an electric double layer capacitor charging / discharging device comprising:
JP2006266196A 2006-09-29 2006-09-29 Charge/discharge device for battery or electric double-layer capacitor Pending JP2008086175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266196A JP2008086175A (en) 2006-09-29 2006-09-29 Charge/discharge device for battery or electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266196A JP2008086175A (en) 2006-09-29 2006-09-29 Charge/discharge device for battery or electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2008086175A true JP2008086175A (en) 2008-04-10

Family

ID=39356446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266196A Pending JP2008086175A (en) 2006-09-29 2006-09-29 Charge/discharge device for battery or electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2008086175A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188601A (en) * 2010-03-08 2011-09-22 Tabuchi Electric Co Ltd Charging system of secondary battery mounted to moving body, and electric vehicle
JP2013013165A (en) * 2011-06-28 2013-01-17 Nichicon Corp Ac/dc conversion device
JP2013504294A (en) * 2009-09-03 2013-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Charging circuit with current stabilization function
CN103532184A (en) * 2013-09-26 2014-01-22 超威电源有限公司 Rapid charging device with boost-buck system
WO2020186653A1 (en) * 2019-03-18 2020-09-24 深圳市瑞能实业股份有限公司 Control system and control method for battery formation and capacity grading, and battery power management system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211764A (en) * 1991-06-12 1993-08-20 Toshiba Corp Chopper circuit
JPH08331771A (en) * 1995-06-05 1996-12-13 Toshiba Corp Charge/discharge controller for secondary battery
JP2001016798A (en) * 1999-06-24 2001-01-19 Hokuto Denko Kk Charging/discharging device for battery or electric double-layered capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211764A (en) * 1991-06-12 1993-08-20 Toshiba Corp Chopper circuit
JPH08331771A (en) * 1995-06-05 1996-12-13 Toshiba Corp Charge/discharge controller for secondary battery
JP2001016798A (en) * 1999-06-24 2001-01-19 Hokuto Denko Kk Charging/discharging device for battery or electric double-layered capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504294A (en) * 2009-09-03 2013-02-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Charging circuit with current stabilization function
JP2011188601A (en) * 2010-03-08 2011-09-22 Tabuchi Electric Co Ltd Charging system of secondary battery mounted to moving body, and electric vehicle
JP2013013165A (en) * 2011-06-28 2013-01-17 Nichicon Corp Ac/dc conversion device
CN103532184A (en) * 2013-09-26 2014-01-22 超威电源有限公司 Rapid charging device with boost-buck system
WO2020186653A1 (en) * 2019-03-18 2020-09-24 深圳市瑞能实业股份有限公司 Control system and control method for battery formation and capacity grading, and battery power management system

Similar Documents

Publication Publication Date Title
JP4886562B2 (en) Power converter and multi-input / output power converter
WO2012049910A1 (en) Output circuit for electric power supply system
KR20180129894A (en) Uninterruptible power supply
JP5386185B2 (en) Power converter
WO2017110510A1 (en) Dc-dc converter
JP2008079381A (en) Matrix converter
JP2008086175A (en) Charge/discharge device for battery or electric double-layer capacitor
JPWO2016174781A1 (en) Inverter control device
EP2768131B1 (en) Inverter device
CN212579628U (en) Energy conversion device and vehicle
JP5200975B2 (en) Current detection device for power conversion circuit
JP2004357437A (en) Power converter and failure diagnosis method for the same
JP6603405B2 (en) Uninterruptible power system
JP2010238391A (en) Direct-current breaker
JP2017201877A (en) Battery control circuit for renewable energy power generation system
JP5357616B2 (en) Circuit for protecting at least one DC network with a DC load against overvoltage
CN106451428A (en) Hybrid type unified power quality conditioner with short circuiting current limiting function
JP2007159234A (en) Uninterruptible power supply device
JP4000719B2 (en) Charge / discharge device for battery or electric double layer capacitor
JP5989396B2 (en) Inverter device, power conversion device, and distributed power supply system
CN103972877A (en) Disconnect switch in dc power system
JP6444435B2 (en) Power supply
JP2009284639A (en) Power conversion apparatus
JP6214452B2 (en) Uninterruptible power supply system and uninterruptible power supply
JP6444204B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019